Copyright October 1998



MODELING DUAL-TASK PERFORMANCE IMPROVEMENT:

Casting Executive Process Knowledge Acquisition as Strategy Refinement

by

Ronald Samuel Chong

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
(Computer Science and Engineering)
in The University of Michigan
1998

Doctoral Committee:
Professor John E. Laird, Chair
Assistant Research Scientist Randolph M. Jones
Associate Professor David E. Kieras

Professor David E. Meyer



ABSTRACT

MODELING DUAL-TASK PERFORMANCE IMPROVEMENT:

Casting Executive Process Knowledge Acquisition as Strategy Refinement

by
Ronald Samuel Chong

Chair: John E. Laird

People demonstrate a remarkable ability to perform complex, multiple-task activities in spite of the
limitations of our sensory, perceptual, cognitive, and motor systems. A prominent theory that
addresses how multiple-tasks activities are performed is that of the executive process. Some of the
functions of the executive process include enforcing task priorities and arbitrating access to limited
resources. It has been shown that a time-sharing skill (or executive-process knowledge) is acquired
during training on dual-task combinations.

This dissertation presents the development of a computational, task-independent framework for
modeling the acquisition of the knowledge acquired during training on dual-task combinations—
executive process knowledge. On a selected dual-task combination—a continuous tracking task
and a discrete two-choice reaction time task—this framework, when given the declarative and
procedural representation of the novice task, has produced an expert model whose performance is a
good match to empirical reaction time and tracking error data for the task combination.

There are three main contributions of this work. First is the development of EPIC-Soar, a sym-
bolic hybrid architecture that possesses a psychologically-motivated learning mechanism and psy-
chologically-plausible perception and motor systems. Second is the identification and classification
of executive process knowledge and the taxonomies that result from this analysis. Third, is an
acquisition framework which consists of: a novel data structure for representing task strategies; a
task-independent procedure for resolving simultaneous access for motor resources and learning
new knowledge that avoids such collisions in the future; a second task-independent learning pro-
cedure which refines the strategy data structure and creates new procedural knowledge for per-
forming the task; and a collection of guidelines that regulate how and when promotions are

applied.



. Ronald Samuel Chong 1998
All Rights Reserved




1o all who raised me.

i



ACKNOWLEDGMENTS

In spite of how fashionable and trite it has become, I must first sincerely acknowledge God for
guiding me through fifteen years of college and university—from a dismal first few years of college,
to this brief moment of elation and a sense of accomplishment. He has led me to academic success,
shown me the positive side of my many academic failures, opened doors of opportunity, led me to
people who had my best interest at heart, and has given me insights when I have needed them
most. It is for these and much more that I thank Him for this miracle He was worked in me.

Of beings corporeal, I must acknowledge my thesis committee. First and foremost to my research
advisor, John Laird, who has allowed me to pursue the research issues that have motivated me, has
never been hesitant to give a compliment for good work, and has always been tactful in giving
reproach for poor work, or the plain lack of it. But I am most grateful for his endurance and under-
standing during weeks of “Sorry John, I haven’t done much this week” after the birth of my daugh-
ter, Lily. It was a struggle to find a balance between fatherhood and research. Hence, of the many
qualities that I hope to have adopted, the most important is John’s ability to balance his devotion
to his family and dedication to his research.

I'd also like to thank the rest of my thesis committee: Randy Jones for his words of encouragement
along the way and his comprehensive feedback on the thesis; Dave Kieras. for many impromptu
discussions about EPIC and cognitive issues in general; Dave Meyer for his stimulating and enter-
taining courses where he taught me everything I (should) know about cognitive psychology and
human performance—any fallacies in this thesis are due to my ignorance alone and not a product
of Dave’s teaching. Finally, as a whole, I thank my committee for a rigorous and memorable thesis
defense that highlighted the “bigger picture” that escaped me in my early draft of the thesis.

Many thanks to my parents and sister who have been unwavering in their support, encouragement,
and insistence that I had what it took and would make it to the end. I'd like to also recognize my
wife for the same as well as for setting aside her doctoral research to take care of Lily as I neared
the end. I guess it’s my turn now.

Finally, I must say a word of thanks to the many friends I've made through the SE-R (the “poor
man’s sports car’) mailing list, and in particular, the local Michigan SE-R group—Rob R. Bob,
Roger, Larry, Rob C., among many others. There were times when the research was getting the
better of me. At those times, there were few diversions as enjoyable as: hanging with this group of
gearheads at the Detroit Auto Show; get-togethers to change a clutch or two; resurrecting a
wounded engine; upgrading a shifter in 10° weather; or pushing for a fast, clean run at the season-
ending autocross at the Milford Proving Grounds. Thanks guys for helping me through this by,

paradoxically, luring me away from it.

111



TABLE OF CONTENTS

Dedication . ....o.uutii i e ii
Acknowledgments. . ......ouuiiiiiii e e i e iii
List of Figures . ..o ovuuueti i e it viii
List of Appendices. .. .uuuuittiiiiiii ittt e b
CHAPTER 1. .o e et 1
INTRODUCTION
1.1  Research objective ... ...ttt e 1
1.2 Researchapproach . ...... ... .. . . 2
1.3 Why study dual-task acquisition?. . . ........ ... i 2
1.4 Thesis SUMMAIY . . . ..ottt ettt ettt et eees 3
1.41 The psychology of multiple-task behavior. . ........................ 3
1.4.2  Selecting an appropriate computational architecture. ................. 4
1.43 TheWickens task . .....oooutuuii e 5
1.44 EPIConthe Wickenstask............. . ... ... oo iii... 5
1.4.5 The classification of executive process knowledge. . .................. 5
1.4.6 A framework for acquiring executive process knowledge .............. 5
1.4.7  Applying the acquisition framework to the Wickens task.............. 6
1.4.8  Predictions of the acquisition framework ............. ... ... ... ... 6
1,49  DISCUSSION. ..ot i it 7
1.410 ContribUtions . . .. ...ttt e 7
1411 Futurework. .. ... 7
CHAPTER 2. ..o i i e et 9
THE PSYCHOLOGY OF DUAL-TASK BEHAVIOR
2.1  The eXeCUtiVE PIOCESS. « . . . e v weut ettt ettt et et e e e e 9
2.2 Acquiring a time-sharing skill .. ... ... .. . . L 10
2.3 Executive processornewskill?. . ... . o oo oo 11
2.4  Dual-task interference . . ......... ... 11
2.41 Perceptual-bottleneck model. .. ....... ... .. ... o il 12
2.4.2  Response-selection bottleneck hypothesis. . ....................... 13
2.4.3 Movement-initiation bottleneck hypothesis .. .................. ... 14
2.4.4  Unitary-resource theory. . ... ... .ot 14
2.4.5 Multiple-resource theory. . ....... ...l 14
2.4.6  Which theoryiscorrect? .. ... ... it 15
2.5 Theoretical commitment of thiswork . ........ ... ... .. ... 15

v



CHAPTER 3. . i i e it it 16
SELECTING AN APPROPRIATE COMPUTATIONAL ARCHITECTURE

3.1 Architectural requirements. .. ...... ... .. 16
3.1.1 A knowledge system with the right representations .. ............... 16
3.1.2 A cognitive system that learns. .. ................ .. L 17
3.1.3 A psychologically plausible performance system . ................... 17
3.2 Candidate architectures . .. .......... i 18
3.3 EPIC .. 18
3.3.1  Perceptual processors. .. ..... ...ttt 18
3.3.2  CoOgNitive PrOCESSOr. . . oo vttt e et e ee et e e e e 20
3.3.3  MOtOI PIOCESSOIS. « v v vttt et e et e e it e e 20
3.3.4 Simulated task environment . ...... ... L. oL il i 23
3.3.5  EXECULIVE PrOCESSES . . . v v it ettt i it 23
S 1o 24
3.4.1 Soar as a production SYStem ... ...........iiiiiiiiiiia i 24
3.4.2  Soar as a goal-oriented architecture. . .......... ... ... oL 25
343 Learningin Soar......... ... 25
3.5 Evaluating the candidate architectures. . .......... ... ... ... 26
3.6 EPIC-Soar: A hybrid architecture for learning and performance ............. 26
3.6.1 Technical details of EPIC-Soar ............. .. ... ... 26
L N S 0 2 29
THE WICKENS TASK
CHAPTER 5. .o i e e ittt 32
EPIC ON THE WICKENS TASK
5.1 An execution trace of the EPICmodel ......... .. ... ... ... L. 32
52 DISCUSSION .. v ittt 36
CHAPTER . . . oo iti i i e e ettt 39
THE CLASSIFICATION OF EXECUTIVE PROCESS KNOWLEDGE
6.1  Expert models of the individual tasks. ... ........... . ... .. ... . ... .. 40
6.2 Strategies for dual-task behavior ......... ... . ... . o il 41
6.2.1 Tasklockout ....... ... .. 41
6.2.2 Taskinterleaving........... ... ... 41
6.3 Implementation of the executive process . ............ouuriiienneenn... 42
6.4  Creating an expert model in EPIC-Soar . ........ ... .. ... ... ... ... 43
6.4.1  The basic lockout strategy. ........ ... i 43
6.4.2  The lockout strategy with preparation. . .......................... 44
6.4.3  Evaluation of the lockout strategy. .............. .. ... .. ... ... 45
6.4.4 The basic interleaved strategy .. . . ... .oiii i 45
6.4.5 The interleaved strategy with pipelining. .. ....................... 48
6.5 Classifying executive process knowledge .............. ... .. ... ... ... 50
6.5.1  Pre-trialknowledge. . ... ... ... . ... 51
6.5.2 Learnedknowledge.......... . ... ... il 51
6.6 DISCUSSION . .. ..ot 52



CHAPTER 7. .o i i et 54
A FRAMEWORK FOR ACQUIRING EXECUTIVE PROCESS KNOWLEDGE

7.1 ODSEIrvation . ... ...ttt e 54
7.2 Hypothesis about a subject’s initial knowledge ................... .. ... ... 56
7.2.1  Example task: A two-choice reaction time task .................... 57
7.2.2  Chronological task strategy data structure. . . ...................... 57
7.3 The promotion-learning procedure . ... ....... ... 59
731 OVeIVIEW. . oottt e e e e 60
7.3.2  Prepare promotion ........ ... ..l 60
7.3.3  Event promotion. ... ..........uiiiiiiii i i 61
7.3.4  Chain promotion. . .. ...ttt 62
7.4 Promotion-learning applied to the example task .. . ....................... 63
CHAPTER 8. . .ttt e e et it ettt 67
APPLYING THE ACQUISITION FRAMEWORK TO THE WICKENS TASK
8.1 Strategy structure for the Wickens task . ......... ... . ... .. ... . oL 67
8.2  Applying promotion-learning ............. .. ...l 68
CHAPTER . ..ottt i i e e e e 73
PREDICTIONS OF THE ACQUISITION FRAMEWORK
9.1 Post-learning performance is dependent on the dual-task strategy ............ 73
9.2 A retraining regimen can improve performance. ... ........... ... 78
CHAPTERTO ..ottt e et e it et 81
DiscussIiON
10.1 The acquisition framework ......... .. ... 81
10.2 Switching from lockout to interleaving . ......... ... .. ... . oo 82
10.3 Learning rates in S0Ar .. ...ttt e 83
10.4 Psychological plausibility of the framework. ... ... ... . ... . ... .. ..... 85
10.5 The contributions of EPIC ... ... ... . . 85
10.6 The contributions of Soar . ....... ... 86
10.7 ACT-R vs. Soar: Is Soar’s contribution unique? ...............oovvoioo... 86
CHAPTER 11 .o et e et ens 88
CONTRIBUTIONS
11.1 A learning and performance architecture. . ...........cooiuuriinnneeeen.. 88
11.2 A taxonomy of executive process knowledge . ....... ... ... ... . L 88
11.2.1 Pre-trial knowledge. . ....... ... i 89
11.2.2 Learned knowledge........ ... ... ... ... il 89
11.2.3 A functional representation of executive process knowledge........... 90
11.3 An acquisition framework . ... ... 91
11.4 Contributions to otherwork ....... ... .. ... ... . . .. 92
CHAPTER 12 .. e e ettt it 94
FUTURE WORK
12.1 Further validation of the task models. .. .. ...... ... .. ... ... .. ... .. 94
12.2 Further validation of the acquisition framework ................. ... ... ... 94
12.3 Strategy generation and selection. . . ....... ... ... il i 95
12.4 Exploring the proceduralization of declarative knowledge. .................. 97

vi



APPENDICIES

BIBLIOGRAPHY . . ..t et 130



Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4

Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7

Figure 4.1
Figure 4.2

Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4

Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5
Figure 6.6
Figure 6.7
Figure 6.8
Figure 6.9
Figure 6.10

Figure 7.1
Figure 7.2
Figure 7.3
Figure 7.4
Figure 7.5
Figure 7.6
Figure 7.7
Figure 7.8

LIST OF FIGURES

A representation of executive process knowledge. .. ...... ... ... oL 9
A measurement technique for identifying the acquisition of a time-sharing skill . 10
Outline of the events that occur on each trial of the PRP procedure........... 12

Idealized representative results from the PRP procedure (Meyer et al., 1995). .. .13

Derivation of the architectural requirements . ............................ 18
The EPIC human performance architecture . ............................ 19
The structure of the EPIC motor processors. .........ooviieeeeeeeennnn... 20
Comparison of non-prepared and prepared motor commands ............... 21
Comparison of non-pipelined and pipelined motor commands. . ............. 22
A simplified block diagram of Soar ........... ... ... oo 24
Block diagram of EPIC-Soar. ..... .. ... oo i 27
The Wickens task environment. .. .........ouuieiinnneeninnennnnnenn.. 29
Expert human performance on the Wickens task ......................... 31
The EPIC model on the Wickens task.. . ......... ... ..o, 33
An abridged trace of the EPIC model on one trial of the Wickens task . .... ... 34
Opverlapping execution and preparation of consecutive ocular commands. . .. ... 35
Overlapping execution and preparation of consecutive manual commands . . . . .. 37
Operator descriptions for the tracking and choice tasks. . .. ................. 40
The lockout strategy for performing two tasks simultaneously ............... 41
The interleaved strategy for performing two tasks concurrently. . ............. 42
Trace of the dual-task model using the basic lockout strategy................ 44
Trace of the dual-task model using the lockout strategy with preparation. . .. ... 45
The EPIC-Soar dual-task model using the lockout strategy . ................ 46
Trace of the dual-task model using the basic interleaved strategy ............. 47
Trace of the dual-task model using the interleaved strategy with track-asap. . ... 48
The EPIC-Soar dual-task model using the interleaved strategy .............. 49
The lineage of EPIC-Soar dual-task models. ................ ... ... .... 50
Casting anticipatory motor programming as a partial-command promotion. . . . . 54
Casting pipelining as a whole-command promotion . ...................... 55
Casting movement pre-positioning as a Promotion. .. ........uueveeunnn .. 56
The example task, a two-choice reaction-time task . . . ........... ... ... ... 57
A strategy data structure for the example task .. ....... ... . oo oL 58
Substructure of command chains .. ....... ... oL oo 59
The strategy data structure after all prepare promotions .................... 61
The strategy data structure after all (one) event promotion.................. 61

viil



Figure 7.9

Figure 7.10
Figure 7.11
Figure 7.12

Figure 8.1
Figure 8.2
Figure 8.3
Figure 8.4
Figure 8.5

Figure 9.1
Figure 9.2
Figure 9.3
Figure 9.4

Figure 10.1
Figure 10.2
Figure 10.3

Figure 11.1
Figure 11.2
Figure 11.3
Figure 12.1

Figure 12.1

Figure A.1
Figure A.2
Figure A.3
Figure A.4

Figure C.1
Figure C.2

Figure D.1
Figure D.2
Figure D.3
Figure D.4
Figure D.5

Figure E.1
Figure E.2
Figure E.3

Figure F.1
Figure F.2
Figure F.3
Figure F.4
Figure F.5

Chain promotion of L1 . ... ... it e 62
The strategy data structure after all chain promotions. ..................... 63
Transitioning from novice to expert performance on the example task . . ....... 64
Traces of a novice trial and and expert trial for the 1-CRT condition.......... 65
Individual task strategy structures for the choice and tracking tasks ........... 67
Strategy structure for the Wickens task . . ......... ... . ... ... o L 68
Transitioning from novice to expert performance on the Wickens task. . ....... 69
The evolution of the strategy structure for the Wickens task................. 70
Novice and expert traces for the Wickens task. .. ............ ... .. .. ... 71
Results of learning when initially using an interleaving dual-task strategy. .. .... 74
The evolution of the strategy structure for the initial-interleaving model . . ... .. 75
Novice and expert traces for the initially-interleaved model ................. 77
Results of retraining the initial-interleaving model ... ..................... 79
Event promotions create motor command chains .. ............... ... ... .. 81
The strategy data structure after all chain promotions. ..................... 83
Chain promotion of L1 . ... ... 84
A taxonomy of the knowledge learned during dual-task practice. ............. 89
The functional relationships of the classes of executive process knowledge. . . . .. 90
The post-promotion model defines the lower bound of the bracketing heuristic .93
An expert strategy that the current framework cannot produce............... 95
A system for realizing gross strategy shifts and fine-grained refinements........ 96
A production for creating the declarative preference knowledge . ............. 99
A trace of the jam-recovery procedure learning a jam-avoidance rule . ........ 100
The jamming command rules and the resulting jam-avoidance chunk . ....... 102
The application of the jam-avoidance chunk................ ... ... ... 103
Application of event promotions . . ... «vvuuu ittt 111
Application of prepare Promotions ... ... .......eeeieereuuunnneeeeeans 112
A trace of @ prepare Promotion . .. ...v.vuutun ettt 115
A trace of an chain promotion . ........ ... . il 116
A trace of an event promotion, part L. .. ... ... ... . o ool 117
A trace of an event promotion, continued ... ..... .. il 118
The reconstruction of the expert strategy data structure ................... 119
Production rule to look atan object. . ......... .. ... ... L. 121
Behavior of the WATCH-OBJECT rule. . ..., 122
The Soar rule coding convention used to prevent redundant rule firings. . ... .. 123
A simplified flowchart of the Soar decision cycle. . . ........ ... .. ... ..... 125
An excerpt of one possible Soar model for the counting task and its trace ... .. 126
A trace of the revised Soar model for the counting task. . .................. 127
A trace of the original Soar model when architectural constraints are applied. . . 128
The modified Soar decision cycle used in EPIC-Soar..................... 129



Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F

LIST OF APPENDICES

Details of the jam recovery and avoidance learning procedure .........cccoevevruereneence 99
The chronological task strategy data Structure ..........cccceceeeieueecienenceeiececiciennns 104
Details on the suggestion and application of promotions.......c.ccccveeecreeuereereeennne 110
Details of the promotion learning procedure .........cceeereruerceuereneeeeerereerenreeerennene 114
Changes to EPIC ... e 120
Changes to SOAT ........cucuiuiiiiiiicicci e 125



CHAPTER 1

INTRODUCTION

Humans perform many complex, high-performance multiple-task activities. Consider a few exam-
ples: a commercial pilot landing a passenger plane in inclement weather; a military pilot engaging
or evading a foe. A personal favorite is: a Formula 1 race car driver approaching a hairpin corner
and needing to: downshift to an appropriate gear for the exit of the corner; threshold brake to the
maximum speed for the corner; select the appropriate racing line for the corner taking into consid-
eration the next corner; all while planning race strategy on the radio with the pit crew. Two less
glamorous examples are: piano players repeating prose that is read to them while they are sight
reading materials of various difficulty (Allport, Antonis & Reynolds, 1972), and subjects reading
text aloud while taking dictation (Spelke, et al., 1976).

Some of these activities share several points in common. First and foremost, the individuals
performing these activities have before them a number of tasks that must be performed simulta-
neously. Second, some of these activities may have a strong perceptual-motor flavor; i.e., the per-
ception (visual perception, for example) of external events is used by cognition to elicit overt
behavior in the form of motor actions, such as eye movements, button presses, or steering correc-
tions. Because of this, strictly simultaneous performance is not always possible since, when gener-
ating overt behavior, cognition must take care not to violate the structural limitations of the
effectors. For instance, we cannot fixate our eyes in more than one direction at a time nor can a
hand be made to move in two directions at the same time.

A third commonality among some of these tasks is that there are intrinsic time pressures asso-
ciated with each task. One characteristic of high-performance tasks is that behaviors in response to
stimuli must flow as quickly as possible. A fourth and final commonality is that there may be a
potentially high cost for failure to perform or just in delaying to perform the task.

These points together illustrate why it can be very challenging to perform multiple-tasks at an
expert level. Yet, as the previous examples have shown, people can perform amazingly well under
multiple-task conditions. How is this done? How do people manage the different requirements for
performing a multiple-task combination? More fundamentally, given that all experts were once
novices, how do people learn to perform these combinations? Additionally, what do they learn
through practice on a combination that enables them to become experts?

1.1 RESEARCH OBJECTIVE

To date, no work has been done toward modeling the acquisition of knowledge through practice
on a dual-task combination. The work presented in this thesis begins to fill this void. Therefore,
our research objective is to:



Develop a computational, task-independent framework for modeling the acquisition of
the knowledge that subjects acquire through practice on a selected dual-task combination.

Ideally, one would want to evaluate such a framework on at least these two dimensions: its
ability to a) produce models that transition from novice to expert performance, and b) predict the
time to make the transition; the learning time. This work however is only concerned with the
former and not the latter. The reason is two-fold. First, we have been unable to find simple per-
ceptual-motor task combinations for which trial-by-trial learning data was collected. Second, it
was anticipated that the first of these attributes would be a significant achievement on it own with-
out the added constraint of the latter.

We will also evaluate this framework on its ability to construct models that produce a quantita-
tive post-learning match to the observed expert performance data for the selected task, given plau-
sible initial knowledge. We will also evaluate it based on its psychological plausibility and the
predictions it makes.

This work focuses only on simple perceptual-motor tasks in contrast to cognitive tasks such as
list memorization, memory search or counting where there is no overt behavior. Specifically, we
will concentrate on visual-manual tasks—tasks that take in visual stimuli (such as the onset and
identity of objects) and produce manual responses (such as keypresses or joystick moves)—because:
a) these are the most prevalent kinds of tasks, and b) in the architecture that will be used for mod-
eling, the visual and manual modalities are the most developed in comparison to the auditory and
vocal modalities.

1.2 RESEARCH APPROACH

The approach used to address the research objective consists of two steps. First, we aim to identify
the executive process knowledge that is sufficient to produce expert performance on a selected task.
To accomplish this, we start with a novice model of the individual tasks, then iteratively elaborate
the models, using a generate-and-test methodology, until a model is found whose performance
matches the observed expert performance data. When elaborating the models, we are careful to
adhere to a fundamental tenet of cognitive modeling: that the modeler should be able to articulate
the source of a// the knowledge in the model. Once the executive process knowledge has been
identified, we hope to identify a few broad categories for the knowledge.

The next step in the research approach is to devise some learning procedures or possibly a gen-
eral framework that supports the acquisition of the identified classes of knowledge. Though this
approach seems analogous to data-fitting (producing learning procedures to learn the desired
knowledge), it is hoped that the knowledge classes and the learning procedures or the framework
will be sufficiently general to apply to a large class of tasks, while making confirmable and/or plau-
sible predictions about human dual-task acquisition and performance.

1.3 WHY STUDY DUAL-TASK ACQUISITION?

Of the many reasons to study human dual-task acquisition, the first is the most obvious: like most
of human behavior, it remains an intellectual challenge to discover how humans do it. There are
many interesting questions that are unanswered. What training regimen will produce the best final
dual-task performance? What are the aspects of a task combination that prevent certain combina-
tions from being performed as well as others? Similarly, what are the affordances that allow other
combinations to be performed well together? Why are some people (e.g. fighter pilots) signifi-
cantly better at performing under dual-task conditions than are others (e.g. those who flunk fighter
pilot school)?



Many of the high-performance activities mentioned at the beginning of this chapter can pro-
duce high levels of mental workload (Gopher & Donchin, 1986). When the workload reaches very
high levels, an individual may resort to undesirable ways of coping. A second reason to study dual-
task performance is that as the details of human dual-task acquisition and performance are
revealed, methods may be devised for reducing the sometimes significant mental workload subjects
experience when performing multiple tasks.

Consider the situation faced by military pilots—tones from onboard missile systems; tones
warning of enemy missile locks, radio communications from a wingman or backseat navigator,
avoidance of AAA (anti-aircraft artillery) fire and SAMs (surface-to-air missiles), not to mention
the necessary task of keeping the aircraft in the air and navigating to the target in a timely fashion.
There have been reports of Vietnam War fighter pilots who, while in the throes of the battle and
faced with complete sensory and task overload, would shut off warning systems so that they could
concentrate on whatever task was considered to be of foremost importance. As the details of dual-
task acquisition and performance are revealed, they may lead to better designed systems or equip-
ment, or may result in training regimens and performance techniques to reduce the workload on
the individual performing the task.

A third reason to study dual-task acquisition is economic concerns. A clearer understanding of
how people learn dual tasks can imply a significant financial savings. One could develop more
streamlined and effective training and testing techniques. Also, with a clearer understanding of
how people then go on to perform dual tasks, more savings can be realized in the design and engi-
neering of systems that people must operate. The often cited example is the analyses of the tele-
phone operator task (Gray, John & Atwood, 1992). The analyses resulted in a small reduction in
average task completion time. However, the domain is such that small time savings translate into
substantial monetary savings.

A final reason is that the dual-task situation can give insights into the architecture of the mind.
These types of situations stress human capabilities very seriously, and so the observed patterns of
behaviors set very strong constraints on the human information-processing system architecture.
Therefore, analyses of even simple dual-task situations can result in detailed hypotheses about
information processing mechanics (Kieras & Meyer, 1995a).

1.4 THESIS SUMMARY

This section summarizes the main body of work presented later in the thesis. Each subsection that
follows is a synopsis of the chapter with the same name. This summary can be read as an introduc-
tion to, or in lieu of, the remainder of the thesis.

This summary and the thesis as a whole are arranged in a chronological fashion, reflecting the
order in which the original research was performed. This is an appropriate organization as it fol-
lows the logical development of the ideas presented.

1.4.1 THE PSYCHOLOGY OF MULTIPLE-TASK BEHAVIOR

How are people able to perform multiple, simultaneous tasks? The most prominent theory of mul-
tiple-task performance posits that performance and resource management are accomplished by an
executive routine, or executive process (Borkowski and Burke, 1996; Gopher, 1993; Meyer & Kieras,
1997a; Neisser, 1967; Norman & Shallice, 1986).

Abstractly, executive process knowledge might be defined as the knowledge necessary to pro-
duce dual-task performance that is distinct from the knowledge used to perform the constituent
tasks. Meyer and Kieras (1997a) provide a concrete description of the role of the executive process.
It maintains task priorities and coordinates progress on concurrent tasks through various types of
supervisory control. It possesses no knowledge for performing any of the individual tasks, but it
does have knowledge about the relative and/or absolute priorities of the tasks under its control. It



must also arbitrate when two tasks cause a violation of the structural limitations of the effectors;
e.g., TaskA wants the eye to look to the left, while TaskB wants the eye to look to the right. The
role of the executive process is in many ways similar to that of computer operating systems such as
UNIX.

Where does this executive process come from? Damos & Wickens (1980) developed a mea-
surement technique to demonstrate clearly the acquisition of a timesharing skill (or executive pro-
cess knowledge) under dual-task training. With this technique, they showed convincingly that
there are distinct timesharing skills developed during dual-task training.

Empirical studies have consistently shown that when even the simplest tasks are performed
concurrently, there is usually a reduction in performance of both tasks compared to when each task
is performed alone. This worsening in performance has been called the dual-task decrement and is
assumed to be due to dual-task interference.

Many theories have been proposed in an attempt to explain the cause of this interference. (See
Meyer & Kieras (1997a) for a thorough discussion). Many theories have assumed that there is a
limitation in the processing chain from stimulus perception through response generation (Broad-
bent, 1982; Keele, 1973; Pashler, 1984, 1990, 1992, 1994a, 1994b; Welford, 1952). Others have
posited the existence of a limited resource/s that must be shared by the competing tasks (Gopher
& Donchin, 1986; Kahneman, 1973; Wickens, 1980, 1987, 1991). Recently, Meyer & Kieras
(1997a) have suggested the “radical” idea that there is no inherent cognitive bottleneck. At times,
one of these hypotheses has seemed to prevail, whereas other evidence has favored other. The
debate continues.

1.4.2 SELECTING AN APPROPRIATE COMPUTATIONAL ARCHITECTURE

The goal of this work is to develop a computational, task-independent framework for modeling
the acquisition of executive process knowledge. As such, a computational architecture for the
exploration and development of this framework is needed.

Based on the subgoal of the overall research goal, we defined requirements on the ideal archi-
tecture’s knowledge, cognitive, and performance systems. The knowledge system should support
the declarative vs. procedural distinction along with representing this knowledge in an inspectable
way; i.e. symbolic representations. The cognitive system should provide a learning capability along
with the absence of an inherent cognitive bottleneck. The performance system should provide a
psychologically-plausible account of perceptual and motor abilities and limitations.

We discovered however that no single architecture provided complete coverage of all these
requirements. However, EPIC (Meyer & Kieras, 1997a, 1997b) and Soar (Laird, Newell, &
Rosenbloom, 1987) architectures together address all the requirements. EPIC possesses the most
thorough computational theory of perceptual and motor processors, yet EPIC’s cognitive processor
does not learn. Soar, on the other hand, represents one of the most complete computational theo-
ries of the human cognition and has not inherent cognitive bottleneck. It also has a single mecha-
nism for learning, but does not have a theory of sensory or motor processes that is as mature as
those for its cognitive processor.

The potential for a synergistic merging of EPIC with Soar was obvious and the endeavor was
undertaken. The resulting hybrid architecture is called EPIC-Soar (Chong, 1995; Chong & Laird,
1997; Chong, 1998a, 1998b). EPIC-Soar represents a parsimonious integration of the perceptual
and motor processors of EPIC with Soar. This merger is an attempt to get both the detailed pre-
dictions and explanations provided by the perceptual and motor processors of EPIC (an ability
Soar does not possess) and the problem solving, planning, and learning capabilities of Soar (an

ability EPIC does not possess).



1.4.3 THE WICKENS TASK

A task combination we call the Wickens task (Martin-Emerson & Wickens, 1992) was chosen
because an expert model of this task already existed in EPIC. It consists of a continuous tracking
task and a choice-reaction time task. This task combination was originally used to evaluate the
effect of vertical separation (between the tracking and choice tasks) on tracking performance. The
application of this study is to the design of heads-up displays used in military and civil aviation.

1.4.4 EPIC ON THE WICKENS TASK

EPIC has been used to produce a quantitatively accurate model for the Wickens task (Kieras,
1994; Kieras & Meyer, 1995a). The production rules of the EPIC model realize a model of expers
dual-task performance for the task. The EPIC model provides a good overall match to the empir-
ical data on both the reaction-time and tracking error measures. This success is a direct result of
combining psychologically realistic perception and action with cognition.

Concerning the executive process, some of the rules were task facilitation rules that moved the
eye between the tasks. Other rules however, are best defined as implementing an explicit, task-spe-
cific strategy for coordinating the two tasks. Tasks are disabled and enabled for fundamental rea-
sons (such as preventing motor conflicts) and for task performance reasons (such as disabling the
tracking task because the eye was away from the cursor). In a sense, these rules “micro-manage”
the execution of the tasks, providing deliberate control of how the steps of each task are interleaved
and as such, they are task specific.

1.4.5 THE CLASSIFICATION OF EXECUTIVE PROCESS KNOWLEDGE

This chapter presents the first of three main phases of this work. This first phase had four objec-
tives. First, to construct a Wickens task model in EPIC-Soar since all the future work would be
done in EPIC-Soar. Second, to confirm that the EPIC-Soar hybrid architecture was sufficient for
modeling dual-task expert performance. Third, to explore the possibility of using a task-indepen-
dent, minimalist executive process instead of EPIC’s task-specific formulation. The fourth objec-
tive was a pragmatic one: building a performance model would allow us to: a) identify the
knowledge that needed to be learned, and b) reverse engineer learning procedures for acquiring the
identified knowledge.

To create the expert dual-task performance model in EPIC-Soar, we first started with expert
models of the individual tasks. To build the first dual-task model, we loaded both individual task
models into EPIC-Soar and added some knowledge to the system to implement the basic lockout
strategy. We ran this model and collected the data. The performance was found to be rather poor.
A little more knowledge was added to the model and it was re-run. This generate-and-test cycle
was repeated until an expert model was found.

This incremental approach yielded a lineage of four dual-task models, ending with a final
expert dual-task model. The changes/additions that were made at each increment represent the
executive process knowledge used for this task. This knowledge was partitioned into two sets indi-
cating when the knowledge was acquired; either before or after the first dual-task trial was per-
formed. Knowledge that existed before the first trial was called pre-#rial. Knowledge that resulted
from performance on the task was called /earned. The knowledge in the latter class is what should
be learned by the sought-after learning procedure/framework. The learned knowledge class con-
sisted of two general types of rules: anticipatory motor programming rules and pipelining rules.

1.4.6 A FRAMEWORK FOR ACQUIRING EXECUTIVE PROCESS KNOWLEDGE

In this chapter, we present the development of a framework for acquiring these rules. First, a key
observation about these rules is presented, followed by our hypothesis about the initial knowledge



that subjects possess. The observation and hypothesis together suggested a task-independent
learning procedure.

When comparing the novice dual-task rules with the expert rules, a key observation was made:
the expert rules produce improved performance by executing commands, or parts of commands,
chronologically earlier in the task, as though they were chronologically promoted. In addition to antici-
patory motor programming and command pipelining, a third task independent method for
improving performance is called movement pre-positioning (Wood, Kieras, & Meyer, 1994; Kieras,
Wood & Meyer, 1995a, 1995b). The idea here is that performance improvements can be had by
positioning an effector (a hand or an eye, for example) at a location before the action at that loca-
tion is needed. This movement is clearly a kind of promotion.

