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Abstract

Current technology for mining data typically applies to data stored centrally (i.e., in one single repository,
homogeneous, with central administration, and a single schema). For instance, association rules algorithms
assume that the data of interest is available at one location in a single table, or that prior to mining, the
data will be warehoused centrally. However, it is important to study the mining of decentralized data (i.e.,
consisting of several tables, perhaps obtained via normalization or partitioning and allocation, stored in
several repositories with possibly separate administration and schema). Real-life database design, manage-
ment, and performance aspects suggest these considerations. While there have been a few extensions to
mining algorithms for such data, the algorithms developed have largely been aimed at parallel processing
(as opposed to the speci�c issues relating to decentralized data).

In this paper, we examine the issues associated with mining decentralized data. We motivate the need
for developing decentralized techniques, and identify the problems that must be addressed. We describe
the mining of association rules for the case of a star schema wherein several smaller dimension tables are
associated by foreign keys to a central fact table, and present an algorithm that adapts standard algorithms
to work eÆciently with such data. In contrast to approaches where the data would have been joined �rst to
form a single table, we exploit the foreign key relationships to develop decentralized algorithms that execute
concurrently on the separate tables, and thereafter merge the results. We provide analyses to assess our
techniques, and we present empirical studies for particular cases to validate the performance.

�This work was initiated when the authors were at the IBM T.J. Watson Research Center.
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1 Introduction

Today, a vast amount of stored business and scienti�c data is available to organizations which may analyze
it for pro�table use. For instance, retail chains may assess the market potential of products for di�erent age
groups, or insurance agencies may gauge health risk factors for di�erent demographic sets. Consequently,
a new area of research has emerged: data mining (often called knowledge discovery in databases, or KDD)
{ the eÆcient discovery of previously unknown patterns in large databases [11]. As noted in [8], running
data mining algorithms turns out to be a small part in the entire process of extracting useful information
from raw data. The data must be accessed, selected, cleaned, prepared and transformed into a set that can
be mined, and thereafter, the gleaned results must be correctly interpreted by experts and the knowledge
gained interactively applied for further mining. Besides the technical matters, human factors often tend to
play a crucial role. In particular, the separately generated and maintained data sets even within a given
organization may prove to be a signi�cant challenge to current data mining (DM) techniques. Centralized
data (i.e., data that is stored in one central repository, is homogeneous with a central administration, and in
a single schema such as a table) is not typical for most large enterprises. The information may be distributed
among di�erent tables, and in some cases, the tables may reside in di�erent physical locations. In fact, in
large enterprises, data is often distributed and administered separately even within the same organization.

DM itself is generally performed on data stored in data warehouses, as opposed to transactional/operational
data. Even so, the data may not be stored as a 
at table as is assumed by data mining algorithms (e.g.,
see [4, 20]). A popular schema design used in data warehouses is the star schema [17], in which information
is classi�ed into two groups: facts and dimensions. Facts are the core data being analyzed, and dimensions
are the attributes about the facts. The fact table is often much larger than the dimension tables, and would
thereby be a consideration with regards to performance in DM. If the typical association rules (AR) algo-
rithms (e.g., see [3]) were applied to data stored in a star schema, the �rst step would be to compute the join
of the fact table with its dimension tables. Since the cost of actually computing the join gets overshadowed
by the cost of running DM, it may appear acceptable to compute the join. However, a join results in a
table with many more columns and rows (which normalization had been used to avoid), and this would
signi�cantly increase the cost of DM as well. Given the large datasets, and combinatorial explosion issues
in DM processing, performance issues take on a new urgency for DM. In fact, as part of our preliminary
study for performance, we examined some DM algorithms for centralized data (see [1]). Referring to our
experience and analysis as presented in this paper, we argue that there is a signi�cant need and bene�t in
developing DM (speci�cally here for AR) for decentralized tables, and we believe this is an important issue.

The commonly used relational databases are designed to contain several inter-related tables, often gen-
erated by the process of normalization. The goal of normalization is to generate an appropriate set of table
schemas to reduce redundancy, to check eÆciently for certain constraints on the data values (e.g., functional
dependencies), and yet to allow for easy and eÆcient data access (e.g., see [18]). In general, a relation schema
(i.e., a table) that has many attributes is decomposed into several schemas (tables) with fewer attributes.

