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Abstract
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We prove some results about Hilbert’s ¢ operator, but in the main part of the paper
we consider the case when all choices are independent.
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1 Introduction

This investigation was motivated by the choice construct in ASM programs, that is the
programs of abstract state machines [Gurevich 1995]. The ASM choice terms have the form

(choose x : p(z))

where ¢(x) is a formula (that is a Boolean-valued term'). Intuitively (choose x : ¢(z)) is an
element of the set {z: p(z)}.

Here we are interested mainly in the extension of first-order logic with the choose con-
struct (choose = : @(x)). Syntactically, the desired extension is obvious. Just add the
following formation rule:

o If p(z) is a formula, then (choose z : ¢(z)) is a term. All occurrences of = in the term
are bound. For any other variable y, every free (respectively bound) occurrence of y
in ¢ remains free (respectively bound) in the term.

The semantics of the extended logic is not obvious. Evaluating a term or a formula may

involve numerous actions of choice. Should they be correlated, and if yes then how? Different

correlation strategies may give rise to different choice operators and thus to different logics.
We restrict attention to correlation strategies satisfying the following constraint:

e The choices from a set Z are independent of the choices from all sets Z’ different from

Z.

This leaves the possibility that a particular choice from a given set Z depends on other
choices from Z. Two extreme cases arise naturally:

Fixed-choice strategy: For any set Z, all choices from Z give the same result.
Independent-choice strategy: For any set 7, different choices from Z are independent.

Notice that there are other natural strategies. For example, the current choice from Z can
depend on the previous choices from Z but be independent from concurrent choices from Z.
And concurrent choices from the same set do arise, quite naturally. Consider for example a
term

(choose = : E(x,y))

where F is the edge relation of a graph. There may be y1 # yo with {z : E(x,y1)} = {z:
FE(z,y2)}, and then we have concurrent choices from the same set.

What should one do when the choice set is empty? One may say that choosing from
the empty set is impossible and thus the term (choose y : ¢(Z,y)) gives in general a partial
function. Traditionally first-order logic deals only with total functions. In the ASM context,
structures (the states of ASMs) come equipped with default elements; choosing from the

1Boolean-valued in the sense of programming, not set theory. A Boolean-valued term is simply a term
with values in {true, false}.



empty set results in the default element. This avoids dealing with partial functions. We
borrow that solution. For most of our work, we use structures equipped with default elements
and choosing from the empty set results in the default element. (Alternatively, one can
stipulate that choosing from the empty set is like choosing from the whole base set: the
result can be any element of the base set. We will explore this solution in Section 8.)

The fixed-choice strategy turns the choice operator into Hilbert’s well known epsilon
operator [Hilbert and Bernays 1939]. The extension of first-order logic with this operator
will be called FO+e. It is natural and usual to suppose in this case that every structure
comes equipped with a choice function. In other words, an FO+¢ structure has the form
(A, F') where A is a usual first-order structure with base set |A| and F'is a function from
the power set 214l to |A|. In particular, F({}) is the default element discussed above.

The independent-choice strategy gives another version of the choice operator which will
be called §.2 The extension of first-order logic with § will be denoted FO+4. An FO+§
structure is a usual first-order structure equipped with a default element. More generally,
we will consider many-sorted structures where every sort comes with its own default element.

We devote two sections to the ¢ operator. The main part of the paper is devoted to the
investigation of FO+4. Finally, we consider briefly an alternative independent-choice logic
and the witness operator studied in [Abiteboul-Vianu 1991].

1.1 The € Operator

The e operator was introduced in [Hilbert and Bernays 1939] for proof-theoretic purposes
and played an important role in proof theory [Leisenring 1969]. Here we are interested in
model theory. The extension FO+e¢ of first-order logic with the ¢ operator is the object of
Section 3 which is a kind of introduction to a general study of the ¢ operator. We explain
the background and pose a couple of questions; no new results are proved there.

Notice that FO+¢ formulas are evaluated at structures equipped with a choice function.
Can one use FO+¢ formulas to speak about usual structures (not equipped with a choice
function)? One way to do that is to restrict attention to FO+¢ formulas whose meaning does
not depend on the choice function; such e-invariant formulas are considered in Section 3.
It is easy to check (we do that in Section 3) and it is well known that every e-invariant
formula is equivalent to a first-order formula. It may seem therefore that the operator e
is benign. But this depends on the compactness theorem and therefore on the presence of
infinite structures. Martin Otto found a nonelementary property of finite structures which is
expressible by a sentence which is e-invariant over finite structures [Otto 1998]. The power
of ¢ manifests itself also in the presence of generalized quantifiers [Caicedo 1995].

Another way to utilize FO+¢ formulas in order to describe ordinary structures is to
quantify the choice function out. To this end, we introduce e¢-existential formulas Jep where

2§ is the first letter of the classical Greek word §tadeyw which means choose. There is another classical
Greek word emAeyw with a close meaning which could have inspired Hilbert’s notation and which is used
to translate aziom of choice: afwpa emdoyno. (Thanks to Naomi Gurevich and Phokion Kolaitis for the

help with Greek.)



@ 1s a formula in FO+4&. In Section 4, we compare the expressive power of e-existential
formulas with that of existential second-order formulas (that is ¥i formulas). Notice that
there are more choice functions than relations of any fixed arity on a given sufficiently
large set. On the other hand, the choice operator applies only to unary relations and not
to relations of higher arities. It turns out nevertheless that every e-existential formula is
equivalent to a X} formula and the other way round. Using Fagin’s characterization of NP
[Fagin 1974], we conclude that, on finite structures, e-existential formulas capture NP. We
prove also that every e-existential formula Jep is equivalent to an e-existential formula Jev)
such that, in 1, every application of ¢ has the form

ex(r =4 V---Vzr=t)

where z is not free in any term ¢;. Furthermore, if ¢ has at most v free variables in any
e-term, then 5 < 2v + 5.

1.2 The 6 Operator

The semantics of the independent choice operator § is tricky and may be confusing. For
example, the formula

(5:1;(1: = .TL‘)) = (5:1;(1: = :L')) (1)

is not valid because the two choices are independent and do not necessarily produce the same
result. (In contrast, the formula (ex(z = z)) = (ex(x = z)) is valid of course.)

To evaluate a term dzp(z) in a structure with fixed values for the free variables of the
term, evaluate ¢(a) for every value a of x. If there are elements a for which ¢(a) evaluates
to true, then choose one of those elements to be the value of dxp(x); otherwise the value
of dxp(x) is the default element (of the appropriate sort). Because of the arbitrary choices
the process of evaluating terms and formulas is not deterministic. We approach the task of
defining this nondeterministic semantics for FO+4 systematically. In Section 5 we introduce
nondeterministic propositional logic. In Section 6, we introduce nondeterministic first-order
logic. In Section 7, we finally define the semantics of FO+4. The extensive preparatory work
makes this task easier.

Initially we wanted to enrich FO+4 with another ASM construct:

(let x be s in 7(x))

where x is a variable, s is a term without free occurrences of z, and 7 is term or formula
[Gurevich 1995, Gurevich 1997]. The purpose was to allow one to reuse the same choice; for
example,

(let x be dy(y = y) in (z = x))

is valid. But then we noticed that the let construct is expressible in FO+4§. We show (in the
same Section 7) that FO+§ admits quantifier elimination in the sense that the quantifiers



can be expressed by means of the construct 4. We show also that every FO44 formula is
equivalent, in a suitable sense, to a first-order formula whether or not infinite structures are
allowed. In that sense, § (unlike ¢) is a benign choose operator. The power of § becomes
apparent in dynamic situations; see an example in Section 7.

One result of relevance to ASM applications is that, in FO+4, every term is equivalent
to a term dzp(x) where p(z) is first-order.

FO+46 can be extended in many ways. Many appetizing questions arise. At the end of
Section 7, we give a few initial remarks on Lg7w+5, on the extension FO+DTC+§ of FO+4
with the deterministic transitive closure operator, and on the extension FO+I1FP+§ of FO+§
with the inflationary fixed-point operator.

1.3 Additional Logics

The semantics of § described above is entirely reasonable from the point of view of a specific
evaluation. In order to evaluate dxp(z), you compute the set 7 = {x : p(z)} and choose
an element a (if 7 is nonempty). Notice, however, that 7 itself may depend on choices
made earlier during the evaluation. Consider now the global picture of all evaluations. The
element a chosen in a particular evaluation may not even belong to the set Z in another
evaluation. On the other hand, there might be a “better” element b that belongs to the set
Z in every evaluation. Shouldn’t we choose b instead of a? In Section 8, we present another
semantics for § that reflects this idea. We discuss also the relative advantages of the two
semantics of 4.

In [Abiteboul and Vianu 1991], a nondeterministic witness-choosing operator was intro-
duced in the context of relational algebra. The semantics is described informally there. We
suggest a formalization and make a couple of observations in Section 9.



2 Predicate and Functional First-Order Logics

We discuss two versions of first-order logic with equality: predicate first-order logic (PFO)
and functional first-order logic (FFO) where formulas are Boolean-valued terms.

In the two sections devoted to the ¢ operator, we use PFO because most of the papers on
the € operator use PFO, because theorems we cite use PFO, and because using FFO would
not buy us any significant advantage. On the other hand, FFO will be used in sections
devoted to the § operator. There are three reasons for the use of FFO in that part of the
paper. First, the introduction of the é operator is motivated by research on abstract state
machines [ASM] where FFO is used. Second, many of our inductive definitions are simpler
in FFO: there is no need to give a definition twice, first for terms and then for formulas.
Third, the presence of defaults is handy.

Of course the difference between the two versions of first-logic is inessential and usually
one can easily translate results from one version to another.

2.1 Predicate First-Order Logic (PFO)

PFO is classical first-order logic. We give a couple of definitions to establish our terminology.

2.1.1 Pebbled Structures

A structure A together with a variable assignment £ over A will be called a pebbled structure.
If V is the domain of £, we say that (A,&) is a V-pebbled structure. The term “pebbled
structure” is motivated by Ehrenfeucht-Fraisse games [Ebbinghaus and Flum 1995, page 21].
Suppose that B is a V-pebbled structure (A, €). The base set of B is the base set of A, and
the vocabulary of B is that of A. If x € V| we write B(x) instead of £(x).

Pebbled structures are used to give semantics to PFO. A formula ¢ and a V-pebbled
structure B are appropriate for each other if the vocabulary of B includes that of ¢ and V'
includes all free variables of . By induction on the formula ¢, one defines the truth value
ValB(p) of ¢ in a pebbled structure B appropriate for ¢.

2.1.2 Global Relations

A j-ary global relation v of vocabulary T is a function that assigns to every T-structure A
a (local) j-ary relation v4; it is required that v be abstract in the following sense: every
isomorphism between Y-structures A and A’ is also an isomorphism between the expanded
structures (A, %) and (A’,y4") [Gurevich 1984, 1988].

It is often convenient to endow v with particular variables zy,...,z; so that the local
relations are ¥4 (zy,..., ;). For example, the reachability relation

Reach(z,y) : <= there is a path from z to y

on directed graphs with edge relation F is a global relation with vocabulary { £} and variables
T, Y.



To formalize properly the notion of global relation with variables, let V' be a set of
variables and AV be the set of mappings from V to the base set |A| of a structure A. Think
about each member a of AV as a set of elements of A indexed with V;if V is ordered then a
can be viewed as a tuple. A relation R over |A| with variables V' can be viewed as a subset
of AY. An isomorphism n from (A, R) to (A’, R’) is an isomorphism from A to A’ such that
RA =n~'RY.

Thus, a global relation v with vocabulary T and variables V' can be defined as a function
that assigns to every T-structure A a local relation y4 C AY. The abstractness requirement is
as above: every isomorphism between Y-structures A and A’ is also an isomorphism between
the expanded structures (A,y4) and (A’,v4").

A global relation 4 with vocabulary T and variables V' can be seen as a Boolean-valued
function on V-pebbled Y-structures; it also can be seen as a Boolean-valued function on
V'-pebbled T-structures B where V' C V'. Let ¢ be a formula of vocabulary T, and V be
the set of free variables of ¢. We define a global relation GR, (or GR(¢)) with vocabulary
T and variables V. If B is a V'-pebbled T-structure and V' C V', then

GRP(p): <= BEy

2.2 Functional First-Order Logic (FFO)

FFO is a version of first-order logic where formulas are special terms [Gurevich 1991, 1995].
PFO may be many-sorted but usually it is one-sorted. In contrast, FFO has at least two
sorts (or types) because the two truth values form a separate type Bool. In applications, it
is convenient to have many types; accordingly our FFO is in general multi-typed. Thus our
PFO and FFO differ in two essentially orthogonal respects: PFO is predicate untyped logic,
and FFO is functional multi-typed logic. We proceed to define FFO more formally.

2.2.1 Syntax

A wvocabulary consists of the following symbols:
e A collection of types (or, more exactly, type symbols).

e A collection of function symbols. Each function symbol comes with a profile
f:Six-ox 85 =T
where 51,...,5;,T are type symbols. If 5 = 0, we write simply f: 7.