We next asked and answered a fundamental question: “What initial knowledge does a subject
possess after receiving task instructions but defore beginning to perform a task?” We made two
assumptions about subjects: a) that they understand the task instructions, and b) are sufficiently
motivated to perform the task and abide by the instructions. Our answer to this question was that
this knowledge is a detailed plan, or strategy, of how to perform the task. This strategy was real-
ized by a data structure called a chronological task strategy data structure. This structure represents a
subject’s knowledge about the chronological ordering of perceptual events, and the motor com-
mands that are required (per the task instructions) at the occurrence of each perceptual event. The
structure also captures a subject’s interpretation biases, and pre-performance reasoning about the
task.

With a structure such as this, principled chronological promotions could be performed. A
straightforward task-independent promotion-learning procedure for acquiring the learned knowl-
edge was devised. The procedure performs three styles of promotions: prepare promotions, event
promotions, and chain promotions. Prepare promotions create anticipatory motor programming
rules, event promotions create movement pre-positioning rules, and chain promotions create pipe-
lining rules.

The resulting framework consist of: a novel data structure for representing task strategies; a
task-independent procedure for resolving simultaneous access for motor resources and learning
new knowledge that avoids such collisions in the future; and a second task-independent learning
procedure which refines the task strategy data structure and creates new procedural knowledge for
performing the task, and a collection of guidelines that regulate how and when promotions are
applied.

To apply the framework to a task, the modeler must provide two things to the framework: a) a
chronological task strategy data structure, hand-coded as declarative knowledge, and b) a proce-
dural performance model that implements the behavior represented in the strategy structure. This
information was provided to the framework for a fictitious choice reaction time task. The learned
expert model was shown to produce plausible post-learning performance.

1.4.7 APPLYING THE ACQUISITION FRAMEWORK TO THE WICKENS TASK

In this chapter, the acquisition framework is applied to Wickens task. A chronological task strat-
egy data structure for the task was hand-coded as declarative knowledge and given to EPIC-Soar.
In addition, a novice dual-task model, whose behavior was congruent with the strategy structure,
was given to EPIC-Soar. After training, the learned expert model’s performance was a good match
to the human data.

1.4.8 PREDICTIONS OF THE ACQUISITION FRAMEWORK

The models in earlier chapters assumed that novice subjects initially use a lockout dual-task strat-
egy then eventually progress to an interleaved dual-task strategy. Realizing the some subjects may
never actually use a lockout strategy but rather might begin with an interleaved dual-task strategy,



we decided to re-run the model using this configuration. Our expectation was that the promotion
learning procedure would produce exactly the same end performance, making the prediction that
the dual-task strategy initially used did not matter to final performance.

To confirm our expectation, the EPIC-Soar system was run in this configuration and trained.
Contrary to our expectations, we found that the final performance was in fact nof the same; specif-
ically, the tracking error performance was worse. The framework and model made the prediction
that: a) post-training performance is dependent on the dual-task strategy used during training, and
b) an initial-lockout strategy leads to better performance than an initial-interleaving strategy.

We propose that this prediction is supported by the results reported by Gopher (1993) about a
study that examined the effect of varied task emphasis in dual-task learning. It was found that
post-training performance was superior for the subject group that varied priorities during learning
(the VP group) when compared to subjects who were either in the equal-priority (EP) or no-prior-
ity (NP) groups. The initial-lockout model (which initially emphasized the choice task, then later
changed to equal-emphasis when switched to use an interleave strategy) is superficially like the VP
group which gave each task varying levels of emphasis. The initial-interleaving model is superfi-
cially like the EP group in that both used equal-emphasis throughout. Therefore, it appears that
the model has made a confirmed prediction.

Gopher (1993) did not report or speculate on how the relatively poor performance of the
equal-priority and no-priority groups could be elevated to reach the superior level of the varied-
priority group. However, our acquisition framework suggests a simple retraining regimen that
would enable the initial-interleaving model (which is analogous to the EP group) to reach the per-
formance of the initial-lockout model (which is analogous to the VP group). It is expected that
performance would improve if the model were given some practice trials in the VP condition. This
prediction was tested and the retrained performance was comparable to the final results for the ini-
tial-lockout model.

1.4.9 DISCUSSION

This chapter discussion of various aspects of the acquisition framework. Theoretical issues about
this work and the architectures involved are also discussed. Finally, the implications of this work
are presented.

1.4.10 CONTRIBUTIONS

This work makes four contributions. First is the development of the EPIC-Soar hybrid architec-
ture for learning and performance. The second is the executive process knowledge taxonomies that
was created based on the knowledge classes and subclasses identified in the work. Third is the
acquisition framework, which consists of: the jam-recovery learning procedure and the jam-avoid-
ance procedure; the chronological task strategy data structure; the promotion learning procedure;
and the promotion procedure’s application guidelines. The final contribution is that this frame-
work may automate the search for the fastest-possible strategy model used in the bracketing heu-

ristic devised by Kieras & Meyer (1998).

1.4.11 FUTURE WORK

Further validation is needed for the task models used in this thesis. For the example CRT task of
Chapter 6, empirical data needs to be collected to confirm that the pre- and post learning perfor-
mance of the model is reasonable. For the Wickens task, the individual task models need to be val-
idated against empirical performance data of the individual tasks.

Further validation of the acquisition framework is also needed. This work focused only on the
transition from novice to expert, not on the #ime to make the transition. Empirical learning studies



should be done to compare the learning times (possibly in terms of trials). If the predicted times
are not acceptable, then extensions to this framework may be needed.

Many researchers have shown that people use different task strategies while performing and
while learning to perform tasks. One of the contributions of this work is the proposed structure for
representing task strategies. It may be possible for the acquisition framework to be used as a foun-
dation for a system to exploring the question of how people generate and select task strategies.

Before the framework can be applied to a task, the modeler must provide the chronological
task strategy data structure for the task, and procedural knowledge that performs the task exactly as
it is represented in the structure. An area for future work may be to work toward removing these
requirements. Instead, of providing the procedural knowledge, one could develop a new learning
procedure that would learn the procedural knowledge from the declarative strategy structure.
There has been much work in this area of the acquisition of skill and knowledge compilation.
(Anderson, 1983, 1987; Anderson et al., 1981; Neves & Anderson, 1981). There is also prior Soar
work by Huffman (1994) that touches on this topic.

Additionally, one could go a step further and develop a learning procedure that would accept
plain text instructions as input and convert them into a declarative representation; specifically, our
strategy data structure. This development would obviate the need for the modeler to provide the
strategy data structure. There is previous work in Soar on instructable autonomous agents (Huff-
man, 1994) and on natural language comprehension (Lewis, 1993). These successful works may be
recruited to this effort. There is also non-Soar work in the area of instruction following by Bovair
& Kieras (1991) that speaks to this specific issue.

By finding and incorporating such learning procedures into the framework, EPIC-Soar would
be able to model a much broader novice-to-expert transition. It would also provide further confir-
mation that Soar’s chunking mechanism is sufficient for modeling all the learning along a common
trajectory of human experience.



CHAPTER 2

THE PSYCHOLOGY OF DUAL-TASK BEHAVIOR

2.1 THE EXECUTIVE PROCESS

How are people able to perform multiple, simultaneous tasks? How do they manage the potentially
conflicting demands on limited cognitive and physical resources? The most prominent theory of
multiple-task performance posits that performance and resource management are accomplished by
an executive routine, or executive process (Borkowski and Burke, 1996; Gopher, 1993; Meyer &
Kieras, 1997a; Neisser, 1967; Norman & Shallice, 1986). Eslinger (1996) says “executive functions
are considered by many scientists to be one of the crowning achievements of human development.”

Abstractly, executive process knowledge might be defined as the knowledge necessary to pro-
duce dual-task performance that is distinct from the knowledge used to perform the constituent
tasks. Figure 2.1 illustrates this idea. Initially, a subject has distinct knowledge sets for performing
TaskA and TaskB. To get dual-task performance with both tasks generally requires some addi-
tional knowledge; this is the executive process knowledge. Together, these three knowledge sets
allow skilled dual-task performance.

Meyer and Kieras (1997a) provide a concrete description of the role of the executive process. It
maintains task priorities and coordinates progress on concurrent tasks through various types of
supervisory control. It possesses no knowledge for performing any of the individual tasks, but it
does have knowledge about the relative and/or absolute priorities of the tasks under its control. It
must also arbitrate when two tasks cause a violation of the structural limitations of the effectors;
e.g., TaskA wants the eye to look to the left, while TaskB wants the eye to look to the right. The

Knowledge used when
performing Task A and

All knowledge All knowledge Task B together

Executive process
knowledge

Figure 2.1 A representation of executive process knowledge




<+— Stage 1—»« Stage 2

v

------- Single-task performance
— Dual-task performance

Error —»

Time ——

Figure 2.2 A measurement technique for identifying the acquisition of a time-sharing skill

role of the executive process is in many ways similar to that of computer operating systems such as

UNIX.!

2.2 ACQUIRING A TIME-SHARING SKILL

Where does this executive process (or more generally, the knowledge used by the executive process
for a specific task) come from? Anyone who is an expert at a complex, multiple-task activity would
recount that when they first performed the task, it was very difficult. After much practice (which
may range from minutes, hours, or even years) they were able to perform the task expertly. It seems
clear that executive process knowledge is the product of extensive practice in the dual-task situa-
tion.

Damos & Wickens (1980) address this question of learning an executive process. They devel-
oped a measurement technique to demonstrate clearly the acquisition of a #imesharing skill under
dual-task training. A timesharing skill is the skill one develops and uses to perform proficiently
under multiple-tasks conditions. Hence, it is synonymous with executive process knowledge.

Figure 2.2 depicts their measurement technique. It shows the performance levels for only one
task, say t ask1, under two performance conditions. Stage 1 represents the single-task condition
where t ask1 is performed alone until performance reaches some stable level. Once it has stabi-
lized, the dual-task performance condition, Stage 2, begins. In this stage, the subject must simulta-
neously perform t ask1 with a second task.

There are three noteworthy aspects of Stage 2. First, performance of t ask1 at the beginning
of Stage 2 is markedly decreased compared to the end of Stage 1; the single-task performance con-
dition. Next, performance gradually improves with practice in the dual-task condition. The final
aspect is perhaps the most important. At certain times during dual-task practice, single-task per-
formance of t ask1 is re-accessed to confirm its stability.

10



Taken together, this figure suggests that if the performance under the single-task condition
during Stage 2 produces the same level of performance as at the end of Stage 1, then the improve-
ment in performance noted during Stage 2 may be attributable solely to the development of a
timesharing skill. In other words, since the performance of the individual tasks remain the same,
the changes may be due to the subject learning how to better perform the two tasks together.

2.3 EXECUTIVE PROCESS OR NEW SKILL?

Damos and Wickens (1980) showed convincingly that during dual-task training, while there is
speedup within the individual tasks, there are distinct timesharing skills that are also being devel-
oped. A follow-up question then is: what is the nature of this timesharing skill? There may be two
possibilities. The timesharing skill could be a new skill that is a composition of the individual
tasks; a new integrated skill. Alternatively, the timesharing skill could be a task-independent exec-
utive or supervisory process that mediates between the two tasks.

Damos (1991) relates an experience from a study in dual-task behavior. She developed a dual
choice-reaction time experiment where subjects responded to stimuli ‘1’ thru ‘4’ with the left hand
and ‘5 thru ‘9" with the right hand. Both tasks were unpaced (the subjects were not forced to
response within a time limit but rather was allowed to produce a response at their leisure). Also,
the subjects received little single-task practice before beginning the combination. Although the
subjects received no instructions about integrating the information content of the two tasks, they
rapidly attained a level of performance that matched single-task levels.

The data showed that the subjects were responding to the stimuli simultaneously, causing the
initial interpretation to be that subjects had learned to timeshare the tasks almost perfectly. It was
quickly pointed out that the subjects were probably no longer performing two independent tasks,
but rather had combined the two tasks into one, more complex task. According to Damos, further
experimentation showed that this was the case. Damos’ experience demonstrates that under cer-
tain dual-task conditions—such as when the stimuli for the two independent tasks occur simulta-
neously—subjects appear to fold independent tasks into a single, more complex new skill.

Damos’ results could also be couched in terms of an executive process rather than in terms of
the acquisition of a new skill. For instance, subject may have learned an executive process that
allowed them to perform these tasks efficiently and simultaneously. This description is consistent
with the role of the executive process.

It seems reasonable that the human acquisition system could generate both forms of skill. An
integrated skill could be developed when the task environment and task instructions promote inte-
gration. For example, if stimuli are presented simultaneously, the subject could compose the sepa-
rate stimuli into one. When this isn't possible, or when the nature of the task is such that priorities
fluctuate, then an executive process may be learned.

2.4 DUAL-TASK INTERFERENCE

Empirical studies have consistently shown that when even the simplest tasks are performed con-
currently, there is usually a reduction in performance of both tasks compared to when each task is
performed alone.

An example of this decrement in performance is the large difference in stable performance as
seen in Figure 2.2. (Though this graph does not depict actual performance results for a task, it is
representative of the behavior seen in empirical studies.) Recall that this graph is representative of
the performance of one task, t ask1, under single and dual-task conditions. This worsening in
performance has been called the dual-task decrement and is assumed to be due to dual-task interfer-
ence.

11



Warning S1 R1

signal
. «———Task1 Reaction Time——» Time
1 »
: - <«—— Task2 Reaction Time —»
SOA
(Stimulus Onset
Asynchrony) S2 R2

Figure 2.3 Outline of the events that occur on each trial of the PRP procedure

Many theories have been proposed in an attempt to explain the cause of this interference. (See
Meyer & Kieras (1997a) for a thorough discussion). The earliest of these theories was the global
single-channel hypothesis, a term coined by Meyer & Kieras. This hypothesis states that all of the
mechanisms between stimulus input and response output (stimulus perception, response selection,
movement initiation) together constitute a single-channel and can be used by only one task at a
time (Craik, 1948; Welford, 1952). Therefore, in this theory, dual-task interference results from
the postponement of a task from entering the channel due to another task already being in the
channel.

Some tests of this and other interference theories came from a now commonly used laboratory
experiment called the psychological refractory period, or PRP procedure. In a typical PRP experi-
ment, two stimuli, S1 and S2, are presented and are separated by a varying period of time known
as stimulus onset asynchrony or SOA. The subject makes a response to each stimulus but is instructed
that the response to S1 must precede the response to S2. See Figure 2.3.

A plot of the reaction time results (Figure 2.4) illustrates that the taskl reaction time is inde-
pendent of the SOA as one would expect. However, note that as the SOA increases, task2 reaction
time decreases. This is the so-called PRP effect.

Later research with the PRP procedure cast doubt on the global single-channel hypothesis. It
was found that the PRP effect at zero SOA did not always equal mean taskl RTs and sometimes is
significantly less than this hypothesis could predict. This suggests that the single channel does not
involve all intervening processes. Theorists have therefore looked for some specific stage of pro-
cessing that could constrain multiple-task performance.

2.4.1 PERCEPTUAL-BOTTLENECK MODEL

Under the perceptual-bottleneck model, the process that identifies stimuli and assigns semantic
meaning to them is limited. For concurrent tasks, this limit would force people to deal with only
one task at a time. This model makes no specific claims about what, if any, constraints exist on
subsequent processes after stimulus identification, so it has been called the early-selection theory.
One prominent exemplar was Broadbent’s filter theory (Broadbent, 1982). He proposed that
sensory stimuli first enter a sensory buffer where they undergo initial feature analysis during which
physical features are analyzed and made available to a selective attention filter. Broadbent sup-
ported his assumptions by citing experiments in choice RT, dichotic listening, and oral shadowing.
Soon afterwards, other studies revealed significant counterevidence. Treisman (1960, 1969)
showed that under some conditions, subjects notice significant amounts of semantic information
in unattended auditory messages. This is an example of the classic “cocktail party” effect: even
while engrossed in an interesting conversation, one’s attention will be captured by the unexpected

12



mention of one’s own name (or an expletive) in a distant conversation. This demonstrates that
semantic process is going on for both attended and unattended stimuli. There cannot be an early
selection bottleneck. Consequently, some theorists have proceeded to look beyond the perceptual
processes for bottlenecks elsewhere in the human information processing system. These post-per-
ception theories can collectively be called Zate-selection theories.

2.4.2 RESPONSE-SELECTION BOTTLENECK HYPOTHESIS

The most prominent late selection theory is the response-selection bottleneck (RSB) hypothesis. It
is based on the idea that parallel processing may be possible for some mental operations but is
impossible for others, thus causing a bottleneck. Hence, the RSB hypothesis states that the limits
seen in human performance in the PRP procedure are due to a bottleneck in the response-selection
stage.

This explanation originated with Welford’s investigations (Welford, 1952). For a time, studies
into this phenomenon ceased, but they have since been revisited and continued by Pashler (1984,
1990, 1992, 1994a, 1994b) and others.

The RSB hypothesis predicts many salient properties of the idealized PRP curve. First is that
mean t ask1 RTs are affected by neither the SOA nor t ask2 difficulty. Since there is a response-
selection bottleneck, as long as the stimuli for t ask1 appears first, its mean RT should stay con-
stant. Second, the mean t ask2 RTs are higher at short SOAs. Since a t ask2 response cannot be
selected until t ask1l has made its response selection, t ask2 RT will certainly be longer than
taskl RTs. Third, as SOAs gradually increase, mean t ask2 RTs decreases. Under the RSB
hypothesis, the slopes of these curves should equal -1 for short SOAs because each increment in
SOA (starting from zero) produces an equal opposite decrement in how long a t ask2 stimulus
must wait to enter the response-selection bottleneck. A final property implied by the RSB hypoth-

Slope =-1
o
£
|_
[
°
I3}
®
x Hard
G
) Task?2
e as
Easy
] 3 0 - o Taskl
-
0

Stimulus Onset Asynchrony

Figure 2.4 Idealized representative results from the PRP procedure (Meyer ez al., 1995)




esis is that the SOA and response-selection difficulty of t ask2 should affect mean t ask2 RTs
additively. As a result of this, when the difficulty of t ask2 response selection is manipulated, par-
allel t ask2 PRP curves should be observed, as seen in Figure 2.4.

While the RSB hypothesis can account for the typical PRP effect, there are many studies that
have manipulated PRP variables and have produced performance curve characteristics that are
inexplicable within the hypothesis. We will discussion three of these characteristics in turn: diver-
gent PRP curves, convergent PRP curves, and initial slopes steeper than -1 (Meyer e# al., 1995).

Hawkins, Rodriquez & Reicher (1979) manipulated t ask2 response selection by manipulat-
ing the number of S-R pairs in t ask2. In this study, it was found that the t ask2 difficulty effect
is only about 25ms at the shortest SOAs, but grows to nearly 200ms at the longest SOA.

Irvy et al. (1994) manipulated response selection by varying the spatial S-R compatibility in
t ask2. At the shortest SOA, the difficulty effect on mean t ask2 RT is nearly 300ms, whereas at
the longest SOA, it is less than 200ms. These two studies demonstrate positive and negative SOA-
difficulty interaction, respectively. Together, they clearly raise some doubt about the validity of the
RSB hypothesis since it claims that t ask2 difficulty should be strictly additive (no SOA-by-diffi-
culty interaction), producing parallel PRP curves across all SOAs.

Finally, Lauber ez a/. (1994) manipulated t ask2 similar to Hawkins ez a/. (1979), but they also
manipulated the number of t ask1 S-R pairs. This change yielded “parallel” average PRP curves
with approximately additive effect of SOA and task2 difficulty. However, over the two shortest
SOAs, Lauber ez al. (1994) found that the PRP curves had extremely negative slopes (almost -1.4)
and were reliably steeper than -1. This result, like the others, cannot be explained by the RSB
hypothesis.

2.4.3 MOVEMENT-INITIATION BOTTLENECK HYPOTHESIS

A less prominent late-selection theory is the movement-initiation bottleneck hypothesis (Keele,
1973). According to this hypothesis, both perception and response selection can progress in paral-
lel and be completed without mutual interference to concurrent tasks. However, there is assumed
to be a subsequent process that initiates movements separately for each task and that can deal with
only one task at a time. This would create a bottleneck wherein movement initiation for a higher-
priority first task proceeds from start to finish while the initiation of another movement for a
lower-priority second task waits temporally until the first is completed.

2.4.4 UNITARY-RESOURCE THEORY

There are other theories that attempt to explain dual-task interference without making assump-
tions about bottlenecks at different stages of processing. One such theory is the unitary-resource
model (Gopher & Donchin, 1986; Kahneman, 1973). According to this hypothesis, the central
processes involved in response selection, movement initiation, and so forth are not necessarily
restricted to dealing with only one task at a time. Instead, it is assumed that people have a single,
finite reservoir of processing capacity, which may be allocated flexibly and equitably among various
activities, depending on prevailing level of psychological arousal and task demands.

2.4.5 MULTIPLE-RESOURCE THEORY

A second theory, an extension of the unitary-resource model, posits that various disjoint comple-
mentary sets of processing resources are assumed to be used in performing individual tasks. Wick-
ens (1980, 1987, 1991) proposed three plausible candidates for the structural composition of
resource reservoirs: stages of processing, cerebral hemispheres, and modalities of processing (both
encoding and response).

The classification by stages or processing matches the architectures of the processing systems
as it emerges from performance experiments. Hemispheres of processing are suggested from theo-

14



retical analysis and experimental work that views the cerebral hemispheres as acting partially as
separate resource reservoirs by virtue of their functional and spatial separation. Finally, modalities
of processing are justified by studies that compare auditory and visual modes of presentation and
verbal versus manual modes of response in dual-task paradigms.

In this theory, each set of resources has its own separate, divisible source of capacity. If two
tasks require the same set of resources, then the capacity available to them may be allocated in a
flexible graded fashion, depending on current task requirements. In contrast, if two tasks require
entirely different sets of responses, then progress on them may proceed simultaneously without any
interference, because there is no shared capacity.

2.4.6 WHICH THEORY IS CORRECT?

All of these theories can be both supported by some data and refuted by others. At times, one of
the bottleneck hypotheses has seemed to prevail, whereas other evidence has favored the unitary
and multiple resource hypothesis.

Recently, Meyer & Kieras (1997a) have suggested the “radical” idea that there is no inherent
cognitive bottleneck. Instead, they posit that performance decrements arise not from cognitive
limitations, but rather from three sources. First, they can arise from structural (perceptual-motor)
limitations. Second, dual-task decrements may be due to task instructions since it is known that
task instructions can strongly bias subjects’ performance (Gopher, 1993). Third, the dual-task dec-
rement may be due to the performance strategies adopted by subjects. Task instructions can
strongly bias subject to adopt an initial strategy, but during performance subject may explore alter-
native strategies, and their strategy selection may vary if the workload of the task varies.

Meyer and Kieras’ hypothesis is unique from all the preceding dual-task interference hypothe-
ses and theories in that it is the only one that has been and continues to be confirmed through
detailed computational modeling in a veridical architecture, EPIC. Their hypothesis has demon-
strated very good coverage of the empirical findings for the PRP task (Meyer & Kieras, 1997a,
1997b) and others.

2.5 THEORETICAL COMMITMENT OF THIS WORK

As has been discussed, there are many theories that try to explain the cause of dual-task interfer-
ence. There remains is no consensus in the community that any one of these theories is correct (or
more correct) as they all address some, but not all, of the behavioral data. Yet to pursue modeling
dual-task acquisition and performance, a selection and commitment to one of these theories of
interference must be made.

In our work, we have adopted the same theories and commitments espoused by the creators of
EPIC: there is no inherent cognitive bottleneck; the cognitive processor has unlimited computing
capacity; structural limitations, selected strategies, and task instructions are responsible for the
dual-task decrement; the key role played by the executive process in enabling dual-task perfor-
mance.

Notes to Chapter 2

1 In fact, an early mention of “executive routine” (Neisser, 1967) appears to have been inspired by
the operation of computer systems.

15



CHAPTER 3

SELECTING AN APPROPRIATE COMPUTATIONAL
ARCHITECTURE

The goal of this work is to develop a computational, task-independent framework for modeling
the acquisition of the knowledge acquired during practice on a dual-task combination. To explore
and develop this framework, we need a computational architecture—a fixed set of memories and
processors with which a wide range of behaviors can be generated. How should one be selected?
The approach followed here is first to identify architectural requirements as derived from the sub-
goals of the larger research goal and then select an architecture that satisfies all the requirements.

3.1 ARCHITECTURAL REQUIREMENTS

This work aims to:

* construct a model of a selected task

* identify and classify executive process knowledge

* develop a framework for the acquisition of executive process knowledge

* produce post-learning data that matches the observed data for the selected perceptual-motor
task

These subgoals identify three components of the ideal computational architecture: a knowl-
edge system with the right representations, a cognitive system that learns, and a psychologically-
plausible performance system.

3.1.1 A KNOWLEDGE SYSTEM WITH THE RIGHT REPRESENTATIONS

The first two subgoals call for a knowledge system that satisfies two requirements. The first is that
the knowledge system can represent the common dichotomy of human knowledge: declarative and
procedural knowledge.

Procedural knowledge is knowledge that is impenetrable; once acquired, it cannot be inspected
by the cognitive system and hence cannot be reported. A typical example is the knowledge we use
to ride bicycles. We all know how to ride bicycles. Yet we find we are unable to give a complete step-
by-step procedure of how to successfully ride a bike. We can state how to get on and off the bike,
and the many strategies for safe bike riding, but are unable to instruct the essence of bike riding;
i.e., how to stay upright while pedaling.

In contrast, declarative knowledge is reportable. Propositions, facts, or statements, are examples
declarative knowledge. An example is the instructions for changing the motor oil in one’s car.

16



Any knowledge system used in modeling task acquisition and performance should also accom-
modate this knowledge distinction because various aspects of a task definition might, at least ini-
tially, be declaratively represented (such as task priorities, exceptions, the sequence of events as a
task progresses such as when as stimuli will appear and disappear) while other aspects are proce-
dural in nature, such as the steps/actions for actually performing the task.

Because we wish to identify and classify executive process knowledge, a second requirement of
the knowledge system is that the knowledge be in an inspectable and understandable form. There
are two general schools of knowledge representation: symbolic and numeric. Symbolic representa-
tions produce knowledge that is readable and understandable. The production rule is the possibly
most prevalent representation for symbolic knowledge (Anderson, 1993; Forgy, 1981; Laird, New-
ell & Rosenbloom, 1987; Meyer and Kieras, 1997a; Newell, 1973; Schunn & Klahr, 1998). In the
numeric community, knowledge is represented as a collection of numbers. A common example of
this is the distributed weights of a connectionist network (McClelland, ez a/. 1986)). Given the
need to inspect and understand the knowledge, a symbolic representation seems to be the appro-
priate choice.

3.1.2 A COGNITIVE SYSTEM THAT LEARNS

Because this work is about knowledge acquisition, only candidate architectures that have learning
mechanisms can be considered. Additionally, since this work is focused on modeling dual-task per-
formance, only architectures that have demonstrate some ability, or have some ability to support
multiple concurrent threads of processing can be considered.

3.1.3 A PSYCHOLOGICALLY PLAUSIBLE PERFORMANCE SYSTEM

A performance system is needed to interface between the world and the learning and knowledge
systems. The systems must therefore be able maintain a two-way dialogue representing the sensory
and motor components in the human performance system. Our objective is to perform within a
dynamic environment, therefore the performance system must be responsive to the changes in the
world and must also be able to affect such changes.

The objective of this work is also to model human performance on a real task and to match
actual performance data. It is therefore necessary that this system provide a psychologically plausi-
ble account of perceptual and motor abilities and limitations. For example, the visual perception
system must account for limitations such as the varying quality of a stimulus that is a function of its
eccentricity from the center of the retina, the time needed to move the eye to a location, or the
ability of the eye to involuntarily track a moving target. In the motor subsystem, it must account
for behavioral regularities such as the time to make a directed movement, also known as Fitts’ law,
the creation of motor features, and proprioceptive feedback, among others.

Finally the systems must posit some grammar for communication. Perception provides infor-
mation to cognition, cognition provides motor commands to the motor system, and the motor sys-
tem returns proprioceptive information back to cognition. It is important that this communication
be at the appropriate level of abstraction, which is dependent on where one draws the line between
perception, cognition, and action. It might be inappropriate, for example, for the visual system to
send to cognition a bitmapped representation of the letter A’ that just appeared on a screen, or for
cognition to provide a list of individual muscle movements for pressing the ‘A’ key as the response.

17



Research Goals Architectural Components =~ Component Requirements

Build dual-task [ Provide the distinction
performance models between declarative and
Identify and classify j/ procedural knowledge
knowledge n [Knowledge system Represent knowledge
Construct a framework | [ Cognitive system _symbolically
for modeling acquisition_ EDerformance system Provri]de a learning
Match post-learning ] / | mechanism
performance to Provide psychologically-
observed expert data plausible theories of

- |_perception and action

Figure 3.1 Derivation of the architectural requirements

3.2 CANDIDATE ARCHITECTURES

Based on the subgoals of the overall research goal, three architectural components have been iden-
tified along with requirements of each component. They are summarized in Figure 3.1.

Given these components and requirements, one must now find an architecture that addresses
all of them. Though there are many candidate architectures, only two are considered here. (In
Chapter 10, we discuss the applicability of other architectures.) They are EPIC (Meyer & Kieras,
1997a, 1997b) and Soar (Laird, Newell, & Rosenbloom, 1987).

3.3 EPIC

EPIC (Executive Process-Interactive Control) is an architecture that was designed primarily to
develop detailed accounts of human dual-task performance. It extends the work begun with the
Model Human Processor (Card, Moran, & Newell, 1983). Like the Model Human Processor,
EPIC consists of a collection of processors and memories. EPIC is distinguished from MHP in
many ways, but two are most significant. First, the EPIC processors and memories are more elab-
orate, each representing a synthesis of much of the empirical evidence describing psychological
phenomena. Second, EPIC is a system that can be programmed and executed. EPIC is written in
Common Lisp and, at its core, is an event-driven simulation where these processors and a simu-
lated task environment generate the events that drive the simulation.

EPIC has three classes of processors: perceptual, cognitive, and motor. See Figure 3.2 for a

diagram of EPIC.

3.3.1 PERCEPTUAL PROCESSORS

There are three kinds of perceptual processors: visual, auditory and tactile. These processors
receive inputs from simulated sensors. The outputs of these processors are sent to the cognitive
processor in the form of symbolic messages that are stored in working memory.

18



Simulated Simulated
interaction sensors &
devices effectors

|

Simulated
Task
Environment

A

L »
—>

Production

Long-term
Memory

Visual
Processor

Ocular
Processor

— 9-(amn
Processor
A

.'f“::?‘. Vocal
N Processor <

Tactile
Processor

@ Manual Motor
@ Processor <

Figure 3.2 The EPIC human performance architecture

Memory [ ] |

Cognitive Processor

Production Rule
Interpreter

vy

Working
Memory

AAAA

vy

19




3.3.2 COGNITIVE PROCESSOR

The cognitive processor consists of a working memory and a production rule interpreter. The
interpreter accesses declarative knowledge from working memory and long-term memory, and
procedural knowledge from a production memory. The cognitive system is a multi-match, multi-
fire production system, meaning that all the rules that match during a match-fire cycle are allowed
to fire. This is in contrast to many rule-based systems like OPS5 (Forgy, 1981) and ACT-R
(Anderson, 1993), which are both multi-match, single-fire systems.

Upon receiving input from the perceptual processors, the cognitive processor fires all rules that
match due to these inputs and the content of working memory. The firing rules produce changes
to working memory and/or generate commands to be sent to the motor processors.

3.3.3 MOTOR PROCESSORS

EPIC has three kinds of motor processors: ocular, manual, and vocal, of which the ocular and
manual are the most developed. Motor processors accept commands from rules that have fired in
the cognitive processor. When a command rule has fired, the command is immediately passed to
the appropriate motor processor for processing and eventual execution.

EPIC’s motor processors consist of two serial, semi-independent, and time-consuming phases,
as depicted in Figure 3.3. The first is called the preparation phase and is followed by the execution
phase. This two-phase construction agrees with empirical work on the distinction between move-
ment preparation and movement execution (Abrams & Jonides, 1988; Gordon & Meyer, 1985;
Rosenbaum, 1980; Sternberg ez. al. 1978).

When a command is sent to a motor processor, the command is converted to movement fea-
tures that describe the desired movement. These features are prepared serially. This phase opera-
tionalizes the findings by Rosenbaum (1980) of motor feature generation and preparation.

After the movement features have been created, they are “handed off” to the execution phase
where the command is executed by simulated effectors. EPIC simulates the time necessary to exe-
cute the desired movement using long-standing predictors such as Fitts law (Fitts, 1954) and
Meyer’s law (Meyer, Abrams & Wright, 1990) for the case of a aimed manual motor command,
and more recent time constants, for example the speed of a saccade; a saccade, is defined by Rosen-
baum (1991), as “the eye jumps’ that occur in tasks such as reading.”

One of EPIC’s motor commands is called (PREPARE <acti on>). This command allows
actions to be prepared but not executed. This is called anticipatory motor programming. Figure 3.4
depicts the activity in the two phases of the motor processor and demonstrates the performance
benefits of using this prepare command. Consider a simple reaction-time task: “press the button

Motor Processor

command X ———» Preparation Execution
Phase Phase
< tp > < te >

Figure 3.3 The structure of the EPIC motor processors

20



l_ Press-button

prep P PpB

>
exec P Epg

r Prep-press-button Press-button

prep > | Ppg

>
exec p Epg

time saved—T

Figure 3.4 Comparison of non-prepared and prepared motor commands

when you hear the beep”. The top diagram shows the non-prepared behavior. The rule press-
button fires when the stimulus appears; the action is prepared (Pppg), and execution follows
(Epp). The bottom diagram shows the prepared behavior. A new rule, pr ep- press- button,
which fires before the stimulus appears, prepares the movement features for pressing the button
(Ppg). When the stimulus appears, the same pr ess- but t on rule as before fires. Since the move-
ment features have already been prepared, the movement can be immediately be executed. The dif-
ference in reaction times is shown and equals the preparation time, (Ppg). This prepare command
allows EPIC models to account for the large effect of a precue stimulus on task performance.
However, anticipatory motor programming is most beneficial for commands where there is
some certainty (greater than chance) that a particular motor action that will be required. For exam-
ple, in the simple reaction-time task, prior to the stimulus appearance, it is known that the action
will be to press the button. However, in a two-choice reaction-time task, there can be no such cer-
tainty prior to the stimulus appearance. The target button (assuming one of two buttons is to be
pressed) depends on the identity of the stimulus, which cannot be known until it has appeared and
been identified. Hence there is little benefit in preparing under these kinds of task conditions’.
Motor processors not only receive input messages, but they also produce output messages that
are sent to the cognitive processor for storage in working memory. These are status messages that
inform cognition as to the state of the preparation phase, the execution phase, and the overall state
of each motor processor. For example, when a command is sent to a motor processor, the processor
returns the following messages to cognition: MODALI TY BUSY, PROCESSCR BUSY and PREPARA-
TI ON BUSY. When the preparation phase is finished PREPARATI ON FREE is returned. The pre-
pared movement features can be handed off for execution if and only if the execution phase is free;
i.e. not still executing a previous command. The processor returns PROCESSOR FREE to signal this
condition. When the features are transferred for execution, EXECUTI ON BUSY is returned. When

21



prep B | Pg P4
>
exec p Ep E4
Type-F
l_ Type-1-pipelined
prep B | Pp | Py
; : > t
exec P Ep Eq
overlap —T time saved —T

Figure 3.5 Comparison of non-pipelined and pipelined motor commands

the execution of the command has completed, EXECUTI ON FREE and MODALI TY FREE are
returned.