The design of a distributed system involves making decisions on the placement of data and programs across
the sites of a computer network ([14]). Enterprises have data stored in a distributed format, with design
considerations such as data fragmentation, distributions strategies, and data allocation methods. These
factors a�ect the operational usage of such data (e.g., maximize performance for updates, load balance,
etc.), as opposed to facilitate data mining. Therefore, in most cases, data mining is run on data that was
gathered for di�erent operational purposes.

The distributed nature of the data leads to several di�erent processing architectures [8]. There may be
a \disconnected" approach wherein data is sent on physical media to large central mainframes where all the
warehousing is done. Alternatively, a \transaction server" approach allows for data to be downloaded across
a network, and processed by servers. Finally, for administrative reasons, and to some extent performance
considerations, a \data server" approach seems very appropriate: the processing is e�ected at the sites where
the data resides.

Another important aspect is determining how database design considerations a�ects data mining. Con-
sidering that the data is already distributed (due to database design), it would be ideal to take advantage
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of this distribution and distribute the data mining task, which would provide load balancing as far as I/O,
CPU and even communication costs, considering that we would only need to ship part of the data { the one
that after some pre-processing proves itself to be relevant to the mining.

In this paper, we restrict our attention to one speci�c type of decentralized data, namely, star schema
tables which represent a case of tables associated by foreign key relationships. Motivated by pragmatic con-
siderations stated above, we present an algorithm that adapts and extends the state-of-the-art AR algorithms
to work eÆciently with such decentralized (though homogeneous) tables. We exploit the decentralization
by executing AR algorithms concurrently on the separate tables, and thereafter we merge the results. This
approach requires some re-design of available algorithms, and new factors that a�ect performance must
be considered. We present our analytical and empirical evaluation for particular cases to illustrate the
performance bene�ts of our approach.

This paper is organized as follows. In Section 2, we provide the most relevant related work. In Section 3,
we provide an overview for DM of decentralized tables with an example. In Section 4, we present our
decentralized approach to discovering AR, and in Section 5, we present our cost analysis comparing our and
the standard approach. In Section 6, we present our empirical validation of some aspects of our decentralized
approach. Finally, Section 7 concludes the paper.

2 Related Work

The KDD process is interactive and iterative, involving numerous steps such as understanding the application
domain, selecting the target data set, cleaning the data as well as transforming the data to a suitable format,
applying the data mining algorithms and �nally interpreting and evaluating results [10]. We are focused, for
the most part, on the DM algorithms themselves. In order to do so, especially for large quantities of data,
there is a need for studying how the base data is stored (e.g., see [7]). Among other aspects, system-level
support is necessary for data mining algorithms, heterogeneity and distributed environments (for a survey
on these issues, see [8]).

Among the DM algorithms of interest to us is the discovery of association rules. The problem of discov-
ering association rules was introduced by [3]. Given a set of items I , and a set of transactions T , where each
transaction tj is composed of a subset ij of the set of items I , the problem is to �nd associations among the
items such that the presence of some items in a transaction will imply the presence of other items in the
same transaction. In [4], the Apriori algorithm improved upon the performance of the original algorithm.
Since then, a number of algorithms based on [4] have been presented (e.g., [15, 16, 5, 1]). Some algorithms
have been considered for new kinds of association rules (e.g., [19, 12, 20]). In particular, the work in [20]
considered the problem of applying the Apriori algorithm to a more general class of attributes which could
be either quantitative (e.g. age, income) or categorical (e.g. zip code, make of car).

There has been some work on distributing the Apriori algorithm (e.g., [6]) in which the database is
horizontally partitioned. In that sense, the amount of information read and being processed is the same as
in a sequential algorithm (other than the message exchanges) except that the load is distributed. In contrast,
we provided an approach that applies to vertically partitioned tables, perhaps also physically distributed,
by which the cost of processing is reduced.