The only obligatory type is Bool; a function symbol f with profile of the form 57 x
-+ x S; = Bool is a relation symbol. Other types could be for example Integer, String,
Vertex.

To simplify things, we avoid polymorphism. So we required above that each function
symbol has only one profile. Accordingly, in the case of equality, we assume that, for every



type T, there is a special equality symbol =7: T' x T' — Bool and a special nullary symbol
defaulty : T'; the subscript will be usually omitted. The other obligatory function symbols
are nullary function symbols true and false of type Bool and the usual propositional
connectives with the obvious profiles. The choice of “usual” connectives is arbitrary, but
—, A\, V should be included.

The version of FFO closest to PFO will be called the minimal FFO. This is the version
of FFO where

e there is only one non-Boolean type (called Domain), and

e there are no Boolean variables and Bool does not appear in the left part of the profile
S1 % +-+5; = T of any non-obligatory function symbol.

Remark In the case of minimal FFO, we need only one equality symbol and only one
default symbol (usually called undef) because the Boolean equality and default will be
definable as <+ and false, respectively. Here <+ can be a connective; alternatively p < ¢
may abbreviate e.g. (pAq)V (-p A —g). O

There is an infinite supply of variables of every type. Terms are defined inductively.
Every term is assigned a type. Terms of type Bool are called formulas.

e A variable of type T is a term of type T'.

o If [ is function symbol with profile 57 x --- x S; — T and sq,...,s; are terms of types
S1,...,5; respectively, then f(s1,...,s;) is a term of type 7.

o If ©(z) is a formula and z is a variable, then 3z ¢(z) and Va ¢(x) are formulas.

Remark This rudimentary type system differs from the type system used in the ASM
literature (e.g. [Del Castillo, Gurevich and Strotmann 1998]) because, in the spirit of first-
order logic, we don’t use type constructors of positive arity here. O

2.2.2 Pebbled Structure Semantics

The notion of structure is generalized in the following way. A structure A is given by a set
(the base set of A), interpretations of type symbols and interpretations of function symbols.
It is assumed that the base set contains the symbols true and false. A type symbol T is
interpreted as a nonempty subset T4 of the base set. A function symbol f: S;x-+-xS; = T
is interpreted as a function from S x - -+ x S]S to T4. Bool is interpreted as the set that
consists of the two truth values. The equality symbols, true, false and the propositional
connectives are interpreted in the obvious way; false is the Boolean default.

In the obvious way, generalize the notion of pebbled structures and the notion that a
term and a pebbled structure are appropriate for each other. By the obvious induction, a
term 7 of type T is given a value Val®(7) € T® in every pebbled structure B appropriate
for 7.



2.2.3 Global Function Semantics

The notion of global relation generalizes obviously to the notion of global function (and
to other global objects [Gurevich 1984, 1988]). A global function v with vocabulary T,
variables V and type 7" is a function that assigns to every YT-structure A a local function 4
with variables V' and type 7' in such a way that every isomorphism between T-structures A
and A’ is also an isomorphism between the expanded structures (A,~%) and (A’,y*"). For
example, the reachability function
ReachFun(z,y) = {true if there‘ is a path from z to y
false otherwise

on directed graphs with edge relation £ is a global function with vocabulary { £'}, type Bool,
and variables z,y of type Domain

A global function 4 with vocabulary T, type T' and variables V' can be seen as a function
on V'-pebbled Y-structures B where V C V’; 4% is an element of TP, Let 7 be a term of
vocabulary T and type T', and let V' be the set of free variables of 7. The global function
GF. (or GF(7)) is the global function computed by 7; its vocabulary is T, its type is 7" and
its variables are V.



3 Fixed-Choice Logic FO+¢

In this and the next section, FO is PFO. The base set of a structure A is denoted by |A|.

3.1 Syntax and Semantics

Syntax FO+-¢ is obtained from FO by adding the following term-formation rule:
e If o(z) is a formula, then (exp(x)) is a term, called an e-term.

The variable = is bound in (exp(x)). The type of the e-term (exp(z)) is that of the variable
T.

Semantics A choice function for a nonempty set S is a function F from 2° (the power set
of S) to S such that F(X) € X for all nonempty X C S. A choice function for a structure
A is a choice function for |A|. An e-structure is a pair (A, F') where A is a structure and F
is a choice function for |A|. The vocabulary of (A, F) is that of A. Although PFO structures
don’t have default elements, an e-structure effectively has the default element F'(().

A pebbled e-structure is a triple (A, F, £) where (A, F') is an e-structure and £ is a variable
assignment over A; it is a V-pebbled e-structure if V' is the domain of £&. A V-pebbled e-
structure provides values for terms with free variables in V. The definition of these values
follows the standard inductive definition but has one additional clause:

e If ¢ is an e-term (exe(x)), then

ValPO(1) = Fla€|Al: (A, F,€) )}
— Plae|A]: (A ¢ a)) E g(x))

Question 3.1 Notice that an e-structure (A, F') determines a particular well-order on |A]:
if a is an ordinal such that {z5: 8 < a}} is a proper subset of |A|, then z, := F(|]A| - {z3:
3 < a}). Is this order definable, is the last element of that order uniformly definable on finite
structures, 1s the existence of the last element uniformly definable on arbitrary structures?
Is any order definable? We expect all the answers to be negative, but the questions are
open. By the way, the standard order is easily definable if FO+¢ is augmented with the
unary inflationary fixed-point operator [Ebbinghaus and Flum 1955, page 121].

3.2 c-Invariant Sentences

To compare the expressive power of FO+&c with that of first-order logic, consider FO+-¢
sentences ¢ which are e-invariant (or deterministic) in the following sense: if A is a structure
of the vocabulary of ¢ and Fi, F; are two choice functions for A, then

(A R)Fe <= (A R) e

10



Proposition 3.1 FEvery invariant FO+e sentence ¢ is equivalent to some first-order sen-
tence ¥ in the following sense:  for every structure A of the vocabulary of ¢ and every choice
function F for A, we have

(A F)Ee <= A

The Proposition seems to be folklore; it is mentioned in [Caicedo 1995] without a refer-
ence. For reader’s convenience, we provide a proof.

Proof Let T be the vocabulary of ¢ and let < be a fresh binary relation. Construct
first-order formulas o(<), (<), v(<) in vocabulary T U {<} such that

e a(<) asserts that < is a linear order with a first element;

e (3(<) asserts that ¢ holds under the interpretation
e(X) = {mm(X) if X # 0 and min(X) exists,

min{z : x =z} otherwise;

e v(<) asserts that every nonempty definable set X that occurs in the evaluation of ¢
according to the above interpretation has a minimal element.

Let <’ be another fresh binary symbol. The invariance of ¢ implies that the implication

(al<) AB(<) Ay(<)) — (a(<) Ay(<) — B(<))

is valid. By the interpolation theorem, there exists a first-order YT-formula v such that the
implications

(2 A B A<)) — @,
¢ = (a(<) A<) — B(<)
are valid. It is easy to see that v is equivalent to ¢. O

In the rest of this section, we restrict attention to finite structures. We will say that an
FO+-¢ formula is e-invariant if it is e-invariant over finite structures. Similarly, equivalence
of formulas will mean equivalence over finite structures. The proof of Proposition 3.1 does
not apply in this situation because the interpolation theorem is not available [Ebbinghaus
and Flum 1995, page 64].

Martin Otto exhibited an e-invariant sentence that is not equivalent to any first-order
sentence [Otto 1998]. Notice that every e-invariant formula ¢ of any vocabulary T gives rise
to a first-order formula ¢* of vocabulary YTU{<} (where < is a fresh binary relational symbol)
which 1s order-invariant over finite structures in the following sense: if an Y-structure A
with a linear order <; satisfies ¢* then A with any other linear order <, satisfies ¢*. The
desired ¢* asserts that ¢ holds under the interpretation

6(X):{min()() i X #0

min{z : x =} otherwise

11



Earlier, Gurevich found a nonelementary property of finite Boolean algebras (namely, “the
number of atoms is even”) that is expressible by an order-independent elementary formula

7; see [Ebbinghaus and Flum 1995, Proposition 2.5.6(a)].?

Question 3.2 Does there exist an order-invariant elementary formula that is not equivalent
to any e-invariant formula? In particular, is the property “the number of atoms is even” of
finite Boolean algebras expressible by an e-invariant formula?

We conjecture the negative answer for the second question (which implies the positive
answer for the first question).

Proposition 3.2

1. The decision problem whether a given FO+¢ formula ¢ is e-invariant is undecidable. 2.
There exists an FO+¢ formula ¢ such that the following decision problem INV () is co-NP
hard: Given a structure A of the vocabuluary of ¢, decide whether p is e-invariant over A.

Parallel results for order-invariant sentences have been proved in [Gurevich 1988, pages
29-30]. The same proofs can be adapted here.

Proof
1. The decision problem whether a given first-order sentence « is true in all finite struc-
tures is undecidable [Trakhtenbrot 1950; Borger, Gradel and Gurevich 1996]. Therefore the
decision problem whether a given first-order sentence « is true on all finite structures of car-
dinality > 2 is undecidable. We reduce the latter problem to the problem in the proposition.
Let P be a unary relation symbol that does not occur in a. Set

B:= P(El‘ (P("c) Y _'P(:L')))

It is easy to see that a V (3 is e-invariant over finite structures if and only if « is valid on
finite structures of cardinality > 2.

2. The problem whether a given graph has a Hamiltonian path is NP complete [Garey
and Johnson 1979]. Therefore the problem whether a given graph of cardinality > 2 has no
Hamiltonian path is co-NP complete. We reduce the latter problem to the problem in the
proposition.

Construct an FO+¢ sentence ¢ in the language of graphs that asserts that the binary
relation

r<y:<= z=¢cz(zr=zVy=z)

is a linear order and that every pair of neighbors in that order is adjacent. A graph G has
no Hamiltonian path if and only if ¢ is e-invariant over G. O

3Actually, Gurevich’s original example was a collection of structures A with a subset Atoms of even
cardinality and a binary predicate E such that, for every X C Atoms there exists a unique y € |A| — Atoms
with X = {2z € Atoms : ¢ Ey}. The Boolean algebra reformulation is due to Ebbinghaus and Flum.

12



Remark Of course (P(z)V —=P(z)) can be replaced with = . But if one is willing to use
equality then one can get rid of P altogether. For example, # may assert the existence of an
x such that + = ez(z = 2V z = y) for all y # z. (There is a small price to pay: Replace
> 2 with > 3 everywhere in the proof.) O

The first decision problem remains undecidable in the case of arbitrary (not only finite
structures); the same proof is valid except that the reference to [Trakhtenbrot 1950] should
be replaced with a reference to [Church 1936, Turing 1936]. However, in that case, there is a
recursive set R of e-invariant formulas such that every e-invariant formula is equivalent (over
all structures) to some formula in R. The desired R consists of formulas that do not mention
¢ at all; see Proposition 3.1. We return to finite structures. Does there exist a recursive set
R of e-invariant formulas such that every e-invariant formula is equivalent to some formula
in R? More generally:

Question 3.3 Does there exists a recursive syntax for properties expressible by e-invariant
formulas?

Question 3.3 requires explanations. Recall that we restrict attention to finite structures.
We follow [Gurevich 1988]. A logic L is given by a pair of functions (Sen, Sat) satisfying the
following conditions. Sen associates with every vocabulary T a recursive set whose elements
are called L-sentences of vocabulary Y. Sat associates with every vocabulary T a recursive
relation A = ¢ where A ranges over Y-structures and ¢ over L-sentences of vocabulary T;
it is assumed of course that A = ¢ <= B | ¢ if A and B are isomorphic. Now we
can formulate Question 3.3 precisely: Does there exist a logic L such that the properties
expressible by L-sentences are exactly the properties expressible by e-invariant sentences?

Remark Since the canonical order, derived from the e-operator in Question 3.1, can be
defined in the extension FO + ¢ + [ F'P of FO+¢ with the inflationary fixed-point operator,
the following properties are equivalent, for any global relation:

e Ptime,
e Order-invariant FO+ < +1F P definable,
e c-invariant 'O + ¢ + [ F'P definable.

Concerning the equivalence of the first two properties, see [Ebbinghaus and Flum 1995, page
150]. O

13



4 e-Existential Formulas

In this section, FO still means PFO.

Syntax An e-existential formula ® has the form (Je)p where ¢ is a formula in FO+e. The
vocabulary Voc(®) of @ is that of ¢, and free individual variables of ® are those of ¢; this
set will be denoted Var(®).

Semantics Let ® be an e-existential formula (J¢)p. Mod(®) is the collection of pebbled
structures (A, () such that (A, F, () = ¢ for some choice function F' for A.

Y1 Formulas Recall that a ¥ formula ¥ is an existential second-order formula. The
vocabulary Voc(V) of W is the collection of free predicate and function symbols of W. Mod( V)
is the collection of pebbled structures (A, () such that (A,() = .

We say that a X1 formula W is equivalent to an e-existential formula @ if Mod(¥) =
Mod(®).

Theorem 4.1 Fvery c-existential formula (3e)p(T) is equivalent to some X} formula.