While all motor processors produce status messages, the manual motor processor returns addi-
tional messages which reflect the tactile or proprioceptive status of the command. For example, in
the case of a keypress (a PUNCH command), the tactile processor returns the messages STARTED
PUNCH LEFT | NDEX, DONE PUNCH LEFT | NDEX, FI Nl SHED PUNCH LEFT | NDEX, which can
be interpreted as the following events: key-touched, key- depressed, key-rel eased. In
essence, these messages give status information that is one level of detail finer than the motor sta-
tus messages.

The preparation and execution phases of the motor processors run semi-independently of each
other. This means that it is possible to be executing one command while the preparation phase is
preparing the movement features for the next command to be executed. The overlapping of the
processing of two different commands in the motor processor is a technique known as pipelining
and is ubiquitous in the design of modern microprocessors (Alexandridis, 1984; Hwang & Briggs,
1984; Foster & Iberall, 1985; Wilcox, 1987). This technique provides marked improvement in
performance through maximal utilization of the processor’s stages.

Figure 3.5 demonstrates this concept of pipelined commands and how it can improve perfor-
mance. Consider the trivial task of typing the abbreviation for Formula One—an ‘F” followed by a
‘T’. In the figure, Type- F and Type- 1 represent fired rules that generate the manual motor com-
mands to type the letters ‘F’ and ‘1’ respectively. (These rules assume that the CapsLock has been
engaged).

22



The top diagram of the figure shows the non-pipelined approach. We see the Type- F com-
mand has fired, then the preparation of the movement features (Py), then the execution of the
command (Eg). The Type- 1 rule then fires and its features are similarly prepared (P;), followed
by the execution of the command (E;). We see that there is no overlap of the commands in the
processor; the Type- 1 rule does not fire until the ‘F” key has been typed. In this case, the Type- 1
rule has been written such that it will fire only after the EXECUTI ON FREE message has been
returned by the manual motor processor.

In contrast, the bottom diagram of the figure shows the pipelined approach. The Type- F rule
fires and command processing proceeds as it did before. The difference in this approach though is
the behavior of the Type- 1- pi pel i ned rule. Here, Type- 1- pi pel i ned is written such that it
will match and fire when the preparation of the ‘F” command is finished @74 when the features can
be handed off for execution; i.e., when the PROCESSOR FREE message has been returned by the
motor processor. The resulting P1/E overlap in the processor causes the overall execution time of
the task to be shorter than of the non-pipelined approach and this difference will be equivalent to
the time to do Pq. Later in this thesis, we will see this technique applied in several instances to
produce improvements in the performance of dual-task models.

3.3.4 SIMULATED TASK ENVIRONMENT

Before a task model can be built in EPIC, a simulation of the task under study must be created;
realized as a Lisp program. This simulation runs asynchronously with the other components (the
perceptual, cognitive, and motor processors) of the EPIC architecture. The perceptual and motor
processors interact with the task simulation to perceive and to change to the world. This simula-
tion must be written in Lisp and like the EPIC processors, it must be written in the form of a pro-
cess that is part of an event-driven simulation. The simulation must report on perceptual events—
the onset, offset, movement, changes, such as shape, color, or pitch, of task objects—to the percep-
tual processors. It must also simulate the input devices (such as keyboards, mice, or joysticks) and
how manipulation of these devices will affect the task (such as when moving a joystick causes a
cursor to move, or pressing a button causes an auditory alert to cease).

3.3.5 EXECUTIVE PROCESSES

Multiple-task models in EPIC generally incorporate an executive process. As discussed earlier, the
purpose of the executive is to coordinate the progress of the tasks in the model. The EPIC execu-
tive process is encoded as production rules and stored in production memory with the rules for the
individual tasks. In contrast to architectural control mechanisms—such as the Supervisory Atten-
tional System (Norman & Shallice, 1986)—EPIC’s formulation of the executive as regular pro-
ductions results in a simpler and more homogeneous architecture.

Meyer & Kieras (1997a) list additional properties of executive processes used in their models:

* The executive only modulates the activity of tasks, by disabling and enabling tasks as needed
for efficient performance.

¢ The executive rules do not contain procedural knowledge sufficient to perform any individ-
ual task.

* The executive can send motor commands that enable the future execution of tasks. Consider
the case where two tasks are spatially separated, and both use visual stimuli. It is the respon-
sibility of the executive to move the eye defween the two task stimuli to bring them into view
so that the associated tasks can be performed. An example of such a task will be seen in
Chapter 4 and the use of such an executive rule will be seen in Chapters 5 through 8.

* The executive cannot modify the individual tasks” production rules.?
* The executive rule set for one dual-task combination may be task-specific, requiring that a

23



different rule set be developed to control a different dual-task combination.

* The fact that the executive rule set and the rule sets for the individual tasks are non-overlap-
ping allow the rule sets for individual tasks to be reused to model other dual-task combina-
tions.

34 SOAR

The second candidate architecture for consideration is Soar. Soar is a general architecture for
building artificially intelligent systems and for modeling human behavior (Laird, Newell & Rosen-
bloom, 1987; Laird, Rosenbloom & Newell, 1984; Rosenbloom, Laird, & Newell, 1993; Newell,
1990). Soar has been used to model central human capabilities such as learning, problem solving,
planning, search, natural language and HCI tasks. Soar can be viewed as the union of a production
system and a goal-oriented architecture.

3.4.1 SOAR AS A PRODUCTION SYSTEM

As is the case with typical production systems, Soar contains two forms of memory—a declarative
working memory, and a procedural production rule memory. Soar departs from typical production
systems by incorporating a multi-match, multi-fire production rule interpreter. The production
rule interpreter matches production rules against the contents of working memory. All rules that
have matched are fired.

Soar has a rudimentary means of access and controlling the “outside world”. Soar’s working
memory contains to specialized partitions. The first is for receiving input from programs external
to Soar. The second partition is for providing commands for the world. Commands are placed in
the output partition by production rules.

Soar

Production
Memory
A

v
Production Rule
Interpreter

A

v

Working
Memory

Input

Output

Figure 3.6 A simplified block diagram of Soar

24



3.4.2 SOAR AS A GOAL-ORIENTED ARCHITECTURE

In Soar, an gperator is a collection of rules that together implement a step in the decomposition of
a task. All Soar production rules pertain to directly or indirectly to either the proposal, selection
(in the case where several have been proposed), implementation (performing the actions of the
operator), or the termination of operators. When the knowledge encoded as productions is insuffi-
cient to either propose, select, or implement an operator, the system is said to be at an impasse.
Hence, there are three main kinds of impasses: proposal impasses, selection impasses, or imple-
mentation impasses.

When an impasse occurs, an impasse-specific subgoal is automatically generated by the archi-
tecture. In the subgoal, the basic behavior of proposing, selecting, implementing, and terminating
operators recurs, but in the subgoal, the activity is directed towards resolving the impasse. It is pos-
sible that the activity (or lack of activity) in the subgoal will itself result in yet another architectur-
ally generated subogal.

A subgoal is automatically removed if the activity within the subgoal results in the resolution
of the supergoal impasse. The change must be relevant to the type of impasse. Therefore, a pro-
posal impasse is resolved when the subgoal activity proposes an operator for the supergoal; a selec-
tion subgoal is resolved when the subgoal activity selects one of the proposed operators in the
supergoal; and an implementation impasse is resolved when the subgoal activity produces a change
in the supergoal that implements the activity of the supergoal operator. When the impasse at a cer-
tain goal level has been resolved, activity at that goal level can continue.

3.4.3 LEARNING IN SOAR

See Figure 3.6 for a diagram of Soar.* It shows that Soar has basically the same components of the
EPIC cognitive processor. The most significant difference is the double-headed arrow between pro-
duction memory and the production rule interpreter. This signifies Soar’s learning ability; the
interpreter matches and fires productions in production memory, and it can create new produc-
tions that are stored in production memory.

Soar incorporates a single architectural learning mechanism called chunking (Laird, Rosen-
bloom & Newell, 1984). Soar is in sharp contrast with ACT-R (Anderson, 1993) along the
dimension of the number of architectural learning mechanisms. ACT-R incorporates several
learning mechanisms: base-level activation learning, associative strength learning; tuning of pro-
duction rule strength, tuning of production rule probability and cost; and production rule creation
through analogical compilation. By its commitment to a single architectural learning mechanism,
Soar’s chunking mechanism can be though of as a universal “store” command. It is believed that
more complex, higher-level learning procedures are the product of chunking over complex prob-
lem solving, as demonstrated for inductive learning by SCA and SCA2 (Miller, 1993; Miller &
Laird, 1996; Pearson, 1996).

Soar’s chunking produces new production rules by summarizing the activity that transpired to
resolve an impasse; i.e. it compiles the problem-solving that occurred in the subgoal and creates
new productions. Therefore, a prerequisite to learning is the existence of an impasse, a subgoal,
and the knowledge to resolve the impasse.

Typically, impasses and subgoals, and therefore learning, occur as a natural part of performing
a task. On occasions where an impasse and subgoal does not naturally follow, productions can
deliberately cause an impasse by generating additional operators, thus providing a problem-solving
situation from which the desired knowledge can be learned. For instance, the learning procedures
presented in this work are examples of this deliberate behavior. The procedures first force an
impasse and a subgoal, at which point the procedures perform problem solving in the subgoal. The
product of the problem solving is returned to the supergoal, which causes a chunk to be built and
the resolution of the impasse.

25



In combination with various problem solving methods, chunking has been found sufficient for
learning in a wide variety of applications (Altmann, 1996, Huffman, 1994; Lewis, ¢f al., 1990;
Miller and Laird, 1996; Pearson, 1996; Rogers, 1997; Rosenbloom & Newell, 1993; Steier, ez al.,
1987).

3.5 EVALUATING THE CANDIDATE ARCHITECTURES

It is clear that neither of the two candidate architectures satisfy all the requirements set forth in the
beginning of this chapter. They both are symbolic computational architectures that capture the
procedural versus declarative knowledge distinction in their representation systems. However, only
Soar possesses a learning mechanism while only EPIC has psychologically-plausible perception
and action mechanisms.

3.6 EPIC-SOAR: A HYBRID ARCHITECTURE FOR LEARNING
AND PERFORMANCE

From the descriptions of EPIC and Soar, it was clear that it could be fruitful to combine the two
systems. EPIC possesses the most thorough computational theory of perceptual and motor proces-
sors. EPIC’s cognitive processor is a multi-match, multi-fire production system. The EPIC archi-
tecture as a whole was designed to explore multiple-task behavior. EPIC’s cognitive processor does
not presently learn however. While EPIC can model novice and expert behavior, its present lack of
learning precludes modeling the transition from novice to expert behavior.

Soar, represents one of the most complete computational theories of human cognition. It
makes a parsimonious commitment to a single mechanism for learning. It also supports the knowl-
edge representation requirements. Learning, search, problem solving, planning, among others, are
capabilities that can be demonstrated in Soar. Soar also have a multi-match, multi-fire production
system and has been applied to multiple-task situations (Aasman, 1995; Covrigaru, 1992). How-
ever, Soar’s theories of sensory or motor processes are not as mature as those for its cognitive pro-
Cessor.

The potential for a synergistic merging of EPIC with Soar was obvious and the endeavor was
undertaken. The resulting hybrid architecture has been called EPIC-Soar (Chong, 1995; Chong
& Laird, 1997, Chong, 1998a, 1998b). EPIC-Soar represents a parsimonious integration of the
perceptual and motor processors of EPIC with Soar. This merger is an attempt to get both the
detailed predictions and explanations provided by the perceptual and motor processors of EPIC
(capabilities that Soar does not possess) and the problem solving, planning, and learning capabili-

ties of Soar (capabilities that EPIC does not possess). See Figure 3.7 for a diagram of EPIC-Soar.

3.6.1 TECHNICAL DETAILS OF EPIC-SOAR

In EPIC, the cognitive processor accepts perceptual and motor messages as input and it generates
motor commands as output. Because of this modular design, combining the orthogonal aspects of
EPIC and Soar was relatively easily accomplished. We have essentially performed a brain trans-
plant; EPIC’s cognitive processor has been “removed” and Soar “put” in its place. The substitution
of Soar for its native cognitive processor is transparent to EPIC.

EPIC is written in Common Lisp and Soar is written in C, therefore the two systems had to
remain as two physically distinct entities. The connection between the two systems was accom-
plished by the use of UNIX sockets. Through this mechanism, perceptual/motor messages, which
would normally be sent to EPIC’s native cognitive processor, are intercepted and sent to Soar as
input to its working memory. Soar then cogitates on the input and outputs motor processor com-
mands to EPIC using the socket.

26



Soar
Simulated Simulated PI'\'/‘IJd“CtiO”
interaction sensors & emory
devices effectors 4
v
Production Rule
Interpreter
Visual )
—p [ Working
> Memory
AAAA

Ocular

Processor

— §-(an
Processor
A
Simulated
Task

Environment

Vocal
Processor <
., Tactile
> Processor

@ Manual Motor
8900 @ Processor <

Figure 3.7 Block diagram of EPIC-Soar

27




The details of the cycle of interaction and information exchange between the systems is as fol-
lows: EPIC perceives the world and its motor system (tactile/proprioceptive feedback) and sends
these perceptual messages to Soar; EPIC then waits for a response from Soar; Soar accepts the
inputs from EPIC; Soar runs for one cognitive cycle and returns to EPIC any motor commands
that may have been generated; Soar then waits for inputs from EPIC; EPIC accepts the motor
commands, if any, that Soar has sent and executes them. This cycle, which represents 50ms of sim-
ulated time, is repeated over and over.

Because EPIC is an event-driven simulation, an important and necessary engineering consid-
eration was to force EPIC-Soar to operate in a lock-step fashion. This had the benefit that Soar’s
decision cycle trace would match the output of the EPIC decision cycle trace. This synchroniza-
tion significantly helped in debugging the EPIC-Soar architecture and the models that were later
developed in EPIC-Soar.

In the later chapters of this thesis, there will be much discussion about the development of
models and procedures. To make the implicit explicit, a// cognitive (high-level) production-based
task modeling is done in Soar, while EPIC’s perceptual and motor processors can be thought of as
modeling the low-level aspects of performance—the limitations of perception and its transmission,
the creation of movement features and their execution, to name a few.

Notes to Chapter 3

1 Some benefit can indeed be gained if one was to always prepare for one of the possible actions.
Assuming a two-choice task, an improvement would be had on 50% of the trials. Though this is
a reasonable strategy, it might be the case that subjects do not use it since it results in higher error
rates in responding. Evidence supporting this hypothesis comes from a study by Gordon & Meyer
(1987). They used a two-choice reaction time task where the subject was always to be prepared to
produce a primary response although there was an equal likelihood that the secondary response
would be required. They reported that the errors rates for the unprepared secondary response were
higher than for the prepared primary response. The RT for the secondary responses were higher
than the primary responses, thus ruling out a speed-accuracy trade-off explanation of the find-
ings. The differences in both the error rates and RT was found to be statistically significant.
Therefore, it appears that higher error rates can result from being prepared to produce one of 7
responses when all 7 responses are equally likely.

The EPIC executive processes comply with this property by default since EPIC does not present-
ly learn.

Soar is unique among productions systems in that its productions are of two types: those whose
actions are persistent, and those whose actions are not. Persistent actions can only be generated
by rules that implement operators. In contrast, all actions of EPIC rules (as is true for the majority
of productions systems) are persistent.

4 Figure 3.6 only depicts Soar along the dimension of memories and the production rule interpreter.

There are other dimensions which along which Soar can be illustrated that do it justice. This il-
lustration was used because is allows Soar to be easily compared to EPIC’s cognitive processor.

28



CHAPTER 4

THE WICKENS TASK

As stated in Chapter 1, this work focuses exclusively on perceptual-motor tasks; i.e. tasks where
perceived events in the world require overt actions in the world. This is in contrast to purely cogni-
tive tasks such as memory search or counting.

Martin-Emerson & Wickens (1992) performed a dual-task study to evaluate the effect of ver-
tical separation of a choice task on the performance of a tracking task. Their task environment is
shown in Figure 4.1. The task consisted of a continuous tracking task and a choice-reaction time
(CRT) task. The tracking-task performance was recorded as the average RMS error (distance
between the cursor and the center of the target). The choice-task performance was recorded as
average reaction-time, in milliseconds. The application of this study is to the design of the heads-
up displays used primarily in aviation. This task, which we have called the Wickens task, was chosen
for our work primarily because a model of this task already existed in EPIC (see Chapter 5).

Tracking Window

Target

........ TSRt SRR O#Cursor

Vertical
Separation L R

Information Display

Figure 4.1 The Wickens task environment.

29



The experimental setup included two displays: a tracking window and an information display.
The tracking window contained a cursor and a target circle. In the tracking task, the subject used a
joystick to keep a cursor (which is always moving) in the target circle. The joystick was controlled
by the right hand. This task simulated a pilot tracking a ground target (such as the end of a run-
way) when landing.

The choice-reaction task stimulus was presented in the information display, where either a left
or right arrow would periodically appear. The stimulus duration was one second. When the stimu-
lus appeared, the subject was to press one of two buttons beneath their middle and index fingers on
the left hand; the left button for the left arrow, or the right button for the right arrow. This task
simulated warnings or other indications that may appear while a pilot is landing the plane but
require some sort of immediate response.

The task requirements were for the subject to keep the cursor in the target, but to respond to
the choice stimulus on the information display as soon as possible. Average RMS tracking error,
average reaction time, and response correctness were gathered. The tracking error was recorded
only during the one-second presentation of the choice stimulus and the one-second immediately
tollowing the stimulus offset; a total of two seconds. It was anticipated that the most tracking
errors would occur during this period due to the allocation of attention to the choice task.

In the original study, several experimental variables were manipulated, but only two were con-
sidered in the modeling efforts here. The first was the vertical separation, measured in visual angle
degrees, between the tracking and choice displays. Separations ranged from 0° (where the infor-
mation display and the target were superimposed and centered, one over the other) up to 35.2° of
visual angle, in increments of 3.2°.

The second manipulated variable was the difficulty of the tracking task. The cursor used in the
tracking task was continuously perturbed. The high or low difficulty conditions differed by the
bandwidth of the perturbation used to determine the cursor movement.

For our modeling work, we varied the vertical separation throughout the full range of separa-
tions, but fixed the tracking difficulty at “high”. It was expected that this condition would put the
most stress on the model and, as a result, make the effects of changes to the model most evident.

The task is performed as follows. On the first trial of a condition (vertical separation), the task
objects—the cursor, target, and information display—are presented and the cursor immediately
begins moving. The subject must use the joystick to minimize the tracking error; the distance
between the meandering cursor and the target. At some bounded random time, while the tracking
task is being performed, the stimulus for the choice task appears. Depending on the visibility of
the choice stimulus, the subject might have to look away from the cursor to fixate on the stimulus
so that it can be clearly seen. The subject must then respond to the stimulus as quickly and accu-
rately as possible while continuing to perform the tracking task; i.e. keeping the tracking error low.
The generation of a response to the stimulus marks the end of a trial. This is a continuous task
however, so tracking continues until again, at some bounded random time, another choice stimulus
appears, requiring that a response be generated. This continues until the desired number of CRT
task trials have been completed.

Figure 4.2 shows the empirical human data for this task as reported in Martin-Emerson &
Wickens (1992). The choice task, whose reaction-time performance is shown at the top, shows an
effect due to the vertical separation. This effect is strongly related to the increasing saccade times
(when saccading from the cursor to the choice stimulus) due to the increased vertical separations.
The average RMS error rates of the tracking task showed a similar relationship, but the effect was
much less pronounced. The tracking performance was the primary result in this study. It will like-
wise be the primary measure for our models although RTs will also be reported.

30



1200 ¢
1100 |
1000 |
900 |

Reaction Time (ms)

300
200
100

50 r

RMS Tracking Error

15

Figure 4.2

800 |
700 |
600 |
500 |
400 |

45|
20|
35 |
30 |
25 |

20 f

10 |

o— Observed

0.0 3.2 6.4 9.6 128 160 19.2 224 256 288 320 352

Vertical separation between tracking and CRT tasks (degrees)

F o— Observed .

0.0 3.2 6.4 9.6 128 16.0 19.2 224 256 288 320 352

Vertical separation between tracking and CRT tasks (degrees)

Expert human performance on the Wickens task

31




CHAPTER 5

EPIC ON THE WICKENS TASK

EPIC has been used to produce a model for the Wickens task (Kieras, 1994; Kieras & Meyer,
1995a). The production rules of the EPIC model realize a model of expers dual-task performance
for the task. As can be seen in Figure 5.1, the EPIC model provides a good overall match to the
empirical data on both the reaction-time and tracking error measures; RIMS error between the
model and the observed data was 60.52 and 1.11, respectively.!

5.1 AN EXECUTION TRACE OF THE EPIC MODEL

Figure 5.2 shows a portion of a trace of the EPIC model as it runs one trial. This trace shows the
cognitive cycles and the names of the production rules that fired during those cycles. Note that
many cycles are missing in the trace. Many empty or inconsequential cognitive cycles have been
removed in order to promote a general understanding of the model’s behavior.

Note that the trace begins with cycle 20. During the first 19 cycles, EPIC identifies all the
objects of the task—the cursor, target, and information display as defined in Figure 4.1. This iden-
tification phase is modeled realistically in that eye movements are performed to look around the
task display to allow identification of the task objects. This identification phase was not shown
since no data was gathered about this phase in the original study, and the performance on this
phase does not impact the results.

At cycle 20, EPIC fires the main rule of the tracking task which sends a command to move the
joystick to cause the cursor to move towards the target. This rule will fire often during the trace to
keep the cursor on or near the target.

At cycle 21, EPIC fires an executive process rule that is an anticipatory motor programming
rule. As presented in Chapter 3, the EPIC architecture has the ability to prepare the movement
teatures for future action without producing the action. Figure 3.4 showed that preparing for a
future action can save feature preparation time when the action is finally performed; in this case, at
cycle 54. This rule is classed as an executive rule because it is not part of the knowledge sets for
either the choice task or the tracking task.

At cycle 34, the eye is made to move to the cursor. Recall that the cursor is constantly moving,
either due to its normal random perturbation or due to the joystick movements. In either case, it is
necessary for the eye to be on the cursor so that an accurate evaluation of the error and direction of
a corrective joystick movement can be made.

At cycle 37, the ocular system is again prepared to look at the choice stimulus location even
though this was just performed at cycle 21. This re-preparation is necessary since the motor pro-
cessor of EPIC can only hold the preparation features for one action at a time. At cycle 21, the fea-
tures for looking at the choice stimulus location were stored. Then at cycle 34, a saccade was

32



1200 ¢
1100 |
1000 |
900 |
800 |
700 |
600 |
500 -

400 *

Reaction Time (ms)

300 *
200 *

100 *

o—= Observed ]
o——o EPIC .

=
0.0

3.2 6.4 9.6 128 16.0 192 224 256 288 320 352

Vertical separation between tracking and CRT tasks (degrees)

50
45 ¢
40 |

35 F

25 F

20 F

RMS Tracking Error

15 F

o— Observed ]
——o EPIC ]

0:‘
0.0

3.2 6.4 9.6 128 160 19.2 224 256 288 32.0 352

Vertical separation between tracking and CRT tasks (degrees)

Figure 5.1 The EPIC model on the Wickens task.

33




20 TRACKI NG- TASK- nove- cur sor
21 EXECUTI VE- pr epar e-t o- nove- eye-t o- choi ce- sti mul us
28 TRACKI NG TASK- nove- cur sor
32 TRACKI NG TASK- nove- cur sor
34  TRACKI NG TASK- wat ch- cur sor
36 TRACKI NG- TASK- nove- cur sor
37 EXECUTI VE- pr epar e- t o- nove- eye- choi ce- sti mul us
42 TRACKI NG- TASK- nove- cur sor
47 TRACKI NG TASK- nove- cur sor
52 choi ce stinulus has onset
TRACKI NG TASK- nove- cur sor
54 EXECUTI VE- move- eye-t 0- choi ce- sti mul us
55 EXECUTI VE- suspend- t r acki ng- because- eye-i s- away-from cur sor
EXECUTI VE- put - eye- back- on- cur sor - asap
60  TRACKI NG TASK- wat ch- cur sor
EXECUTI VE- r esune-t r acki ng- si nce- eye-i s- back-on-cursor
61 TRACKI NG TASK- nove- cur sor
63 CHO CE- TASK-start
64 EXECUTI VE- pr epar e- f or - choi ce- sti mul us-onset
CHA CE- TASK- nomat ch-1 eft-arrow
65 TRACKI NG TASK- nove- cur sor
CHO CE- TASK- mat ch-ri ght - arr ow
66 EXECUTI VE- suspend- tracki ng-t o- prevent -not or-confli ct
67 CHA CE- TASK- send-r esponse
68 EXECUTI VE-restart-tracki ng
71 TRACKI NG- TASK- nove- cur sor - asap

Figure 5.2 An abridged trace of the EPIC model on one trial of the Wickens task

commanded and the preparation of its movement features replaced the features that were prepared
in cycle 21. Therefore, preparation is a homeostatic goal, that is, it must not only be achieved, but
also be maintained.

At cycle 52, cognition becomes aware that the stimulus appeared in the task environment.
Because EPIC accounts for the time for notification of this appearance to arrive in cognition (a
delay of about 100 milliseconds or two cognitive cycles), we can know that the stimulus actually
appeared in the environment at around cycle 50.

At cycle 54, in response to the onset, a rule is fired to move the eye from the cursor to the loca-
tion of the choice stimulus. It is important to note that this rule only applies when the visual fea-
tures of the stimulus are not sufficiently detailed. This situation occurs when distance between the
cursor (which the subject has been looking at prior to the stimulus appearance) and the stimulus is
sufficiently large. (Assuming a tracking model that is diligent in keeping the cursor at or near the
target, then an eye movement would only be needed when the vertical separation condition was
sufficiently large enough.)

At cycle 55, we see the first mediation by the executive process. On cycle 54, the eye was
directed to the choice stimulus. However, performance on the tracking task requires that the loca-
tion of the cursor be accurately known. Since this is not possible, the executive disables the track-
ing task to prevent erroneous tracking movements while the eye is away from the cursor.

Also on cycle 55, the eye is directed back to the cursor as soon as it is possible to do so. The
reason for the urgency is so that the tracking task can be resumed before the cursor wanders too far
from the target.

34



EXECUTIVE-move-eye-to-choice-stimulus
l_ EXECUTIVE-put-eye-back-on-cursor-asap

prep » | Pyvec | PPEB

A 4
~

exec P EMEC Epep

overlap —T time saved —T

EXECUTIVE-move-eye-to-choice-stimulus :
lﬁ l_ EXECUTIVE-put-eye-back-on-cursor

prep B | PmEC PPEB

A 4
~

exec EMEC Epep

Figure 5.3 Overlapping execution and preparation of consecutive ocular commands

The “as soon as possible” aspect of the rule is implemented using the pipelining technique seen
earlier in Figure 3.5. Figure 5.3 demonstrates how it is used in this model. The top diagram of the
figure shows the preparation (Ppqpc) followed by the execution (Epjgc) of the first command,
EXECUTI VE- npve- eye-t o- choi ce- sti mul us. Note that the EXECUTI VE- put - eye- back-
on- cur sor - asap rule fires as soon as the ocular motor processor’s preparation phase has just fin-
ished preparing the first command. As a result, preparation Ppgp overlaps with execution Epjgc.
The execution Eppg must wait until the execution Epjpc is finished since the eyes can only be
directed to one location at a time. This overlap in the motor processor can occur because the
EXECUTI VE- put - eye- back- on- cur sor - asap rule is preconditioned on PROCESSOR FREE,
which occurs when the preparation phase has finished and the movement features can be handed
off for execution. Because these phases are distinct, semi-independent, and sequential, it is possible
for the motor processor to be executing one command while it is preparing the movement features
for a subsequent command.

To again demonstrate how utilizing this overlap is beneficial, the lower diagram of the figure
shows the behavior of a less urgent rule, say EXECUTI VE- put - eye- back- on- cursor. Such a
rule would wait until the ocular motor processor was finished executing the previous command
before it could fire. As is shown, this rule would fire after Eyjgc has finished executing.

It is clear that EXECUTI VE- put - eye- back- on- cur sor takes longer to finish since there is
no overlap of processing. The time saved with the efficient approach is equal to the preparation
time for Ppgp. This time is typically between 100 to 200 milliseconds. This time savings seems
small but in the context of a dynamic task such as this one (where the cursor is constantly moving),

35



a 100 to 200 milliseconds savings can directly translate into better tracking error rates since the
cursor will have been unattended for a shorter time. Also, recall that tracking error is only collected
during the two seconds after the stimulus has onset. Therefore it is important to track as efficiently
as possible during this period of time.

Returning to the trace, at cycle 60, we see that the tracking task has been resumed because the
eye has returned to the cursor; cycle 55.

The choice task is finally begun at cycle 63. The reason for the nine cycle delay (awareness of
the onset occurred back at cycle 54) in starting the task is in part due to the movement of the eye
down to the stimulus. Once the eye had arrived at the stimulus, the rest of the delay is due to
EPIC’s modeling of the transmission of the stimulus features through sensation, perception, and
finally into cognition.

At cycle 64, the model finds that the stimulus is not a left arrow. On the next cycle, it success-
fully identifies the stimulus as a right arrow. Also note that the tracking is going on while the
choice task is being performed; cycle 65.

At cycle 66, we again see the executive process asserting itself to disable the tracking task. The
reasoning is that because the choice stimulus was just identified, a manual motor response can be
immediately generated. However, the tracking task also wants to use the manual motor processor.
In order to prevent a manual motor conflict, the tracking task must be disabled.

At cycle 67, the choice task safely sends the response. After the response has been sent, the
tracking task can be safely restarted in cycle 68.

The TRACKI NG TASK- npbve- cur sor - asap rule firing during cycle 71 represents the same
utilization of the two-phase nature of the motor processors as described earlier. Analogous to the
discussion of cycle 55, the rule here was designed to produce a joystick movement as soon as possi-
ble after the choice response had been made. Specifically, this rule sends a joystick command when
the manual motor processor returns PROCESSOR FREE. The rational for this rule is that while the
choice task was sending the response command, the tracking task was disabled from producing
joystick commands. During this disabled period, the cursor drifts further and further from the tar-
get, increasing the tracking error. Hence, a solution is to produce a joystick command as soon as
possible after the choice task response has been sent.

This rule differs from the normal tracking rule (TRACKI NG- TASK- nove- cur sor ) in that it is
designed to fire when the execution phase of the manual motor processor is free; an event which
can occur quite some time after the preparation phase is free. Again, the pipelining technique is
used. Figure 5.4 demonstrates this. The top diagram of the figure shows the behavior of the “asap”
rule. This figure differs from Figure 5.3 in that there is an additional overlap of the execution
phases. Unlike the previous figure, which shows ocular motor behavior, this figure shows manual
motor behavior where the sing/e manual motor processor can control the left and right hands—a
key theoretical commitment of EPIC. Recall that the tracking task uses the right hand to control
the joystick while the choice task responses are generated with the left hand. This figure shows
that although the hands are commanded from a single manual motor processor, the hands them-
selves can simultaneously make different movements. The lower diagram of Figure 5.4 shows the
behavior using the normal tracking rule.

As expected, the “asap” rule provides a large time savings, and as discussed before, this savings
can directly reduce the tracking error. It is worthwhile to restate that tracking error is collected
only for two seconds after the stimulus has onset. Therefore it is especially important to track as
often as possible during this period of time.

5.2 DISCUSSION

As Figure 5.1 shows, the EPIC model produces very good overall match to the empirical data.
This success is a direct result from the combining of psychologically realistic perception and action

36



CHOICE-send-response
l_ EXECUTIVE-move-cursor-asap

prep » | Psp | Pme

A 4
~

execL p Esr

execR P Emc
overlap —T time saved —T

CHOICE-send-response :
lﬁ r EXECUTIVE-move-cufsor

prep B | Pgr Pmc
>
execL p Esr
execR P Emc

Figure 5.4 Overlapping execution and preparation of consecutive manual commands

with cognition. The following EPIC capabilities and attributes played a critical role in order to
achieve this level of fit to the data:

* the two-phase construction of the motor processor;

* the ability to prepare the features for a future action;

* the ability to overlap two actions in the motor processor;

* modeling of the information fidelity of the visual sensory fields;

* realistic motor execution timings;

* a commitment to a single manual motor processor;

* realistic propagation delays from sensation, through perception, and to cognition;
* the use of an executive process for mediating the independent tasks.

Concerning the executive process, we saw that some of those rules were basically task facilita-
tion rules that moved the eye between the tasks.

Other rules, however, could best be defined as implementing an explicit, task-specific strategy
for coordinating the two tasks. Tasks are disabled and enabled for fundamental reasons (preventing
motor conflicts) and for task performance reasons ( disabling the tracking task because the eye was
away from the cursor). In a sense, these rules “micro-manage” the execution of the tasks, providing

37



deliberate control of how the steps of each task are interleaved and as such, they are quite task spe-
cific.