Database design is an area which is likely to impact the task of data mining. Important aspects include
the way in which the data is stored, partitioned, distributed, how it relates. In particular, there is signi�cant
work in normalization theory (e.g., see [13, 18]) as well as partitioning/allocation (e.g., see [21]) that is
relevant to decentralized mining of data.

There is signi�cant work done in distributed query processing that is related to the general goal of
distributed data mining. For instance, the semi-join algorithms ([14]) could greatly bene�t our approach
when applied to physically distributed tables. General sorting and joining algorithms ([18, 9, 22]), available
in the literature are also important in the stage of combining the data, either prior, as well as during di�erent
stages of the decentralized algorithms.
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Finally, when dealing with distributed data sets, one important issue is the heterogeneity of the data.
There has been considerable work in the database �eld dealing with heterogeneous databases ([2]), and while
we recognize this as an important topic, we are not looking into it directly.

3 Mining Decentralized Tables

In this section, we illustrate some of the problems in data mining for decentralized data in the discovery of
association rules.

3.1 Association Rules

We consider the problem of discovering association rules introduced in [3]. Given a set of items I , and a set
of transactions T , where each transaction tj is composed of a subset ij of the set of items I , we want to �nd
associations among the items such that the presence of some items in a transaction will imply the presence
of other items in the same transaction. An association rule, de�ned as an implication of the form X ) Y ,
where X and Y are subsets of a set of items I , is said to have a con�dence of 0 � c � 1 i� at least c% of
the transactions in the database which contain the items in X also contain the items in Y . The support for
such a rule is de�ned to be the fraction of records in the database which contain all of the items in X [ Y .
The problem is to �nd rules that meet user-speci�ed minimum con�dence and support.

In [4], the problem of discovering association rules is decomposed into the following two steps:

1. Discovering all the large (i.e., frequent) itemsets (i.e., which meet a user-de�ned support threshold).

2. Generating all the association rules, based on the support counts found in step 1.

1) L1 = flarge 1-itemsetsg;
2) for (k = 2;Lk�1 6= ;; k ++) do begin

3) generate Ck from (Lk�1);
4) forall transactions t 2 D

5) forall c 2 t such that c 2 Ck

6) increment count of c (i.e., c.count++)
7) Lk = fc 2 Ckjc:count�minsupg
8) end
9) Answer =

S
k Lk;

Figure 1: Apriori algorithm sketch.

In [4], the Apriori algorithm was proposed for the �rst step of the association rules discovery (i.e.,
discovering all frequent itemsets). Figure 1 provides a sketch of the algorithm. The Apriori algorithm
performs the counting of itemsets in an iterative manner, by counting the itemsets that contain k items
(k-itemsets) at iteration k. In each iteration, a candidate set of frequent itemsets is constructed and the
database is scanned to count the number of occurrences of each candidate itemset. After counting all the
candidate itemsets, the algorithm determines which ones were found to be frequent, i.e., have a count above
the predetermined threshold. The frequent itemsets found at the end of the scan are used to compute the
set of candidates for the next iteration. For details on the Apriori algorithm, please refer to [4].

The �rst step is by far the most expensive step, and most of the work in discovering association rules
concentrates on improving the performance of this step (e.g., see [15, 16, 5, 1]).
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3.2 Example Schema

The following is an example of a schema composed of more than one table that may arise in a bank schema:

� Customer(acct#; name; balance; street; zipcode; age) 1

� ATM(atm#; type; street; zipcode; limit)

� ATMactivity(xact#; acct#; atm#; time; amount)

On Figure 2, we show a relevant projection of the tables. 2 Assume that the quantitative attributes (of
age and monetary amounts) were partitioned 3 using the algorithm presented in [20] and are presented in
Figure 3.

Customer Table

acct# balance zipcode age

01 1000 x 20

02 1500 z 25

03 1000 y 20

04 2000 y 30

05 5000 x 31

06 1000 z 35

ATMactivity Table

acct# atm# amount

01 A 20

01 A 15

02 A 20

02 C 50

02 C 50

03 A 20

03 B 20

04 B 50

04 E 500

05 A 25

05 A 25

05 D 50

06 C 50

06 F 700

ATM Table

atm# type zipcode limit

A drive x 7000

B out y 4000

C out z 4200

D in x 15000

E in y 10000

F in z 11000

Figure 2: Relevant projection of the three tables.