Notice that the relations that are existentially quantified in a ¥{ formula are considerably
smaller (in large structures) than the choice functions quantified in the semantics of an e-
existential formula. The point of the theorem is that, in the semantics of any particular
e-existential formula ¢, only a small part of the choice function is used, and this part can
be expressed with relations that a ¥} formula can quantify.

Proof For simplicity of exposition, we assume that ¢ has no free individual variables. List
all e-terms

exoXo(To,Yo)s -+ s ETr1 Xr—1(Tr1, Yr—1)
in ¢ in such a way that, for every j < r, all e-subterms of ex;x;(z;,y;) occur earlier in the
list. Let {fo,...,fr—1} be fresh function symbols such that arity(f;) = length(y;) for all
g <r.
Construct formulas

7

@' where 0<:<r
X;" where 0<:<j<r

<

as follows.
0’ =  and every X? = x;. Notice that xJ is e-free (and contains no f;).
@' (respectively x} where j > 1) is obtained from ¢° (respectively x?) by replacing

exox5(wo, Yo) with fo(yo). Notice that y] is e-free (and contains no f; with j > 1).
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©? (respectively x? where j > 2) is obtained from ' (respectively x;j) by replacing

exixi(z1,y1) with fi(y1). Notice that x3 is e-free (and contains no f; with j > 2).

And so on.

"1 (respectively x,Z1) is obtained from =2 (respectively x/Z7) by replacing

e, 1 XoZ3(Tr_2, Yr—2) With f,_2(y,—2). Notice that x/Z1 is e-free (and does not contain f,_;).
©" is obtained from "~ by replacing ex,_1 X Z1(%,—1, Yr—1) With f._1(¥,—1). Notice that
" is e-free.

Now form the conjunction ¥ of the following formulas:
* ¥,
e (Correlation) If: < j < r, and y is a tuple of fresh variables whose length equals

the arity of f;, and z is a tuple of fresh variables whose length equals the arity of f;,
then

Vyvz |V (xi(a, 5) & xi(2.2) = fily) = [i(2)]
e (Witnessing) If ¢ <r and k = arity(f;) and y is a k-tuple of fresh variables, then
¥y [3exi(e, 5) = Xi(fi(9), 9)]
We check that Jet) is equivalent to Ify... 3 f,_11).

Claim 4.2 Suppose that A is a structure of the vocabulary of p and F a choice function for
A. FEzpand A with interpreting functions f; as follows:

[i(y) = exx;(z,y)
for all 3 <r and all tuples y of appropriate length. Let B be the expanded structure. Then
(AP ¢ < BEY
The proof is obvious.

Claim 4.3 Suppose that A is a structure of the vocabulary of p and B is an expansion of
A to the vocabulary of ¢ such that B satisfies all the correlation and wiltnessing conditions.
There exists a choice function F' for A such that

(A F)E¢ < BEY

Indeed, pick any choice function F' for A satisfying the following conditions:

F({z: xi(z.9)}) = fi(y)

for all ©+ < r and all tuples y of the appropriate length. The correlation conjuncts of
guarantee that the conditions do not contradict each other. The witnessing conjuncts of
guarantee that the conditions do not contradict the requirement that /' be a choice function.
Now it is easy to see that (A, F)F ¢ < BE¢. O
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Remark. The proof above may introduce more second-order quantifiers than necessary.
If j >4 and x;(z;,y;) is obtained from y;(z;,y;) by renaming variables, the function symbol
fi can be used instead of f;.

Recall that, for every FO+¢ formula ¢, INV () is the following decision problem: Given
a structure A of the vocabulary of ¢, decide whether ¢ is e-invariant over A.

Corollary 4.4 Fach INV(p) is co-NP.

This together with Proposition 3.2 implies that, for a certain ¢, INV () is co-NP com-
plete.

Proof We use the results and notation of the proof of Theorem 4.1. Let A be a structure
of the vocabulary of ¢ and let B range over expansions of A to the vocabulary of ¥. Call B
relevant if it satisfies all the correlation and witnessing conditions. Relevance is a first-order
conditon and therefore can be checked in polynomial time.

By Claims 4.2 and 4.3, ¢ is not e-invariant over A if and only if there exist two relevant
expansions By, By of A such that By =1 and By = —¢. Thus the complementary decision
problem is NP. O

Theorem 4.5 Every X} formula is equivalent to some e-existential formula.

The idea here is that the relations quantified in a X7 formula can be encoded in a choice
function and decoded in a FO+¢ definable way. The coding task is non-trivial mainly because
the relations to be coded may have high arity whereas the choice function chooses only from
subsets of the structure, not from sets of tuples.

Proof For notational simplicity, we assume that the given ¥} formula has no free individual
variables.

First we consider the case when the given X} formula has the form 3Py where P is a
single relational symbol and ¢ is first-order. Let k& be the arity of P and let a; be an FO+-«¢
sentence saying that the binary relation

r<y:<= r=czx(z=zVy=2)

is a linear order with an initial segment I of length (k + 1)(k* + 1). (In the finite case,
the initial segment condition means simply that the structure contains at least that many
elements. In the infinite case, the condition is more meaningful as an infinite ordered set
may have no finite initial segment.)

The desired e-existential formula has the form ap A t». To make the description of ¥
easier to understand, we describe what it says about a structure A rather than writing it
out syntactically. Split the initial segment I into &+ 1 blocks, each of size k2 +1, and regard
each block as a k X k array 5, written row after row, plus an extra element e. Any k-element
subset of S determines a function f : [1,...,k] — [1,... k] in the following way. List the
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k elements according to the order determined by aj and then set f(i) equal to the column
number of the :** element.

Associate with each k-tuple @ = (as,...,a;) from A a set a* as follows. Since there are
k 4 1 blocks, take the first one which is disjoint from {as,...,ax}, say block S U {e} (as
above). The desired a* consists of

1. ay,...,ag,

2. €

3

3. k elements of S determining the function f : [1,...,k] — [1,..., k] such that each a;
is the f(i)" element of {ai,...,az} in the order defined by ay.

Observe that we can define a from a* using the order < defined by aj. The main point
here is that the block S U {e} is the only block where a* has k + 1 elements. Further,
{a1,...,ax} = a* — (SU{e}). The k elements of a*N S uniquely define the coding f. Now,
f allows us to reconstruct the tuple a. (e is needed because otherwise a* would have only &
elements in block S and might have k& elements in a different block.)

The decoding of a* to get a can clearly be formalized in FO+¢ (on e-structures satisfying
ag); so can the encoding a — a*.

The desired v is obtained from ¢ by replacing every occurrence of P(t) with
ex(x is a member of {*) is an e (the extra element of a block) (%)

Since @ — a* is one-to-one, any interpretation of P can be matched by an interpretation
of € such that (x) agrees with P.

The same obviously applies even if k = 1; the part of £ involved in (%) is € applied to
sets of size 3 [thanks to €], so that the task of coding a given P, as in (%), doesn’t interfere
with the task of coding a linear order, as in ay.

It remains to consider the case when the given ¥i formula has the form 3R;...3Ryp
where each R; is a relational symbol and [ > 1. Set k equal to 1 plus the maximal arity
of predicate symbols R;. The desired e-existential formula has the form oy ; A ¢ where the
conjuncts are as follows. oy is similar to aj, except that it requires the existence of an initial
segment of length > max{l, (k + 1)(k* + 1)}. The linear order defined by ay; allows us to
code all relations R; into a single k-ary relation P where the first argument codes i:

Ri(a) < P(b;,a,c)

where b; is the i" element in the linear order defined by ay; and ¢ is padding necessary in
case the arity of P; is less than & — 1. The formula 3R, ... 3R,y is equivalent to a formula
dPy’ for an appropriate ¢’. The desired 1 is constructed as above. O

Theorem 4.6 For every e-existential formula Jep there exists an equivalent e-exvistential
formula Jev)p satisfying the following requirement.
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o Fuery application of ¢ has the form
ex(r =4 V---Var=t)
where x is not free in any t;. .

Furthermore, if ¢ has at most v free variables in any e-term, then 3 < 2v + 5.

Proof Using the proof Theorem 4.1, translate Je into a X} formula 3f;...3f,_1x. A
j-ary function f can be represented by a (j + 1)-ary relation R. Accordingly transform
Af1...3f,_1x into an equivalent ¥} formula 3R, ...3R,_;x*. Finally, using the proof Theo-
rem 4.5, translate 4Ry ... 3R,_1 " into an e-existential formula Jet>, which will automatically
have the desired form.

Now suppose that ¢ has at most v free variables in any e-term. Then the second-order
quantification in df; ...3f,_;x involves only functions of arity < v. Hence the second-order
quantification in ¥} formula 3R, ...3R,_;1x* involves only relations of arity < v + 1. These
relations can be coded with one (v + 2)-ary relation; set k := v 4 2. Then the sets a* in the
proof of Theorem 4.5 are of size <2k +1=2v+5. O
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5 Nondeterministic Propositional Logic NPL

We will use a version of Kleene’s strong three-valued logic [Kleene 1952; Section 64] to deal

with propositions like
(5;1:(:1: = ;z:)) = (5;1:(:1: = ;z:))

whose truth value in a given structure depends on the choices made. Here we establish
convenient terminology and prove a few simple facts.

Remark The third value of Kleene’s strong three-valued logic reflects an unknown truth
value. Another popular third value in the logic literature, e.g. [Rescher 1969], is “undefined”.
The purpose of “undefined” is to treat partial functions. There are also logics that have both
“unknown” and “undefined”, see for example [Pappinghaus and Wirsing 1983], which is also
motivated by computer science. In the ASM traditions, defaults are used to make functions
total. Thus we do not need the “undefined”. O

5.1 Syntax and Semantics

Syntax Syntactically, NPL is similar to ordinary propositional logic (PL) except that
propositional variables are split into two categories: deterministic and nondeterministic. In
addition to propositional variables, there are propositional constants true and false.

Semantics A variable assignment ¢ gives a particular truth value (true or false) to all
deterministic propositional variables in the domain Dom/(&) of €. In the case of a nondeter-
ministic propositional variable p in Dom/(§), only the range of possible values is specified.
Rng*(p) can be any of the following three sets:

True := {true},
False := {false},
Both := {true,false}.

For future use we order the truth values and the nonempty sets of truth values as follows:
false < true, False < Both < True

Define the &-range Rng®(p) of a deterministic propositional variable p € Dom(£) to be
{&(p)}. A propositional formula ¢(p1,...,p;) gets a &-range of possible values provided all
variables of ¢ do. If p(p1,...,p;) has no repeated nondeterministic variables, then

Rngg(tp) = {99(U17 . '7Uj) S Rngg(pi)}

where ¢(v1,...,v;) is computed in PL. To deal with repeated nondeterminisitic variables,
we stipulate that there is no correlation between the values of different occurrences of the
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same nondeterminisitic variable. For example, if p, p1, po are nondeterministic variables in
the domain of ¢ and Rng*(p) = Rng*(p1) = Rng®(p2) = Both, then

Rngg(p V -p) = Rngg(}h V =py) = Both

Consider a formula ¢(p, ¢1, ..., qx) with deterministic variables p and nondeterminisitic
variables ¢, ..., gr. Suppose that there are altogether n different occurrences of the variables

Q1 - - -, qx; if the 7' of these n is occurrences is an occurrence of ¢;, set 0(;) = i. Let r1,...,7,

be fresh nondeterministic variables. For every j = 1,...,n, replace the j** occurrence of vari-

ables ¢i,...,qx (which is an occurrence of gg(;)) by r;. This gives a formula x(p,r1,...,74),
where the variables rq,...,r, do not have repeated occurrences. ¢(p, qi,...,qx) is obtained
from x(p,r1,...,r,) by a variable substitution (r; — gg¢;): 7 =1,...,n). Define

Rng*(¢(p, a1, - -, qr)) := Bng® (X(pr1, ... 10))

where ¢ agrees with ¢ on deterministic variables p and Rngt (r;) = Rng*(qe(;)) for j =
1

NN 8

5.2 Validity and Equivalence

Extend the Boolean connectives to NPL as follows. Let 51,53,... range over

{True, False, Both}. Then

_‘Sl = {ﬁSISesl}
SiASy = {s1Asy:s €8}
SV Sy = {s1Vsy:s €8}

and similarly for the other propositional connectives (if any). We have for example

—Both = Both,
True N Both = Both,
TrueV Both = True.

This allows one to compute the ranges of formulas by structural induction. For example, if
¢ is x A =y and we know already that Rng®(x) = Both then

Rng*(p) = Both A —~(Both) = Both A Both = Both

Lemma 5.1 True, False, Both together with the operations A\, V,— form a distributive lat-
tice with involution.

Proof Straightforward. The involution swaps True and False, and leaves Both intact. O

A formula ¢ is valid under a variable assignment £ if Rng®(¢) = True. A formula p is
valid if 1t is valid under every assignment of truth values to its variables.
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Claim 5.2 No formula withoul proposilional constants or delerministic variables is valid.

Proof By induction on a formula ¢, check that the range of ¢ i1s Both when every nonde-
terministic variable is assigned Both O

Call two formulas equivalent if they have the same range under every assignment of truth
values to their variables. Notice that pV —p is not equivalent to true. Call a formula ¢ dull
if, for every nondeterministic variable p in @, either all occurrences of p are positive or else
all occurrences of p are negative.