Notes to Chapter 5

1 The RMSE will be used to evaluate the goodness-of-fit of all expert models in this work. In ad-
dition to this measure, one would also want to know if the model’s performance is significantly
different from the observed data. However, we would need to know the variability of the human
data, something that was not available at the time this work was reported.

38



CHAPTER 6

THE CLASSIFICATION OF EXECUTIVE PROCESS
KNOWLEDGE

This chapter will present the first of three main phases of this work. The following two chapters
will present the remaining phases. This first phase had four objectives. First, although a working
performance model already existed in EPIC, we needed to construct an analogous model in EPIC-
Soar since all the future work would be done in EPIC-Soar. Soar is a more elaborated theory of
human cognition as compared to EPIC’s cognitive processor; i.e. Soar has many more defining
attributes in addition to being a multi-match, multi-fire production system. For example, Soar
contains concepts such as problem spaces, a preference semantics for production rule actions, two
forms of persistence for working memory elements, operators, architecturally-generated subgoal-
ing, an architecturally-maintained goal stack, and an architectural learning mechanism. As a result,
the construction of a Soar performance model was not just a syntactic transformation of the EPIC
production rules; i.e. a mapping from one production system syntax into another. Additionally,
because of these differences in complexity just outlined, the Soar model may make some aspects of
the EPIC model less relevant while increasing the consideration of others.

Second, this phase was used to validate that the EPIC-Soar hybrid architecture was sufficient
for modeling dual-task expert performance. If we discovered at this step that an adequate perfor-
mance model (one that gave a good match to performance) could not be built, then there would be
no point in continuing to search for and develop the desired knowledge acquisition framework
using this architecture.

At the end of the previous chapter, some of the EPIC executive process rules were described as
defining an explicit, zask-specific strategy for controlling the interleaving of the two tasks. To create
the EPIC-Soar model of the task, these control rules could have been adopted. However, a funda-
mental tenet of cognitive modeling in Soar (and presumably other learning architectures) is that
the modeler must be able to articulate the source of a// the knowledge that comprises the model.
Since it is known that executive process knowledge is acquired with practice (as discussed in Chap-
ter 2), we needed to propose the mechanism for acquiring the explicit control knowledge used in
the EPIC model. Such a mechanism was not immediately apparent, therefore the EPIC executive
process rules could not be added to our Soar model.

Alternatively, we wondered if perhaps a minimalist, task-independent executive process could be
used while still producing an acceptable match to the expert data. Such a process would freely
allow both tasks to run concurrently; i.e. without task control of any kind. One problem with this
approach is that motor conflicts—or “jams”, as we will refer to them—are possible; two tasks
simultaneously sending commands to the same motor processor.

39



When this a jam occurs, a task-independent conflict resolution procedure would intervene and
allow the preferred command (as specified or implied by the task instructions) to be sent. As a by-
product, a conflict-avoidance rule are learned for preventing future conflicts between the same
commands. In this approach, the executive process initially consists of a task-independent conflict
resolution learning procedure. As the task is performed and conflicts arise, this procedure resolves
the conflicts and learns new rules for avoiding the same conflicts in the future.

The primary difference between our executive and EPIC’s is that ours uses a task-independent
procedure to learn task-specific executive process knowledge needed for performing the dual-task
combination. Unlike the task-specific EPIC executive rules which, by definition, much be written
for each dual-task combination, our procedure should be applicable to any task combination. We
consider this a minimalist approach because only the knowledge that is absolutely needed—the
knowledge for resolving and avoiding jams—is learned. The third objective of this phase was to
investigate the adequacy of our ideas of the nature of the executive process.

The fourth objective was a pragmatic one. By building a performance model, we would be able
to see the executive process knowledge that needs to be learned. (This would be done using the
definition that any knowledge distinct from that needed to perform the individual tasks is part of
the executive process.) We may then be able to cluster the knowledge into classes. Having identi-
fied several knowledge classes, we might be able to devise learning procedures for acquiring the
knowledge in these classes.

In short, by building a performance model we could first identify the knowledge that is needed
for a specific task, then reverse engineer learning procedures for acquiring the knowledge in the
hope that the learning procedures are be generally applicable for realizing performance improve-
ments in other tasks.

Though this approach seems analogous to data-fitting (producing learning procedures to learn
the desired knowledge), it is hoped that the knowledge classes and the learning procedures or the
framework will be sufficiently general to apply to a large class of tasks, while making confirmable
and/or plausible predictions about human dual-task acquisition and performance.

6.1 EXPERT MODELS OF THE INDIVIDUAL TASKS

We first built expert models of the individual tasks. This can be justified because in dual-task stud-
ies, it is not uncommon for subjects to be trained to some criterion level on the individual tasks
before they enter the dual-task condition. See Figure 2.2. These expert models capture the end
result of this training. It is important to emphasize that like those studies, this work is only con-
cerned with the development of dual-task skill and not with the prerequisite development of the
individual task skills.

As is natural in Soar, the individual tasks are represented as operators with each operator con-
sisting of several steps. (operator implementation rules). See Figure 6.1. The steps for the tracking
task are the similar to those used in the EPIC model. Both are motor steps. The first, watch-cur-

Tracking Task Choice Task

watch-cursor recognize-stimulus
track-target verify-stimulus
send-response

Figure 6.1 Operator descriptions for the tracking and choice tasks

40



sor, does as its name implies; it moves the eye on the cursor when the visual features that are rele-
vant to tracking are degraded. The second, t r ack-t ar get , generates a joystick movement (a ‘ply’
command) when 1) the distance between the cursor and the target is not SMALL, as defined in the
EPIC task environment; 2) the manual motor processor is available; 3) the ocular processor is not
executing an eye movement command.

The choice-task model assumes that no eye movements are needed; i.e. the subject is fixating
on the location where the stimulus will appear, as is typical in CRT tasks experiments. The first
two steps for the choice task were incorporated from earlier Soar cognitive modeling research on
covert visual attention (Wiesmeyer, 1992). They are cognitive steps and the last is a motor step.
The recogni ze- sti mul us step is used to determine if the choice stimulus is a left-arrow or a
right-arrow. The veri fy-sti mul us step confirms that the identified stimulus is relevant to the
task. The send- r esponse step sends a motor command to press the appropriate key in response
to the stimulus.

6.2 STRATEGIES FOR DUAL-TASK BEHAVIOR

Having created the individual task models, we must now create the first dual-task model. There
are two dual-task strategies that can be used for performing two tasks simultaneously.

6.2.1 TASK LOCKOUT

The first strategy is to have the tasks run in a /ockout fashion; see Figure 6.2. In the Wickens task,
a lockout strategy would produce this behavior: do tracking; when the stimulus has occurred, stop
tracking and switch to the choice task; after the stimulus has been responded to, resume tracking.
The lockout strategy has the benefit that is it simple to implement and requires little executive
process knowledge. It also eliminates the potential for motor conflicts where two different tasks
may try to cause the eye to look in different locations at the same time.

6.2.2 TASK INTERLEAVING

While the lockout strategy has many attractive advantages, it does preclude the possibility of
highly efficient, overlapped performance. A second strategy called inzerleaving allows the concur-
rent execution of the tasks. This is illustrated in Figure 6.3. In the Wickens task, the interleaving
strategy would produce behavior somewhat like this: do tracking; when the stimulus has occurred,
start doing the choice task while continuing to do the tracking task; when the stimulus has been
responded to, the choice task ends and tracking remains active. This strategy provides the opportu-
nity for both tasks to operate simultaneously.! The behavior seen the EPIC model (Figure 5.2) was
due to an interleaved strategy.

Lockout i ;
> |
choicestask 1 [ [ [
tracking-task | | /]

Figure 6.2 The lockout strategy for performing two tasks simultaneously

41



Interleaved S r

L t >t
choice-task 1 [] [0 [
tracking-task | | O O 3 |

Figure 6.3 The interleaved strategy for performing two tasks concurrently

Concurrent performance does not come without cost as there is now the opportunity for
motor conflicts. For example, it is possible for the tracking task to try to move the joystick at the
same time the choice task sends a response command. (Recall that although these actions are per-
formed with different hands, EPIC posits a single manual motor processor for the control of both
hands.) While interleaving promises higher, more efficient performance than the lockout strategy,
it may does require a potentially sophisticated executive process to deal with motor conflicts and
task priorities.

It is interesting to note that the interleaving strategy is really still a lockout strategy, but at a
finer grain size. The grain size for the lockout strategy is a whole task. In contrast, the grain size
for the interleaving strategy is the production rule; specifically, the rule that produces a motor
command that might conflict with another task..

It is possible to apply these two strategies to the different ways in which people perform tasks
as they are learning. When a subject first begins learning a dual-task combination, it is readily
observed that their behavior is slow, inefficient, and guarded, in the sense that they try to complete
whole tasks at a time. This is very similar to the lockout strategy. By the end of training, the sub-
jects are no longer slow, nor guarded in their behavior. They have developed efficient strategies for
coping with performing the two tasks concurrently. Their behavior is as would be expected from
the use of an interleaving dual-task strategy. Consequently, a major contribution of practice on
dual-task performance may involve enabling a shift from lockout scheduling to fully interleaved
scheduling (Meyer & Kieras, 1997a).

One way to think about the differences between these two strategies is in terms of the selection
of the task operators. In the lockout strategy, the tracking-task operator is first selected and
remains so until the choice stimulus appears. At this point, the tracking-task operator is deselected
and the choice-task operator is selected. When the choice-task operator has completed, it is dese-
lected and the tracking-task operator is selected. In the lockout strategy, the operators are selected
in a mutually-exclusive manner.

In contrast, the interleaving strategy would allow both operators to be concurrently selected.
The tracking-task operator, being the primary task, is permanently selected. The choice-task, can
be implemented as a concurrent operator that is also permanently selected. It could also be imple-
mented as a concurrent operator that is selected only when needed (e.g., when the choice stimulus
appears) and is deselected when finished (e.g., after the choice-task operator has sent the
response). The important point here is that at some time, both operators are active. While the
behavior of these two options is essentially equal, we use the former approach.

6.3 IMPLEMENTATION OF THE EXECUTIVE PROCESS

In the work presented in this chapter and those to follow, the executive process will be imple-
mented as an operator called executive. All executive process knowledge necessary for the

42



Wickens task will be part of this operator. This operator will always be selected and will run con-
currently with the task operators.?

6.4 CREATING AN EXPERT MODEL IN EPIC-SOAR

The remainder of this chapter discusses the iterative development of a dual-task performance
model, producing a lineage of four models that show a transition from novice behavior to expert
behavior for the Wickens task. This development used a generate-and-test approach, where a
model is created, tested, and its performance evaluated. If the performance did not match the
expert performance, a minimal amount of knowledge (production rules) was manually added. This
addition of knowledge to the model constitutes a new model. The new model was again tested and
evaluated. This cycle repeated until an expert model was found.

Two heuristics are used for adding knowledge. First, we developed the models in the manner
that people appear to improve with practice. Initially, subjects generally exhibit very slow, guarded,
sequential performance and over time exhibit a fast, efficient concurrent or interleaved perfor-
mance strategy. Hence, the early dual-task models used a lockout strategy while the later models
used an interleaved strategy (Meyer, ez a/. 1995).

The second heuristic applies architectural optimizations to each high-level strategy. These
optimizations are anticipatory motor programming and command pipelining Therefore, while
using the lockout strategy, we try to one or both of these optimizations. We then switch to the
interleaving strategy, and again try to apply one or both of these optimizations.

A final guide in developing these models was to examine the executive process knowledge of
the EPIC model and add the knowledge that was deemed appropriate for the model’s evolution.

Before discussing the development of the dual-task models, we must say a few words about
data collection and performance evaluation. The EPIC architecture, which included a data logging
and analysis component, provided the data presented here. Our models were run for 300 trials on
each of the twelve conditions (vertical separations). On each of the 300 trials within a condition,
the reaction time to the choice stimulus was recorded. The reported RT is the average of these
value. RMS tracking error was sampled every 125ms during the two-second period from the stim-
ulus onset to one second after stimulus offset; sixteen samples recorded. With each sample, the
running average of the error was updated. The RMS error reported for each condition is the aver-
age of all the sampled errors; i.e. number-of-trial * 16. The performance of each model was evalu-
ated qualitatively and quantitatively on how well it matched the observed data.

6.4.1 THE BASIC LOCKOUT STRATEGY

To build the first dual-task model, we loaded both individual task models into EPIC-Soar. We
then needed to add some knowledge to the system to implement the basic lockout strategy. To
implement this strategy in Soar, we manually added two rules to the model: one rule prefers the
tracking task when the stimulus is absent; the other rule prefers the choice task when the stimulus
is present.

Additionally, the choice task, as defined in Figure 6.1, assumes that the eye is already fixated at
the location where the stimulus will appear. In the dual-task situation, where the primary task also
uses the eye, this assumption is no longer valid. An additional task facilitation rule, f i xat e- on-
st i mwas needed to move the eye to the choice stimulus when this was necessary. A movement is
necessary only when the eye is located such that the detailed perceptual information of the stimu-
lus is unavailable; i.e. the stimulus is outside the fovea.

A single-trial trace of the model is presented in Figure 6.4. This trace, as is true for all EPIC-
Soar traces presented in the main chapters of this thesis, is abridged such that extraneous cognitive
cycles (called decision cycles in Soar) have been removed. (For the cycles that are shown, semanti-

43



52 sel ected operator: tracking-task & executive

57 conmand: MOVE PSYCHOBJ21 gener at ed- by tracking-task

60 conmmand: PERFORM PLY gener at ed- by tracki ng-task

69 conmmand: MOVE PSYCHOBJ21 gener at ed- by tracking-task

75 command: PERFORM PLY gener at ed- by tracki ng-task

75 conmand: MOVE PSYCHOBJ21 gener at ed- by tracking-task

81 conmand: PERFORM PLY gener at ed- by tracki ng-task

82 conmand: MOVE PSYCHOBJ21 gener at ed- by tracking-task

89 conmand: PERFORM PLY gener at ed- by tracki ng-task

93 conmand: PERFORM PLY gener at ed- by tracki ng-task

97 conmand: PERFORM PLY gener at ed- by tracki ng-task

101 conmand: PERFORM PLY gener at ed- by tracki ng-task

105 conmand: PERFORM PLY gener at ed- by tracki ng-task

109 choi ce stinulus has onset

110 conmand: FI XATE PSYCHOBJ23 gener at ed- by executive

111 selected operator: choice-task & executive

121 recogni zed choi ce-arrow

122 wverified | eft-choice-arrow

123 conmand: PERFORM PUNCH gener at ed- by choi ce-t ask

124 sel ected operator: tracking-task & executive

125 command: MOVE PSYCHOBJ21 gener at ed- by tracking-task
finished trial # 2/2

Figure 6.4 Trace of the dual-task model using the basic lockout strategy

cally equivalent textual substitutions have been made in the interest of general comprehension. For
example, when an operator is selected, a message clearly stating this fact is shown instead of the
usual Soar trace notation.) The trace shows this to be a basic lockout strategy. At cycle 52, the
tracking-task operator has been selected and performed. At cycle 109, the choice stimulus appears
and the eye is moved to it in the following cycle. At cycle 111, the tracking-task operator is termi-
nated and the choice-task operator is selected. When the choice-task completes, the operator is
terminated and the tracking task operator is reinstated. We ran this model and collected the data.
The average RT and average RMS tracking error results are plotted in Figure 6.6 and are labeled
Lockout (novice).

6.4.2 THE LOCKOUT STRATEGY WITH PREPARATION

It was no surprise that the basic lockout strategy was entirely inadequate for matching the
observed performance. While the average RT results are close, the average RMS error is very bad.
It is clear that knowledge needed to be added to the dual-task model to improve its performance.

An improvement was suggested by EPIC architecture. It is possible to improve the average
RT match of this model to the EPIC or empirical data by adding knowledge that allows the model
to anticipate and prepare for the appearance of the stimulus; i.e. add an anticipatory motor pro-
gramming rule. Recall from the description of EPIC that when a command is sent to EPIC, it
passes through the motor processor in two phases, preparation then execution, both of which take
time to perform. However, the total elapsed time of a command can be reduced if, at an earlier
time, the command has been prepared for. As was seen in Chapter 5, the model can prepare the
eye to look at the location where the choice stimulus will appear before the stimulus appears. Thus,
when the choice stimulus appears, the rule that moves the eye on the stimulus will be performed in
a shorter time.

44



sel ected operator: tracking-task & executive

81 conmand: PERFORM PLY gener at ed- by tracki ng-task

90 conmand: PERFORM PLY gener at ed- by tracki ng-task

90 conmand: MOVE PSYCHOBJ26 gener at ed- by tracki ng-task

94 conmand: PREPARE PSYCHOBJ25 gener at ed- by executive

96 command: PERFCORM PLY gener at ed- by tracki ng-task

96 command: MOVE PSYCHOBJ26 generat ed-by tracki ng-task

102 conmand: PREPARE PSYCHOBJ25 gener at ed-by executive

105 conmand: PERFORM PLY gener at ed- by tracki ng-task

105 conmand: MOVE PSYCHOBJ26 gener at ed- by tracki ng-task

109 conmand: PREPARE PSYCHOBJ25 gener at ed- by executive

111 command: PERFORM PLY gener at ed- by tracki ng-task

113 choi ce stinul us has onset

114 conmand: FI XATE PSYCHOBJ28 gener at ed- by executive
sel ected operator: choice-task & executive

124 recogni zed choi ce-arrow

125 wverified | eft-choice-arrow

126 command: PERFORM PUNCH gener at ed- by choi ce-task

128 conmand: PREPARE PSYCHOBJ25 gener at ed- by executive
sel ected operator: tracking-task & executive

129 conmand: MOVE PSYCHOBJ26 gener at ed- by tracki ng-task
finished trial # 2/2

Figure 6.5 Trace of the dual-task model using the lockout strategy with preparation

We manually added a single production, pr epar e-f or-sti m to generate a preparation for
eye movement throughout the tracking task. This iteration of the model was rerun (see the trace in
Figure 6.5) and data collected. These results are plotted as Lockout + prepare in Figure 6.6. Here we
see that preparing for the stimulus improves the average RT match. The tracking error match
remains very poor.

6.4.3 EVALUATION OF THE LOCKOUT STRATEGY

The poor prediction of the tracking error is the most glaring problem with this lockout strategy.
There is a straightforward explanation why this strategy is inadequate. In the Wickens task, the
tracking error is measured only from the appearance of the choice stimulus until one second after
the choice stimulus disappears. Since the lockout strategy prevents tracking during the choice task,
the error rate should be high since the cursor will wander farther and farther away from the target .

It was clear that more knowledge was needed. However, there are no more architecturally-
motivated additions wizhin this strategy. Since the tracking match problems were due to the lock-
out strategy, the interleaving dual-task strategy was adopted.

This strategy seems most consistent with the instructions given to subjects as reported by
Martin-Emerson & Wickens (1992), “Subjects were instructed to execute a response within the
one-second stimulus display period and 7o divide their attention equally between the two tasks [italics
mine].” As seen in Chapter 5, this is also the strategy Kieras & Meyer (1995a) found necessary to
adopt in their model.

6.4.4 THE BASIC INTERLEAVED STRATEGY

Recall that the interleaved strategy can be implemented by concurrently selecting both operators.
This is easily accomplished in Soar by using the operator composition technique used in earlier

45



1200 ¢
1100 |
1000 |
900 |

Reaction Time (ms)

300

200
100

50 [

RMS Tracking Error

15

10

Figure 6.6

800 |
700 |
600 |
500 |
400 |

[ O————0~

r o— Observed 1
I o— EPIC .
F e——e |ockout (novice) ]
o0 Lockout + prepare

a5 |
40 |
35 |
30 f
25 |

20 f

0.0 3.2 6.4 9.6 128 16.0 192 224 256 288 320 352

Vertical separation between tracking and CRT tasks (degrees)

- o— Observed .
[ o——o EPIC ]
- e~ —e | ockout (novice) 1
[ oo Lockout + prepare ]

0.0 3.2 6.4 9.6 128 16.0 192 224 256 288 320 352

Vertical separation between tracking and CRT tasks (degrees)

The EPIC-Soar dual-task model using the lockout strategy

46




sel ected operator: tracking-task & choice-task & executive
57 conmand: PREPARE PSYCHOBJ30 gener at ed- by executive
57 conmand: PERFORM PLY gener at ed- by tracki ng-task
65 conmmand: PERFORM PLY gener at ed- by tracki ng-task
66 conmand: MOVE PSYCHOBJ31 gener at ed- by tracki ng-task
70 conmand: PREPARE PSYCHOBJ30 gener at ed- by executive
73 conmand: PERFORM PLY gener at ed- by tracki ng-task
77 conmand: PERFORM PLY gener at ed- by tracki ng-task
79 conmand: MOVE PSYCHOBJ31 gener at ed- by tracki ng-task
81 conmand: PREPARE PSYCHOBJ30 gener at ed- by executive
83 conmand: PERFORM PLY gener at ed- by tracki ng-task
87 conmand: PERFORM PLY gener at ed- by tracki ng-task
91 conmand: PERFORM PLY gener at ed- by tracki ng-task
95 conmand: PERFORM PLY gener at ed- by tracki ng-task
99 conmand: PERFORM PLY gener at ed- by tracki ng-task
103 choi ce stinulus has onset
103 command: PERFORM PLY gener at ed- by tracki ng-task
103 conmand: FI XATE PSYCHOBJ33 gener at ed- by executive
108 conmand: MOVE PSYCHOBJ31 gener at ed- by tracki ng-task
114 recogni zed choi ce-arrow
114 command: PERFORM PLY gener at ed- by tracki ng-task
115 wverified left-choice-arrow
115 command: MOVE PSYCHOBJ31 gener at ed- by tracki ng-task
116 conmand: PERFORM PUNCH gener at ed- by choi ce-t ask
118 conmand: PREPARE PSYCHOBJ30 gener at ed-by executive
127 conmand: PERFORM PLY gener at ed- by tracki ng-task
finished trial # 2/2

Figure 6.7 Trace of the dual-task model using the basic interleaved strategy

Soar work by Covrigaru (1992) and as discussed in Note 2. With this change alone, both tasks
now run concurrently, allowing task steps to apply as they may.

There is one pitfall when two tasks are allowed to run interleaved. There is the risk of two or
more motor commands being simultaneously sent to the same modality. For example, in the
Wickens task, the model may attempt to respond to the choice stimulus and at the same time
attempt to move the joystick, both of which use the manual motor system. In native EPIC, this
condition is called a “jam”. EPIC’s reaction is to ignore both commands. The EPIC model of the
previous chapter avoided jams because its task-specific, explicit executive process disabled tasks
when it was anticipated that a motor conflict might occur.

For reasons stated earlier, we chose not to implement the executive process from the EPIC
model in the Soar model. Rather, we continued with the minimalist approach to adding knowl-
edge to the system. First, we allowed both tasks to run concurrently, with the steps of the operators
applying as they may. To handle the jams that will arise, we created a task-independent recovery
learning procedure. Using declaratively-represented, task-specific preference knowledge (i.e. “pre-
fer the choice-task over the tracking-task”), it decides which command should be sent and then
learns task-specific rules based on this decision. In the future, when this same situation arises
where a jam might occur, the learned knowledge will intervene, obviating the jam and the need for
another time-consuming recovery process. (A complete description of this process can be found in
Appendix A.) With this approach, the model will incrementally learn executive process rules about

47



sel ected operator: tracking-task & choice-task & executive
62 conmand: PREPARE PSYCHOBJ39 gener at ed- by executive
72 conmand: PERFORM PLY gener at ed- by tracki ng-task
76 conmmand: PERFORM PLY gener at ed- by tracki ng-task
78 conmand: MOVE PSYCHOBJ40 gener at ed- by tracki ng-task
82 conmand: PREPARE PSYCHOBJ39 gener at ed- by executive
84 conmand: PERFORM PLY gener at ed- by tracki ng-task
89 conmand: PERFORM PLY gener at ed- by tracki ng-task
93 conmand: PERFORM PLY gener at ed- by tracki ng-task
97 conmand: PERFORM PLY gener at ed- by tracki ng-task
101 command: PERFORM PLY gener at ed- by tracki ng-task
105 conmand: PERFORM PLY gener at ed- by tracki ng-task
109 conmand: PERFORM PLY gener at ed- by tracki ng-task
113 conmand: PERFORM PLY gener at ed- by tracki ng-task
117 command: PERFORM PLY gener at ed- by tracki ng-task
121 command: PERFORM PLY gener at ed- by tracki ng-task
125 command: PERFORM PLY gener at ed- by tracki ng-task
129 choi ce stinmul us has onset
129 conmand: PERFORM PLY gener at ed- by tracki ng-task
129 conmand: FI XATE PSYCHOBJ42 gener at ed- by executive
134 command: MOVE PSYCHOBJ40 gener at ed- by tracki ng-task
140 recogni zed choi ce-arrow
140 command: PERFORM PLY gener at ed- by tracki ng-task
141 wverified |l eft-choice-arrow
142 conmand: PERFORM PUNCH gener at ed- by choi ce-t ask
142 conmand: MOVE PSYCHOBJ40 gener at ed- by tracki ng-task
144 command: PREPARE PSYCHOBJ39 gener at ed-by executive
146 command: PERFORM PLY gener at ed- by executive
finished trial # 2/2

Figure 6.8 Trace of the dual-task model using the interleaved strategy with track-asap

how to avoid jams. This is probably the weakest possible executive process, but there was no guar-
antee it would be sufficient to produce matching expert performance.

In our model, this recovery procedure was able to build all the jam avoidance knowledge nec-
essary for this task. The key aspect of this learning is that it transforms the general declarative
statement into specific procedural knowledge that applies at the exact point where it is needed, 1.e.
avoiding a jam.

This new model was run. In the trace (Figure 6.7), cycle 56 shows that both operators are
selected. Additionally, note a tracking task command being generated at cycles 108, 114, and 115,
during the choice-task. The collected data is shown in Figure 6.9 labeled as Interleaved.

This model has two qualitative effects: tracking error has been significantly lowered compared
to Lockout + prepare; tracking error is, as a whole, independent of the vertical separation condition;
the plot is horizontal. The model is still a poor predictor of tracking error, although it is signifi-
cantly better than the earlier lockout models.

6.4.5 THE INTERLEAVED STRATEGY WITH PIPELINING

Again, more knowledge was needed to improve performance. We then turned to the EPIC model
for ideas of what could be added. There, we observed that the EPIC model used an executive pro-

48



1200
1100
1000

900

500

400

Reaction Time (ms)

300

200

100 f

50 [

RMS Tracking Error

15

10

Figure 6.9

800

700

600 |

45|
a0
35 |
30|
25|

20 f

t o—= Observed ]

- o—o EPIC 1

F o —e |nterleaved ]
o0 |nterleaved + track-asap (expert)

0.0 3.2 6.4 9.6 128 16.0 192 224 256 288 320 352

Vertical separation between tracking and CRT tasks (degrees)

- o— Observed .
[ o—— EPIC ]
F o—— |nterleaved .
[ oo Interleaved + track-asap (expert)

0.0 3.2 6.4 9.6 128 16.0 192 224 256 288 320 352

Vertical separation between tracking and CRT tasks (degrees)

The EPIC-Soar dual-task model using the interleaved strategy

49




duction called nove- cur sor - asap (henceforth, it will be referred to as a t r ack- asap rule).
This pipelining rule was seen and discussed at length earlier in Chapter 5.

A track-asap rule was added and the EPIC-Soar model rerun. As seen in Figure 6.8, the
choice task response is sent at cycle 142, with the first joystick command (t r ack- asap) executing
at cycle 146; approximately 200ms delay. Contrast this with Figure 6.7 where the choice task is
responded to at cycle 116 and the first joystick occurring at cycle 124; approximately 400ms.

Figure 6.9 shows the new results labeled as Interleaved + track-asap (expert). The average RT
and average RMS error are satisfactory matches to the observed data and the EPIC model; RMS
error between the model and the observed data was 62.82 and 1.18, respectively.

6.5 CLASSIFYING EXECUTIVE PROCESS KNOWLEDGE

Figure 6.10 depicts the incremental development of the dual-task models just discussed as a lin-
eage of five models, beginning with expert individual task models, and ending with the final dual-
task model. The changes/additions that were made at each increment is shown and these represent
the executive process knowledge that was needed for our model of the task.

This knowledge can be partitioned into two sets indicating when the knowledge was acquired,;
either before or after the first dual-task trial (or before/after Stage 2 as depicted in Figure 2.2) was
performed. Knowledge that existed before the first trial is called pre-zrial, while the knowledge
that resulted from performance on the task is called learned.

We are forced to use our intuition to determine to which class a piece of knowledge belongs
since it is difficult to know if a subject possesses a piece of knowledge and when he/she acquired it.
However, our intuition can be guided by a heuristic: if it is not reasonable that a piece of knowl-
edge is learned for every unique dual-task combination, then the knowledge will can be put in the
pre-trial class. Otherwise, it will be considered as learned.® A corollary to this heuristic is: if a piece
of knowledge is deemed to be task-independent, then it is in the pre-trial knowledge class. If it is
deemed to be task-specific, then it is in the learned knowledge class. (This is only an approxima-
tion however. The final categorization along the dimension of task-specificty will be presented in
Chapter 11 and will show the exceptions to this corollary.)

interleaved strategy

lockout strategy jam-recovery
fixate-on-stim  prepare-for-stim  jam-avoidance track-asap

! ! ! T !

Individual Lockout Lockout + Interleaved Interleaved +
Tasks (novice) prepare track-asap
(expert)

Figure 6.10 The lineage of EPIC-Soar dual-task models

50



6.5.1 PRE-TRIAL KNOWLEDGE

Three of the six knowledge additions shown in Figure 6.10 are instances of the pre-trial knowledge
class. The first example is the implementation of the lockout dual-task strategy. This is a task-
independent strategy. The virtue of task-independence is precisely that the knowledge can be
applied across many different tasks. Therefore, by definition, this knowledge is not acquired for
every unique dual-task combination, hence, it is considered to be pre-trial knowledge. The second
instance is the implementation of the interleaved strategy. This instance is considered to be pre-
trial knowledge for the same reasons as the lockout strategy.

The third instance is the jam-recovery learning procedure that recovers from motor conflicts.
This is a task-independent procedure, and once again must be considered pre-trial knowledge.*

6.5.2 LEARNED KNOWLEDGE

It is worthwhile to re-emphasize that the research objective of this thesis is to: Develop a compu-
tational, task-independent framework for modeling the acquisition of the knowledge that subjects
acquire through practice on a selected dual-task combination. Hence, the knowledge in the
‘learned’ knowledge class is exactly what should be acquirable with the framework we seek.

The remaining additions of Figure 6.10 are instances of the learned knowledge class; knowl-
edge that is acquired from experience in performing the dual-task combination. These rules are
fixate-on-stimprepare-for-stimandtrack-asap.

The fi xat e- on- sti mrule moves the eye to the choice-task stimulus when its features are
degraded. This rule might be considered a task-specific instantiation of a general (or primitive)
rule (say, per f or m saccade), which moves the eye to some desired object when its features are
degraded. Although this is a task-specific rule, and according to the heuristic should be considered
as ‘learned’ knowledge, a case can be made for this being an pre-trial rule. For example, it is con-
ceivable that this instantiation of the general rule is created after the task instructions (“look at the
choice stimulus when it appears”) are given to the subject. This kind of instruction explicitly states
to look at the stimulus, giving the subject enough information with which to create the rule before
dual-task trials begin, making this an pre-trial rule.

On the other hand, it is equally conceivable that the instructions were not that explicit. If the
subject did not “read between the lines” to infer the need for such a rule, then when the stimulus
appeared during the first trial, the subject at that point would have to create (possibly by means-
ends analysis) and use this rule. As both arguments appear to be plausible, we will assume that the
fi xat e- on-sti mrule is pre-trained knowledge.5

The prepare-for-stim and track-asap rules are both task-specific rules and are
instances of anticipatory motor programming and command pipelining, respectively. As was seen
for the f i xat e- on- st i mrule, arguments can be made for these two rules being pre-trial knowl-
edge. However, they tend to be much less persuasive as there is a key difference between these
rules. The fi xat e-on-sti mrule is fundamental to producing dual-task performance. Without
saccading to the choice-stimulus when it appears, the subject would simply not be able to perform
the choice-task and would not produce dual-task performance. In contrast, the pr epare-f or -
sti mand t rack- asap rules are not at all necessary for dual-task performance, and in fact repre-
sent optimizations of the task.

Knowing that subjects are given to producing very poor first-trial dual-task performance, it is
more likely that they are more concerned with complying with the task instructions (by using
fi xat e- on- st i m) rather than trying to produce the optimized performance that the pr epar e-
for-sti mandtrack-asap rules afford. Therefore, these optimized rules should be learned dur-
ing experience on the task. It is not obvious however what learning procedure/s could be used to
acquire this knowledge.

51



An additional instance of the learned knowledge class is the jam-avoidance rules that are cre-
ated by the jam-recovery learning procedure. These rules are task-specific and are clearly learned
during dual-task trials in this model.

6.6 DISCUSSION

In this chapter, we presented a lineage of four dual-task models that was used to identify the addi-
tional knowledge required to perform two tasks interleaved at an expert level for the Wickens task.
Each model in the lineage represents the addition of knowledge to the previous model. Much of
the knowledge has been manually added, much of it is essentially Soar analogues of the EPIC pro-
ductions, which on its own is uninteresting. However, the larger goal is to have a system that learns
the rules that humans learn during dual-task practice.

The merit of this phase of the work then is that it takes the first small steps towards that goal:
(1) an expert performance model has been constructed in EPIC-Soar; (2) the model produced a
good match to the observed data; (3) our use of a minimalist executive controller appeared to be
sufficient for this task; (4) the knowledge needed to progress from novice to expert (executive pro-
cess knowledge) has been identified; (5) two general knowledge classes have also been identified:
pre-trial and learned; (6) we can now focus on learning procedures that might be used to acquire
the knowledge in the learned class; (7) one such task-independent acquisition procedure (the jam-
recovery procedure) which learns how to deal with some of the initial problems of interleaved per-
formance has already been demonstrated.