Customer Table

acct# balance zipcode age

01 1000..1999 x 20..29

02 1000..1999 z 20..29

03 1000..1999 y 20..29

04 2000..5000 y 30..39

05 2000..5000 x 30..39

06 1000..1999 z 30..39

ATM Table

atm# type zipcode limit

A drive x 0..9999

B out y 0..9999

C out z 0..9999

D in x 10000..19999

E in y 10000..19999

F in z 10000..19999

Figure 3: Tables Customer and ATM after partitioning of attributes.

Due to accesses to single tables, the traditional approach to discovering association rules will work well
for �nding associations such as:

� < age : 20::29 >)< balance : 1000::1999 > with con�dence 100%, support 50%, for table Customer

1The underlined attribute is the primary key for the table.
2There are repeated entries in ATMactivity, which correspond to di�erent xact#'s (i.e., the projection here does not

eliminate duplicates).
3In this paper we are not concerned with the manner in which quantitative attributes are partitioned.
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� < type = in >)< limit : 10000::19999> for table ATM

� < type = out >)< limit : 1000::9999 > for table ATM which, together with the previous rule,
indicates the type of ATM likely to in
uence the amount of money withdrawn daily.

However, suppose we want to �nd associations w.r.t. activities on the ATM. For example, we want:

� < age : 30::39 > AND < type = drive >)< Customer:zipcode = x > which re
ects that people
between the age of 30 and 39 that go to a drive-thru ATM, tend to live in area x. (In our example,
area x is the only one that has a drive-thru ATM.) This could mean that customers of this age are
unlikely to drive out of their area just to �nd an ATM that is drive-thru.

For this latter type of rules, (i.e., ones involving more than one table), if we were to use the algorithm
described in [4, 20], we would �rst have to join of the tables (Customer 1 ATMactivity 1 ATM as shown in
Figure 4), and then run the algorithm. There is signi�cant redundancy in this joined table, e.g., the itemset
< age : 30::39 > AND < area = x > that happens 3 times in the �nal table, and therefore would be counted
3 times, corresponds to one entry in the customer table, namely the one for primary key acct# = 05.

Alternatively, we suggest that the association rules algorithm could be modi�ed to run on the individual
tables of Customer and ATM separately. Thereafter, using the ATMactivity table, the results could be
\merged." Of course, how precisely to merge these results requires careful considerations. In case the tables
are physically distributed, our approach would help with load balancing, since our algorithm could be run
on the tables Customer and ATM individually and concurrently.

acct# balance zipcode age amount atm# type zipcode limit

01 1000..1999 x 20..29 15..25 A drive x 0..9999

01 1000..1999 x 20..29 15..25 A drive x 0..9999

02 1000..1999 z 20..29 15..25 A drive x 0..9999

02 1000..1999 z 20..29 50..100 C out z 0..9999

02 1000..1999 z 20..29 50..100 C out z 0..9999

03 1000..1999 y 20..29 15..25 A drive x 0..9999

03 1000..1999 y 20..29 15..25 B out y 0..9999

04 2000..5000 y 30..39 50..100 B out y 0..9999

04 2000..5000 y 30..39 500..1000 E in y 10000..19999

05 2000..5000 x 30..39 15..25 A drive x 0..9999

05 2000..5000 x 30..39 15..25 A drive x 0..9999

05 2000..5000 x 30..39 50..100 D in x 10000..19999

06 1000..1999 z 30..39 50..100 C out z 0..9999

06 1000..1999 z 30..39 500..1000 F in z 10000..19999

Figure 4: Resulting table after the three tables were joined.

4 A Decentralized Approach

We now describe our technique for decentralized DM of tables described in Section 3. Let a primary table
be a relational table with one primary key and no foreign keys; the table may have other �elds that are
categorical, numerical or boolean. Also, let a relationship table be a relational table which contains foreign
keys to other primary tables. A relationship table is a n-relationship table when it has n foreign keys to n
primary tables. Typically, primary tables refer to entities, and relationship tables correspond to relationships
in an ER diagram ([18]).
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Considering the example presented in Section 3.2, the Customer and ATM tables are primary tables,
and ATMactivity is a relationship table. Our goal is to �nd association rules in the �nal joined table T ,
where T = Customer 1 ATMactivity 1 ATM .