Lemma 5.3 Suppose that two Boolean formulas ¢ and x are equivalent in the sense of
ordinary propositional logic PL (that is if their nondeterministic variables are treated as
deterministic).

1. If neither formula contains a repeated nondeterministic variable, then they are equiva-
lent.

2. If v has repeated nondeterministic variables but x doesn’t, then Bng*(x) C Rng*(p)
for every assignment £ of truth values to the variables.

3. If both formulas are dull, then they are equivalent.

Proof 1. Induction on the number k£ of nondeterministic variables. The case kK = 0 1s
obvious. Suppose that £ > 0 and let p be one of the nondeterministic variables. The two
formulas can be denoted ¢(p) and x(p). Let £ be an assignment of truth values to all variables

in ¢(p) or x(p). If £(p) = True, then
Rng®(¢(p)) = Rng*(p(true)) = (by the induction hypothesis)
Rng*(x(true)) = Rng*(x(p))

The case of False is similar. Suppose that {(p) = Both. Using the fact that p has no
repeated nondeterministic variables, we have:

Rngt(e(p)) = Rng*(p(true)) U Rng®(p(false))
= Rng®(x(true)) U Rng®(x(false))
13

= Rng*(x(p))

2. Induction on the number of repeated nondeterministic variables. Let p be one of
those variables. For notational simplicity, we consider only the case when ¢ has exactly two
occurrences of p; the more general case will be obvious. The two formulas will be denoted
©(p,p) and x(p) respectively. More pedantically, introduce fresh nondeterministic variables
p1,p2 and a formula ¢'(p1, p2) such that ¢ is ¢'(p, p) which is a more accurate notation than
©(p,p). Let € be an assignment of truth values to all relevant variables. If £(p) = T'rue, then

Rng®(¢/(p.p)) = Rng’ (¢ (true, true)) 2 (by the induction hypothesis)
Rngg(x(true)) = Rngf(x(p))
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The case of False is similar. Suppose that £(p) = Both. Then

(x(

Rng®(x(tru )) U Rng®(x(false)) C (by the induction hypothesis)
(¢(true, true)) U Rng*(p(false, false)) C

(¢(true, true)) U Rng®(p(false, false)) U

(o

(#(p,p

3. Assume that ¢ and x are dull formulas, equivalent in ordinary PL. If some nonde-
terministic p is positive in one of ¢ or y and negative in the other, then (still in ordinary
PL) its truth value never influences the truth values of ¢ and y. So we can replace p with a
fresh variable in y without damaging our assumptions, and if we show that ¢ is equivalent
in NPL to the new y then the same conclusion follows for the old x.

So we may assume that each nondeterministic variable occurs only positively in both ¢
and y or occurs only negatively in both. Now consider any assignment ¢ of truth values in
NPL to the variables of p and y. Let £ be the truth assignment in ordinary PL such that,
for every variable p, we have:

£t (p) = true if Rng®(p) = True or else Rng®(p) = Both and p occurs positively in our
formulas, and

£+ (p) = false if Rng®(p) = False or else Rng*(p) = Both and p occurs negatively in our
formulas.

Define £~ similarly, but reversing “positively” and “negatively”. Because of the monotonicity
of the connectives, Rng®(p) consists of the PL-values of ¢ under ¢+ and £~. The same goes
for x. By assumption, the PL-values of ¢ and yx agree, under any truth assignments, in
particular under {* and under £~. Therefore, their NPL ranges under £ also agree. O

Lemma 5.4 (Substitution) Let o(p1,...,p,) resull from (qi,...,qx) by simullaneously

substituting 0;(p1,...,pn) for q; for alli =1,...,k. Lel € be any assignment to p1,...,pn,
and let o be the assignment to q,...,q. defined by

Rng”(q;) := Bngf(0(p1, ..., pn))
Then Rng®(o(p1y.-..pa)) = Bng®(¥(qi, ..., qx))-

Proof by induction on 1, using the fact (see the beginning of this subsection) that ranges
can be computed in a compositional way. O

The lemma says that it doesn’t matter whether the substitution (of 6; for ¢;) is done
syntactically, changing v to ¢, or semantically, changing ¢ to o.
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5.3 Normal Forms

Is it true that every formula ¢ is equivalent to a formula x built by means of A, V, = only? The
matter is not obvious. Suppose for example that one of our connectives is (if p then ¢ else r)
which is PL-equivalent to (p A ¢) V (=p A r). That equivalence fails in NPL. Indeed, consider
the assignment £ with Rng®(p) = Both and Rng®(q) = Rng*(r) = True. Then

Rngg(cp) = {(if s; then ss else s3):s; € Both; ss,s5 € True} = True

whereas Rng®((pAq)V (=pAr)) = Both. On the other hand, (if p then q else r) is equivalent
to

(PAg)V(FpAr)Vighr)
This last observation gives rise to a conjecture that the desired y is, in PL, a maximal (in
an appropriate sense) disjunctive normal form of .

Lemma 5.5 Given an arbitrary n-ary operation o over {true,false}, define an n-ary
operation 3 over {True, False, Both} as follows:

B(S1, ..., 5) =Ha(s1,...,8,): each s; € S;}

Then 3 is expressible in NPL by a formula x(p1,...,pn) in disjunctive normal form where
each p; s a nondeterministic variable.

Proof Variables p; and their negations will be called literals. The term clause will be used
to mean a conjunction of literals without any repeated variables; the empty clause means
true. Let y be the disjunction of all clauses C' such that ' implies @ = true; the empty
disjunction means false. Clearly, x is a disjunctive normal form for a.

Now consider an arbitrary assignment £ of T'rue, False, or Both to the range of every p;.
We check that £ gives the same values to 3 and x. A specialization of £ assignes a truth value
(true or false) to every occurrence of every variable in y. A specialization o is coherent if
it assigns the same value to all occurrences of the same variable.

The &-value of 3 is the collection of o-values of a (and therefore of x) where o ranges
over coherent specializations of £. This is included in Rng®(x). (But Rng®(x) may be larger
due to the possibility that, for some p; with Rng*(p;) = Both, some occurrences of p; are
made true and the other occurrences of p; are made false. See, for example, the discussion
of if-then-else above.) It follows that Rng®(x) = Both if the £-value of 3 is Both.

Assume that the £-value of 3 is T'rue, and let C' be the clause composed from all variables
p: such that Rng®(p;) = True and all negations —p; such that Rng®(p;) = False. Since all
coherent specialization of ¢ make « true, C' implies that « is true. Hence C' occurs in y and
therefore Rng®(x) = True.

Assume that the &-value of 5 1s False. We must show that all specializations of £, not
only coherent ones, make y false. Suppose, toward a contradiction, that some specialization
o makes y true and therefore makes a particular clause C' in x true. Since each variable
occurs at most once in ', there is a coherent specialization ¢’ that agrees with ¢ on C' and
therefore also makes y true. But this is absurd; all coherent specializations make o false and
therefore also make y false. O

23



The following theorem shows that NPL is robust with respect to the choice of connectives.

Theorem 5.6 In NPL, every formula ¢ is equivalent to a formula using only the connectives
=, A,V (and propositional constants true,false).

Proof If ¢ has no repeated variables and a is the operation over {true, false} represented
by ¢ in PL and (3 is defined as in the previous lemma, then ¢ represent 4 in NPL and thus
the theorem follows from the lemma. In general, however, ¢ may have repeated variables.

Now consider the case that ¢ has repeated variables. The lemma can be applied to every
connective used in @. Transform all the connectives used in ¢ to disjunctive normal form.
The result is equivalent to ¢ because NPL truth values can be defined compositionally, so
they respect the composition operations by which ¢ is built from the connectives. O

Corollary 5.7 In NPL, every formula ¢ is equivalent to a formula in disjunctive normal
form and to a formula in conjunctive normal form.

Proof Without loss of generality, ¢ uses only the connectives =, A, V.

So we have an NPL-equivalent form of ¢ using only negation, conjunction, and disjunc-
tion. It can be converted to disjunctive or conjunctive normal form by applying de Morgan’s
laws and the distributive laws. These laws are correct for NPL, by Lemma 5.3, parts 1 and
3, respectively. O
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6 Nondeterministic First-Order Logic NFO

The syntax of NFO is that of FFO except that function symbols are split into deterministic
and nondeterministic. All obligatory function symbols (equality signs =7, nullary default
functions defaulty, the propositional constants true, false and the propositional connec-
tives) are deterministic.

The rest of this section is devoted mostly to the semantics of NFO. We give three seman-
tics of NFO which are equivalent — so they are really three ways of viewing one semantics
— and which are needed in different situations. But first we generalize the notion of struc-
ture. A nondeterministic structure A is like a structure except that every nondeterministic
function symbol f:S; x --+ x S; — T is interpreted as a multiple-valued function f# from
SA X x S]A to T4. Tt is supposed that the set Rng”(f(a)) of all possible values of f(a)
is not empty for any @ € S x .-+ x S]A.

6.1 Global Function Semantics

A nondeterministic global function v with vocabulary T, variables V' and type T assigns to
every nondeterministic Y-structure A a multivalued function 4* of variables V and type T’
it is assumed that every isomorphism from A to A’ is also an isomorphism from (A, %) to
(A’,’yA/). Often, variables V' are given by a tuple z. In this case, we may speak about the
global function v(z) and local functions v4(z).

Every term 7(z) with vocabulary T, type 7" and free variables z gives rise to a nonde-
terministic global function GF, (or GF(7)) with vocabulary T, type T" and free variables
z. Instead of GF;(z), we often write GF(7(z)). Similarly, if A is an YT-structure and a is a
tuple of elements of A substitutable for z (so that @ has the right length and the elements
of @ have the right types), we may write GF4(7(a)) instead of GF4(a).

To evaluate GF(7(z)) at A, just evaluate 7(z) in A. The result may depend on various
choices and thus the evaluation procedure is nondeterministic. More exactly, the evaluation
procedure is recursive. Let A be an T-structure and let @ be a tuple of elements substitutable

for z. To compute GF4(r(a)) in A do the following.

o If 7() is a variable, then just produce the given value of the variable.

o If 7(z) is f(t1,...,t;), then first compute every GF4(t;(a)). Let the results be
bi,...,b;. Second compute f(by,...,b;). The result may be any possible value in
Rng?(f(by,...,b)).

o If 7(z) is Jyp(z,y), let b range over the elements of the type of y. First, compute
GF4(p(a,b)) for every b; the results form a subset 7 of {true,false}. Second, find
the maximal value in Z according to the order false < true.

Notice that you compute GF4(¢(a,b)) just once for every given b and that these
computations are independent. If ¢(Z,y) contains nondeterministic functions, the
computation of GF4(p(a,b)) is nondeterministic, and therefore the computation of
GFA(r(a)) is nondeterministic.
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e The case of Yyo(z,y) is similar to the case of Jyp(z,y), except that the minimal (rather
than the maximal) value in 7 is produced.

6.2 Pebbled Structure Semantics

A pebbled nondeterministic structure is a pair B = (A,£) where A is a nondeterministic
structure and £ a variable assignment over A. Again, we write B(z) instead of £(z); it is
assumed of course that B(z) € TP if the type of z is T'. Furthermore, if z = (z1,...,2;), we
may write B(z) instead (B(z1),..., B(z;)).

By induction on terms, define the range Rng?(7) of a term 7 in a pebbled nondetermin-
istic structure B appropriate for 7. Note that the ranges are never empty.

o If 2 is a variable then Rng®(z) = {B(x)}.
o RugB(f(tr,....1;) = U{Rng® (f(ar,...,a;)) : ai € RngP(t:)}
o If z is variable of type T and @(z) is a formula, then
) = max{Rng®(¢(a)) 0 € TP)
Rng® (Vep(z)) = min{Rng®(p(a)) :a € T?}
where max and min are taken with respect to the order False < Both < True.

Here (and in the rest of the paper) Rng?(p(a)) abbreviates RngPle=al(y).

Lemma 6.1 (Rng/GF Lemma) Suppose thalt B is the pebbled extension of A with B(z) =
a. Then Rng®(7(z)) is exactly the set of all possible values of GFA(a).

Proof Obvious. O

Notice that Rng(7) also can be seen as a global function of a sort. It takes a pebbled
structure B as input and produces a set of elements of B as output. Rng(7) can be seen as
a nondeterministic element or a nondeterministic nullary function. If one takes this point of
view, the evaluation procedure for GF(7) gives rise to the following procedure of sampling
Rng(T).

Let B be a pebbled structure appropriate for 7. To sample Rng?(7) do the following.

e If 7 is a variable then produce the “pebble” of 7.

o If 7is f(t1,...,1;), then first sample every RngP(l;). Let the results be by,...,b;.
Then sample the range of f at (by,...,b;) in B.

o If 7 is Jxp(x), let a range over the elements of the type of . For every a, sample
Rng®(¢(a)). Then take the maximal value.

o If 7 is Yap(z), let a range over the elements of the type of . For every a, sample
Rng®(¢(a)). Then take the minimal value.
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6.3 Global Function-Sets

Function-Sets A global function-set I' with vocabulary T, variables V' and type T assigns
to every nondeterministic Y-structure A a set I'4 of deterministic functions ¢ of variables V'
and type T'; it is assumed that if A, A" are isomorphic then we have the following: For each
¢ € T4 there is ¢! € I'Y" such that (A, (), (A’, (') are isomorphic by the same isomorphism,
and vice versa.