The following chapter presents the development of the framework for acquiring the other two
instances—anticipatory motor programming and pipelined rules—of the learned knowledge.

Notes to Chapter 6

1 The task-interleaving strategy only provides the opportunity for concurrent performance. If the
task stimuli are spatially co-located (in the case of visual stimuli) or the different stimuli use dif-
ferent perceptual modalities (visual and auditory for example), then concurrent performance is
possible. However if visual stimuli are spatially separated by a large distance, or the effector or task
device are shared between the tasks, or if the task devices are spatially separated by a large dis-
tance, then concurrent performance may not be possible.

2 Ttis commonly said that Soar can only pursue on operator at a time and hence imposes an inherent
cognitive bottleneck. Strictly speaking, this is not true. When an operator is selected, the archi-
tecture creates a single data structure for the selected operator. This structure appears in working
memory as a working memory element such as:

(<o> “~name tracki ng-task)
This structure contains a “name attribute which holds the name of the operator. All rules that are
associated with this operator (e.g., the rules which implement the tracking task) will test if this
working memory element is present.
A feature of Soar is that an attribute of a working memory element can be multi-valued; i.e., a
single attribute can have several values. With this feature, the operator structure can be elaborated

with multiple operator names:

(<o> “~nanme tracking-task “nane executive)

52



As a result of this, both operators are enabled; i.e., all the rules that match on the t r acki ng-
t ask operator are able to fire and all the rules that match the execut i ve operator are also able
to fire. Because any number of operators can be performed in parallel using this technique, there
is no inherent cognitive bottleneck in Soar.

In Chong & Laird (1997), the knowledge classes were reported as: task, innate, experiential, and
strategy. Since that report, a clearer partitioning of the executive process knowledge came to light.
This reformulation will be presented here.

Recall from Chapter 2 that executive process knowledge can be defined as the knowledge neces-
sary to produce dual-task performance that is distinct from the knowledge used to perform the
constituent tasks. Most of the work in modeling executive processes has focused its the role in
promoting expert dual-task performance. This work, however, is concerned with dual-task acqui-
sition and performance. By our definition of executive process, we must consider learning proce-
dures to be part of the executive process knowledge since they are used as the model transitions
from novice to expert performance.

Earlier (Section 6.1 and Figure 6.1), we mentioned that subjects in real choice-task experiments
do not need to move their eyes during trials, therefore f i xat e- on- st i mcould not be part of the
choice-task model. However, at some point in the study (at the beginning of a block of trials, for
instance), subjects do indeed need to move their eyes to the point where the stimulus will appear.
In hindsight, it is clear that subjects possess this knowledge and that it is performed in service of
the choice task. Included f i xat e- on- sti mas part of the choice task would have made moot
these arguments about the source of the rule.

53



CHAPTER 7

A FRAMEWORK FOR ACQUIRING EXECUTIVE
PROCESS KNOWLEDGE

In the previous chapter, the pr epar e- f or - sti mand t r ack- asap rules were classified as part of
the learned knowledge class and it was not clear how these rules could be learned. In this chapter,
the development of a task-independent learning procedure for acquiring these rules will be pre-
sented. First, a key observation about these rules is presented. A hypothesis about the initial
knowledge possessed by subjects will follow. Our observation and hypothesis together suggested a
task-independent learning procedure. The procedure will be described and tested on a fictitious
task in this chapter but applied to the Wickens task in the next.

7.1 OBSERVATION

The prepare-for - sti mrule is an example of an anticipatory motor programming rule; it pre-
pares the motor processor for an upcoming command. If the preparation phase of a soon-to-be-

r fixate-on-stim

prep P PEs
NOVICE >t

exec P EFS

l_ prepare-for stim fixate-on-stim

prep  p | Pgg

EXPERT

A 4
~

exec P Ers

Figure 7.1 Casting anticipatory motor programming as a partial-command promotion

54



l’ CHOICE-send-response

l_ EXEC-track-target
prep B | Psg Prr
> I
NOVICE execL p Esr
execR p E1T
CHOICE-send-response
l_ EXEC-track-asap
prep B | Psp | Pya
>
EXPERT execL P ESR
execR p Eta

Figure 7.2 Casting pipelining as a whole-command promotion

sent command can be completed ahead of time, then the preparation phase (and the time required
to prepare) can be avoided when the command is finally sent, resulting in a significant reduction in
the time to execute the command; recall Figure 3.4.

The t r ack- asap rule is an example of a command pipelining rule. The EPIC motor proces-
sors can execute only one command at a time, but pipelining is a way to make the motor processor
process two consecutive commands (for the same modality) at the same time, resulting in a poten-
tially significant reduction in the time to execute the second command; recall Figure 3.5.

When comparing the novice dual-task rules with these expert rules, a key observation was
made: the expert rules produce improved performance by executing commands, or parts of com-
mands, chronologically earlier in the task, as though they were chronologically promoted.

Figure 7.1 demonstrates this for the anticipatory motor programming rule. The novice dual-
task model executed fi xat e- on-sti mwhen the choice-task stimulus appeared. By using the
prepar e-f or - sti mrule, the expert dual-task model ‘moved’ the preparation of the fixate (Pyg)
to an earlier time so that when the choice-task stimulus appeared, the fixate action can be immedi-
ately executed since the features were prepared ahead of time.

Command pipelining moves the whole motor command to an earlier time such that the com-
mand will be issued as soon as the execution of a previous command (that uses the same processor)
has begun. This is illustrated in Figure 7.2. The novice dual-task model executed a t r ack-t ar -
get rule at the completion of the execution of send-r esponse. In contrast, the expert model
used the t r ack- asap rule to cause a tracking command to be sent earlier; as soon as the prepara-
tion of the send- r esponse had been completed.

55



ATM prompt
appears

} -t
NOVICE
look at put card | lookat read look at hand on enter
slot in slot B screen screen keyboard | keyboard code
EXPERIENCED USER ¥
look at put card look at read look at hand on enter
slot in slot screen screen keyboard | keyboard code
time saved j

Figure 7.3 Casting movement pre-positioning as a promotion

There is a third task-independent method for improving performance, which was not used in
the Wickens task, is called movement pre-positioning (Wood, Kieras, & Meyer, 1994; Kieras,
Wood & Meyer, 19952, 1995b). The idea here is that performance can be improved by positioning
an effector (a hand or an eye, for example) at a location before the action at that location is needed.

Consider the early steps of using an ATM (automated teller machine) where, after the user has
put their bank card in the slot, the machine prompts them to enter an access code on the provided
keypad, and they enter their code. A strategy for this behavior is depicted by the top diagram in
Figure 7.3.

There are improvements that can be made on this strategy however. If we were to observe an
experienced user of AT Ms, we might notice that after putting their card in the slot, the user would
pre-position their eye to the screen in anticipation of reading the prompt. The lower diagram in
the figure illustrates this strategy. It shows that one step has been moved to a point earlier in the
sequence of behavior. This movement results in a reduction of the time to accomplish the task.
This movement is clearly a kind of promotion. The promotion is superficially similar to anticipa-
tory motor programming in that performance gains come about by doing something that is a pre-
requisite to the action earlier rather than later. In the case of anticipatory motor programming,
only the preparation is done earlier, whereas here, the prerequisite command is moved to an earlier
event.

7.2 HYPOTHESIS ABOUT A SUBJECT’S INITIAL KNOWLEDGE

Though the observation that the expert learned rules could be cast as promotions of novice rules
was interesting, it provided no further insight toward learning procedure. It became apparent that
there may not be enough knowledge in our model for a learning procedure to operate.

In an attempt to add the necessary knowledge, we turned our attention to hypothesizing about
the relevant initial knowledge a novice dual-task subject possesses. The intuition is that this initial
knowledge plays a significant role in the learning process. This seemed reasonable since many (if
not all) learning mechanisms or procedures create new knowledge from previously existing knowl-
edge. The hope was that a) including this knowledge would make our model be a closer approxi-
mation to the novice dual-task subject; and b) this knowledge would suggest a learning procedure
amenable to the idea of promotions. To this end, we asked and answered a fundamental question:

56



/ Fixation \

pont T 4"
L L, L, R,R,R,
16°
Stimulus v
display

/

Figure 7.4 The example task, a two-choice reaction-time task

“What initial knowledge does a subject possess affer receiving task instructions but before begin-
ning to perform a task?” Though it is impossible to know exactly what is in a subject’s head after
reading task instructions, we will make two assumptions: a) that the subject understands the task
instructions, and b) is sufficiently motivated to perform the task and abide by the instructions.

7.2.1 EXAMPLE TASK: A TWO-CHOICE REACTION TIME TASK

To facilitate understanding of the upcoming discussion, we will use the fictitious example task’,
depicted in Figure 7.4. The task description and instructions are:

When a trial starts, you are to look at the fixation point. A stimulus will appear in

the stimulus circle (which is displaced 16 degrees below the fixation point). When

the stimulus appears, look at the stimulus. If it is a left arrow, respond by pressing

the key sequence LO, L1, L2, LO with the index, middle, ring, and index

fingers of the left hand; if it is a right arrow, respond by pressing the key sequence

RO, Rl, R2, RO with the index, middle, ring, and index fingers of the right

hand. Look back to the fixation point to begin a new trial.

The initial performance model used for this example task is the same as the Wickens task
choice task model, with the addition of two ocular command rules: the first to saccade from the
fixation point to the stimulus, and a second to saccade from the stimulus back to the fixation point
at the end of the trial.

7.2.2 CHRONOLOGICAL TASK STRATEGY DATA STRUCTURE

Our answer to the question of what knowledge a subject gains from reading dual-task instructions
was that this knowledge is a detailed plan, or strategy, of how to perform the task. This strategy
was realized by a data structure called a chronological task strategy data structure. This structure rep-
resents a subject’s knowledge about the chronological ordering of perceptual events, and the motor
commands that are required (per the task instructions) at the occurrence of each perceptual event.
The structure is also intended to captures a subject’s interpretation biases, and pre-performance
reasoning about the task. (This latter aspect is discussed in Appendix C.) This structure is related
to work on the declarative representation of skill (Anderson, 1981; Bovair & Kieras, 1991).

57



trial-start  stim-onset stim-features responded

pel » (pe2 » (ped)

(W] [T [E]}>[©]
[Ro}—» (A1 }—» e |+ [r0] —

Figure 7.5 A strategy data structure for the example task

The data structure consists of two types of nodes: perceptual event nodes and motor command
nodes. Figure 7.5 shows a p0551ble chronological task strategy structure for the two-choice reac-
tion-time task.? The structure is read as follows:

Sometime after the trial starts, the stimulus will appear. When it does, the model
performs an ocular command to saccade to the stimulus. At a later time, the
stimulus features will arrive in working memory (more on this later) at which time
the model will identify the kind of stimulus and will execute one of the prescribed
manual motor chains; either the left or right hand key sequence. After the
complete response has been made, the model drives the eye back to the fixation
point.

The oval nodes are perceptual event nodes or pe-nodes. The nodes in boxes are motor command
nodes or mc-nodes which contain the motor commands to be executed and can be linked together
to form command chains when a sequence of actions for the same modality are required, as is the
case in this task.

This structure not only represents the chronological ordering of perceptual events and the
motor commands as stated, implied, or inferred from the task instructions, but also captures the
preconditions of motor commands: an arrow from a pe-node to mc-node or from mc-node to mc-
node denotes dependency. Therefore, before command LO can be generated, the sti m f eat ur es
event must have occurred. Similarly, command L1 can be generated only after command LO has
been generated.

There are two aspects of this structure that are present solely because this work is situated in a
a cognitive system that is constrained by both perception and action. The first is the sti m f ea-
t ur es perceptual event. This event is necessary due to the perceptual processors in EPIC. In the
human visual system, when a stimulus appears, the features that define the object are not instantly
available. Rather, the features take time to propagate from the sensory system, through perception,
and finally into working memory. Additionally, the feature propagation time is dependent on the
feature type; i.e. color, shape, location, or size. EPIC models this process, therefore the sti m
f eat ur es event is used to signal the arrival of relevant stimulus features. Only after these features
have arrived can cognition identify the object and select and produce the appropriate response/s.

The second aspect concerns the links between mc-nodes in the motor chain. When a com-
mand is sent to a motor processor, EPIC returns motor status messages that report on the state of
each phase (whether each phase is busy or free). Additionally, EPIC provides proprioceptive feed-
back on the state of the effector performing the command; this applies only to manual commands.

In our example task, when the command to press the LO key is sent, EPIC accepts the com-
mand and reports back when the preparation phase is free, and at a later time when the execution

58



stim-features

— @)
[O}»[Ti}>

stim-features

Figure 7.6 Substructure of command chains

phase is free. Because this is a manual command, EPIC’s zactile sensory processor will report when
the key is touched, when the downstroke is completed, and finally, when the upstroke is com-
pleted; recall Section 3.3.3.

These messages can be collectively used to create a substructure between chained commands.
Figure 7.6 illustrates these messages as a list of stafus event nodes or se-nodes and the simple arrow
between the LO and L1 expands into a list of se-nodes. (In this thesis, the substructure between
chained commands is always shown as just arrows in the interest of graphical clarity. Nevertheless,
it is always the case that this substructure exists between consecutive commands in a chain.)

The figure illustrates that after the LO command has been sent, the aforementioned mes-
sages—represented as the status nodes se0 = processor free; sel = execution free; se2 = key-
touched; se3 = key-depressed; se4 = key-released—are returned from EPIC.3 The dotted arrows
between the event nodes and the subsequent command, L1, represent potential dependencies,
while the solid arrow shows the current dependency; L1 is preconditioned on se4, key-
rel eased.

This substructure as a whole can be characterized as defining a dependency or precondition space.
This space allows a model to produce a potentially wide range of chained performance styles, from
cautious to aggressive, or in more relevant terms, from novice to expert. In this figure, the depen-
dency of L1 on se4 produces a cautious, novice performance style because it requires that the LO
key be released before the command for the second keypress, L1, could be sent. An aggressive,
expert performance style could be realized if L1 was dependent on se0, while intermediate perfor-
mance styles would be generated by dependencies on sel through se3.

7.3 THE PROMOTION-LEARNING PROCEDURE

As was stated earlier, the observation that chronological promotions can produce performance
improvement was interesting but did not inspire a learning procedure. With the subsequent inven-
tion of the chronological task strategy data structure, it became clear that principled chronological

59



promotions could be created from this structure. A straightforward task-independent promotion-
learning procedure for acquiring the learned knowledge was devised and will now be described.

The learning procedure performs three styles of promotions: prepare promotions, event promo-
tions, and chain promotions. Before describing each style, a brief overall description of how the
learning procedure performs these promotions will be presented.

7.3.1 OVERVIEW

To use this learning procedure, the user must provide a chronological task strategy data structure
(represented declaratively in working memory) and a procedural novice model which performs the
task exactly as it is represented in the structure. The model is run. At some point, a command rule,
say r ul e- A, will match, fire, and generate a motor command, say command- A. In response, task-
independent promotion suggestion rules may fire. These suggestion rules look at both the generated
command and the strategy data structure to determine which promotion, if any, can be legally exe-
cuted (as defined by the promotion guidelines found in Appendix C). Assuming a promotion sug-
gestion rule does fire, the suggested promotion style is invoked and a promoted command rule,
rul e- pA, is learned. With the exception of the rule due to a prepare promotion, the newly learned
rule produces the same motor command (the action side of the rule is the same as the original
rule), but it is preconditioned on a chronologically earlier event (the condition side of the rule is
different from the original rule).

At the same time that the promoted rule is learned, the strategy data structure is updated to
reflect this promotion. This updating also results in rules being learned. These strategy structure
rules are used to regenerate the promoted structure when the EPIC-Soar system is restarted. It is
of paramount importance that the strategy structure representative of the procedural knowledge for
performing the task since the promotion procedure uses the structure to decide what future pro-
motions are possible.

The new command rule is immediately available for use in task performance. When this new
rule eventually fires, it too will be evaluated by the promotion suggestion rules. The learning pro-
cedure as implemented runs concurrently with task performance, so performance is not at all hin-
dered by the application of the procedure. Learning is incremental and produces potentially
gradual improvements in performance as a result. We now describe the three promotion styles.

7.3.2 PREPARE PROMOTION

The prepare promotion style creates anticipatory motor programming rules and is defined as:
When a motor command that is preconditioned on pe-node pe(t) is executed, a
prepare-promotion suggestion is generated if the command satisfies the prepare
promotion guidelines (see Appendix C). The prepare promotion style applies and a
new prepare rule is learned. This new rule is preconditioned on pe-node pe(t - 1)
and produces a (prepare <action>) command where <action> is the
command produced by the command on pe-node pe(t) . The strategy structure is
modified to reflect this promotion.

Figure 7.7 demonstrates the application of this promotion style to the strategy structure of the
example task. The black boxes with white text highlight the changes to the structure. They indi-
cate that two prepare promotions for ocular commands were performed. The first, po0, was gener-
ated for the saccade which responds to the appearance of the stimulus, 00. Because of this
promotion, the reaction time would be improved by the same amount of time needed to prepare
the saccade features. The second pol was generated for the saccade that returns the eye to the fix-
ation point. This prepare does not affect the reaction time in this task.

60



trial-start ~ stim-onset stim-features responded

D, pel » (pe2 > (ped)

[0} }»>[2}+[0]
=] |R0|—>|R1|—>|R2|—>|Ro|-
[ pot|

Figure 7.7 The strategy data structure after all prepare promotions

7.3.3 EVENT PROMOTION

The event promotion style creates movement pre-positioning rules and is defined as:
When a motor command that is preconditioned on pe-node pe(t) is executed,
an event-promotion suggestion is generated if the command satisfies the event
promotion guidelines (see Appendix C). The event promotion style applies
resulting in a promoted command rule which produces the same command but is
now preconditioned on pe-node pe(t - 1) . The strategy structure is modified to
reflect this promotion.

Figure 7.8 demonstrates the change of the structure of Figure 7.7 due to this promotion style.
The figure shows only a the prepare rule was a candidate for event promotion. The resulting rule
causes the preparation of the 01 saccade, pol, to occur on the sti m onset event rather than the
stimfeatures event.

Note that this promotion resulted in an ocular motor chain consisting of 00 and pol. This
demonstrates one of the guidelines for performing event promotions: if the pe(t - 1) node already
has a modality-specific chain (where a chain can be of size = 1), then any event-promoted com-
mand from pe(t) that uses the same modality must be appended to the end of this chain.

trial-start ~ stim-onset stim-features responded

?_.?—>g , @D
[Lof—>| Lif—>[Ll2}—>[L0]
0] Lo~ EX |R0|—>|R1|—>|R2|—>|RO| o]

Figure 7.8 The strategy data structure after all (one) event promotion

61



stim-features

Figure 7.9 Chain promotion of L1

7.3.4 CHAIN PROMOTION

Chain promotion uses the substructure shown in Figure 7.6 to allow chained motor commands to
be preconditioned on chronologically earlier motor processor status events; i.e. chain promotions
change the performance style from cautious to aggressive. This promotion is defined as:
When motor command that is preconditioned on se-node se(t) is executed, a
chain-promotion suggestion is generated if the command satisfies the chain
promotion guidelines (see Appendix C). The chain promotion style applies
resulting in a promoted command rule which produces the same command but is
now preconditioned on s-node se(t-1). The strategy structure is modified to
reflect this promotion.

Chain promotions directly create command pipelining rules. To illustrate this, consider the
promotions of the L1 command as shown in Figure 7.6. The first time this command is generated,
a chain promotion suggestion will be generated. This promotion style will create a new command
rule which is preconditioned on se3, key depr essed, instead of se4, key rel eased. When
this newly learned L1 rule fires at a later time, it will again be chain promoted, causing it to be pre-
conditioned on se2, key touched. This behavior continues with every application of the pro-
moted L1 command rule until it is preconditioned by sO, processor free, , at which time all
chain promotions for L1 will be exhausted (see Figure 7.9). The original rule would generate the
L1 command after the LO key had been released. In contrast, this new rule generates the L1 com-
mand as soon as the feature preparation phase is completed for LO. This is clearly a pipelining style
of rule.

Chain promotions will occur for all the other chained commands though only the of L1 has
been described. In effect, chain promotions reduce the time between consecutive commands in a
chain, this effect is represented in the Figure 7.10 by the shortened arrows between chained motor
nodes.

Command pipelining rules are also created, though indirectly, by both the prepare promotions
and event promotions discussed previously. This is true because pipelining rules can only be cre-
ated within motor chains both prepare promotions and event promotions can create motor chains.
An example of this is illustrated by the movement of the pol node from sti m features to

62



trial-start  stim-onset stim-features responded

%&b » (pe2 » (ped)
GhEEE
B L, -

Figure 7.10 The strategy data structure after all chain promotions

sti monset (as shown in Figure 7.8) in which an ocular motor chain was created. The pol rule
was then pipelined, as seen in Figure 7.10.

The procedural knowledge represented by the structure in Figure 7.10 is the final expert model
for this task. The next section will present the results of applying the procedure to our example
task.

7.4 PROMOTION-LEARNING APPLIED TO THE EXAMPLE TASK

The strategy structure of Figure 7.5 was hand-coded as declarative knowledge and given to EPIC-
Soar. Also, a procedural task performance model that was congruent with the behavior represented
by the strategy structure was provided to EPIC-Soar.

Figure 7.11 shows the performance data gathered over three phases. This data were collected
over two task conditions: “2-CRT task” and “1-CRT task”. The “2-CRT task” condition is the
two-choice reaction task as described here. The large (~100ms) fluctuations during the “Novice”
and “Expert” phases was at first quite puzzling. A colleague suggested that maybe these fluctua-
tions were related to responding to different stimuli. To explore this idea, the simulated task envi-
ronment was modified to always produce the same stimulus; say the left arrow. New data were
collected and are presented in Figure 7.11 under the label 7-CRT fask although the same perfor-
mance model and strategy structure were used as in the 2-CRT task condition.*

The difference between these plots is explained by a yet unmentioned aspect of feature prepa-
ration in the EPIC motor processors. For this discussion, we will refer to keypress commands
which are of the form (PUNCH <hand> <fi nger >) . These commands require that two features
be generated; the hand and finger.

When a command (say the manual motor command for LO in this task) is sent to a motor pro-
cessors, movement features are first created and the action is executed. The command that presses
LO is (PUNCH LEFT | NDEX) . Unstated thus far is the fact that the processor saves the movement
teatures. When a subsequent command is sent, a comparison is done between the previous and
current commands. If the commands are the same, then the stored features are simply recalled, and
the action is immediately executed resulting in a feature preparation time of Oms.

If the new command is to press L1, which is defined as (PUNCH LEFT M DDLE) , the compar-
ison finds that the <hand> specification is the same, but the <f i nger > specification is different.
Feature preparation then consists of reusing the hand feature and creating the correct finger fea-
ture. Feature preparation time will be 50ms nominally.

If, however, the next command is to press R1, (PUNCH RI GHT | NDEX) , then the comparison
finds the <hand> specification to be different. This requires that both features be generated even
though the <fi nger> specification is the same. In this case, feature preparation costs 100ms
nominally.

63



2400 FT7 T T T T T T T T T

2300 — \

e 2-CRT task

2200 [ o 1-CRTtask |

2100 [
2000
1900 L
900 g Expert phase
1800
1700 -

1600 [

Reaction time + Duration (ms)

1500 |

1400 /

Trials

Figure 7.11 Transitioning from novice to expert performance on the example task

From this explanation, the ~100ms fluctuations in the 2-CRT trace that were initially perplex-
ing are easily attributed to the full feature preparation—the preparation of both <hand> and
<f i nger > features—that is needed when the stimulus in the current trial differs from the last.

We now describe the three phases. The “Novice” and “Learning” phases occurred during an
80-trial run. In the “Novice phase”, the novice task model was run with the promotion learning
procedure disabled and spanned the first 30 trials. This phase was done to get a clear baseline of
novice level performance. Notice the large (~200ms) improvement between the first and second
trial. This is not a learning effect, but rather due to first-time feature preparation. If this baseline
phase was not first run, then this first-time feature preparation time would have been included in
“Learning phase”, giving the illusion of a much bigger learning effect.

The model was programmed to pause at the end of the 30th trial of the 80-trial run. At this
time, the flag (<s> “enabl e- promotions t) was added to working memory by means of a
single production. The run was resumed, beginning the “Learning phase” which spanned trial 31
to 80. The learning is found to be gradual, requiring approximately 10 trials to transition from the
novice performance level of approximately 2150ms down to the expert level of 1500ms; a 650ms
improvement. The last 40 trials of the “Learning phase” are flat and stable showing that all learn-
ing has been exhausted.

At the end of the 50-trial learning phase, EPIC-Soar had learned 75 rules. Forty-five of the 75
rules were strategy modification rules which were created as the structure was modified due to pro-
motions. These rules capture the evolution of the strategy data structure.

The remaining thirty rules were motor command rules. However, only eight of the thirty
motor rules were applicable: one for po0, one for po1, and one for each keypress at position two or
greater in the motor chains. The 22 other motor rules were no longer applicable because when a
motor command is promoted, the rule that initially produced the command (the command which

64



NOVICE BEHAVIOR

606 add event: choi ce-stimul us-onset

606 command: FI XATE PSYCHOBJ82 gener at ed- by choi ce-t ask

616 recogni zed choi ce-arrow

617 verified left-choice-arrow

617 add event:choi ce-stimul us-features

618 command: PERFORM PUNCH LEFT | NDEX gener at ed- by choi ce-task

626 comrand: PERFORM PUNCH LEFT M DDLE gener at ed- by choi ce-t ask

635 conmmand: PERFORM PUNCH LEFT RI NG gener at ed- by choi ce-t ask

644 command: PERFORM PUNCH LEFT | NDEX gener at ed- by choi ce-task

645 add event:responded-to-choi ce-stimul us

646 command: FI XATE PSYCHOBJ74 gener at ed- by choi ce-t ask
finished trial # 8/80

EXPERT BEHAVIOR

82 conmand: PREPARE PSYCHOBJ155 gener at ed- by executive

107 add event:choice-stinul us-onset

107 conmand: FI XATE PSYCHOBJ158 gener at ed- by choi ce-task

109 conmand: PREPARE PSYCHOBJ156 gener at ed-by executive

116 recogni zed choi ce-arrow

117 verified |l eft-choice-arrow

117 add event:choice-stinmulus-features

118 conmand: PERFORM PUNCH LEFT | NDEX gener at ed- by executive

120 conmand: PERFORM PUNCH LEFT M DDLE gener at ed- by executive

124 conmand: PERFORM PUNCH LEFT RI NG gener at ed- by executive

129 conmand: PERFORM PUNCH LEFT | NDEX gener at ed- by executive

130 add event:responded-to-choice-stimul us

131 conmand: FI XATE PSYCHOBJ156 gener at ed- by choi ce-task
finished trial # 2/30

Figure 7.12 Traces of a novice trial and and expert trial for the 1-CRT condition

caused a promotions suggestion to be made) is disabled by the new, earlier-firing rule. Only the
newest rules for a give motor command are ever applicable.

To verify that this learned knowledge would produce performance at the same level at the end
of the “Learning phase”, the EPIC-Soar system was restarted and reloaded as normal and was also
given the 75 learned rules. The model was re-run for 30 trials (shown as trials 81-110 in the fig-
ure). All 45 of the structure modification rules fired first, reproducing the evolution of the initial
strategy structure due to promotion learning. See Figure D.5 in Appendix D. After these firings,
the structure corresponded to Figure 7.9, which is the behavior implicit in the eight applicable
motor command rules. The data collected from this run were shown in the “Expert phase” of the
figure and demonstrates that performance is as expected.

Figure 7.12 shows abridged traces of a single trial for the novice and expert phases. (Traces of
the learning phase can be found in Appendix D.) These traces show cognitive cycle number and
the model’s action during that cycle. They confirm what has been shown in both the strategy
structure modification in Figures 7.5-7.9 and the performance plot of Figure 7.11.

The novice trace reveals that a) there are no preparatory commands in the novice model; b)
from stimulus onset, it takes ten cycles (500ms) before the stimulus is recognized; ¢) the inter-key

65



delay is roughly nine cycles (~450ms); d) from stimulus onset, almost 40 cycles (~2000ms) tran-
spire until the last key in the sequence has been pressed.

The expert trace, in contrast, shows that a) anticipatory motor programming is used; b) from
stimulus onset, it takes eight cycles (400ms) before the stimulus is recognized—two cycles (100ms)
less than the novice model, resulting from the preparation performed at cycle 82; ¢) the inter-key
delay has been reduced four to five cycles (~200-250ms) due to the pipelining of the key sequences
motor chain; d) from stimulus onset, 22 cycles (~1100ms) transpire until the last key in the
sequence is been pressed—about half that of the novice model, due to the cycles saved in b) and ¢).

Notes to Chapter 7

1 Before selecting this example task, we first searched the literature for a recent study that used a
simple dual-task combination consisting of visual-manual tasks and reported on both learning and
final performance. The difficulty with the very few studies found was that none of them reported
on the details of the task that are necessary for modeling. For example, there was no mention of
the sizes of the stimuli, or the distance of the subject from the stimuli (or computer screen on
which the stimuli was presented). Stimulus size can have an effect on performance since EPIC’s
visual sensory processor models the varying quality of information produced by the different con-
centric retinal zones. Though not related to stimulus size, the effect of this difference in informa-
tion quality will be used to explain the poor performance match of Figure 9.1.

There can be no single correct structure to represent a task since a) it is possible to have many
different strategies that all accomplish the same task; b) task strategies may change as task condi-
tions change; and ¢) biases in interpreting the task instructions can result in different strategies.

Manual commands have five possible preconditions; se0, sel, se2, se3, and se4. Ocular com-
mands have only two possible preconditions—se0 and sel—since EPIC provides no proprio-
ceptive feedback for ocular commands.

The results of the 1-CRT condition have been used here merely as a diagnostic and should 7oz be

interpreted as a prediction of behavior on a 2-CRT task where only one kind of stimulus is ever
presented.

66



CHAPTER 8

APPLYING THE ACQUISITION FRAMEWORK TO
THE WICKENS TASK

The last chapter presented the development of an acquisition framework—the chronological task
strategy data structure, the promotion learning procedure, and the promotion guidelines found in
Appendix C. The framework was applied to a fictitious example task and shown to give expert
performance. The current chapter will apply this framework to the Wickens task. The chronolog-
ical task strategy data structures will be discussed, followed by the application of the learning pro-
cedure and the results.

8.1 STRATEGY STRUCTURE FOR THE WICKENS TASK

Figure 8.1 shows the strategy task structure for the individual tasks of the Wickens task. Both
structures capture the behavior of the models for the individual tasks as shown in Figure 6.1. The
motor nodes are: L = punch the left button; R = punch the right button; 00 = saccade to the cursor;
D = ply the joystick such that the cursor is moved towards the target.

CHOICE trial-start stim-onset  stim-features  responded

[R]

cursor features tracking error
TRACKING suboptimal ~trial-start not smalll

(peD——@0——>(e2)

Figure 8.1 Individual task strategy structures for the choice and tracking tasks

67



Figure 8.2 shows the novice dual-task structure for the Wickens task. It is primarily the union
of the individual task structures, with the addition of three task facilitation motor command nodes.
The first, 01, is an ocular command that moves the eye to the stimulus; the same f i xat e- on-
st i mrule as was discussed in Chapter 6. This rule facilitates the choice task, and therefore allows
dual-task performance. The second, 02, moves the eye back to the cursor.” This rule is a non-
urgent version of the EXECUTI VE- put - eye- back- on- cur sor - asap rule that was used in the
EPIC model (see cycle 55 in Figure 5.2). The command nl can be thought of as a command that
resumes tracking as soon as a response has been made. It is a non-urgent version of the EPIC rule
TRACKI NG TASK- nove- cur sor - asap that was used in cycle 71 in Figure 5.2. In the EPIC-
Soar model, the motor command rules that generate 01, 02, and ml are not part of either the
tracking task or the choice task, and are, by definition, coded as part of the execut i ve operator..

8.2 APPLYING PROMOTION-LEARNING

The strategy structure of Figure 8.2 was hand-coded as declarative knowledge and given to EPIC-
Soar. Also, a novice (lockout) dual-task performance model whose behavior was congruent with
the strategy structure was provided to EPIC-Soar.

The model was put through three runs, each of which consisted of 100 trials per condition.
First, the novice model was run with the promotion learning procedure disabled for the purpose of
determining a performance baseline. The results of this run are labeled as Lockout (novice) in Fig-
ure 8.3.

In the second run, promotion learning was enabled by the same method described in Chapter
7. The model then was put through a short training run of 20 trials on one condition. This allowed
all promotions to be created—only ten trials were actually needed for all promotions to be learned.
Figure 8.4 shows the effect of the structure as the promotions were applied.?

A prepare promotion was applied to the ocular command 01. This resulted in the addition of a
new motor command node, pol. Three event promotions were performed that promoted the
nodes ml from pe3 to pe2, forming a manual motor chain. Command node 02 was promoted

trial-start  stim-onset stim-features responded
pe0 ? » (pe2 » (ped)
=] =1
tracking error EI m
not small
cursor features
suboptimal

—>

Figure 8.2 Strategy structure for the Wickens task

68



1200
1100 |

1000 ¢

900

800

700

Reaction Time (ms)

300

200

100

50 [

RMS Tracking Error

10 |

Figure 8.3

600
500

400

45|
a0
35 |
30|
25|
20|

15 |

o— Observed

—— EPIC

r e—e | ockout (novice) 1
E =— = | ockout + Promotions =
’ +— Lockout + Promotions + Interleaving (expert) |

0.0 3.2 6.4 9.6 128 16.0 192 224 256 288 320 352

Vertical separation between tracking and CRT tasks (degrees)

©>— Observed

i o—¢ EPIC ]
L o—-e | ockout (novice) ]
=— = | ockout + Promotions ]
+—= | ockout + Promotions + Interleaving (expert)

0.0 3.2 6.4 9.6 128 16.0 192 224 256 288 320 352

Vertical separation between tracking and CRT tasks (degrees)

Transitioning from novice to expert performance on the Wickens task

69




from pe3 to pe2, and later was again promoted from pe2 to pel, producing an ocular motor
chain. Finally, several chain promotions were performed to gradually migrate the ocular and man-
ual motor chains from cautious to aggressive behavior. After chain promotion, the 02 rule behaves
exactly like the EXECUTI VE- put - eye- back- on- cur sor - asap rule used in the EPIC model,
and the ml rule is a t r ack- asap rule.