The �nal results we get by running a decentralized algorithm (i.e., the discovered association rules), are
exactly the same as with the original algorithm run on the joined table T . That is, when computing the
support of itemsets in an individual primary table, the support should re
ect the �nal support that this
itemset would have in table T . Therefore, before we run the algorithm in the primary table, we have to take
into account the number of times each row of the primary table is in the �nal joined table T . After that, we
can proceed, and run a modi�ed algorithm in the primary tables.

We present a decentralized version of the Apriori algorithm applied to star schemas in which there are n
primary tables { the dimension tables { and one central relationship table { the fact table.

4.1 A Decentralized Algorithm

Let T1; T2; � � � ; Tn be the dimension tables, and T1n be the fact table, described as follows.

� Tt(idt; at1; at2; � � � ; atmt
) with idt as primary key and at1 � � � atmt

as categorical/numerical attributes,
8t; t = 1::n

� T1n(id1; id2; � � � ; idn) with idt as foreign key to table Tt.

Our algorithm is as follows.

1. Computing a projection of the relationship table

Read relationship table T1n and count the number of occurrences of each value for the foreign keys
id1; id2; � � � ; idn.

2. Counting frequent itemsets on primary tables

Run the counting step of the association rules algorithm on the primary tables as described in [4] for
all the attributes, except for the primary key, with the following modi�cation: on dimension table Tt,
when incrementing the support of an itemset present on row i by 1, increment the value of the support
by the number of occurrences of idt = i on table T1n (computed in the previous step). We refer to this
step of our algorithm as the \modi�ed Apriori" in the remainder of this document. We �nd n sets of
frequent (or large) itemsets, namely l1; l2; � � � ; ln, for each dimension table, T1; T2; � � � ; Tn respectively.

3. Count itemsets across the primary tables using the relationship table

Here we describe 2 di�erent algorithms to count itemsets that contain items from more than one
primary table. The naming for each algorithm will be explained later.

(a) I/O saving: Generate candidates from the n primary tables T1; T2; � � � ; Tn by having an n-
dimensional array, where dimension t corresponds to elements of the set lt plus the empty set
(we need the empty set in order to allow for candidates from more than one and less than n ta-
bles). Next, we compute the joined table T , but process each row as the table is created, avoiding
the storage costs. For each row in T (say �e(T )), for each t, we take the attributes that came
from table Tt (i.e., �Tt(�e(T ))), and identify all itemsets from lt contained in �Tt (�e(T )), say it
(it includes the empty set also). After computing all it's, t = 1::n, add one to each position of
the n-dimensional array for the elements of i1 � i2 � � � � � in (these are the itemsets contained in
table T , whose items belong to more than one table).

(b) Memory saving: Build the join of the n + 1 tables, creating table T . Run the counting step of
the association rules algorithm on table T , but generating only the candidates that contain items
from more than one table. In the pruning step, use the frequent itemsets l1; l2; � � � ; ln, as well as
the frequent itemsets computed in this step of the algorithm.
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4. Generate rules using the support of frequent itemsets found

Finally, we generate the association rules the same way as in [4, 20].

We argue that our algorithms, running on the decentralized tables will �nd the same set of association
rules that the Apriori algorithm does running on the joined table.

For the �rst algorithm, we see that I/O costs are saved during the multiple passes on the smaller tables,
as compared to the big table T . Also, we save on processing time since a given frequent itemset consisting of
items from only one primary table will be counted fewer times than if we counted on the table T . This may
be veri�ed by simple counting arguments. A disadvantage is that, as far as itemsets that contain items from
more than one table, there is no pruning from pass to pass because all itemsets are counted in one scan and
therefore, we consider some candidates that would not have been considered if we could perform pruning at
every step (to the remainder of this document, called \false candidates"). Therefore, if the sets l1; l2; � � � ; ln
are too large, this step may require considerable memory space. For the second algorithm, a disadvantage is
that we have to store the joined table T , and the I/O costs could be higher since we may have to scan table
T as many times as done in the Apriori originally, and we still have to scan tables T1; T2; � � � ; Tn more than
once (although the sizes of T1; T2; � � � ; Tn are very small when compared to the size of T , and the number of
passes in table T may be smaller on the third step of our algorithm than on the traditional Apriori algorithm
due to data distribution). On the other hand, we save on the counting of the itemsets whose items belong to
only one table (i.e., avoid counting redundant items), and enable the counting of the itemsets whose items
belong to multiple tables to be faster since the number of candidates to check is much smaller.