Folding and Unfolding Consider a vocabulary T, type 1" and variables z1,. .., z; of types
Si,...,S; respectively. Let A range over Y-structures, and let @ range over S{ x - -+ x S]A,
and let ¢ range over functions from S x --- x SJA to T4. If T is a global function-set with
vocabulary T, variables zy,...,2; and type T, then the folding of I" is the nondeterministic
global function v with vocabulary T, variables V' and type T such that

the set of possible values of y*(a) is {¢(a) : ¢ € I'*(a)}.

If v 1s a nondeterministic global function with vocabulary T, variables z4,...,z; and type T,
then the unfolding of v is the global function-set I' with vocabulary T, variables z4,..., 2;
and type T such that

I'* = {¢: for every a, ((a) is a possible value of v*(a)}.

If you unfold a given nondeterministic global function 4 and then fold the resulting global
function-set, you get back the original nondeterministic global function ~. If you fold a given
global function-set I" and then unfold the resulting nondeterministic global function, you get
a global function-set I' such that I'4 C I'* for all A. We will say that I' is the closure of T’
and that I is closed if I' = T.

Lemma 6.2 (Mixing Lemma) Suppose thalt T' is a closed global function-set and lel
(.G € TA. If (3 is a function such that every (3(a) equals either ((a) or (o(a), then
(3 € 4.

Proof Obvious. O

Let I' and A be global function-sets with the same vocabulary T, same type and same
variables. Call I' and A similar if they have the same folding.

Lemma 6.3 IfT" and A are similar and A is closed, then for every Y-structure A, '* C A4,

Proof Obvious. O
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6.4 Global Function-Set Semantics

A term 7(zq...,z;) with vocabulary T, type T and free variables xi,...,z; of types
S1,...,5; respectively gives rise to a global function-set GFS; (or GFS(7)) with vocab-
ulary T, variables 1,...,2; and type 7. A member ¢ of GFS(7) is obtained by evaluating
7 once at every value of the tuple (z1,...,z;). To be more specific, let A range over Y-
structures, let @ range over Sit x - - - x Sf, and let ¢ range over functions from S& x - - x S]A
to T4. Evaluate 7(a) once for every a. This way you get one function (. GFS# is the
set of all functions ¢ obtainable in this way (by making different nondeterministic choices).
For example, if 7 is g(f(x)), and 0,1 are the only values for z, and 2,3 are possible values
for f(0), f(1) respectively, and 4,5 are possible values for ¢(2), g(3) respectively, then the
function (0 + 4,1 + 5) is a member of GF SA.

Lemma 6.4 (GF/GFS Lemma)
e GF(7) is the folding of GFS(T).
o GFS(1) is the unfolding of GF(T).
o GFS(1) is closed.

Proof The third claim follows from the second. The first two claims follow from the

definitions of GF(7) and GFS(r). O

6.5 Equivalent Terms

Call terms s, equivalent (symbolically s <= ) if RngP(s) = Rng?(t) for every pebbled
structure B appropriate for both of them. Note that this agrees with equivalence of formulas,
as defined in Section 5.

Lemma 6.5 (Equivalence Lemma)
o Two terms s and t are equivalent if and only if GF(s) = GF(1).
o Two terms s and t are equivalent if and only if GFS(s) = GFS(t).
* o Ax < (7 Vx)
o Vrp(r) < —Jrz—p(z)

Proof Obvious. O

Concerning the third claim above, we can also refer to NPL.
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7 Independent-Choice Logic FO+¢6

7.1 Syntax

Extend functional first-order logic with the following construct.

o If x is a variable of type T and ¢ is a formula, then dxp is a term of type T. All
occurrences of x in dzp are bound. For any other variable y, every free (respectively
bound) occurrence of y in ¢ remains free (respectively bound) in dze.

Often we write dzp(x), rather than dzp, even though it is not required that z occurs free in
(@),

7.2 Semantics

FO+46 terms are interpreted on ordinary, rather than nondeterministic, structures. Neverthe-
less the semantics of FO+4 is similar to that of NFO because of the intrinsic nondeterminism
of the ¢ operator.

7.2.1 Global Function Semantics

The definitions of global functions in Section 6 remain valid except that now we restrict at-
tention to ordinary structures. The recursive procedure for evaluating GF(7(z)) generalizes
readily to FO+4; we need only to add the following clause. Recall that A is an T-structure
and @ is a tuple of elements substitutable for Z, and that our goal is to compute GF4(r(a)).

o If 7(7) is dyp(z,y) and T is the type of y, let b range over T'4. Evaluate GF4(p(a,b))
for each b. If there are elements b with GF4(¢(a,b)) = true, then choose nondetermin-
istically one such b as the result; otherwise, output default(7'?) (that is default?).

Remark Evaluate each GF4(p(a,b)). These evaluations are independent (that is, choices
made in one evaluation are irrelevant for the others) and can be performed concurrently.
Alternatively, you can choose arbitrarily b; € TP and evaluate GF4(p(a,b;)). If it evaluates
to true, then output b;. Otherwise choose arbitrarily b, € T2 and evaluate GF4(p(a, by)).
If it evaluates to true, then output b,. Otherwise choose arbitrarily bs € 7% and so on. If
all GF4(p(a,b)) evaluate to false, then output default(7?). O

7.2.2 Pebbled Structure Semantics

The inductive definition of Rng(7) of Section 6 generalizes readily to FO+d; we need only
to add the following clause.

o RngP(zp(z)) = XUY where
X = {acTP: Rng®(p(a)) > False}

29



v - {default(TB)} if every RngP(p(a)) < True
|0 if some Rng®?(p(a)) = True

In other words, if it is possible to evaluate ¢(a) as true, then this a is a possible value of
Szp(z). In addition, if it is possible to evaluate ¢(a) as false for all a, then default(7'®) is
a possible value of dzp(z).

The GF/Rng Lemma remains true.

Lemma 7.1 (Rng/GF Lemma) The set of possible values of GF*(ay,. .., a;) is equal to
Rng®(r) where B is the pebbled expansion of A with B(x;) = a; fori=1,...,5.

The recursive sampling procedure acquires the following clause. Recall that B is a pebbled
structure appropriate for 7 and that our goal is to sample Rng?(7).

o If 7is zp(z) and T is the type of , let a range over T'B. For each a, independently
sample Rng?(p(a)). If, for some a, the result is true, choose nondeterministically one
such a as the result; otherwise, output defaultZ.

7.2.3 Global Function and Global Function-Set Semantics

The definition of global function-sets in Section 6 remains valid except that now we restrict
attention to ordinary structures. The GF/GFS Lemma remains true.

Lemma 7.2 (GF/GFS Lemma)
o GF(7) is the folding of GFS(T).
o GFS(1) is the unfolding of GF(T).
o GFS(1) is closed.

7.3 Equivalent Terms

Call terms s, equivalent if Rng®(s) = RngP(t) for every pebbled structure B appropriate
for both of them.

Lemma 7.3
o Two terms s and t are equivalent if and only if GF(s) = GF(1).
o Two terms s and t are equivalent if and only if GFS(s) = GFS(t).
e o Ax if and only if ~(—p V —x)
o Vrp(x) if and only if ~Jz—p(x)

Proof Obvious. O
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7.4 First-Order Expressibility of Ranges

Theorem 7.4 Let 7 be an FO + § term, and let y be a fresh individual variable of the type
of 7. There exists an FO formula 7(y) expressing that y € Rng(r). The free variables of
7(y) are those of T plus y.

Proof Induction on 7.
e If 7 is a variable, then 7 is (y = 7).

o If 7is f(t1,...,t;) and z1,...,x; are fresh variables, then

T = (H:El, . .,:L'j)[y = f(xl, . .,;L'J') A /\{Z(l'z)]

7

Suppose that 7 is Jxe(z). By the induction hypothesis, there exists a first-order
formula @(z,y) that expresses that y € Rng(p(x)). Set

7= (y = true A Elx@(:z;,true)) % (y = false A ‘v’xcﬁ(;r:,false))

If 7 is Vap(z), then

7= (y = true A ‘v’xtﬁ(l’,true)) % (y = false A Elwé(x,false))

If 7 is dzp(x), then
7:= Py, true) V (y = default A ‘V’:L'L,B(:c,false))
O

Corollary 7.5 (Normal Form) Fvery term t is equivalent to a term dzp(x) where o(x)
is first-order.

Proof The desired p(z) asserts that = belongs to Rng(t). O

An FO+4 formula with range Both on some structures cannot be equivalent to a first-
order formula because no first-order formula has range Both on any structure. But this is
the only restriction on simulating FO+4 formulas by means of first-order formulas.

Corollary 7.6 Let o(z) be an FO+§ formula and let B range over pebbled structures ap-
propriate for . There are first-order formulas x1(z) and x2(Z) such that, for every B,

)
)

&1

RngB(c,o(:E)) > False <= B xi
RngB(g.o(:i’)) =True <= B xa

&1
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Proof By the previous theorem, there exists a first-order formula @(z,y), where y is a
Boolean variable, such that, for every B, we have

true € Rng®(p(z)) <= B E $(,true)
false € Rng®(¢(7)) <= B [ $(7,false)
Set
x1(z) = ¢(z,true)
x2(%) = -¢(z,false)

a

An FO+4 formula ¢ is d-invariant (or deterministic) over a class K of pebbled structures
appropriate for ¢ if ¢ never has value Both over K, so that if B € K then all evaluations of
@ in B give the same value for .

Corollary 7.7 If ¢ is deterministic on K, then it is equivalent to a first-order formula over
K.

Proof Let x1,x2 be as in the previous proof. Both x; and x; are equivalent to . O

Remark on the power of §. The power of § becomes apparent in dynamic situations where,
for example, the choice operator may apply to commands rather than formulas. Consider,
for instance, the basic single-source shortest paths algorithm that operates on a weighted
directed graph with a distinguished vertex source. We assume that the input is given given

by:

o a set of vertices with a distinguished vertex source,

o a set of edges,

o functions e.l and e.2 which give the first and the second vertex of the given edge e
respectively, and

o the length function (e) from the edges to non-negative reals.

The algorithm computes, for every vertex v, the shortest distance dist(v) from source to v
as well as a shortest path from source to v. The shortest path will be given by a predecessor
function pred; its elements will be (in the reverse order) v, pred(v), pred*(v),..., source.
Initially, dist(source) = 0, dist(v) := oo for all v # s, and pred(v) := v. In the traditional
ASM notation, we have:

if Ve: dist(e.2) < dist(e.1) 4+ {(e) then
Mode := Final
else
choose e : dist(e.2) > dist(e.1)+ {(e)
dist(e.2) := dist(e.1) + {(e)
pred(e.2) :=e.l
endchoose
endif

O

32



Remark on first-order expressibility of ranges in the case of FO+&. The notion of range
makes sense in the case of FO+& but the ranges are not necessarily first-order expressible
there, even if one restricts attention to finite structures. This follows from [Otto 1998]. Let
us elaborate on that restricting attention to sentences and finite structures. Define the range
Rng?(p) of an FO+¢ sentence ¢ in a finite structure A as the set of truth values of ¢ in
e-structures (A, R) where F' ranges over all choice functions for the base set of A. Say that
Rng(p) is first-order expressible on finite structures if there exists a first-order sentence x(p)
with a propositional variable p such that, for every finite structure A of sufficiently rich
vocabulary,

A= x(true) <=  true € Rng?(yp)
A | x(false) <= false € Rng”(y)
Equivalently, but avoiding the use propositional variables, define Rng(y) to be first-order

expressible on finite structures if there exist first-order sentences y, 1 such that, for every
finite structure A of sufficiently rich vocabulary,

AEYx <= truec Rng’(p)
AEvy <= false€ Rng”(p)

Now let ¢ be the FO+¢ sentence from [Otto 1998] which is e-invariant on finite structures
but not equivalent to any first-order sentence on finite structures. If y, witness the first-
order expressibility of Rng(y), then ¢ is equivalent to y on finite structures in the sense
defined in Section 3. O

7.5 The let Construct

Consider a term 7 which has several occurrences of a term s. For example, 7 may be s = s.
Different occurrences of s may evaluate to different values. For example, the term s = s may
evaluate to false. Is there a way to guarantee that all occurrences of s in 7 evaluate to the
same value? The construct let allows us to do that.

7.5.1 Syntax

Extend FO4¢ with the following term-formation rule:

o If z is a variable of type S, and s is a term of type S in which z does not occur free,
and t(x) is a term of type T, then

let x be s in t(z)

is a term of type T'. All occurrences of x in the new term are bound. For any other
variable y, all free (respectively bound) occurrences of y in s or ¢(z) remain free (re-
spectively bound).
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7.5.2 Semantics

Extend the recursive definition of the range of a term with the following clause.
RngB(let x be s in t(z)) = U{RngB(t(a)) ca € Rng®(s)}

Notice that (let x be s in t(z)) may not mean the same as ¢(s) even if s is substitutable
for « in ¢(z). The reason is that in (let = be s in t(x)) a single evaluation of s provides
the value for all occurrences of z in ¢(x), whereas in ¢(s) each occurrence of s is evaluated
independently.