By the quiescence of promotion learning in the practice run, EPIC-Soar had learned 43 new
rules. Twenty-eight of the 43 rules are strategy modification rules which were created as the struc-
ture was modified due to promotions. These rules capture the evolution of the strategy data struc-
ture.

The remaining fifteen rules are motor command rules. Six of these are jam-avoidance rules
generated by the jam-recovery learning procedure. The remaining nine are due to promotions. Of
these nine promotion rules, only three are applicable at the end of training (for reasons previously
discussed in Chapter 7). They are: one for pol, one for 02 and one for ni.

After the training run, the model was reset and run for 100 trials across all conditions. Figure
8.3 shows the results as the trace labeled Lockout + Promotions.

Thus far, the model is still using a lockout dual-task strategy. For the final run, the model was
switched to use an interleaving dual-task strategy. This switch was manually performed by the
addition of a rule that added the element (<s> ”~enabl e-i nterl eavi ng t) to Soar’s working
memory and allowed both tasks to run concurrently.

Data were gathered on each run and is shown as the trace labeled Lockout + Promotions + Inter-
leaving (expert) in Figure 8.3. The figure shows the transition from the baseline novice model to

trial-start ~ stim-onset stim-features responded

e (e

trial-start  stim-onset stim-features responded

(20

trial-start  stim-onset stim-features responded

@I@ > (22 .

po1 o1
ESIENETE g o> | Iﬂl

Figure 8.4 The evolution of the strategy structure for the Wickens task

70



NOVICE BEHAVIOR

sel ected operator: tracking-task & executive
123 command: PERFORM PLY gener at ed- by executive
133 command: PERFORM PLY gener at ed- by tracki ng-task
133 command: MOVE PSYCHOBJ252 gener at ed-by tracki ng-task
138 conmand: PERFORM PLY gener at ed- by tracki ng-task
139 conmand: MOVE PSYCHOBJ252 generat ed-by tracki ng-task
142 conmand: PERFORM PLY gener at ed- by tracki ng-task
146 command: PERFORM PLY gener at ed- by tracki ng-task
150 command: PERFORM PLY gener at ed- by tracki ng-task
154 command: PERFORM PLY gener at ed- by tracki ng-task
sel ected operator: choice-task & executive
156 add event: choi ce-stinul us-onset
156 conmand: FI XATE PSYCHOBJ255 gener at ed- by executive
167 recogni zed choi ce-arrow
168 verified |eft-choice-arrow
168 add event: choice-stinmulus-features
169 conmand: PERFORM PUNCH gener at ed- by choi ce-t ask
sel ected operator: tracking-task & executive
174 add event: responded-to-choice-stimlus
174 command: MOVE PSYCHOBJ252 gener at ed- by executive
177 command: PERFORM PLY gener at ed- by executive
finished trial # 3/100

EXPERT BEHAVIOR

sel ected operator: tracking-task & choice-task & executive
139 conmand: PREPARE PSYCHOBJ344 gener at ed- by executive
145 conmand: PERFORM PLY gener at ed- by tracki ng-task
150 conmand: PERFORM PLY gener at ed- by tracki ng-task
154 command: PERFORM PLY gener at ed- by tracki ng-task
158 command: PERFORM PLY gener at ed- by tracki ng-task
162 command: PERFORM PLY gener at ed- by tracki ng-task
166 conmand: PERFORM PLY gener at ed- by tracki ng-task
170 conmand: PERFORM PLY gener at ed- by tracki ng-task
173 add event: choi ce-stinul us-onset
173 command: FI XATE PSYCHOBJ348 gener at ed-by executive
175 command: MOVE PSYCHOBJ345 gener at ed- by executive
180 command: PERFORM PLY gener at ed- by tracki ng-task
182 recogni zed choi ce-arrow
183 wverified right-choice-arrow
183 add event: choi ce-stimnul us-features
183 command: MOVE PSYCHOBJ345 gener at ed-by tracki ng-task
186 command: PERFORM PUNCH gener at ed- by choi ce-task
190 command: PERFORM PLY gener at ed- by executive
finished trial # 3/100

Figure 8.5 Novice and expert traces for the Wickens task

the post-promotions model, and finally to the expert interleaved model. With the exception of the
“bump” at the 16° condition, the final model produced a good overall visual match to the observed
RT and tracking data; the RMS error between the model and the observed data was 63.54 and
2.55, respectively.

71



Figure 8.5 shows abridged traces of a single trial for the novice and expert phases. (The events
that trigger the tracking task commands—wat ch-cursor and track-target —have been
removed to reduce the length of the trace.) They confirm what has been shown in both the strat-
egy structure modification in Figure 8.4 and the performance plot of Figure 8.3. In the expert
trace, note the use of the learned anticipatory motor programming rule (cycle 139). Also note the
halving of the response-to-ply delay in the expert trace (cycles 186-190) as compared to the novice
trace (ccles 169-177). This improvement is due to the learned pipelining rule, t r ack- asap.

Notes to Chapter 8

1 The alert reader will notice that the 02 rule was not used in the expert model developed in Chap-
ter 6. Frankly, its omission in that model was an oversight. However, in those models, the behav-
ior of this rule was provided by the wat ch- cur sor rule in the tracking-task. During the lockout-
strategy, this rule could not apply until the tracking-task was restarted. During the interleaved-
strategy, the rule would fire sometime after the f i xat e- on- st i mrule has fired.; see cycle 108
in Figure 6.7.

2 The branches of the strategy structure that pertain to the tracking task as shown in Figure 8.2

have been left off this and subsequent strategy structure figures because no promotions could ap-

ply to these command nodes based on the guidelines defined in Appendix C.

72



CHAPTER9

PREDICTIONS OF THE ACQUISITION FRAMEWORK

The last chapter demonstrated that the acquisition framework is able to produce post-learning
behavior that results in a good match to the observed human data. This chapter will present the
predictions of the framework in the context of the Wickens task.

9.1 POST-LEARNING PERFORMANCE IS DEPENDENT ON THE
DUAL-TASK STRATEGY

In the runs just discussed, the model used the same assumption as in Chapter 6: novice subjects
initially use a lockout dual-task strategy but eventually transition to an interleaved dual-task strat-
egy. Meyer, et al., (1995) provide support for this assumption. This approach will be referred to as
the initial-lockout model.

Realizing that some subjects may never actually use a lockout strategy but rather might begin
with an interleaved dual-task strategy, we decided to re-run the model using this configuration.
This will be referred to as the initial-interleaving model. Our expectation was that the promotion
learning procedure would produce exactly the same final performance, making the prediction that
the dual-task strategy initially used did not matter to final performance.

To confirm our expectation, the EPIC-Soar system was restarted with interleaving enabled
and put through two runs of 100-trials per condition. As before, to get a performance baseline, the
first run was made with promotion learning disabled. The results, labeled as Interleaving (novice),
of the novice interleaved model are shown in Figure 9.1. The tracking error is markedly better
than the novice lockout model. (See Figure 8.3.) This is no surprise since, as noted in Chapter 4,
the tracking error is recorded only for two seconds after stimulus onset. Since an interleaved strat-
egy was used, tracking would occur while the choice task was being performed thus producing bet-
ter tracking performance.

For the second run, promotion learning was enabled. As before, the model was put through a
short training run of 20 trials on one condition in order for all promotions to be created—only six
trials were needed for all promotions to be learned.

An analysis of the rules revealed that at the completion of promotion learning, EPIC-Soar had
learned only 28 new rules; fifteen fewer than before. Eighteen of the 28 rules were strategy modi-
fication rules which were created as the structure was modified due to promotions. These rules
capture the evolution of the strategy data structure. The remaining ten rules were motor command
rules. Four of these were jam-avoidance rules generated by the jam-recovery learning procedure.
The remaining six were due to promotions and of these six, only two were applicable at the end of
training, for the same reasons as before. They are: one for pol, and one for L. It was evident from
this analysis that the post-learning behavior might not be as expected.

73



1200 ¢
1100 f

1000 |

900

800

700

600

500

400

Reaction Time (ms)

300

200

100

50 r

RMS Tracking Error

Figure 9.1

45
40 |
35 |
30 ©
25 |
20 |
15 |

10 |

o—= Observed

o——o EPIC
3 e—e |nterleaving (novice) 1
E +— Interleaving + Promotions (expert) =

0.0 3.2 6.4 9.6 128 160 19.2 224 256 288 320 352

Vertical separation between tracking and CRT tasks (degrees)

©— Observed 1
o—— EPIC ]
»—o |nterleaving (novice) 1
+— |Interleaving + Promotions (expert) ]

0.0 3.2 6.4 9.6 128 160 19.2 224 256 288 320 352

Vertical separation between tracking and CRT tasks (degrees)

Results of learning when initially using an interleaving dual-task strategy

74




trial-start  stim-onset stim-features responded

(eD pef > (pe2 > @e3d)
o1
B Lo [R]

trial-start  stim-onset stim-features responded

(pe0) peT » (pe2 >

1 1
| pot | [ o1] m T

trial-start ~ stim-onset stim-features responded

? » (pe2 > (ped)

| pot | | o1 | ml
| R

Figure 9.2 The evolution of the strategy structure for the initial-interleaving model

After the 20-trial training run, the model was reset and run for 100 trials across all conditions;
see the trace labeled Interleaving + Promotions (expert) in Figure 9.1. Contrary to our expectations,
we found that the final performance was in fact no# the same as the initial-lockout model (by ini-
tial-lockout, we are referring to the model developed in Chapter 8). Specifically, the tracking error
performance was worse. The RMS error of the initial-lockout and initial-interleaving models rela-
tive to the observed data was 2.55 and 2.79 with a correlation of 0.89 and 0.74 respectively. Unlike
that of the initial-lockout model (in which there was a condition-dependence across all conditions;
note the slight upward slope), this initial-interleaving model appeared to be condition independent
(flat) for the first two-thirds of the conditions (0 to 22.4) followed by a pronounced condition-
dependence (upward slope) for the last third of the conditions.

In order to understand why the model would make this surprising prediction, we analyzed the
evolution of the strategy structure. Figure 9.2 shows the effect of promotions on the task strategy
structure. The first promotion to this model was the same as in the initial-lockout model (see Fig-
ure 8.4): a prepare promotion was applied to the ocular command 01 resulting in the addition of a
new motor command node, pol. In this model, however, only oze event promotion was per-
formed: the movement of ml from pe3 to pe2. Since no ocular chain was formed as before, chain
promotions applied only to the manual motor chain.

This observation evoked a series of three questions, where each was the logical consequent of
the former. The first of these is the obvious question: “Why was 02 not event-promoted?” The
answer is based on several factors. First, as described in Chapter 7, when a command is generated,
a promotion suggestion rule will fire for that command (assuming the promotion guidelines are

75



satisfied), in which case, it will be promoted. The inverse of this is also true and answers this ques-
tion: 02 was not promoted because a promotion suggestion was not made, because the 02 com-
mand was never generated.

The next logical question then is “Why was 02 never generated?” Again, in Chapter 7, the
events in the strategy structure were described as preconditions to the motor command; a motor
command could not be generated until the event actually occurred. What was not stated there is
that the motor command rule has additional preconditions that may or may not be satisfied at the
time that the event occurs. Recall that 02 saccades the eye back to the tracking task’s stimulus, the
cursor. The main precondition of this rule tests whether the eye is already looking at the cursor. If
the eye is already looking at the cursor, then the rule does nof fire.

Since we knew that the r esponded event occurred, we could then deduce that 02 was never
generated because the motor rule itself never matched because the eye was already looking at the
cursor. This deduction is confirmed by inspection of the novice trace in Figure 9.3. At cycle 258,
the eye was moved to the choice-stimulus. Then at cycle 264, the tracking-task generated a com-
mand to move the eye to the cursor. This was done by the wat ch- cur sor rule, one of the track-
ing task’s two actions (Figure 6.1). Because the eye was already at or near the cursor at the time the
responded event occurred, the 02 rule could not match, therefore it couldn’t fire, therefore it
could not be promoted.

The final question is: “Why then does this omission cause the poor expert tracking perfor-
mance observed in Figure 9.1?” The answer lies in the preconditions of the t r ack-t ar get rule,
the tracking task’s rule for moving the joystick to direct the cursor toward the target circle. There
are several preconditions but the one of importance here is that the ocular motor processor must
not be executing an eye movement command. Referring to the trace, we see that the stimulus
appears at cycle 781 and a FI XATE command is immediately generated in response. At cycle 785,
we see that the t rack-t ar get rule is able to generate its command (in part) because the execu-
tion of the fixate has been completed. In other words, the joystick, and hence the cursor is being
moved even though the model is looking at the choice stimulus and 7o the cursor.

As a point of comparison, recall the expert performance for the initial-lockout model seen in
Figure 8.5. There we see that after the FI XATE in cycle 173 is sent, the rule for the pipelined 02
command immediately fires, moving the eye back to the cursor. Therefore, the behavior pointed
out Figure 9.3 is precluded because the ocular motor processor remains busy until the eye has
returned to the cursor.

One would expect this behavior to produce poor tracking performance since the model is “not
looking at what it is doing”. Yet the model predicts very good performance (though it does not
qualitatively match the observed data) for the first two-thirds of the conditions. This prediction is
due to the fidelity of the EPIC visual sensory processor. Like the human retina, EPIC’s simulated
retina consists of concentric retinal zones: bouquet, fovea, parafovea, and periphery, in order of
increasing eccentricity and decreasing object information quality.

Taking this into consideration, we can deduce that even though the cursor may not be looked
at when the t r ack- t ar get rule is fired, good tracking performance can still attained because the
cursor location information is of sufficient quality in the non-bouquet retinal regions. From Figure
9.1, we see that this appears to be true from zero degrees (superimposed) up to a vertical separation
of 22.4 degrees. After this point, there is a pronounced condition effect. We take this to be the
point where the cursor location information is no longer of sufficient quality, resulting in errorful
tracking behavior.

Thus we have been able to confirm the model’s behavior is correct and the promotion learning
procedure worked as it was designed to. However, we are left with an unintuitive prediction that a)
post-training performance is dependent on the dual-task strategy used during training; and b) an
initial-lockout strategy leads to better performance than an initial-interleaving strategy.

76



210
218
222
226
230
235
239
243
247
251
255
258
258
259
263
264
268
269
269
269
270
275

750
756
760
761
764
765
768
772
776
780
781
781
785
786
790
791
791
791
792
796
797

NOVICE BEHAVIOR

sel ected operator: tracking-task & choice-task & executive
conmand: PERFORM PLY gener at ed- by executive
conmand: PERFORM PLY gener at ed- by tracki ng-task
conmmand: PERFORM PLY gener at ed- by tracki ng-task
conmand: PERFORM PLY gener at ed- by tracki ng-task
conmand: PERFORM PLY gener at ed- by tracki ng-task
conmand: PERFORM PLY gener at ed- by tracki ng-task
conmand: PERFORM PLY gener at ed- by tracki ng-task
conmand: PERFORM PLY gener at ed- by tracki ng-task
conmand: PERFORM PLY gener at ed- by tracki ng-task
conmand: PERFORM PLY gener at ed- by tracki ng-task
conmand: PERFORM PLY gener at ed- by tracki ng-task
add event: choi ce-stinul us-onset

conmand: FI XATE PSYCHOBJ382 gener at ed- by executive
conmand: PERFORM PLY gener at ed- by tracki ng-task
conmand: PERFORM PLY gener at ed- by tracki ng-task
conmand: MOVE PSYCHOBJ378 generat ed-by tracking-task
recogni zed choi ce-arrow

verified | eft-choice-arrow

conmand: PERFORM PLY gener at ed- by tracki ng-task
add event: choice-stinulus-features

conmand: PERFORM PUNCH gener at ed- by choi ce-task
add event: responded-to-choice-stimlus

finished trial # 4/100

EXPERT BEHAVIOR

sel ected operator: tracking-task & choice-task & executive
conmand: PREPARE PSYCHOBJ440 gener at ed- by executive
conmand: PERFORM PLY gener at ed- by tracki ng-task
conmand: PERFORM PLY gener at ed- by tracki ng-task
conmand: MOVE PSYCHOBJ441 gener at ed-by tracki ng-task
conmand: PERFORM PLY gener at ed- by tracki ng-task
conmand: PREPARE PSYCHOBJ440 gener at ed- by executive
conmmand: PERFORM PLY gener at ed- by tracki ng-task
conmand: PERFORM PLY gener at ed- by tracki ng-task
conmand: PERFORM PLY gener at ed- by tracki ng-task
conmand: PERFORM PLY gener at ed- by tracki ng-task

add event: choi ce-stinul us-onset

conmand: Fl XATE PSYCHOBJ454 gener at ed- by executive
conmand: PERFORM PLY gener at ed- by tracki ng-task
conmmand: MOVE PSYCHOBJ441 gener at ed-by tracki ng-task
recogni zed choi ce-arrow

verified | eft-choice-arrow

conmand: PERFORM PLY gener at ed- by tracki ng-task

add event: choi ce-stinul us-features

conmand: PERFORM PUNCH gener at ed- by choi ce-task
conmand: PERFORM PLY gener at ed- by executive

add event: responded-to-choice-stimulus

finished trial # 13/100

Figure 9.3 Novice and expert traces for the initially-interleaved model

77




To confirm this prediction, we recalled a study reported by Gopher (1993) that examined the
effect of varied task emphasis in dual-task learning. This study consisted of three groups of sub-
jects: in the VP or varied-priority group, subjects were required to vary the priorities (as indicated
through a visual feedback mechanism) given to the tasks; in the EP or equal-priority group, subject
were required to give equal priority (as indicated through a visual feedback mechanism) to each
task; in the NP or no-priority group, subjects were required to give equal priority to each task, but
were not given any feedback. It was found that post-training performance was superior for the var-
ied priority (VP) subjects when compared to subjects who were either in the equal-priority (EP) or
no-priority (NP) groups.

There appears to be at least a superficial connection between these findings and the predictions
of our model. First, one can view the initial-lockout model as one where at first, the choice task is
given highest priority since it pre-empts the tracking task from the time the stimulus occurred
until a response was made. When the model is later switched to use an interleaved, it then gives
the tasks equal priority to the tasks in the sense that the tracking task is not disabled.! The initial-
lockout models uses two priority schemes through training, therefore the initial-lockout model is
superficially like the VP group since the model initially emphasized the choice-task then later
changed to equal emphasis.

In the initially-interleaved model equal priority was given to each of the tasks, in the sense that
the tracking task is not disabled when the choice-task stimulus appears. Since there is no alterna-
tive dual-task strategy that allows concurrent performance, they stay with this interleaving strategy.
Therefore, the initial-interleaving model is superficially like the EP group which used equal
emphasis throughout.

9.2 A RETRAINING REGIMEN CAN IMPROVE PERFORMANCE

Gopher (1993) did not report or speculate on how the relatively poor performance of the equal-
priority and no-priority groups could be elevated to reach the superior level of the varied-priority
group.

However, our acquisition framework suggests a simple retraining regimen that would enable
the initial-interleaving model (which is analogous to the EP group) to reach the performance of
the initial-lockout model (which is analogous to the VP group). This could be done by giving the
initial-interleaving model (or EP group) some practice trials in the lockout conditions (VP condi-
tion). The rationale is that by loading the initial-interleaving post-promotion model, then switch-
ing to the lockout strategy and running the model for a few training trials, the promotion learning
procedure would perform the necessary promotions on 02. Recall that the non-promotion of 02
was the cause for the difference in performance. After all promotions have ceased, the strategy
structure and the procedural knowledge of the model should be exactly the same as the initial-
lockout model. By then switching to the interleaving strategy, the model should produce the same
level of performance as the initial-lockout model.

This procedure was tested and the predicted performance is shown as the trace labeled Inzer-
leaving + Promotions + Retrained (expert) in Figure 9.4. Both the reaction time and RMS tracking
error measures are essentially the same as the final results for the initial-lockout model shown as
the trace Lockout + Promotions + Interleaving (expert).

Notes to Chapter 9
1 However, at the level of resource utilization, the choice-task still does have priority. Consider the

case where the generation of the response to the stimulus co-occurs with the generation of a track-
ing command. This results in motor processor command conflict. The jam-recovery learning pro-

78



1200 ¢
1100 f

1000 |

900

800

700

600

500

400

Reaction Time (ms)

300

200

100

50 r

RMS Tracking Error

Figure 9.4

45
40 |
35 |
30 ©
25 |
20 |
15 |

10 |

o—= Observed

—— EPIC
r +— | ockout + Promotions + Interleaving (expert)
n o—o Interleaving + Promotions + Retrained (expert) -

0.0 3.2 6.4 9.6 128 160 19.2 224 256 288 320 352

Vertical separation between tracking and CRT tasks (degrees)

©o—= Observed ]
o—— EPIC ]
+— | ockout + Promotions + Interleaving (expert) ]
o—o Interleaving + Promotions + Retrained (expert)

0.0 3.2 6.4 9.6 128 160 19.2 224 256 288 320 352

Vertical separation between tracking and CRT tasks (degrees)

Results of retraining the initial-interleaving model

79




cedure will resolve this conflict by using tasking knowledge which states that choice task
commands are preferred over the tracking task commands.

80



CHAPTER 10

DISCUSSION

10.1 THE ACQUISITION FRAMEWORK

The learning procedure performs three styles of promotions: prepare promotions, event promo-
tions, and chain promotions. The three styles were designed to created the three task-independent
techniques for improving performance were identified at the beginning of Chapter 7—anticipa-
tory motor programming, movement pre-positioning, and command pipelining, respectively.

The description of the promotion learning procedure in the preceding chapters have no doubt
given the impression that promotion styles are applied in a predetermined order: prepare promo-
tions first, followed by event promotions, then chain promotions. This is 7oz the case however. We
have used an ordered presentation here only to simply the discussion of the effect of each style.
The reality is that promotion styles are executed serially in whatever order the promotion sugges-
tions rules fire.

There is a rough dependency between promotion styles however: chain promotions will tend
to come after prepare and event promotions. Because prepare and event promotions move com-
mands to earlier events, they can create motor chains by linking the promoted command to the
end of a command chain on the previous event, if one existed. A good example of this can be seen
in the event-promotion depicted in Figure 10.1 (this is a copy of the event promotion seen in Fig-
ure 8.4). There, the ocular and manual commands are both event promoted and eventually are
linked to the end of motor chains. (See Appendix C a related discussion of this). When a com-
mand is linked in this manner, the link is, by default, a cautious link (as defined in Chapter 7 and
represented in Figure 7.6). Chain promotions can now be applied to the chain to progressively
convert the “cautious” link into an aggressive link; a fully pipelined command. Therefore, chain
promotions will tend to occur after prepare and event promotions.

trial start  stim-onset stim-features responded

po1 |

Figure 10.1 Event promotions create motor command chains

81



The framework has the characteristic that as long as the promotion guidelines of Appendix C
are adhered to, the learned models will always produce error-free behavior. (In this context, “error-
free behavior” means that the model will always satisfy the task instructions.) This occurs, in part,
because the promotion procedure maintains the ordering of commands wizhin a modality. Consider
Figure 10.1 for example. The 02 command was promoted two events earlier. When it got to an
event where there was already an ocular command, 02 was appended to the end of that ocular
motor chain. This preserves the original ordering between 01 and 02. A similar thing is seen with
the ml command.

10.2 SWITCHING FROM LOCKOUT TO INTERLEAVING

With the exception of Chapter 9, this thesis has assumed that novice subjects initially use a lock-
out dual-task strategy but eventually transition to an interleaved dual-task strategy. Meyer &
Kieras (1997a) say that a major contribution of practice on dual-task performance may involve the
shift from lockout scheduling to fully interleaved scheduling. Yet, in our dual-task models, the
switch from lockout to interleaving required the intervention of the modeler: he had to manually
add or delete a rule. It appears that the primary reason the switching was performed manually is
because it was an unconscious hold-over from the work reported in Chapter 6, where the manual
addition of knowledge was the modus operandi. A second reason was because manual switching
allowed us to easily perform the exploration reported in Chapter 9.

The simple fact is, however, that people transition between the two strategies during practice,
and hence, the model should also demonstrate this automatic switch from one strategy to the
other. However, we do not yet have a clear understanding of how people make this switch or, more
fundamentally, what prompts them to switch at all.

There is one obvious approach for automatically switching dual-task strategies that might be
incorporated in the framework: simply switch from lockout to interleaving after all promotions
have been performed. We will refer to this as the post-promotion switching approach. This simple
approach, however, is fraught with problems and complexities.

The first problem with this approach is that is very restrictive. For example, our work on deter-
mining the effect of the dual-task strategy initially used on final expert performance (Chapter 9)
could not have been performed.

Another problem with the post-promotion switching approach is that is not at all responsive
to the goals of the subject. For example, it would only model subjects who started with the lockout
strategy and transitioned to the interleaving strategy. Yet it is possible to force subjects to perform
using an interleaving (or equal-priority) strategy (Gopher, 1993). It is clear that this approach
must be made responsive to the subject’s goals. By fixing the responsiveness problems, we would be
able to solve the restrictiveness problem discussed above.

But yet another problem is that the post-promotion switching approach assumes that strategy
switching is monotonic; 1.e., subjects switch to the interleaving strategy and never switch back to
the lockout strategy. The reality is that subjects vacillate in the strategies used to perform a task
(John & Lallement, 1997). What causes them to switch strategies? It is possible that they are
using internal and/or external evaluations of their performance to signal a change in strategy. If so,
this provides another point of support that the post-promotion switching approach should be
responsive to the subject’s goals: the evaluation of a strategy’s performance can be used to signal a
strategy change.

These three inter-related problems illustrate some of the unexplored issues in modeling the
switch between lockout and interleaving, specifically, and the research area of strategy generation,
evaluation, and selection in general. A suggestion for further work in this area is given in the

Chapter 12.

82



trial-start  stim-onset stim-features responded

%&b » (pe2 >
g L1 5 L2 id Lo |

o PE | - -

@

Figure 10.2 The strategy data structure after all chain promotions

10.3 LEARNING RATES IN SOAR

It is worth restating that the focus of this work has only been on producing a transition from nov-
ice to expert performance in a manner that is psychologically reasonable. The focus has nof been
on producing predictions of learning rates. The learning rates that have been reported have been
on the order of 10 trials, which may be off by as much as two orders of magnitude.

As a result, there is a reflexive tendency by some to question the efficacy of chunking when the
issue of learning rates is brought up. Some may think that because this framework does not quan-
titative predictions of learning rates, chunking must be wrong. We, however, feel that: a) chunking
is sufficient for learning, and b) that factors other than chunking have at least as great an influence
on learning rates. One such factor is the variability of the situation. Newell (1990) says:

In general, the rate at which chunking occurs decreases which how much there is
to learn. If there’s not much to learn, there’s not much variability in the situation
and the learning curve is fairly steep [the learning rate is high]. . . . If there’s lots of
detail in the situation, then the learning curve is fairly shallow [the learning rate is
low]. At the moment it is unclear where all the variability of detail comes from in
the human’s learning experience. . . . there are sources of variability in the interior
milieu that haven’t been accounted for, so it is premature to worry to strongly
about the difference in learning rates. But it is an important gap in Soar. . . that
needs to be accounted for at the proper time. (pp. 346-48)

During the development of the strategy structure, two design decisions (a euphemism for
“shortcuts”) was made that, at the time, appeared to be inconsequential. But in light of this discus-
sion, it is clear that the decisions should have been made with greater forethought. These two
design decisions are examples of how a disregard for the “variability of the situation” can reduce a
framework’s predicted learning time. The first decision regards the construction of the strategy
structure; the second regards assumptions made in the promotion learning procedure.

In developing the strategy structure, a decision was made to bundle alternative commands
together under one node. Revisit the chain promotion procedure as it applied to the example
choice-reaction time task—Figure 7.10 is repeated here as Figure 10.2 for convenience. Due to
this decision, L1/R1 were bundled as one node, the same for L2/R2, and LO/RO. The result of this
design decision was that whenever one command was chain-promoted, say L1, the effect was the
simultaneous promotion of the bundled command, Rl in this example. The behavioral conse-
quence was the halving of the number of chain-promotions needed to fully pipelined the com-
mand chain, which may misrepresents the time to learn the task.

83



stim-features

Figure 10.3 Chain promotion of L1

In developing the guidelines for the promotion learning procedure, we made the simplifying
assumption that learning produced only monotonic changes—there were no demotions—and
command were only promoted to the next earliest event—it was not possible to “leapfrog” over the
closest event to reach a distant one. Take, for instance, the chain promotions which act on the sub-
structure of motor chains—Figure 7.9 is repeated here as Figure 10.3 for convenience. When a
command that is precondition on se3 is chain-promoted, the new command will always be pre-
conditioned on se2; never sel; never se4.

If the strategy structure were redesigned such that each command node stood alone, the learn-
ing time for the example task would easily have been doubled (see Figure 7.11) to roughly 20 trials.
If the constraint that promotions must be sequential and monotonic were removed, the framework
would exhibit some of the non-monotonic behavior observed in human subject.

Though it is unlikely that either of these changes would suddenly cause the framework to
make realistic predictions, this discussion illustrates that models and learning procedures can at
times include assumptions and formulations that, in the long run, can significantly misrepresent
the learning time predictions.

A few “sources of variability in the interior milieu” of subjects that could account for protracted
learning times are: a) motivation—a subject’s motivation to perform a task may wax and wain;
their interest of lack of interested can affect performance and the rate of learning; b) focus—
humans are prone to lapses in concentration while performing a task; ¢) affect—human emotions
can have a positive and/or negative influence on performance; d) cognitive limitations—humans
have a limited working memory capacity; humans are also forgetful; e) errors—humans are very
prone to errors; f) non-cognitive learning—perceptual and motor learning rates contribute to the
overall learning rate.

None of these factors have been taken into consideration in this acquisition framework. We
are not aware of any acquisition modeling research has incorporated any of these factors. Finding a
principled way of incorporating these varied factor into a modeling environment may be a chal-
lenge. Furthermore, many of these factors would have to be architectural additions/modifications;
an even greater challenge since careful consideration must be given to how these factor would
modulate the activity of the existing architecture.

Another factor that may cause Soar’s learning predictions to be too fast is that Soar can “think”
too fast. For example, it is possible to build a Soar operator that counts from one to a thousand in a
time period representative of 50 ms; one cognitive cycle, or decision cycle, in Soar terminology. It
goes without saying that this is unrealistic. If one has a learning procedure that uses large operators

84



(operators with many sequentially dependent steps), it may be the case that these operators are
executing in one decision cycle; 50ms. The learning time might be lengthened if operators were
reformulated to take more decision cycles. (See Appendix F for a detailed discussion of this issue
and an alternative means of slowing down operator executions.)

The weight of these sources of variability hopefully convinces the reader that chunking, a uni-
versal “store” command, is not the sole nor the primary reason that learning rates for this frame-
work are unrealistic.

10.4 PSYCHOLOGICAL PLAUSIBILITY OF THE FRAMEWORK

We feel that our framework is psychologically plausible in many way. First, we provide parsimoni-
ous initial knowledge to the framework that is plausible in both form and function. The strategy
structure is represented declaratively. It is reasonable that subjects have this kind of knowledge
after reading task instructions. In addition to the strategy structure, we provide procedural knowl-
edge of representative of the knowledge in the task. This is valid because we assume that subjects
are already experts at the individual tasks and they have the necessary task facilitation knowledge
to, for example, move eye from one task stimulus to another. Second, our framework learns while
performing the task. Finally, we show incremental, multi-trial learning because the learning proce-
dure is constrained by the strategy structure.

The framework is implausible in many ways. The most obvious is the learning rate predictions,
as discussed above. Another implausibility is that the learning procedure imposes no cost on task
performance, and task performance imposes only a small cost to the learning procedure. This is
not psychologically plausible however. Lintern & Wickens (1990) and others who have demon-
strated that learning rates can be ill-affected by heavy resource demands. Although we feel that the
learning procedures in this work are sound, we believe that further work is needed to explore dif-
terent forms of interaction between task performance and the learning procedures.

10.5 THE CONTRIBUTIONS OF EPIC

In Chapter 3, Newell (1990) was quoted as saying “the theory gives up the constraint on . . . cog-
nition that [perceptual and motor] systems could provide.” Having combined EPIC and Soar and
done some explorations in learning and performance, what constraints have the perceptual and
motor systems (EPIC) imposed on cognition (Soar)?

The most obvious constraint that EPIC has provided are the limitations derived from its per-
ceptual and motor systems. Take, for instance, this simple scenario: an object appear on a screen
and cognition “wants to know” what that object is. In EPIC-Soar, cognition will must rely on the
visual sensory/perceptual processors and the ocular motor processor. Their impact on the simple
task is as follows:

* the visual sensory system models the concentric retinal fields and the increased degradation
of information quality with increased eccentricity;

* in order for cognition to clearly “see” an object that is in the periphery, it must send a com-
mand to the ocular motor processor to move the eye to the object;

* before the command can be sent however, cognition must ensure that the ocular motor pro-
cessor is available;

* once the command has been sent, the actual movement of the eye takes time;

* after the eye movement completes, it then takes more time for the information of the object
to arrive in cognition;

+ additionally, the different features (location, shape, size, color) of the object arrive to cogni-
tion at different time.

85



Without EPIC, it is very unlikely that performance models of perceptual-motor tasks such as
this could be successful a performance model could be built in a purely cognitive architecture—
such as Soar (Laird, Newel, & Rosenbloom, 1987) or ACT-R (Anderson, 1993). With such archi-
tectures, the modeler would have to undertake the non-trivial task of first inventing plausible the-
ories of perception and action, then operationalize those theories. In EPIC, the theories of
perception and action are already developed, implemented, tested, verified, and most importantly
to the modeler, are architectural. The modeler need only be concerned with the construction of the
task model; i.e. the writing of the productions rules for the cognitive processor, or Soar, in the case
of EPIC-Soar.

EPIC made other contributions to this work. The acquisition framework is a direct result of
the constraints it provides. The idea of motor promotions were in part due to the formulation of
the EPIC motor processors as: a) having two semi-independent and sequential phases preparation
and execution phases, and b) accepting a PREPARE command.

The chronological task strategy data structure has substructure—the precondition space for
chained motor commands (Figure 7.6)—that was derived from both the motor status message and
the perceptual (tactile) processor messages. This substructure would not have been apparent with-
out the constraints of EPIC.

At present, EPIC is the only architecture that models both human perception and action with
such high fidelity, and hence was the only architecture that could have been used for this work.

10.6 THE CONTRIBUTIONS OF SOAR

Soar has likewise made many contributions to this work. With its concepts of universal subgoaling
and problem spaces, it provided a structured environment for the development of the models and
the acquisition framework. Soar’s lack of an inherent cognitive bottleneck has been essential to
dual-task performance and learning while performing, as is done in this framework. Finally, Soar’s
primary contribution, learning by chunking, has made all the learning in this framework possible.
A less tangible contribution is the heritage of successful cognitive modeling work done in Soar
(Aasman, 1995; Altmann, 1997; Bauer & John, 1995; Howes & Young, (1996); Lewis, 1993;
Lonsdale, 1996, 1997; Miller, 1993; Polk, 1992; Rieman, Young, & Howes, 1996; Wiesmeyer,
1992).

10.7 ACT-R VS. SOAR: IS SOAR’S CONTRIBUTION UNIQUE?

There are other architectures that might have been used instead of Soar. Pew & Mavor (1998)
compare and contrast eleven architectures for modeling human behavior. Of the eleven, the on/y
symbolic learning architecture, other than Soar, is ACT-R (Anderson, 1993).

Could ACT-R have been coupled with EPIC instead of Soar do the work presented in this
thesis? To answer this question, we must evaluate ACT-R’s ability to: a) support multiple task per-
formance, and b) learn while performing multiple-tasks.

First, ACT-R is a multi-match, single-fire production system. As a result, ACT-R manifests
an inherent cognitive bottleneck by allowing only one production to be executed per match/fire
cycle. In the context of dual-task performance, ACT-R’s cognition is a several limited but highly
requested resource. It is not clear how ACT-R could concurrently perform t ask1, t ask2, and an
executive process. From our experience with both the EPIC and EPIC-Soar models, we have
found the unlimited cognitive capacity afforded by a multi-match, multi-fire production system to
be necessary in order to perform the tasks. We conjecture that ACT-R could not be generally
applied to modeling human performance of complex, high-performance multiple-task combina-
tions.

86



On whether ACT-R could be used to learn while performing, the evaluation must also be in
the negative. Our framework learns by creating new procedural knowledge. ACT-R creates new
rules through inductive inferences from analogical reasoning from existing procedural knowledge
and worked examples. This learning procedure can be thought of as yet another task—a hypothesis
of learning as mentioned in Lintern & Wickens (1991)—and thus must competed for access to
cognition. Therefore in addition to performing the activities of the constituent tasks and an execu-
tive, ACT-R must also perform analogical reasoning. As before, we conjecture that ACT-R could
not be used as a general architecture for performance and learning since its inherent cognitive bot-
tleneck would prevent it from attending to multiple concurrent activities.

Since ACT-R pursues one activity at a time, it may be possible for a rapid task switching
approach to be used, as in Byrne & Anderson (1998). With this commitment, ACT-R would be
making the claim that multi-task performance is actually strategically-organized sequential perfor-
mance. Setting aside the issue of the origin of this strategic organization, a possibly more serious
issue is that there phenomena that cannot be easily explained by such an approach. One in partic-
ular is perfect timesharing (Wickens, 1980; Schumacher, ef al., 1997). Perfect timesharing, as
defined in Wickens (1991), is a situation in which two tasks, both of a non-trivial difficulty level,
are performed concurrently with no decrement, even though each can be shown to interfere with
other activities. It is not clear how this phenomena could be addressed when using a rapid task
switching approach.

Based on this analysis, the answer to the question, “is Soar’s contribution unique”, must be that
Soar did indeed make a contribution to this work that no other currently available architecture
could have.

87



CHAPTER 11

CONTRIBUTIONS

11.1 A LEARNING AND PERFORMANCE ARCHITECTURE

Based on the architectural requirements identified in Chapter 3 and illustrated in Figure 3.1, it was
tound that neither EPIC nor Soar could satisfy all the requirements. In fact, at the time that this
work began, there was no learning and performance architecture available for the exploration of
dual-task acquisition. However, all the requirements were covered by the union of the require-
ments satisfied by each. The potential for a synergistic merging of EPIC with Soar was obvious
and the endeavor was undertaken. The resulting hybrid architecture has been called EPIC-Soar.

This merger was an attempt to get the best of both worlds: the detailed predictions and expla-
nations provided by the perceptual and motor processors of EPIC (an ability Soar does not pos-
sess), and the problem solving, planning, and learning capabilities of Soar (an abilities that EPIC
does not possess). In Pew & Mavor, (1998), the following has been said about the approach used
to create EPIC-Soar:

This approach of incorporating the mechanism of other architectures and models
and “inheriting” their validation against human data promises to result in rapid
progress as parallel developments by other architectures emerge (p. 95).

Other than the work presented in this thesis, EPIC-Soar has been used in developing perfor-
mance models for the Kanfer-Ackerman Air Traffic Controller[] task (Lallement & John, 1998a)
and for explorations in the role of computational architectures and the modeling idioms used to

construct models (Lallement & John, 1998b).

11.2 A TAXONOMY OF EXECUTIVE PROCESS KNOWLEDGE

Recall from Chapter 6 that the executive process knowledge was partitioned into two sets indicat-
ing when the knowledge was acquired; either before or after the first dual-task trial (or before/after
Stage 2 as depicted in Figure 1.2) was performed. Knowledge that existed before the first trial is
called pre-trial, while the knowledge that resulted from performance on the task is called learned.

Taking into consideration the other knowledge developed in the intervening chapters and our
intuitions of the kinds of knowledge subjects may use and/or learn, these two classes can be further
elaborated, resulting in an executive process knowledge taxonomy as shown in Figure 11.1. This
taxonomy is another contribution of this work. The components of this taxonomy will now be dis-
cussed.

88



EXECUTIVE PROCESS KNOWLEDGE

— T

General Meta- Task New task
primitives strategies facilitation strategies
Learning Task Command Strategy
procedures knowledge arbitration refinement

Figure 11.1 A taxonomy of the knowledge learned during dual-task practice

11.2.1 PRE-TRIAL KNOWLEDGE

The pre-trial class has four subclasses. The general primitives class is composed of general primitive
actions, such as a perform saccade rule as discussed earlier in Chapter 6, Section 6.5.2. No
rules of this class were used in the models developed here, however we expect general primitives
could be used with a learning procedure (such as means-ends analysis) to acquire task-specific
knowledge.

In the models developed here, the learning procedures class consists of both the jam-recovery
learning procedure and the promotion learning procedure. Additionally, a means-ends analysis
learning procedure might be a member of this class, though it was not used in this work.

The task knowledge class consists of task-specific knowledge. Declarative representations of
aspects of the task instructions such as task priorities (as used in the jam-recovery learning proce-
dure) and facts are in this class. Declarative representations of the task strategy, such as the chro-
nological task strategy data structure would also be in this class. Any deductions, inferences, or
insights about the task that the subject may make based on the instructions would be part of this
knowledge class. An example of such cognitions is a pre-performance realization that could result
in the creation of the f i xat e- on- st i mrule—that when the stimulus appears, the eyes may need
to be moved to the stimulus before the choice-task can begin. The zask knowledge class of course
also consists of the procedural knowledge necessary for performing the individual tasks themselves.

At present, only the knowledge that implements the two dual-task strategies—lockout and
interleaving—are in the meta-strategies class.

11.2.2 LEARNED KNOWLEDGE

The ‘learned’ class also has four subclasses. The zask facilitation class consists of the knowledge
necessary for switching between tasks. The fi xat e- on- sti mrule is an example of this kind of
rule. Without it, dual-task performance would not be possible. Another example is EXECUT| VE-
put - eye- back- on- cur sor - asap as seen in cycle 55 the trace of the EPIC model (Figure 5.2).
This rule returns the eye to the tracking task after it has been moved to the choice stimulus.

89



Task- Task-
independent specific
knowledge knowledge

Task
facilitation

General

primitives

i Strategy
Loaming

Command
arbitration
New task
strategies

Initial
Declarative
knowledge

Initial

Meta- procedural
strategies knowledge

Figure 11.2 The functional relationships of the classes of executive process knowledge

Strategy refinements captures the task-specific knowledge that was created by the promotion
learning procedure. This knowledge class contains three subclasses: anticipatory motor program-
ming rules, movement pre-positioning rules, and pipelining rules.

The jam-recovery learning procedure uses task priority knowledge to arbitrate between com-
peting jammed commands. The product of the arbitration is a new rule that in the future will pro-
duce the preferred command when the same situation arises where the initial jam occurred. The
command arbitration class consists exclusively of these rules.

Many researchers have shown that subjects explore task strategies when learning a new task
(John & Lallement, 1997; Gordon, et al., 1998; Lee, Anderson, & Matessa, 1995). John & Lalle-
ment in particular showed that subjects explored as many as four different strategies for perform-
ing their task—the Kanfer-Ackerman Air Traffic Controller[] task. It is certainly the case that
subjects are creating, using, and evaluating new strategies for the task while performing the task.
The new task strategies class contains these strategies. The as yet unidentified procedures for creat-
ing these strategies would be part of the pre-trial learning procedures class.

11.2.3 A FUNCTIONAL REPRESENTATION OF EXECUTIVE PROCESS
KNOWLEDGE

Figure 11.2 depicts the same knowledge classes as in Figure 11.1, but this time along the dimen-
sion of task-specificity. These two classes—task-independent and task-specific—are, with one
exception, the same as the pre-trial and learned. The exception is the initial declarative and proce-

90



dural knowledge, which are part of the pre-trial class in Figure 11.1. This knowledge is task-spe-
cific and is hypothesized to be the product of a language comprehension mechanism, possibly
similar to the work of Huffman (1994), and is therefore part of the task-specific knowledge class in
Figure 11.2.

The figure also depicts the functional relationship between and within the classes. It demon-
strates the inputs to certain learning procedures, and shows the products of these learning proce-
dures. The MEA (means-ends analysis) learning procedure uses general primitives to generate
task-specific rules such as task-enablement rules. The promotion and jam-recovery learning proce-
dures produce strategy refinement and command arbitration rules, respectively. New task strategies
are produced by a yet unidentified procedure. As stated earlier, a language comprehension proce-
dure converts task instructions into declarative and procedural knowledge. The declarative knowl-
edge, deduced or inferred from the task instructions, is used as input to some of the
aforementioned learning mechanisms.

Neither of these figures should be taken as complete. Rather they are an attempt to classify the
knowledge that was used in the tasks or discussed in this thesis. It is expected that as more dual-
task combinations are modeled, other task-independent learning procedure will be found

11.3 AN ACQUISITION FRAMEWORK

From the first sentence that introduces Chapter 7, one could say that all this work has been just
about learning two rules for the Wickens task: the pr epar e-f or - sti mand t r ack- asap rules.
This cannot be denied. However, the work has not been so much about learning those two rules as
it has been about Aow to learn those two rules and if the invented framework could be generally
applicable to other tasks.

The acquisition framework consists of the following components:

* the jam-recovery learning procedure and the jam-avoidance procedure (Appendix A)
* chronological task strategy data structure (Appendix B)

* the promotion procedure’s application guidelines (Appendix C)

* the promotion learning procedure and the promotion suggestion rules (Appendix D)

Admittedly, the promotion learning procedure is a mechanistic, “turn the crank” kind of pro-
cedure that blindly implements the promotion guidelines. No “thought”, reflection or planning is
needed because the promotions are error-proof—the promotions cannot yield behavior that vio-
lates the task instructions. In fact, after studying the promotions of the tasks used in the thesis, it
quickly becomes obvious how to perform the promotions by hand.

However, while the promotions are now somewhat obvious, they can only be done after the
strategy structure has been created. For this reason alone, the strategy structure is possibly the most
significant contribution of this work: a proposal for a principled way to represent task strategies for
a class of tasks. The promotions are a rather straightforward utilization of the representation to
produce learning.

The strategy structure allows a quality of learning that is typically unexpected from all-at-once
EBL mechanisms such as Soar’s chunking: the procedure produces gradual performance improve-
ment over several trials. This work joins Newell & Rosenbloom (1981) and Miller & Laird (1996)
in demonstrating that graded performance is attainable from an all-at-once learning mechanism.

From the first sentence that introduces Chapter 7, one could say that all this work has been
just about learning two rules for the Wickens task: the prepare-for-sti mand track-asap
rules. This cannot be denied. However, it must be emphasized that these two rules are instances of
two task-independent and ubiquitous techniques for improving performance. Additionally, the
work has not been so much about learning those two rules as it has been about Aow to learn those

91



two rules. To address this issue, we have developed a multi-faceted framework that, although
designed with multiple-task acquisition in mind, has been demonstrated to be amenable to single-
task learning as well, as see in Chapter 7. We are confident that the framework (possibly with a lit-
tle more elaboration) is general enough to be apply freely to the kinds of tasks that this work
addresses—simple perceptual/motor tasks.

11.4 CONTRIBUTIONS TO OTHER WORK

When designing a human-machine system, a useful metric for evaluating the proposed design
would be a prediction of human performance on the proposed system. Because the system is still in
the design phase, empirical evaluation is impossible.

One approach would be to create a performance model in an architecture such as EPIC or
Soar. However, in developing such a model, the model builder will make a commitment to one
task performance strategy. Given that a wide range of task strategies can be manifest between and
within subjects, it is clear that a performance model that realizes a single strategy would be of little
value in evaluating a human’s performance in the proposed system. Building models for each pos-
sible performance strategy is certainly not practical.

Kieras & Meyer (1998) have developed a methodology call a bracketing heuristic that is used to
produce predictive models of human performance that would be useful to a human-machine sys-
tem designer. The key insight in their methodology is that rather than building models that match
a task strategy that may be used by subjects, an easier and more reliable approach is to characterize
the extremes of the possible task strategies.

The methodology consists of three steps. First, define a base strategy for performing the tasks,
dictated by the logical requirements of the task. Second, define the slowest-reasonable strategy, a
version of the base strategy, which consists of nominal adherence to the task requirements. Third,
define a fastest-possible version of the base strategy, which exploits the capabilities of the architec-
ture to its fullest.

According to the bracketing heuristic, actual human performance on the proposed system
should lie somewhere in the envelope defined by the extremes of the slowest and fastest strategies.
Thus instead of trying to identify an exact performance strategy, this methodology outlines the
boundaries of performance. At present, finding the fastest-possible strategy model involves a
potentially lengthy iterative search by the modeler.

The work presented in this thesis resonates with the bracketing methodology in that the slow-
est-reasonable and fastest-possible strategies can be roughly equated with novice and expert strate-
gies, respectively. The spirit of the bracketing heuristic appears in every performance plot in
Chapters 8 and 9. A contribution of this work then is that if given the slowest-reasonable strategy,
the acquisition framework might automatically find the fastest-possible strategy.

Take for instance the RMS error graph in Figure 11.3, originally Figure 8.3. The lockout
(novice) strategy produced the worst performance and is equivalent to the slowest-reasonable strat-
egy of the bracketing heuristic. After promotions have been applied and the dual-task strategy
changed to interleaving, the performance is analogous to the fastest-possible strategy of the brack-
eting heuristic.

Although Figure 11.3 shows a nicely defined performance envelope bounded by the novice
model and the learned expert model, it also shows that the actual performance lies ouzside the
envelope. According to the bracketing heuristic, a// performance should fall within the perfor-
mance envelope. This brings into question the claim that the framework can be used to find the
fastest-possible strategy.

There are two possible explanations however. First, it may be that the difference between the
learned model’s performance and human performance is not statistically significantly. This could
not be evaluated, however, since we did not have variability data for the human data. It may be that

92



50 r

5 e \ |
40 - ]
[ e ]
[ i ]

35 " e = Performance Envelope slowest-reasonable ]

RMS Tracking Error
N

20 - ]
15 g o— Observed ]
7 o—¢ EPIC ]
10 L e— -e | ockout (novice) ]
+— Lockout + Promotions + Interleaving (expert) ]
5F 1
0 i 1 1 1 1 1 1 1 1 1 1 1 1 ]

0.0 3.2 6.4 9.6 128 160 192 224 256 288 320 3562

Vertical separation between tracking and CRT tasks (degrees)

Figure 11.3 The post-promotion model defines the lower bound of the bracketing heuristic

the learned performance and the human data are statistically the same, in which case we could say
that the human performance falls within the predicted performance envelope; in fact, humans are
performing at the level of the fastest-possible strategy.

If, however, the difference was statistically significant, then two things might be said. First, it
may be that our novice Wickens task model or the acquisition framework itself needs revision.

Alternatively, it could also be that the human subjects are simply performing faster than the
fastest-possible strategy. Recall that the fastest-possible strategy is defined as: the fastest-possible
version of the base strategy which exploits the capabilities of the architecture to its fullest. An
implicit assumption is that the fastest-possible strategy utilizes the same mental representation of
the task as the slowest-possible or base strategies. However, it is possible that a subject may dis-
cover a different mental representation of the task that could result in a different task strategy. It
may then be possible that the new task strategy leads to performance superior to the fastest-possi-
ble strategy with the original cognitive representation. In other words, the bracketing heuristic
does not take into consideration the metacognitive processes that can impact the actual strategies
used, and hence, the final performance.

Therefore, in Figure 11.3, if human performance is indeed significantly better than the learned
model’s performance, then it may be that subjects were using a mental representation of the task
that was not utilized in our task model. While this explanation does not seem likely to apply for
our present task—the space of mental representations of this task seem small—we believe it could
relevant to more complex tasks.

93



CHAPTER 12

FUTURE WORK

12.1 FURTHER VALIDATION OF THE TASK MODELS

Further validation of the example CRT task model and Wickens task model can be performed.

In Chapter 7, an example task was modeled. The section that is conspicuous in its absence
from that chapter was one that compares both human learning and the final performance results
with that predicted by the model and acquisition framework. Before the task model, the frame-
work, and its predictions can be taken seriously, some empirical data for this task must be gathered.

One shortcoming of Wickens task models used in both EPIC and EPIC-Soar is that the
tracking task and choice task models were never verified against the single-fask criterion perfor-
mance of the subjects. We are relatively confident that the task models we have used are correct.
For example, when the choice-task model was run by itself, the average RT was 511ms; a very
plausible result. Though the tracking task cannot be similarly evaluated, our intuition is that the
two rules—wat ch- cur sor and nmove- cur sor —define a parsimonious model that is neither too
strong nor too weak to produce realistic tracking performance.

Nevertheless, to make the acquisition framework and the post-learning matches and predic-
tions more compelling, we must confirm that there is a pre-learning performance match. In other
words, we must confirm that the acquisition framework started with individual task models that
are representative of the performance of subjects just before beginning dual-task trials. In dual-task
studies, subjects are ?fpically first trained to a criterion level on the individual tasks before begin-
ning dual-task trials.

In addition to verifying the initial models, one should verify the behavior of the expert models
with a fine-grained comparison to human behavior. A study could be done to gather eye-tracking
data in addition to the normally collected data. The eye tracking data, combined with choice-task
response and joystick movements might be used to make this comparison.

12.2 FURTHER VALIDATION OF THE ACQUISITION FRAMEWORK

It was stated in Chapter 1 that this work would only focus on the transition from novice to expert,
not on the time to make the transition. As a further validation of the framework, one should com-
pare the learning times (possibly in terms of trials) with an empirical study. It is expected that the
framework learns too fast compared to humans.

Related to learning rates, the learning procedure runs concurrently with task performance.
There is no cost on task performance due to the learning procedure, and only a small cost to the
learning procedure due to task performance. This is not psychologically plausible. Lintern &
Wickens (1990) and others who have demonstrated that learning rates can be ill-affected by heavy
resource demands. Although we feel that the learning procedures in this work are sound, we

94



ATM prompt
appears

<«
\4
~

NOVICE
look at putcard | look at read look at hand on enter
slot in slot TR screen screen keyboard | keyboard code
' ¥T_/
EXPERIENCED USER ¥ F
look at put card look at read look at hand on enter
slot in slot screen : screen keyboard | keyboard code
» time saved j
EXPERT USER " .
look at putcard | lookat | handon i read look at enter
slot in slot keyboard | keyboard screen keyboard code
look at
screen | ¢
time saved j

Figure 12.1 An expert strategy that the current framework cannot produce

believe that further work is needed to explore different forms of interaction between task perfor-
mance and the learning procedures.

In Chapter 10, it was mentioned that the framework assures error-free behavior, in part,
because the promotion guidelines maintain the ordering of commands within a modality. How-
ever, this order preservation, though ensuring error-free behavior, prevents the framework from
finding optimal performance strategies. Recall the ATM task (see Figure 7.3) that was used to
illustrate the movement pre-positioning technique. The acquisition framework, if given the novice
model depicted there, could easily transition to the experienced strategy shown. However, an
expert at the ATM task would produce behavior as shown in Figure 12.1. In addition to pre-posi-
tioning the eye, the hand is pre-positioned to the keyboard long before it is necessary. This yields
additional reduction in the time to perform the task. The acquisition framework, in its present
form, cannot create the expert strategy when given the novice strategy because the promotion
guidelines main the ordering of command within a modality. Specifically, the | ook- at - key-
boar d command could not be promoted before the | ook- at - scr een command. To find these
globally optimal strategies, the framework will needs further revisions.

12.3 STRATEGY GENERATION AND SELECTION

How do people generate and select strategies? John & Lallement (1997) investigated the evolution
of strategy use in the Kanfer-Ackerman Air Traffic Controller O task. They found that subjects
explore many different task strategies as they learned to perform the task. Their data also showed
that not all subjects converged to the optimal strategy by the end of training and of the few that
even found the optimal strategy at some point during training, not all were using it at end of train-
ing. These interesting results make one ask how subjects generate strategies, how the generated
strategies are selected for use, and how are the selected strategies evaluated. Empirical work on this
topic have been performed by Jones & VanLehn (1991, 1994), Reder & Schunn (1996), Schunn &
Reder (1996), among others.

95



Strategy
generation

/ \tt i
}GSUHS" stra eﬁ

.Task  vesulis'— Strategy

environment selection
\ procedural declarative
actions knowledge knowledge
(strategy)

Strategy
refinement
framework

declarative
knowledge
(strategy)

Performance

knowledge

< procedural _
knowledge

Figure 12.1 A system for realizing gross strategy shifts and fine-grained refinements.

One of the contributions of this work is the proposed structure for representing task strategies.
It may be possible that the framework presented here could be built upon to explore the question
of how people generate and select task strategies. Figure 12.2 depicts a rough sketch of a system.

The strategy generator produces possible strategies for a given task. The generated strategies are
passed to a strategy selection module which selects a single strategy for exploration. The output of
this module is declarative knowledge in the form of the chronological task strategy data structure,
and the procedural knowledge to realize the performance implicit in the strategy structure.
Though not explicitly shown in the figure, the strategy selection module would also select which
meta-strategy—Ilockout or interleaved—is to be used when performing dual-task combinations.

The strategy refinement framework module is the acquisition framework presented in this work.
It creates new procedural knowledge (the promoted command rules) and declarative knowledge
(changes to the strategy data structure to keep it “in sync” with the procedural knowledge).

The performance knowledge is the collection of procedural knowledge for the selected task strat-
egy and any refinements of that strategy. The actions (motor commands) produced by this knowl-
edge are passed to the task environment module. The performance due to the selected strategy is
ted back to both the strategy generator and the strategy selector and may result in the generation of
new strategies or the selection of a different strategy.

Building such a system would be a major undertaking. Our ideas of how one would proceed
are few, though we have an observation: strategies are plans. There is a vast body of work in the
area of artificial intelligence that has been done and continues to be done on the topic of plan rep-
resentation, generation, selection, and evaluation. These algorithms might be used in whole or

96



part, or they might only provide ideas on which a cognitively-plausible strategy generation and
selection system is based.

12.4 EXPLORING THE PROCEDURALIZATION OF DECLARATIVE
KNOWLEDGE

There are two important inputs to the acquisition framework. First, the chronological task strategy
data structure, which is declaratively represented, is hand-coded by the modeler and provided to
the framework. This input is justified because we believe subjects gain this information primarily
from reading task instructions. We also believe this knowledge should declaratively represented.

The second input to the framework is procedural knowledge that performs the task exactly as
it is represented in the structure. This input is justified since we assume that we are modeling sub-
jects that are already experts at the individual tasks and have no dual-task experience. We also
assume that task facilitation knowledge (the 01, 02, and il nodes of Figure 8.2) is known by the
subjects prior to the first trial of dual-task performance.

An area for future work would be to relax the second set of assumptions by not providing the
procedural knowledge. Instead, one could develop a new learning procedure that would learn the
procedural knowledge from the declarative strategy structure. There has been much work in this
area of the acquisition of skill and knowledge compilation (Anderson, 1983, 1987; Anderson et al.,
1981; Neves & Anderson, 1981). There is also prior Soar work by Huffman (1994) that touches
on this topic.

If this declarative-to-procedural learning procedure is successful, one could go a step further
by not supplying the framework with the chronological task strategy data structure at all. Instead,
develop a learning procedure that would accept plain text instructions as input and convert them
into a declarative representation; specifically, our startegy data structure. There is previous work in
Soar on instructable autonomous agents (Huffman, 1994) and on natural language comprehension
(Lewis, 1993). These successful work may be recruited to this effort. There is also non-Soar work
in the area of instruction following by Bovair & Kieras (1991) that speaks to this specific issue.

By finding and incorporating such learning procedures, the augmented framework would be
able to model a much broader novice-to-expert transition. It would also provide further confirma-
tion that Soar’s chunking mechanism is applicable to the wide variety of learning necessary to span
this novice-to-expert transition for general task performance

Our intuition is that creating such learning procedures should be quite doable, particularly the
procedure for proceduralizing the startegy data structure. We also anticipate that they might be
easily accommodated by the framework. However, we have not reviewed and are not familiar with
the literature to know what constraints the behavioral phenomena would impose on the construc-
tion of such learning procedures.

Notes to Chapter 12

1 From a personal communication with Christopher Wickens, it appears that subjects were not
trained to criterion on the individual tasks. This is understandable since single-task performance
levels were not relevant to their study.

97



APPENDICIES

98



APPENDIXA

DETAILS OF THE JAM RECOVERY AND AVOIDANCE
LEARNING PROCEDURE

In Chapter 6, we mentioned that some of the executive process rules used in the EPIC model of
the Wickens task described as defining an explicit, task-dependent strategy for controlling the
interleaving of the two tasks. We did not implement this executive process, choosing rather to
investigate if perhaps a minimalist control scheme could be used while still producing the same
level of expert performance. In this scheme, both tasks are allowed to run concurrently, enabling
the steps of each task to apply as they may. The main functional pitfall with this scheme is that
there is the risk of two or more motor commands being simultaneously sent to the same modality;
a jam condition. Our solution to this problem was to create a task-independent jam-recovery
learning procedure. This procedure will be described in this appendix.

Al PREFERENCE KNOWLEDGE

The procedure uses task-specific preference knowledge to resolve these conflicts. This knowledge
is declaratively and is produced by the firing at system start-up of the production shown in Figure
A.1. This rule states that a command generated by the choice-task is preferred over one generated

by the tracking-task.

sp {task-know edge*prefer*choi ce-task-over-tracki ng-task
(state <s> ~wickens-state <ws> “superstate nil)
(<ws> ~for-subgoal -1inking <fsl>)
-->
(<fsl> ~task-know edge <tk> + &)
(<tk> "prefer choice-task)
(<tk> "over tracking-task)
(<tk> “when choi ce- has-onset)

Figure A.1 A production for creating the declarative preference knowledge

99



A.2 THE JAM-RECOVERY LEARNING PROCEDURE

The trace in Figure A.2 starts with the choice stimulus appearing. The expected sequence of
actions happen: the eye is moved to the stimulus, the eye is returned to the cursor, a tracking com-
mand is sent, the stimulus is recognized and verified. At cycle 364, we see the occurrence of a jam:
the choice-task has sent a response at the same time that the tracking task has sent a command to
track the target (move the joystick).

All learning (chunking) in Soar arises from activity in a subgoal. Typically, the subgoal will
occur naturally but in other cases, the model must be put into a subgoal by artificial means, what
one might call “deliberate subgoaling”. The jam detection code has been written such that when a
jam situation arises (cycle 3725), Soar is deliberately put in a subgoal. At cycle 3727, we see this
subgoal.

3652: O 2450 (choice-task tracking-task executive)
3713: choi ce-stinul us- onset
3713: command: FI XATE PSYCHOBJ313 gener at ed- by executive

3714: O 2487 (wait)

3715: O 2487 (wait)

3715: command: PERFORM PLY gener at ed- by tracki ng-task
3716: O 2487 (wait)

3716: command: MOVE PSYCHOBJ252 gener at ed- by executive
3717: O 2487 (wait)

3718: O 2487 (wait)

3719: O 2487 (wait)

3720: O 2487 (wait)

3721: O 2487 (wait)

3721: command: PERFORM PLY gener at ed- by tracki ng-task
3722: O 2487 (wait)

3723: O 2487 (wait)

3723: recogni zed choi ce-arrow

3724: O 2487 (wait)

3724: verified right-choice-arrow

3725: O 2487 (wait)

3725: jamed command: PERFORM PLY gener at ed- by tracki ng-task
3725: jamed command: PERFORM PUNCH gener at ed- by choi ce-t ask

3726: O 0487 (wait)

3727: ==>S: S151 (state no-change)

3728: O 2496 (mark-jam

3729: O 2498 (choi ce-task tracking-task executive)

3729: jamed command: PERFORM PLY gener at ed- by tracki ng-task
3729: jamed command: PERFORM PUNCH gener at ed- by choi ce-t ask

3730: O 2498 (choi ce-task tracking-task executive)
3731: O 2499 (identify-janmed-nodality)
3732: O 2500 (choose-the-preferred- command)

3732: notice: propose*top-I|evel -operator*executive-jam avoi dance
Bui | di ng chunk- 42

3733: O 2502 (executive-jam avoi dance)
3733: command: PERFORM PUNCH gener at ed- by choi ce-t ask
3734: O 2503 (choice-task tracking-task executive)

Figure A.2 A trace of the jam-recovery procedure learning a jam-avoidance rule

100



The action that the model takes when a jam is detected between say conmand- A and com
mand- B is as follows: the model stops performing the tasks and instead does some internal reflec-
tion/problem-solving to resolve the conflict. When a solution is found, the model produces the
solution and resumes performance on the tasks.

During the internal reflection/problem-solving phase, the model deliberately reconstructs the
situation that caused the jam, allowing the rules that produced the jam to refire but this time in an
internal context. One way to think of this is that when the jam first occurred, the model was
behaving reactively (i.e. it was not “paying attention”). By using internal reflection, the model is
able to deliberately (i.e. “pay attention”) reproduce the jam condition in a manageable context (one
where the command is not automatically sent to EPIC but is rather held internally).

After the jam has been recreated, the jam-recovery procedure then applies the preference
knowledge described above to decide which action is preferred. For this example, assume that
command- A is preferred over command- B. After that decision has been made, the procedure then
created a chunks that says: when the state of the world is such that the rules that produce com
mand- A and conmand- B both match, then produce an operator to generate conmand- A.

Returning to the trace, we see that the selected subgoal operator at cycle 3729 is the same as
the top-state operator (see cycle 3652). This indicates that the internal state has been recon-
structed. At this cycle, we also see that the rules which caused the jam at cycle 3729 have refired.
At cycle 3731, a subgoal operator is applied to identify the jammed modality. The operator at cycle
371 does is necessary to ensure that the final learned chunk is correct. At cycle 3732, the prefer-
ence knowledge is applied to identify which command is preferred.! A jam-avoidance chunk is
then created. This chunk is an operator proposal and it is immediately applicable as seen at cycle
3733. After it has produced the preferred command, it is terminated and we see the resumption of
the dual tasks at cycle 3734.

Figure A.3 shows the resulting jam-avoidance, chunk- 42. The preconditions of this chunk
contain the union of the preconditions of the jamming rules. The action side of the rule is essen-
tially that of the preferred command.

A.3 THE APPLICATION OF JAM-AVOIDANCE RULES

In the future, when the situation arises where the same jam would occur, the learned jam-avoid-
ance chunk will fire. This behavior is seen at cycle 57 in Figure A.4. The chunk will propose the
executive-jam avoi dance operator for the top-state. The existing top-state operator,
(choi ce-task tracking-task executive), is temporarily displaced. In cycle 58, the oper-
ator apply and sends the preferred command; the PUNCH, thus obviating the impending jam. After
the command has been sent, the operator terminates and the previous task operator are reinstated.

A4 REQUIRED INPUTS TO THE LEARNING PROCEDURE

The only required input is the declarative task preferences rule, as seen in Figure A.1.

Notes to Appendix A

1 The current jam-recovery procedure only works with two competing commands. This is why
choosing the preferred command can be represented by a single operator that takes only one
decision (choose- pr ef er r ed- command). To manage jams of more than two commands would
require a combinatorial number of comparisons.