7.5.3 The Elimination of let

Surprisingly let can be eliminated.

Theorem 7.8 The term (let x be s in t(x)) is equivalent to the term

5y 3z () A x(2,))]

where p(x) is a first-order formula expressing that © € Rng(s), and y is a fresh variable,
and x(x,y) is a first-order formula expressing that y € Rng(t(z)).

Proof Let A be the term (let = be s in t(x)) and let p(y) be the formula Jz(p(z) A x(z,y)).
Suppose that S, T are the types of z, y respectively, B is a pebbled structure appropriate for
Jzp(z), and a,b range over SB T8 respectively. For brevity, we do not mention B.

First, pick any b € Rng()\) and fix an a € Rng(s) such that b € Rng(t{(a)). Then
(¢(a) A x(a,b)) is true, hence p(b) is true and therefore b € Rng(dyp(y)).

Second, pick any b € Rng(dyp(y)). We consider two cases.

Case when p(b) is true. There is an a such that (¢(a) A x(a,b)) is true. Hence a € Rng(s)
and b € Rng(t(a)), so that b € Rng(\).

Case when p(b) is false. Clearly, b = defaulty and p(b') is false for every &' in T'. But this
impossible. Indeed, pick any a € Rng(s) and any ' € Rng(t(a)). Then ¢(a) A x(a,bd’) holds
and therefore p(b') holds. O

Remark It may seem that the term A := (let x be s in t(x)) is equivalent to the following
simpler term

pi= 5y[§|a¢(1’ =sNy= t(l’))]

where y is a fresh variable, but this is not correct. It is possible that Rng(p) — Rng(\)
contains defaulty. Indeed assume that defaulty ¢ Rng()). Nevertheless, if s and each
instance of ¢(z) have at least two values, then, for any particular values of x and y, the term
r = s ANy = t(x) may evaluate to false. Hence for any particular value of y, the term
Jdz(x = s Ay = t(z)) may evaluate to false, and therefore p may evaluate to defaulty. O
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7.6 The if-then-else Construct

We introduce another useful and definable construct.

Syntax Extend FO+4 with the following term-formation rule:

o If ¢ is a formula and ¢4, ¢, are terms of the same type T', then
if © then t; else ty

is a term of type 7.

Semantics Extend the recursive definition of the range of a term with the following clause.

Rng®(t,) if Rng®(¢) = True
RngP(if ¢ then t; else ts) = { Rng®(t;)U Rng®(ty) if Rng®(p) = Both
Rng®(ty) if Rng®(p) = False

The Elimination of if-then-else The if-then-else construct is definable in FO+4.
Theorem 7.9 Term (if ¢ then t; else 1) is equivalent to
Syl (v A1) V (— A ()]
where y is a fresh variable and each @, expresses that y € Rng(t;).
The proof is similar to but simpler than the previous proof. We skip it.
Remark (if ¢ then {; else t5) is not necessarily equivalent to

fyl(e ny=n) v (mery=1ts)]

a

7.7 Quantifier “Elimination”

Let s,? be terms and V' a set of distinct variables that contains all free variables of s and all
free variables of . The nondeterministic global functions G F;, GF; can be seen as endowed
with variables V. The terms s and ¢ equivalent if the two nondeterministic global functions
coincide. We show that the quantifiers can be expressed by means of 4.

Lemma 7.10 Jxp(z) is equivalent to
((5:10(1: # default A Lp(;r:))) # default) V ¢p(default)

where default is the defaull of the lype of x.
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Notice that Hilbert’s e-elimination of 3, by ¢(cz¢(x)), doesn’t work with §. Furthermore,
the natural fix using let, namely (let x be dyp(y) in ¢(x)), doesn’t work either. Here is a
counterexample. Let p(z) be (z # §zP(z)) and consider a three-element structure with a
unary relation P that contains two of the three elements.

Proof Let A be Jxzp(x), and let p be the alleged equivalent. Further, let pi, ps be the
first and second disjuncts of p respectively. Suppose that 7' is the type of z, B is a pebbled
structure appropriate for 3zp(z), and a ranges over T2, For brevity, we omit the superscript

B.

1. Assume that true € Rng()) and fix an @ with true € Rng(p(a)). If @ = default,
then true € Rng(pz) and therefore true € Rng(p). Assume that ¢ # default. Then
a € Rng(dx(z # default A p(z)), true € Rng(p1) and therefore true € Rng(p).

2. Assume that false € Rng(A). Then every Rng(p(a)) < Both. It follows that

(i) Rng(a # default A ¢(a)) < Both for all a, so that default € Rng(dxz(z # default A
©(x))), and therefore false € Rng(p:); and

(ii) Rng(default) < Both and therefore false € Rng(ps).
Thus false € Rng(p).

3. Assume that true € Rng(p), so that true € Rng(p1) or true € Rng(p,). It suffices to
find an element a with true € Rng(¢(a)).

First suppose that true € Rng(p1). Then Rng(dz(x # default A ¢(x))) has a non-
default value a. Clearly true € Rng(p(a)).

Second suppose that true € Rng(pz). The desired a = default.

4. Assume that false € Rng(p). So false € Rng(p:) and false € Range(py). It suffices
to prove that false € Rng(p(a)) for all a.

Since false € Rng(p1), we have that default € Rng(dz(x # default A ¢(z))). So
false € Rng(a # default A p(a)) for all a, and therefore false € Rng(p(a)) for all
a # default.

It remains to prove that false € Rng(p(default)). But this exactly the fact that
false € Range(ps). O

Theorem 7.11 Fuvery term is equivalent to a term with no quantifiers (but possibly with ¢ ).

Proof Use Lemmas 7.10 and 7.3 O

7.8 Multiple Choice
7.8.1 Motivation

In the ASM context, a multiple choice is common. See for example the following version of
the single-source shortest paths algorithm
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if Yu,v: dist(v) < dist(u) + {(u,v) then
Mode := Final
else
choose u,v : dist(v) > dist(u) + (u,v)
dist(v) := dist(u) + {(u,v)
pred(v) :=u
endchoose
endif

where {(u,v) = oo if there is no edge from u to v.

This leads to the vector version of the § operator: dz¢(z). The problem is how to
extract from the chosen vector the components which may be useful e.g. to construct more
complicated terms.

One recipe is to use projection functions. For example,

o [d(z,y)p(xz,y)].1 gives the chosen z, and
o [d(z,y)p(z,y)].2 gives the chosen y.

This recipe does not work because [§(z,y)p(x,y)].1 and [6(z, y)e(z,y)].2 do not necessarily
refer to the same chosen vector.

Another recipe is to introduce vector equality and require that a term dzp(z) may appear
only in the context y = dzp(x) where the variables y do not occur freely in dz¢(z). For
example, we may have a formula

o (y1,y2) = 6(z1, w2) (71, T2)

where y;,y2 do not occur in p(z1,73). Consider a structure A where the type T{* of x, is not
singleton or the type T of x4 is not singleton, and let by, b, range over T2, T respectively.
Notice that, for all (b, b2), the equality may evaluate to false. Thus, this approach can (in
some evaluations) yield unintended results. It works better in connection with the alternative
semantics of § introduced in Section 8, because the equality can evaluate to true at just
those (b1, bs) that in the range of dzp(z), and because the alternative semantics takes into
account all evaluations together.

The recipe that we adopt is the following.

7.8.2 Syntax
Extend FO44 with the following rules:

o If jis an integer > 2, and z is a tuple z4,. .., z; of distinct variables of types Si,...,.5;
respectively, and ¢(z) is a formula, then
Iz (z)
is a vector lerm of type 57 x ---5;. The variables z are bound in new term. For

every other variable y, all free (respectively bound) occurrences of z in () remain
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free (respectively bound) in the vector term. The number j is the dimension of the
vector term.

e If Syp(y) is a vector term and 7(z) is a term of type T" and no variable in Z is free in

©(y), then
let & be dyp(y) in 7(z)

is a term of type T'. Variables z are bound in the new term. For every other variable y,
all free (respectively bound) occurrences of y in dz¢(z) or 7(z) remain free (respectively
bound) in the new term.

7.8.3 Semantics

If z is a tuple (x1,...,z;) of distinct variables of types S,...,S; respectively, and if B is a
pebbled structure where none of the variables x; is pebbled, define

Rng®(z) := 5P x - x SJB
Extend the definition of the ranges with the following clause:

e Let 0z¢(x) be a vector term. Suppose that B is a pebbled structure appropriate for
§7p(z) and let @ range over Rng®(z). Then

Rng®(6zp(z) := X UY  where

X ={a: Rng®(p(a)) > False}
v — {(default},..., default]gj)} if every Rng®(p(a)) < True
0 if some Rng®(p(a)) = True

Finally extend the definition of the ranges with the following clause:

Rng®(let 7 be §2p(7) in t(Z)) := U{RngB(t(&)) . a € Rng®(z)}

7.8.4 Elimination of Vector Terms

We illustrate how to eliminate vector terms.

Lemma 7.12 Suppose that x,y are variables of types S, T respectively, and let z be a vari-
able that does not occur in let (z,y) be §(x,y)p(x,y) in t(x,y). The following claims are
equivalent:

1. z € Rng(let (z,y) be 6(x,y)p(z,y) in t(:z:,y)),
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2. Jxdy [true € Rng(p(z,y)) Nz € Rng(t(;z:,y))] %
VaVy [false € Rng(¢(z,y)) A z € Rng(t(defaults, defaultT))]

Proof is obvious. O

Corollary 7.13 Let 7 be a term (let (z,y) be §(z,y)p(z,y) in t(z, y)), z be a fresh variable,
and x(z) be a first-order formula expressing that z € Rng(7). Then 7 is equivalent to dzx(z).

7.9 Extensions of FO+6

In our opinion, the issue of various extensions of FO+¢ deserves attention. Here we give
only a couple of initial remarks.

7.9.1 L%+ 6

The pebble-structure semantics of FO+4 straightforwardly extends to L‘(‘)’OM—I—(S. Theorem 7.4
remains true; in that sense ¢ does not increase the expressive power of L¥, .

Theorem 7.14 Let 7 be an L%, ,+6 term, and lel y be a fresh individual variable of the type
of 7. There exists an LY, , formula 7(y) expressing that y € Rng(T). Furthermore, the only
variables of 7(y) are those of T plus y. Similarly, the only free variables of 7(y) are those of
T plus y.

The proof is similar to that of Theorem 7.4. To take care of infinite conjunction, notice
that

y € Rng(\ i) <= [(y=true) A )\ true € Rng(¢)] V
i€l el
[(y = false) A \/ false € Rng(¢;)]
el
The clause for infinite disjunction is similar.
In Subsection 7.4, we have derived a number of corollaries from Theorem 7.4. Similary
corollaries can be derived from Theorem 7.14.

7.9.2 FO 4+ DTC + 6§

TC and DTC denote the transitive closure operator and the deterministic transitive clo-
sure operator respectively; for the defnitions see for example [Ebbinghaus and Flum 1995,
Section 6.1]. We extend the pebble-structure semantics of FO+4§ to account for DTC. For
notational simplicity, we explain the semantics in the case where DTC applies to binary
relations over elements rather than tuples of elements.

Let ¢(z,y) be an arbitrary formula where z and y have the same type T'. Further let A
be a structure of the vocabulary of ¢, and let a,b € T4. We define the range of

[DTCy yp(2,y)](a,b)
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by explaining how to sample that range (that is how to produce each of the truth values
in it). For each pair (z,y) € T4 x T4, evaluate ¢(z,y) once. This gives a binary relation
R C TAxTA 1f DTC(R) includes (a,b), put true in Rng([DTC, ,o(z,y)](a,b)); otherwise
put false in Rng([DTCyy0(x,y)](a,b)).

It is easy to check that

[TC,yE(x,y)](a,b) <= true € Rng([DTC,,(y = 62E(z, 2))](a,b))

where F is an arbitrary binary relation. It is not known whether (and the experts do not
believe that) the transitive closure of an arbitrary binary relation E is expressible in FO +

DTC.

7.9.3 FO 4+ IFP + 6§

IFP denotes the inflationary fixed-point operator [Ebbinghaus and Flum 1995, Section 6.1].
Restrict attention to finite structures and assume that the only connectives are =, A, V.
We extend the pebble-structure semantics of FO+4 to account for IFP. For notational
simplicity, we explain the semantics in the case where the quantified predicate is unary.
Let ¢(z, P) be an arbitrary formula where z is a variable of some type T and P is a

relation with profile T' — Bool. Further let A be a structure of the vocabulary of ¢ minus
{P}, and let a € T#. We define the range of

[Py po(x, P)](a)

by explaining how to sample that range. Start by setting Py := (). Suppose that P; has been
computed. If 1 > 0 and P, = P,_4, then check whether P; contains «a; if yes then put true
in the range, and if not then put false in the range. Suppose that : = 0 or else ¢+ > 0 but
P; # P._;. In this case, compute Py, as follows. For every z € T, evaluate o(z, P); this
gives a relation R C T4, Set Py, := P, U R.