101



sp {w ckens-task*tracki ng-task*track-target
(state <s> "task-state <ts> “operator <o0>)

(<o>

JAMMED COMMANDS

“nane tracking-task “io <io>)

(<ts> ~for-subgoal - copyi ng <fsc>)
(<fsc> ~task-object <t1>)
(<t1> ~is-the target)

(<t1> ~obj ect
(<obj 1> ~physobj

<obj 1>)
<psychobj 1>)

(<fsc> ~task-object <t2>)
(<t2> ~is-the cursor)

(<t2> "obj ect
(<obj 2> ~physobj

<obj 2>)
<psychobj 2>)

(<io> “input-link <il>)

(<il>
(<vme

}

Avi sual . message <vnp)
Aargl | GLOBAL- FEATURE|
~arg2 | TRACKI NG ERROR)|
Narg3 | SMALL|)

(<il> ~notor-ocul ar. message <non)
(<mome “arg2 | FREE|)

(<mone Margl | EXECUTI ON| )

(<i|> ~notor-nanual . tessage <nmmm®)
(<mmr> “arg2 | FREE|)

(<mme ~argl | MODALI TY])

(<i o> ~fake-out put-1|ink.notor-nanual

-->

(<mr> ~command <c> + &)

(<c>
(<c>
(<c>
(<c>
(<c>
(<c>
(<c>
(<c>
(<c>

sp {w ckens-task*choi ce-task*respond-|eft-index
(state <s> “task-state <ts> “operator <o0>)

(<o>

~argl | PERFORM +)
Marg2 | PLY| +)
~arg3 | JOYSTICK| +)
Margd | RIGHT| +)

~ar g5 | ZERO- ORDER- CONTROL|
“obj ect1 <psychobj 2> +)
~obj ect 2 <psychobj 1> +)
~generat ed-for tracking-task +)
“gener at ed- by tracki ng-task +)

+)

“nane choice-task "io <io>)

(<ts> ~for-subgoal - copyi ng <fsc>)
(<pe> ~condition right-choice-arrow)

(<fsc> "percept-events. percept-event <pe>)
(<pe> ~nane choi ce-stiml us-features

~Apot or - manual - count 0)

(<i o> ~fake-out put-1ink.notor-nanual

(<i o> 7input-Iink.notor-nanual

<m®)

(<mr> ~nessage <mmP)
(<mm® ~argl | PROCESSOR| )
(<mm® “arg2 | FREE|)

-->

(<omre ~command <c> + &)

(<c>

Aupdat e- count er <uc>)

(<uc> ~not or - nanual -count 1)
(<uc> 7l ast - not or - manual - count 0)
(<uc> ~percept-event

(<c>
(<c>
(<c>
(<c>
(<c>

(<c>
(<c>

choi ce-sti nul us-f eat ures)

Aargl | PERFORM +)
Marg2 | PUNCH +)
~arg3 | LEFT| +)
Narg4 | I NDEX| +)

“per cept - event - nane

choi ce-sti mul us- f eat ures)
~gener at ed-for choi ce-task +)
~gener at ed- by choi ce-task +)

JAM-AVOIDANCE CHUNK

sp {chunk-
: chunk
(state
(<s1>
(<el>
(<s1>
(<t1>
{ (<f1
(<f1
{ (<f1
(<f1
(<f1>
(<t2>
(<f1>
(<t3>
(<t1>
(<f2>
(<f2>
(<t4>
(<t4>
(<f1>
(<pl>
(<p2>
(<p2>
(<p2>
(<t2>
(<ol1>
(<t3>
(<o02>
(<s1>
(<i 1>
-{ (<i2
(<vl
(<mi
(<mt
(<m
(<i 1>
(<i 2>
(<>
(<nB8>
(<nmB>
(<>
(<ma>
(<md>
(<i 2>
(<nmb>
(<nmb>
(<nmb>
-->
(<s1>
(<s1>
(<o04>
(<o4>
(<o4>
(<o04>
(<p5>
(<ul>
(<ul>
(<ul>

<mm®)

<onme)

(<p5>
(<p5>
(<p5>
(<p5>
(<p5>

(<p5>
(<p5>

42

<sl1> ~superstate nil)
Nexecutive-state <el>)
-~term nate-j am avoi dance t)
“task-state <t1>)
~for - subgoal - copyi ng <f1>)
> -~dual -t ask- node t)
> -~choi ce-stinul us-has-onset t)}
> -~dual -t ask- node t)
> ~choi ce-stimul us- has-onset t)}
"t ask-obj ect <t2>)
Nis-the target)
"t ask- obj ect <t3>)
~is-the cursor)
~for-subgoal -1 nking <f2>)
Nidentified-task-objects t)
"t ask- know edge <t4>)
Aover tracking-task)
~prefer choice-task)
Apercept -events <pl>)
Apercept - event <p2>)
~Acondi tion right-choice-arrow)
~pot or - manual - count 0)
Anane choi ce-stinmul us-features)
~obj ect <o0l>)
“physobj <p3>)
Aobj ect <02>)
“physobj <p4>)
Ao <il1>)
Ainput-1ink <i2>)
> Avisual <vl>)
> Amessage <nil>)
> Marg3 | SMALL|)
> Marg2 | TRACKI NG ERROR| )
> Margl | GLOBAL- FEATURE| )}
Aout put-1ink <03>)
Apot or - manual  <nR>)
“message <nB>)
Narg2 | FREE])
~argl | MODALI TY])
“message <md>)
Narg2 | FREE])
~argl | PROCESSOR| )
Anot or - ocul ar <nb>)
"nmessage <nb>)
~arg2 | FREE|)
~argl | EXECUTI ON| )

Noperator <o4> +)

Noperator <o04> =)

Anane executive-jam avoi dance +)
“type jam avoi dance +)

Anodal i ty-name not or-manual +)
~preferred-command <p5> +)
Aupdat e- counter <ul> +)

Anot or - manual -count 1 +)

Al ast - not or - manual - count 0 +)

~per cept - event
choi ce-stinulus-features +)

Nargl | PERFORM +)
Marg2 | PUNCH +)
~arg3 | LEFT| +)
Narg4 | I NDEX| +)

“per cept - event - nane

choi ce-stinulus-features +)
~gener at ed- by choi ce-task +)
~gener at ed-for choice-task +)

Figure A.3 The jamming command rules and the resulting jam-avoidance chunk

102




22: O 010 (choice-task tracking-task executive)
45: choi ce-sti nul us- onset
45: command: FlI XATE PSYCHOBJ346 gener at ed- by executive

46: G 018 (wait)

47: G 018 (wait)

48: O 018 (wait)

48: command: MOVE PSYCHOBJ345 gener at ed- by executive
49: O 018 (wait)

50: G 018 (wait)

51: G 018 (wait)

52: G 018 (wait)

53: O 018 (wait)

53: command: PERFORM PLY gener at ed- by tracki ng-task
54: O 018 (wait)

55: G 018 (wait)

55: recogni zed choi ce-arrow

56: G 018 (wait)

56: verified right-choice-arrow

57: O 018 (wait)

Firing chunk-42

58: O 25 (executive-jam avoi dance)

58: command: PERFORM PUNCH gener at ed- by choi ce-task
59: O 010 (choice-task tracking-task executive)

Figure A.4 The application of the jam-avoidance chunk

103




APPENDIXB

THE CHRONOLOGICAL TASK STRATEGY DATA
STRUCTURE

This appendix presents the declarative representation of the strategy data structure. The initial and
post-promotion structure for the Wickens task will be presented.

B.1 THE INITIAL STRUCTURE

The initial structure is created a production that matches and fires on start-up. This production
appears below with descriptions of the important elements.
B == e e e

### chronol ogi cal task strategy structure for the Wckens task
o eeeieeeaoaaaaoooo

sp {el abor at e- st at e*wi ckens-t ask-representation
(state <s> ~task-state <ts> “superstate nil)
(<ts> ~for-subgoal - copyi ng <fsc>)

-->

The ~fl at-pe-1ist structure provides an efficient means to directly access to the perceptual
events in the structure.

(<fsc> Minstruction <instr>)
(<fsc> ~flat-pe-list <instr>)

(<instr> ~pe-node <penode0> + &)
(<instr> “pe-node <penodel> + &)
(<instr> “pe-node <penode2> + &)
(<instr> ”~pe-node <penode3> + &)
(<instr> “pe-node <penode4> + &)
(<instr> “pe-node <penode5> + &)

Likewise, the ~f | at - acti on-1i st structure provides an efficient means to directly access to the
actions in the structure.
(<fsc> ~flat-action-list <actions>)
(<actions> “action <act10> + &)
(<actions> “action <act20> +
(<actions> “action <act30> +
(<actions> “action <act31> + &)
(<actions> “action <act40> +
(<actions> “action <act50> +

This is the perceptual event node for the tri al - st art event. The perceptual event list is a dou-

bly-linked list, with name pointers to the previous and next events. Since this is the first event, the
Aprev- per cept - event name pointer is set to ni | . The node contains the name of the event, a

104



link to the actions that are dependent on the event, a count of the number of actions and some
miscellaneous counters used the by the promotion learning procedure. At present, there are no
actions that are dependent on this node, however, a placeholder dummy- act i on is always present
on the event action lists.

# event O
(<penodeO> ~percept-event trial-start
Anum actions 0
“actions <action0>
Al ast - ot or - manual - count 0
Al ast - not or - ocul ar-count 0
Aprev-percept-event nil
“next - per cept - event choi ce-stinmul us-onset)
(<action0> "action dummy-action + &)

For the second event, we see the ~num act i ons is 1; the action of f i xat e-t 0- st i mrule.

# event 1
(<penodel> ~percept-event choice-stinul us-onset
Anum actions 1
“Mactions <actionl>
Al ast - ot or - manual - count 0
Al ast - not or - ocul ar-count 0
Aprev-percept-event trial-start
“next - per cept - event choi ce-stimul us-features)
(<actionl> ~action <actl10> + &)
(<actionl> “action dummy-action + &)

The action structure <act 10> describes the action. Modality-specific command chains are dou-
bly-linked lists, as seen by the ~rmodal i ty, ~prev-acti on, and ~next - act i on attributes. The
first things that is evident about this command is that is an ocular command and it is conditional
on whether the features of the stimulus are poor or not—recall that on small vertical separations, it
may not be necessary to saccade to the stimulus. If the features are not poor, then no command is
sent. If the features are poor however, the a FI XATE command is sent. The ~obj ect 2 choi ce-
ci rcl e refers to the circle where the choice stimulus will appear. This attribute specifies where
the stimulus wi// appear and is used by the prepare promotion style when creating PREPARE com-
mands. The ~precondi ti oned- on attributes is used exclusively by the chain promotion style.
As a command is chain promoted, the pr econdi t i oned- on value changes as to chronologically
earlier events. The Aversion attribute is incremented on various promotions of the command. The
value is tested in the motor command rule and it is by this means that old motor command rules
are disabled; because they match on an old, expired version number.
# event 1: notor O
(<act 10> ~type conditional ~nopdality notor-ocular “command <c10> + & “command <cl1l> + & ~flag <fnl0>
Apreconditioned-on nodality-free “preparable t “event-pronotable nil “~version 0
“obj ectl onset ”"object2 choice-circle "prev-action nil “next-action nil)
(<c10> ~condition features-are-poor “argl |Fl XATE|)

(<cl11> ~condition features-are-not-poor “argl nil)
(<fn10> ~nane choi ce-stinul us-onset “count 0)

The structure of the choi ce- sti mul us-f eat ur es event node is similar to that of the previous,
except here, the command is for the motor manual processor. Here, we see the full specification of
the motor manual command.

# event 2
(<penode2> “percept-event choice-stinul us-features
Anumactions 1
“Mactions <action2>
Al ast - not or - manual - count 0
Al ast - ot or - ocul ar - count 0
Aprev-percept-event choice-stinmul us-onset
“next - per cept - event responded-to-choi ce-stinmul us)
(<action2> "action <act20> + &)
(<action2> "action dummy-action + &)

# event 2: notor O

105



(<act 20> ~type conditional ~npdality notor-manual ~hand | LEFT| “command <c20> + &
Acommand <c21> + & ~lag <fn20>
Apreconditioned-on nodality-free ~“preparable nil "event-pronotable nil ~version O
~objectl nil ~object2 nil ~prev-action nil “next-action nil)

(<c20> ~condition |eft-choice-arrow “argl | PERFORM “arg2 | PUNCH "arg3 |LEFT| ”~arg4 | M DDLE|)
(<c21> ~condition right-choice-arrow “argl | PERFORM ”“arg2 | PUNCH ~arg3 |LEFT| ”~arg4 || NDEX|)

(<fn20> ~nane choi ce-stinul us-features ~count 0)

The structure of the r esponded- t 0- choi ce- st i mul us event node is unique in that it has both
a manual and an ocular command chain. The manual command performs a tracking command.
Note that it is marked as event-promotable (see Appendix C). This denotes that when this com-
mand is generated, an event-promotion suggestion could fire, causing it to be event-promoted.
The ocular action structure is similar to that of event 1 in that the command is conditional. This
time, it is conditional on the quality of the features of the cursor. Recall that this ocular command
returns the eye to the cursor after saccading to the choice stimulus. As before, the vertical separa-
tion between the choice stimulus and the cursor may be small enough such that a saccade is not
needed, hence this conditionality. This command is also denoted as event-promotable. The
~obj ect 1 attribute codes the name of the object that should be looked at, in this case, cur sor.

# event 3

(<penode3> “percept-event responded-to-choice-stinulus
Anum actions 2
“actions <action3>
Al ast - ot or - manual - count 0
Al ast - ot or - ocul ar - count 0
~prev-percept-event choice-stinulus-features
Anext - percept-event nil)
(<action3> "action <act30> + &)
(<action3> “action <act31> + &)
(<action3> "action dummy-action + &)

# event 3: notor O

(<act 30> ~type unconditional “~nodality notor-nmanual “hand |RIGHT| “command <c30> ~flag <fn30>

Aprecondi tioned-on nodality-free "preparable nil “event-pronptable t ~version 0O
~obj ectl cursor “object2 target “prev-action nil “next-action nil)

(<c30> ~argl | PERFORM “arg2 | PLY|] “arg3 | JOYSTICK| “arg4 |RI GHT| “arg5 | ZERO ORDER- CONTROL| )

(<fn30> ~nane responded-t o-choi ce-stinmulus ~count 0)

# event 3: notor 1

(<act 31> "type conditional ~“npdality notor-ocular “command <c31> + & “"command <c32> + & ~flag <fn31>

~Aprecondi ti oned-on nodality-free “preparable nil ”“event-pronptable t ~version 0
Nobjectl cursor "object2 nil ~prev-action nil “next-action nil)

(<c31> ~condition features-are-poor “argl | MOVE|)

(<c32> ~condition features-are-not-poor “argl nil)

(<fn31> ~nane responded-t o-choi ce-stinmulus ~count 0)

The following two events are for the tracking task:

# event 4

(<penode4> ~percept-event tracking-error-not-snall
Anumactions 1
“actions <action4>
Al ast - ot or - manual - count 0
Al ast - ot or - ocul ar - count 0
Aprev-percept-event trial-start
“next - percept-event nil)
(<actiond4> "action <act40> + &)
(<action4> “action dummy-action + &)

# event 4: notor O

(<act 40> ~type uncondi tional “nodality motor-nmanual “hand |RI GHT| ~command <c40> ~flag <fn40>

~precondi ti oned-on nodality-free “preparable nil ”“event-pronptable nil “version 0
“objectl cursor "object2 target “prev-action nil “next-action nil)

(<c40> "argl | PERFORM "arg2 | PLY| “arg3 | JOYSTICK| “arg4 |RI GHT| “~arg5 | ZERO ORDER- CONTROL|)

(<fn40> ~nane tracking-error-not-snall “count 0)

# event 5
(<penode5> “percept-event cursor-features-not-excellent
Anumactions 1
“Mactions <action5>
Al ast - ot or - manual - count 0
Al ast - not or - ocul ar-count 0

106



Aprev-percept-event trial-start
“next - percept-event nil)

(<action5> Maction <act50> + &)
(<action5> “action dummy-action + &)

# event 5. notor O

(<act 50> “type conditional “nodality notor-ocular “command <c50> + & “command <c51> + & ~flag <fn50>
~precondi ti oned-on nodality-free “preparable nil “event-pronptable nil “version 0
Nobjectl cursor "object2 nil ~prev-action nil “next-action nil)

(<c50> ~condition features-are-excellent “argl nil)

(<c51> ~condition features-are-not-excellent “argl | MOVE|)

(<fn50> ~nane cursor-features-not-excell ent “count 0)

}

B.2 THE POST-PROMOTION STRUCTURE

After all promotions have been applied, the first event in the structure now has a PREPARE com-
mand. The ~obj ect 2 attribute codes the name of the task object to use as the argument to the
prepare command; ( PREPARE choi ce-circle).

# event 0
(P3 ~percept-event trial-start
Anum actions 1
Mactions A7
Al ast - ot or - manual - count 0
"l ast - mot or - ocul ar - count 0
~prev-percept-event nil
“next - per cept - event choi ce-sti mul us- onset)
(A7 "~action All “action dummy-action)

# event 0: notor O

(A1l ~type unconditional “nodality notor-ocular ~“comand Cl5 ~flag F8
Aprecondi ti oned-on processor-free ~preparable nil “event-pronotable t
~obj ect1 onset “object2 choice-circle “prev-action nil “next-action nil)
(C15 "argl | PREPARE|)
(F8 ~nane trial-start “count 0)

The second event has a two-element ocular command chain. The second command (A6), which
returns the eye back to the cursor, has been pipelined unto the first command in the chain. This is
evident from the ~pr econdi ti oned- on field begin set to processor - f r ee. The value of the
Aver si on attribute shows that the command has been promoted three times—two event-promo-
tions to move 02 from pe3 to pe2 and then to pel followed by a single chain-promotion (since it
is an ocular command), as seen in Figure 8.4.

# event 1
(P4 ~percept-event choice-stinmul us-onset
Anum actions 2
Mactions A8
Al ast - mot or - manual - count 0
Al ast - mot or - ocul ar - count 0
Aprev-percept-event trial-start
Anext - percept - event choi ce-sti mul us-feat ures)
(A8 "action A3 “action A6 “action dummy-action)

# event 1: notor O

(A3 ~type conditional ~nodality notor-ocular “command C2 “command C3 ~flag F4
Aprecondi ti oned-on nodality-free “preparable nil ”“event-pronptable nil ~version 0
~Nobj ect1l onset ”“object2 choice-circle “prev-action nil “next-action 1)
(C2 ~argl | FI XATE|] ~condition features-are-poor)
(C3 nargl nil ~condition features-are-not-poor)
(F4 ~nane choi ce-stinul us-onset “count 0)

# event 1: notor 1
(A6 ~type unconditional “~nodality notor-ocular “command C7 ~flag F7
~precondi ti oned-on processor-free “preparable nil “event-pronotable t "~version 3
Aobj ectl cursor “object2 nil “prev-action 0 “next-action nil)
(C7 ~argl | MOVE])
(F7 ~nane choi ce-stinul us-onset “count 1)

107



The second command on this event, which implements the t r ack- expr ess rule, has been pipe-
lined up to first. The value of the Aver si on attribute is five—one event promotion to move ml
from pe3 to pe2, followed by four chain promotions (because it is a manual command), as seen in

Figure 8.4.

# event 2
(P5 ~percept-event choice-stinulus-features
Anum actions 2
~actions A9
Al ast - not or - manual - count 0
Al ast - not or - ocul ar-count 1
~prev-percept -event choi ce-sti mul us-onset
~next - per cept - event responded-to-choice-stinul us)
(A9 "action A4 “action A5 “action dunmy-action)

# event 2: notor O

(A4 ~type conditional “nodality notor-nanual “hand | LEFT| ~command C4 ~command C5 ~flag F5
~Aprecondi ti oned-on nodality-free ~preparable nil “event-pronotable nil “version 0
Aobjectl nil ~object2 nil ~prev-action nil “next-action 1
(C4 ~argl | PERFORM “arg2 | PUNCH “arg3 |LEFT| ~arg4 | M DDLE| ~condition |eft-choice-arrow)
(C5 nargl | PERFORM “arg2 | PUNCH “arg3 | LEFT| “arg4 |INDEX| ~condition right-choice-arrow)
(F5 ~nane choi ce-stinul us-features “count 0)

# event 2: notor 1
(A5 ~type unconditional “nodality notor-nanual “hand | RIGHT| “command C6 ~flag F6
~Aprecondi ti oned-on processor-free “preparable nil “event-pronotable t “version 5
~Aobj ectl cursor ”“object2 target “prev-action 0 “next-action nil)
(C6 "argl | PERFORM "arg2 | PLY| ~arg3 | JOYSTICK| “arg4 |RIGHT| “arg5 | ZERO- ORDER- CONTROL| )
(F6 ~nane choi ce-stinul us-features “count 1)

All the motor commands that were on this event have been event-promoted.

# event 3

(P6 "percept-event responded-to-choice-stinulus
Anum actions 0
~actions Al0
Al ast - not or - manual - count 1
Al ast - ot or - ocul ar-count 1
~prev-percept-event choice-stinulus-features
Anext - percept-event nil)
(A10 “action dummy-action)

The tracking nodes are the same as before since no promotions applied to those command nodes.

108



109



APPENDIX C

DETAILS ON THE SUGGESTION AND APPLICATION
OF PROMOTIONS

This appendix presents the conditions under which promotions are suggestion and once suggested,
what action is done to the chronological task strategy data structure.

C.1 EVENT PROMOTION

Event promotions are used to promote motor commands to chronologically earlier perceptual
events. It is defined as follows: When an evens—promotable motor command that is preconditioned
on pe-node pe(t) is executed, an event-promotion suggestion is generated. A command is evens-
promotable when all of the following conditions are satisfied.

*  The command under consideration must be the first command in a motor chain.

*  The command is not inextricably bound to the perceptual event to which it was initially
dependent. A command is inextricably bound if a promotion of the command would pro-
duce performance that deviates from the task instructions. For example, none of the com-
mand nodes in Figure 7.5 are event-promotable. Nodes 00 and ol are not event-
promotable because the task instructions specifically state or imply that a) the subject
should look at the fixation point until the stimulus has onset, and b) looking back at the
stimulus should occur after the response is complete. A command can also be inextricably
bound due to logical limitations. For example, nodes L and R in the figure are not event-
promotab e manua re pon e annot be ma e unti the timuu feature have arrive
a o ingthe timuu tobei entifie  he event-promotabiit ofa omman i in i ate

b at nil Aevent - pronot abl e
ol
pe(t-1)

110



pe(t-1)

ol
pe2 pel 02 pel
pe(t-1)
ol pe2 mo
0l o2

pe(t)

PUNCH




trial-start  stim-onset stim-features

pel

trial-start  stim-onset

pel
[o0 | X

trial-start  stim-onset

pei

[ 00 |—> [ pot |
pmo|

PLY
Apr eparabl e

trial-start

pe(t-1) (prepare <action>)
<action> pe(t)



pe(t-1)

pol

pe(t-1)

pe(t-1)

se(t-1

pnm0

se(t)



PARE

o0
o0

chunk-1 chunk- 3
chunk- 2 PRE-
trial-start

executive executive

L1

PREPARE



18:
71
71
72
72
73:
74
75:
76:
T7:
78:
79:
80:
81:
82:
82:
83:
83:
83:
84:
84:
85:
86:
87:
88:
89:
90:
91:
92: ;
Bui | di ng chunk-1

O 012 (choice-task executive)
add event: choi ce-stinul us-onset
command: FI XATE PSYCHOBJ7 gener at ed- by executive

G 013 (wait)
Prepare pronotion suggestion: FlIXATE choice-circle
40 (copy-suggestion-nodality)
C67 (copy-suggestion-count)
49 (copy-suggestion-pen)
C62 (copy-suggesti on-precond)
066 (copy-suggesti on-object 2)
24 (copy-suggestion-type)
44 (copy-suggestion-cen)
20 (fini shed-copy)
018 (executive)
O18 (executive)
recogni zed choi ce-arrow
==>S: S8 (operator no-change)

verified | eft-choi ce-arrow
add event: choice-stinulus-features
comrand: PERFORM PUNCH LEFT | NDEX gener at ed- by choi ce-task
O76 (copy-suggestion-type)
0118 (copy-suggesti on-obj ect 2)
96 (copy-suggestion-cen)
2 (copy-suggestion-nodality)
0109 (copy-suggestion-count)
0101 (copy-suggesti on-pen)
0104 (copy-suggesti on-precond)
0128 (fi ni shed-copy)
0127 (prepare-pronotion-ocul ar)

Q000000000

Q000000

©

Firing chunk-1
Bui | di ng chunk-2
Firing chunk-2
Bui | di ng chunk-3
Firing chunk-3

pol

L1 R1




~Aprecondi tion-on

94:
95

95

96:
96:
97:
98:
99:

100:
101:
102:
103:
104:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
113:
114:
114:
115:
115:
116:
117:
118:
119:
120:

o 012 (c
==>S: S10
command: PER
o Q12

Chai n pronot
G 018

G 018

G 015

o]

o

hoi ce-task executive)
(oper at or no-change)
FORM PUNCH LEFT M DDLE gener at ed- by choi ce-t ask
9 (wait)
i on suggestion: PUNCH LEFT M DDLE
7 (copy-suggesti on-hand)
9 (copy-suggesti on- conmand-type)
6 (copy-suggestion-arg4)
70 (copy-suggestion-precond)
58 (copy-suggestion-nodality)
52 (copy-suggestion-arg3)

0140 (copy-suggestion-type)

O
O
G O
O
G O
command: PE
G O
G O
G O
o O
==>8:
O
(@]
O
O
conmmand: PE
(@;
add event:
(@]

60 (copy-suggestion-cen)

RFORM PUNCH LEFT RI NG gener at ed- by choi ce-task
73 (copy-suggestion-count)

36 (finished-copy)

35 (executive)

35 (executive)

S12 (operator no-change)

222 (copy-suggesti on-precond)

241 (copy-suggesti on-command-type)

225 (copy-suggesti on-count)

208 (copy-suggesti on-arg4)

RFORM PUNCH LEFT | NDEX gener at ed- by choi ce-task
210 (copy-suggestion-nodality)

r esponded- t o- choi ce- sti mul us

0192 (copy-suggesti on-type)

conmmand: FI XATE PSYCHOBJ6 gener at ed- by executive

00000

Bui | di ng chunk-4
Firing chunk-4

121:

O

Bui | di ng chunk-5
Bui | di ng chunk-6
Bui | di ng chunk-7
Firing chunk-7
Bui | di ng chunk-8
Firing chunk-8

204 (copy-suggesti on-arg3)
239 (copy-suggesti on-hand)
G327 (copy-suggesti on-cen)
G359 (finished-copy)

358 (chai n-pronoti on-manual )

G358 (chai n- pronoti on- manual )




1132: recogni zed choi ce-arrow

1133: O 2547 (wait)

1133: verified |eft-choice-arrow

1133: add event: choice-stinmul us-features

1134: O 2547 (wait)

Firing chunk-65

1134: command: PERFORM PUNCH LEFT | NDEX gener at ed- by choi ce-t ask
1134: command: PREPARE PSYCHOBJ6 gener at ed- by executive

1135: O 2547 (wait)

1135: Event pronotion suggestion: PREPARE fi xation-point

1136: O 2557 (copy-suggestion-type)

Firing chunk-21

1136: command: PERFORM PUNCH LEFT M DDLE gener at ed- by executive

1137: O 2563 (copy-suggestion-argl)
1138: O 2596 (copy-suggestion-objectl)
1139: O 2583 (copy-suggesti on-pen)
1140: O 2578 (copy-suggesti on-cen)

Firing chunk-41
1140: command: PERFORM PUNCH LEFT RI NG gener at ed- by executive

1141: O 2575 (copy-suggesti on-nodality)
1142: O 2556 (finished-copy)

1143: O 2553 (executive)

1144: O 2553 (executive)

1145: ==>S: S96 (operator no-change)

Firing chunk-61
1145: sendi ng command: PERFORM PUNCH LEFT | NDEX gener at ed- by executive

1146: O 2615 (copy-suggesti on-argl)
1146: add event: responded-to-choice-stimulus
1147: O 2627 (copy-suggestion-nodality)

1147: command: FlI XATE PSYCHOBJ6 gener at ed- by executive

1148: O 2609 (copy-suggestion-type)
1149: O 2648 (copy-suggesti on-objectl)
1150: O 2630 (copy-suggestion-cen)
1151: O 2635 (copy-suggesti on-pen)
1152: O 2660 (finished-copy)

1153: O 2776 (event-pronotion-ocul ar)

Bui I ding justification-2
Bui | ding justification-3
Bui | di ng chunk-67

Firing chunk-67

Bui | di ng chunk- 68

Firing chunk-68

Bui | di ng chunk- 69

Firing chunk-69

1154: O 012 (choice-task executive)

1155: ==>S: S102 (operator no-change)

1156: O 2780 (copy-suggestion-type)
1157: O 2801 (copy-suggesti on-cen)

1158: O 02806 (copy-suggesti on-pen)

1159: O 2819 (copy-suggesti on-objectl)
1160: O 2786 (copy-suggestion-argl)
1161: O 2798 (copy-suggesti on-nodality)
1162: O @2833 (fini shed-copy)




1163: O Q2778 (executive)

1164: O 2778 (executive)

1165: ==>S: S104 (operator no-change)

1166: O 2839 (copy-suggestion-type)
1167: O 2865 (copy-suggesti on-pen)
1168: O 2845 (copy-suggestion-argl)
1169: O 2878 (copy-suggesti on-objectl)
1170: O 2857 (copy-suggestion-nodality)
1171: O 2860 (copy-suggestion-cen)
1172: O 2892 (finished-copy)

1173: O 2891 (event-pronotion-ocul ar)
1174: O 2891 (event-pronotion-ocul ar)
Bui | di ng chunk- 70)




0: ==>S S1

Created initial strategy structure
1: O @ (ident-objects executive)
Firing chunk-3

Firing chunk-8

Firing chunk-13

Firing chunk-18

Firing chunk-23

Firing chunk-28

Firing chunk-33

Firing chunk-38

Firing chunk-43

Firing chunk-48

Firing chunk-53

Firing chunk-58

Firing chunk-63

Firing chunk-66

Firing chunk-74

Firing chunk-1

Firing chunk-9

Firing chunk-12

Firing chunk-4

Firing chunk-7

Firing chunk-44

Firing chunk-47

Firing chunk-64

2: O @ (ident-objects executive)
Firing chunk-14

Firing chunk-17

Firing chunk-29

Firing chunk-32

Firing chunk-49

Firing chunk-52

Firing chunk-69

Firing chunk-68

Firing chunk-67

3: O 2 (ident-objects executive)
3: recogni zed choice-circle
Firing chunk-19

Firing chunk-22

Firing chunk-34

Firing chunk-37

Firing chunk-54

Firing chunk-57

Firing chunk-71

Firing chunk-73

4: O @ (ident-objects executive)
4: verified choice-circle
Firing chunk-24

Firing chunk-27

Firing chunk-39

Firing chunk-42

Firing chunk-59

Firing chunk-62




MOTOR OCULAR PREPARED- FCR FI XATE PSYCHOBJ4

PREPARED- FOR
prepare-for-stim

prepare-for-stim

FI XATE
FI XATE

EXECUTI ON FREE



EXECUTI ON BUSY
EXECUTI ON FREE

EXECUTI ON FREE

MOTCR OCULAR SPECI AL FI NI SHED MOVEMENT COVVAND

PROCESSOR  EXECUTI ON

MOTOR OCULAR SPECI AL EYE ALREADY THERE

TI ON- RESCLUTI ON EXECUTI ON
MODALI TY BUSY
PROCESSOR BUSY

WATCH OBJECT
i f
not (visual ?erratic_object |ocation-resolution excellent)
not or ocul ar execution free
t hen
send-to-notor ocul ar nove ?erratic_obj ect




LOCATION

excel —|—C O_,i
-excel -excel

RESOLUTION
rule matches rule matches
and fires and fires
busy busy
PROCESSOR
free
busy busy
EXECUTION
free —o————
busy busy
MODALITY
free
WATCH OBJECT
PROCESSOR FREE EXECUTI ON BUSY
EXECUTI ON FREE MODALI TY FREE
EXECUTI ON FREE
TI ON- RESOLUTI ON WATCH OBJECT
PROCESSOR
EXECUTI ON FREE LOCATI ON- RESOLUTI ON
WATCH OBJECT

LOCATI ON- RESCLUTI ON
LOCATI ON- RESCLUTI ON EXCELLENT
EXECUTI ON FREE

LOCATI ON- RESOLUTI ON

EXECUTI ON LOCATI ON- RESOLUTI ON




sp {wat ch-obj ect *appl y*nove-eye
(state <s> ~task-state <ts> “operator.name watch-object ~io <io>)

# are the features not excellent.
-(<02> "l ocation-resol ution.val ue | EXCELLENT])

# is the ocular motor processor ready to accept a new conmand?
(<il> "notor-ocul ar. message <none)
(<mom> “argl | PROCESSOR| “arg2 | FREE|)

# this test will delay any refirings until we know what the
# features have had a chance to be updated in working nmenory
-(<il> ~still-waiting-for |ocation-resolution-of-the-object)

(<i o> ~fake-output-Iink.notor-ocul ar <np>)

-->

(<mp> ~comand <c> + &)

(<c> ~argl | MOVE| +)

(<c> "objectl <psychobj> +)

(<c> Mait-for-this-feature-to-change | LOCATI ON RESOCLUTI QN +)
(<c> "LHS-wi || -test |ocation-resolution-of-the-object +)

(<c> ~Meature-delay 2 +)

LOCATI ON- RESCLUTI ON LOCATI ON- RESOLUTI ON

LOCATI ON- RESOLUTI ON
LOCATI ON- RESCLUTI ON

f eat ure-del ay
LOCATI ON- RESOLUTI ON
| ocati on-resol uti on-of -t he-obj ect
(<il> ~still-waiting-for |ocation-resolu-
tion-of -t he-obj ect)

f eat ur e-
del ay



feature-delay 2

MOTOR OCULAR SPECI AL

FI NI SHED MOVEMENT COMVAND
f eat ure-del ay MOTOR OCULAR

SPECI AL EYE ALREADY THERE






sp {counter*apply*1
(state <s> “operator <o0>)
(<o> ~name counter)
-(<o0> “count 1)

-->
(<o> ~count 1 +)
(wite | 1])

}

sp {counter*appl y*2
(state <s> “operator <o0>)
(<o> “nane counter)
(<o> ~count 1)
-->
(<o> ~count 1 -)
(<o> ~count 2 +)
(wite | ->2])

1: G Ol (counter)
1->2->3
2: O @ (halt)

-> 4

-> 5




LOL0L0L,0,0

®

IgsRvg8~R-R

(count-1)
(count -2)
(count - 3)
(count - 4)
(count -5)

(halt)




LOL0L0L,0,0

®

graspwErEr-Q

(count)
(count)
(count)
(count)
(count)

(halt)





