Call an FO4+1FP+4 formula ¢ IFP-positive if no TFP is in the scope of a negation in .

Proposition 7.15 For every FO+IFP+ sentence p thatl is IFP-positive, there exists an
existential second-order senlence x expressing that true € Rng(yp).

Proof Sketch The proof is straightforward in the case of structures with built-in order.
Notice that that the sequence Py, Py, ... is polynomially bounded in length and can be easily
indexed so that one predicate of higher arity can describe the whole sequence. In the general
case, x has the form IP(xo(P) A x1(P)) where xo(P) asserts that P is a linear order and
X1(P) uses that order to express . O

As usual, several inductions can be combined into one. The proof is similar to that of
the Simultaneous Induction Lemma for the least fixed-point operator in [Moschovakis 1974,
page 12]. To clarify things, we first explain the semantics of a simultaneous induction

IF Py pyoye(z, P,Q); x(y, P,Q))
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where x,y are variables of some type T" and P, () are unary relation symbols with the same
profile T — Bool. Fix a structure A of sufficiently rich vocabulary and let ¢ € T4. The
simultaneous induction builds a pair of relations (X;Y). In FO+IFP, one may ask for
example whether ¢ € X. In FO+IFP+4, we ask instead what the range of this assertion is.
To sample this range do the following.

Start by setting Py := 0 and Qo := (. Suppose that P; and (); have been
computed. If 2 > 0 and P, = P_; and @); = Q;_1, then check whether P,
contains a; if yes then put true in the range, and if not then put false in the
range. Suppose that i = 0 or else 7 > 0 but either P, # P,_; or Q); # Q;_1. In this
case, compute Piy; and Q;y1 as follows. For every x € T4, evaluate o(z, P;, Q;);
this gives a relation P’ C T4, Similarly, for every y € T4, evaluate x(y, P;, Q;);
this gives a relation Q' C T#. Set Piyy := P;U P and Q;41 := Q; UQ'.

This simultaneous induction can be replaced with an appropriate single induction of the
form

IFP,,orY(2,y,aR)

where « 1s a Boolean variable and R is a ternary predicate symbol with profile 7' x T' x
Bool — Bool. Here P(z) is represented by R(z,default,true), and Q(y) is represented by
R(default,y,false) (where default is of course defaultr). See [Moschovakis 1974] for
details.

Example 7.16 Using the let construct, we can produce a linear order over a given type 7.
Let u, v be variables of type T" and let P be a predicate variable of type T'x T" — Bool. The
desired induction is

IFP,,pllet y =0z(=P(z,z)) in (P(u,u) Av=y)V (u=1v=y)]

Using this as a part of a simultaneous induction, we can express for example the parity of

T. O
In fact, let is not needed.

Proposition 7.17 For every existential second-order sentence IPo(P), there is an [FP-
positive FO+IFP+0 sentence x such that

dPp(P) <= true € Rng(x)

Proof Sketch For simplicity, we consider the case when P is unary. The profile of P is
T — Bool for some T'. Let x,y be variables of type T'. The induction

IFP, pldy(x = z) = 2]

gives an arbitrary set of elements of type 7' because dy(x = ) is evaluated independently
for each z. (This would have been the case even if we had written dy(true), but dy(z = z)
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emphasizes the point.) However, replacing P in ¢(P) with the result of this induction does
not give the desired y. The problem is that different occurrences of the IFP formula will be
evaluated independently. The way out is this. Use the given induction as a part of a larger
simultaneous induction which first constructs an arbitrary set P of elements of type T and
then computes ¢(P). O
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8 An Alternative Independent-Choice Operator

Consider a term dzp(x) and let T' be the type of x, B be a pebbled structure appropriate for
Szp(z), and a range over TB. To evaluate dzp(x) at B, you may start by evaluating every
every ¢(a). If there is an a such that dzp(z) evaluates to true, choose nondeterministically
one such a as the result; otherwise output the default element of 7'B.

This procedure can be criticized on the following grounds.

e It may produce the default element even though Rng?(p(a)) > False for some a, and
thus another execution of the procedure may output that a.

e It may output some element a with Rng?(p(a)) = Both even though there may exist
an element b € TP with Rng®(p(b)) = True.

Instead of evaluating interpreted formulas ¢(a), we may evaluate their ranges. For each a,
compute Rng?(p(a)) and set M = max{Rng?(p(a)): a € TB}; it M = False then output
the default element in 7'%; otherwise choose arbitrarily one element in {a : Rng®(p(a)) = M}
and output it. We can make the new evaluation procedure cleaner by giving up the defaults
and using instead the following principle: when no one is eligible, everyone becomes eligible?.

This leads to appropriate changes in the definitions of the range of the term dzp(z)
in B and in the term evaluation procedure. The new semantics gives us an alternative
independent-choice operator which will be called &'

8.1 The Syntax and Semantics of FO+¢'

Syntax Extend functional first-order logic with the following construct:

o If z is a variable of type T' and ¢ is a formula, then 8’z is a term of type T. All
occurrences of z in ¢’z are bound.

Semantics We restrict attention to the pebble-structure semantics of FO+4’. The induc-
tive definition of Rng?(7) of Section 6 generalizes readily to FO+¢'; we need only to add
the following clause.

o If 7 =d"zp(z), T is the type of z,* and a ranges over TP, then

Rng®(8'zp(x)) = {a € TP : Rng®(v(a)) = M} where
M = max{Rng®(¢(a)):ac TP}

*It may be interesting to note the use of this principle in American judicial system. A judge must
disqualify himself from hearing any case where he has a conflict of interest. But if a case produces a conflict
of interest for all judges, then no judge can disqualify himself. There were cases when all judges had a
conflict of interest. For example, federal judges sued for raises, since the constitution prohibits reducing
their salaries, and inflation had, de facto, reduced their salaries.
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In other words, our first preference is to choose an element a with Rng?(p(a)) = True.
If this is impossible, so that Rng®(y(a)) < Both for all a, then we turn to our second
preference: to choose an element a with Rng?(p(a)) = Both. If this is impossible also, so
that Rng?(¢(a)) = False for all a, then we choose any a € T® whatsoever.

Remark Notice that there are two independent distinctions between the evaluations of
dzp(x) and that of 8'zp(z). Let A, A’ be evaluators of dzp(x) and §'zp(x) respectively.

1. A’is biased toward elements a with BngPv(p(a)) = True, whereas the more pragmatic
and computationally oriented A is willing to pick any element a with true € Rng(a).

2. In the case =3zp(z), A produces the default element of type T', whereas A’ produces an
arbitrary element of type 7.

Accordingly, one can study four different operators. We have chosen § as our main operator
because it is most natural from the computational point of view. O

8.2 First-Order Expressibility of Ranges

Theorem 8.1 Let 7 be an FO+4' term, and let y be a fresh individual variable of the type
of 7. There exists an FO formula 7(y) expressing that y € Rng(T).

Proof The proof is similar to that of Theorem 7.4. We need only to show how to treat the
case when 7 is a §’ term.

e Suppose that 7 is §'zp(z). By the induction hypothesis, there exists a first-order
formula @(z,y) that expresses that y € Rng(p(x)). Set

T = (gé(y,true) A ﬁ@(y,false))
v (@(y,true) A ‘v’x@(m,false))
vV Va-g(z,true)

a

Corollary 8.2 (Normal Form) Fvery term t is equivalenl to a term §'zp(x) where o(z)
is first-order.

Proof The desired ¢(x) asserts that x belongs to Rng(t). O

Define an FO+4 term 7 and an FO+4' term 7/ equivalent if they have the same ranges
in every pebbled structure appropriate to both of them.

Lemma 8.3 [fo(z) is a first-order formula (which may have addiltional free variables) such
that zp(x) is logically true, then Sxp(z) is equivalent to §'zp(x).
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Proof Obvious. O
Corollary 8.4 FEvery FO+46' term 7' is equivalent to some FO+6 term 7, and vice versa.

Proof We prove the first claim, the proof of the second claim is similar. By the previous
theorem, there exists a first-order formula ¢(z) that expresses that @ € Rng(7’). Sine the
ranges are never empty, the formula Jxp(z) is logically true. The desired 7 := dxp(z). By
the previous lemma, 7 is equivalent to 7/. O

8.3 The let Construct

Extend FO+4" with the let construct exactly as in the previous section. Again, let can be
eliminated.

Theorem 8.5 The term (let x be s in t(x)) is equivalent to the term

8y [Fx (p(2) A x(2,y))]

where p(x) is a first-order formula expressing that © € Rng(s), and y is a fresh variable,
and x(x,y) is a first-order formula expressing that y € Rng(t(z)).

Proof Let A be the term (let x be s in t(x)) and let p(y) be the formula Fz(p(z) A x(z,y)).
Suppose that S, T are the types of z,y respectively, B is a pebbled structure appropriate for
Jzp(z), and a,b range over SB TP respectively. For brevity, we do not mention B.

First we pick any b € Rng()\) and show that b € Rng(d'yp(y)). Fix an a € Rng(s) such
that b € Rng(t(a)). Then

true € Rng(p(a) A x(b)) < Rug(o()
Since p is first-order, we have
True = Rng(p(b)) = max{Rng(p(b') : b' € T}

so that b € Rng(d'yp(y)).

Second we pick any b € Rng(6'yp(b)) and show that b € Rng(A). Let M =
max{Rng(p(b') : ¥ € T}. Since p is first-order, M # Both. Since b € Rng(&'yp(b)), we
have that Rng(p(b)) = M. We consider the two possible cases.

Case M = True. Then p(b) is true and therefore there is an a such that ¢(a) A x(a,b) is
true. Hence a € Rng(s) and b € Rng(t(a)) and thus b € Rng()).

Case M = False. Then p(b') is false for all " in T'. But this impossible. Indeed, pick any a €
Rng(s) and any b’ € Rng(t(a)). Then ¢(a) A x(a,b’) is true and therefore (Fz(p(z) A x(z,b))
is true. O

As in the case of FO+4§, FO+4’ can be enriched with the if-then-else construct and that
construct can be eliminated.
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8.4 Quantifier “Elimination” for FO+¢’

Let ¢ be an arbitrary FO+¢" formula, not necessarily a first-order formula.
Lemma 8.6 Jxp(x) is equivalent to
let y be §'zp(x) in o(y)

Proof Suppose that T'is the type of z. Let B be a pebble structure appopriate for Jzp(z),
a range over T8 and M := max{Rng®(p(a) : a € TP}. By the definition of the ranges of
existential formulas, Rng?(Jzp(x)) = M. By the definition of the ranges of §' terms,

Rng®(§'zp(x)) := {a € TP : Rng®(¢(a)) = M}
Using the definition of the ranges of let terms, we have

Rng”(let x be §'zp(z) in p(z)) = (J{Rng*(¢(a)): a € Rng*(8'z¢(z))}

= (U{Rng"(¢(a)) : Rng®(p(a)) = M}
= M

a

Corollary 8.7 FEvery term s is equivalent to a purely FO+6" term t (so that neither quan-
tifiers nor let occur in t).

Proof The previous lemma allows us to eliminate the quantifiers, but may introduce many
occurrences of let. The previous theorem allows us to eliminate all occurrences of let. O
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9 First-Order Logic with the Witness Operator

Abiteboul and Vianu extended predicate logic with a witness operator W [Abiteboul and
Vianu 1991].5 The extended logic will be denoted FO+W. The semantics of FO+W 1is
described informally in their paper. We formalize that semantics by means of a generalization
of global relations and make a couple of observations.

This section presupposes Subsection 2.1. In particular, we will use the notion of global
relations.

9.1 Syntax of FO4+W

FO+W is obtained from predicate logic (PFO) by the following formation rule. If ¢ is a
formula, ¥ is a non-empty tuple of free variables of ¢ and ¢ is a sequence of terms such that
length(t) = length(y) then
[Wyel(t)

is a formula. Within the square brackets, all occurrences of variables y are bound, but all
free (respectively bound) occurrences of any other variable in ¢ remain free (respectively
bound) in the new formula. Outside the square brackets, no occurrence of any variable is
bound.

It may be convenient to make the free variables of ¢ explicit and write ¢(z,y) where z
is a tuple (possibly empty) of all remaining free variables of ¢. Then the new formula is

[Wye(z, y)I(1).

Remark on the original notation. The original notation is Wye(z,y) which corresponds to
(Wye(z,y)](y) in our notation. It denotes a relation whose variables are exactly those of ¢
(see the next subsection). We modified the original notation so as to make implicit variables
explicit. O

9.2 Semantics of FO4+W

A global relation-set I' with vocabulary T and variables V' assigns to every nondeterministic
Y-structure A a set I'4 of relations ( of variables V; it is assumed that if A, A’ are isomorphic
then we have the following: For each ( € I'* there is ' € 'Y’ such that (A, (), (A, (") are
isomorphic by the same isomorphism, and wvice versa. Notice that, if V' is a set of variables
that includes V, then each { € I'* can be viewed as a relation with variables V.

Recall the notion of uniformization of a relation P(z,y) [Moschovakis 1980, page 33].
Here z is a tuple of variables of length > 0 and y is a tuple of variables of length > 1. An
(z — y)-uniformization of P is any relation @) C P satisfying the following condition:

Vi[3yP(z,y) — (3 unique §)Q(z,y)

5They also proved numerous results and gave numerous references on the nondeterminism in Datalog
based languages.
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By induction on formula ¢, define a global relation-set GRS, (or GRS(¢)).% Let A range
over structures whose vocabulary includes that of ¢.

e If © is atomic, then GRS;1 = {GR;‘}.
o If © is =y then GRS;‘ consists of the complements 7 of relations 1 in GRS;?.

e Suppose that ¢ is x A ¢ and let V' be the set of free variables of ¢. Think of members
of GRS;? and members of GRS;Z‘ as relations with variables V.

GRS;1 ={nNnb:ne GRS?,H € GRSy}

Similarly, to apply other connectives to global relation-sets, we apply them pointwise
to the relations in the sets. For example,

GRS (x ) :={(nNO)U(nnb):ne GRS, 0 € GRS}

e If ¢ is Jyx(z,y), then GRS:} consists of the relations Jyn(z,y) where n ranges over
GRS?. The case of V is similar.

o If v is [Wyx(z,y)](t) and U is the collection of all (z — y)-uniformizations of relations
in GRS;1 then

G]i’S;1 ={n(z,t): n(z,y) e U}

9.3 Abiteboul and Vianu’s Conjectures

Call an FO4+W formula ¢ deterministic or W-invariant if, for every structure A of the
vocabulary of ¢, the relation-set GBS:} is singleton. Say that a first-order formula y ezpresses
a deterministic FO4+W formula ¢ if, for every structure A of the vocabulary of ¢, GBS:} =
{GR;‘}. Abiteboul and Vianu conjectured that every deterministic FO4+W formula is first-
order expressible. As far as we know, the conjecture is open.

Abiteboul and Vianu introduced a procedural version of first-order logic called FO*.
An FOT formula (or program) “is a sequence of statements of the form R := ¢ where R
is a relation variable and ¢ is an FO formula”. They proved some results about FO* +
W, and about the extensions of FO+W with the inflationary fixed-point operator and the
partial fixed point operator. They conjectured that deterministic FO* formulas are first-
order expressible. That stronger conjecture was recently refuted by Martin Otto [Otto 1998].
But not much is known about FO+W itself.

SWere this a stand-alone section, a better notation would be [¢].
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9.4 FO+W vs. FO+4

In the case of minimal functional first-order logic, Boolean-valued relations can be viewed as
relations over the domain (the only non-Boolean type). This allows us to give the following
definition. An FO+W formula ¢ is equivalent to an FO+6 formula x if GRS, = GFS,.
For a short while we suspected that every FO4+W formula is equivalent to an FO+4
formula. Tt is easy to see, however, that this is not true. Let R be a binary relation symbol.

Claim 9.1 [WyR(z,y)]|(y) is not equivalent to any FO+3 formula.

Proof Let ¢ := [WyR(z,y)](y). Consider a structure A with three elements 0,1,2 where
R4 ={(0,1),(0,2)}. R has exactly two uniformizations: ¢{; := {(0,1)} and {, := {(0,2)}.
Accordingly [¢]* = {1, (o}

By contradiction, suppose that ¢(z,y) is equivalent to an FO+44 formula. Then [¢] is
closed and, by the Mixing Lemma (Lemma 6.2), it contains e.g. a function n such that
n(0,1) = (1(0,1) = true and 7(0,2) = (3(0,2) = true. But n ¢ [¢]. This gives the desired

contradiction. O

Remark Instead of [WyR(z,y)](y), we could use [WyQ(y)](y). The role of {(0,1),(0,2)}
would be played by {1,2} and we would use (z — y)-uniformization where z is the empty
tuple. O

9.5 FO4+W vs. Predicate Logic

Let ¢ range over FO4+W sentences and let A range over structures appropriate for ¢. Fach
GRS;1 is a nonempty set of nullary relations. Nullary relations can be identified with the
corresponding truth values. Thus GRS;1 is a nonempty subset of {true,false}.
Say that ¢ is first-order expressible if there are first-order sentences yo, x1 such that for
every A
AE xo < false€ GRS(p), AEx1 < truec GRS(y)

We will exhibit an FO+W sentence that is not expressible in first-order logic.

We start with a little excursion to graph theory. (Perfect) matching is usually defined
for bipartite graphs. But it can be defined also for arbitrary digraphs. A (perfect) matching
for a digraph G = (V| F) is a permutation f: V — V such that every (v, fv) € E.

Lemma 9.2 A digraph G = (V, F) admits a matching if and only if there is E' C E such
that (V, E') is a disjoint union of cycles.

Proof Use the fact that G is a disjoint union of cycles if every vertex has exactly one
outgoing edge and exactly one incoming edge. O

Lemma 9.3 There is no first-order formula ¢ such that, for every finite digraph G, G = ¢
if and only if G admils a matching.
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Proof A graph (X UY,(X X Y)U (Y x X)), where X, Y are disjoint finite sets, admits a
matching if and only if X and Y have the same number of nodes. Use Ehrenfeucht-Fraisse
games to check that, for every ¢ there is a number n such that ¢ does not distinguish between

(XUY, (X xY)U(Y x X)) and (X' UY' (X' xY)U(Y'x X))
provided that each of the four sets X,Y, X', Y’ contains at least n nodes. O
eorem 9.4 ere 1s an + W formula ¢ that 1s not first-order expressible.
Th There @ FO+W la ¢ that 1 d bl

Proof The desired ¢ is
Vy3z[WyE(z,y)|(y)

where E is a binary relation symbol. Think about F as the edge relation of a digraph
G = (V,F) and restrict attention to finite digraphs. Let E'(z,y) := [WyFE(z,y)|(y) be
an (z +— y)-uniformization of K(z,y), and consider the function y = f(z) from V to V
whose graph is F'(z,y). Intuitively, ¢ asserts that f is surjective and thus that G admits
a matching. More formally check that true € GRS? if and only if G admits a matching.
Now use Lemma 9.3. DO

9.6 The Expresssive Power of FO+W

In this subection, restrict attention to finite structures.

Let T be any finite vocabulary and let A range over Y-structures. Say that a class K
of T-structures (or the property P(A) :& A € K) is definable in FO+W if there exists an
FO+W sentence ¢ of vocabulary T such that

true € GRS;1 if and only if A € K

In the previous section, we saw that the property of digraphs to admit matching is FO4+W
expressible. Let Digraph Matching be the decision problem whether a digraph admits a
matching.

Theorem 9.5 Digraph Matching is PTime complete with respect to logspace reductions.

Proof To establish that Digraph Matching is PTime, we reduce it to Bipartate Matching
which is a known PTime complete problem [Greenlaw, Hoover and Ruzzo 1995]. Let G =
(V, E) be a digraph and let  be a one-to-one mapping from V to onto a set V' disjoint from
V. Construct a bipartite graph H = (V U V', F') where V is one part, V' is the other part,
and

Fo= ({um} : (w) € B)

If G admits a matching ¢, then {{u,nCu} : v € V'} is the desired matching for H. Conversely,
if {{u,0u}:u € V}isamatching for H, then ((u) :=n~'(fu) is a matching for G. Indeed,
(u,Cu) € E because {u,nCu} = {u,0u} € F. Further, { is injective: if {((u) = ((v), then
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fu = n(Cu) = n(Cv) = Ov and therefore u = v. Since we deal with finite digraphs, ( is also
surjective. (Actually, we do not need to appeal to finiteness here. The surjectivity can be
shown directly. Let v be any vertex in V. Since A is a matching for H, there exists a vertex
u € V such that fu = nv. But then ((u) = n~'(0u) = v.)

To establish that Digraph Matching is PTime hard, we reduce Bipartite Matching to D.
Let H = (V U V', E') be a bipartite graph with left part V' and right part V’. Without loss
of generality, we may assume that V and V' have the same number of vertices. Let n be a
one-to-one mapping from V onto V'. Construct a digraph GG = (V, ) where

E:={(u,n'0): {u,v} € F}

so that F' := {{u,nv} : (u,v) € E}. The same proof as above shows that G admits a
matching if and only H does. O

Remark It is easy to modify the sentence ¢ in the proof of the Theorem 9.4 so that the
modified sentence expresses Bipartite Matching. This would eliminate the need for Digraph
Matching. Tt is interesting though to notice how simple ¢ can be. O

Question 9.1 What is exactly the expressive power of FO+W? Is il true that only PTime
properties are expressible in FO+W? Is it lrue thal every PTime property is expressible in
FO+W?

9.7 The Capricious Character of FO4+W

9.7.1 Connectives

It is not true that, in FO4+W, additional propositional connectives can be expressed by
means of the obligatory ones. Here is one example of such inexpressibility.

Proposition 9.6 Let ¢ be the formula Wz P(x)|(z) and ¢ the formula Q(z). Then ¢ < ¢
is not equivalent to any formula 6 built from ¢ and b by means of true,false, A, V,— (and
any other connectives which are monotone, increasing or decreasing).

Here “equivalent” means having the same GRS for all A. In fact, we need only three
structures A, B, and C to witness the desired inequivalence. All three structures have domain
{0,1} and interpret Q as {0}, but they interpret P differently: P4 = {0}, PP = {1} and
PY =1{0,1}.

Proof Suppose 8 were a counterexample. Consider first what happens in A. Here GRS;1
contains only one relation, namely {0}, and so GRS, that is GRS4(p > 1), also contains
only one relation, namely {0,1}. Looking in particular at the element 0 € |A| (that is
evaluating the three formulas at 0 in A), we see that the propositional combination 8 of ¢
and © must evaluate to true when both ¢ and ¥ are evaluated to true. Decreasing the truth
value of a negative occurrence of a propositional variable can only increase the truth value
of the whole function. So
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(1) 0 is true if
all positive occurrences of ¢ are evaluated as true,
all negative occurrences of ¢ are evaluated as false,
and 1 is evaluated as true.

Note that, because all connectives in § are monotone, every occurrence of ¢ or # in 6 is
positive or negative, so (1) makes good sense. (In contrast, the occurrence of ¢ in (¢ < )
is neither positive nor negative.)

Now consider B, where GRSP = {{1}}, GRS} = {{0}} and therefore GRS] = {0}.
Looking in particular at the element 1 € |B|, we see that 6 is false when ¢ is true and ¢ is
false. Decreasing the truth value of positive occurrence can only decrease the truth value of
the whole formula. So

(2) 0 is false if
all positive occurrences of ¢ are evaluated as false,
all negative occurrences of p are evaluated as true,
and v is evaluated as false.

Finally, consider C', where GRSS = {{0},{1}}, GRSS = {{0}} and therefore GRS§ =
{{0,1},0}. We shall obtain a contradiction by showing that {0} € GRS .

According to the definition of GRSY, a relation in it can be obtained by interpreting
each occurrence of ¢ as {0} or {1}, interpreting each occurrence of ¢ as {0}, and then
combining these according to the way # is built by connectives from ¢ and . It is crucial
that the definition allows the various occurrences of ¢ to be interpreted independently. Let us
interpret all positive occurrences of ¢ as {0} and all negative occurrences of ¢ as {1}. Thus,
©(0) is interpreted as true in its positive occurrences and false in its negative occurrences,
and of course ¥(0) is true. So, by (1), we obtain the value true for §(0). Similarly, ¢(1) is
false at positive occurrences and and true at negative occurrences, and (1) is false. So, by
(2), we obtain the value false for §(1). Thus we have obtained a relation in GRS§ that
holds at 0 but not at 1. This is the required contradiction. O

9.7.2 Propositional Laws
Some of the usual propositional laws fail in FO+W. For example, the distributive law
PA(@Va) <= (PAq)V(PAa)
fails. Indeed, it is easy to check that
Wz P(z)](x) A(Qo(z) V @i(x))
is not equivalent to
(W P@))() A Qof)) v (W P(a))(x) A Qu(x))
in the structure A be the structure with base set {0,1} and relations P4 = {0,1}, Q4 = {0}
and Q1 = {1}.
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9.7.3 The extension of FO+W with function symbols

The extension of FO+W with function symbols behaves badly with respect to substitution of
terms for free variables. To see the problem, let ¢ be the formula [WyR(z,y)](y) and let ¢ be
its substitution instance [WyR(f(x),y)](y). ¢ is also the result of applying W to R(f(x),y).
Fix a structure A where, for every a, there exists b with R(a,b) and where there are distinct
ar,az with f(a1) = f(az); we will omit superscripts A. Since ¢ is the result of applying W
to R(f(z),y), GRSy consists of the uniformizations of the relation {(a,b): R(f(a),b)}, i.e.,
it consists of the graphs of functions g that assign to each a some b with R(f(a),b). Notice
that g(aq) may differ from g(ay). Such a g is not obtainable by composing f with another
function that assigns to each a some b with R(a,b). In other words, the graph of g, which
is in GRSy, is not obtainable from any relation in GRS, by substitution via f. One cannot
get the effect of the syntactical substitution by any semantical substitution as in the proof
of Lemma 5.4.
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