Our general approach of distributing the mining algorithms potentially provides many performance im-
provements. In the case the primary tables reside in di�erent locations, we can apply ideas from semi-join
algorithms [14] by sending the information gathered in step 1 to the primary table sites, so they can perform
the step 2 locally (and therefore also distributing the load among the di�erent locations). In case of the �rst
algorithm, to perform step 3, we would just send to the more appropriate site (depending on distribution,
according to the semi-join strategy) the information of which frequent itemsets are found in each row of the
primary tables, as opposed to shipping in the entire primary table, which would have been necessary in the
traditional approach to discovering association rules.

4.2 Extensions

We now discuss a couple of extensions to our algorithm, with some of which we experimented, and reported
on Section 6.

The �rst extension is with regards to categorical and/or numerical attributes in the fact table (as shown
in the example on Section 3.2). One solution is to treat each attribute of the fact table as coming from a
di�erent table and run the algorithms as normal. When scanning the fact table for the �rst time in order
to count occurrences (step 1 of our algorithm), we could verify the frequent itemsets of size one for the
attributes of the fact table. On Step 3, in the case of the Memory saving algorithm, having extra attributes
do not a�ect the general algorithm, they are just considered like any other attribute (except that they would
not participate in much pruning since they were not combined with other attributes during the second step
of the algorithm). In case of the I/O saving algorithm, we could add a dimension for each new attribute.
If there are many categorical and/or numerical attributes in the fact table, this solution could be infeasible
due to the number of dimensions required. Another approach is to vertically partition the fact table into
two tables: one containing all the categorical and/or numerical attributes and a newly generated primary
key id1n; and one containing id1n together with all other foreign keys originally present in the fact table. We
have now the same scheme as before, with one extra table, and our algorithm can run in the same manner.

Another extension is with regards to a compromise between I/O and Memory saving. In the I/O saving
algorithm presented, table T is computed and processed once, so there is no need to store the table, at the
expense of having to count all of the itemsets across tables in one step, therefore not only needing a lot of
memory space to store the n-dimensional array, as well as not being able to do a better pruning of itemsets.
If the n-dimensional array does not �t in memory, we have to resort to the Memory saving algorithm, where
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we do all the necessary pruning at the expense of having to store table T and scan it k1n times. Instead, we
suggest two hybrid approaches:

1. Build table T and perform the Memory saving approach by scanning the database a few times up to a
point where we can �t the entire remaining subsets of the sets l1; l2; � � � ; ln in memory, then switch to
I/O saving approach. We implemented a limited version of this algorithm, and it proved to work well
in our experiments (see Section 6).

2. Before putting all the tables together, process them pair-wise, e.g., T1 1 T1n 1 T2, with the I/O saving
algorithm considering the sets l1 and l2 as candidates. This way, we can increase the pruning when
considering, say, T1, T2 and T3 because we already know which false candidates involving attributes
of T1 and T2 not to consider. In this case, we do not need to materialize table T , but the number of
joins that we have to compute (�rst pair-wise, then all tables) is a trade-o� and the best solution may
be to materialize table T . In the situation where we do not have enough space to materialize T , this
algorithm may be a good option.

5 Our Cost Analysis

We now compare the costs associated with running the original Apriori algorithm in the joined table with
the cost of running the algorithm we proposed in Section 4.1, considering the two options for step 3, i.e., the
I/O saving and Memory saving approaches. We assume that the primary tables are ordered in their primary
keys.

5.1 Nomenclature

Suppose we have n primary tables T1; T2; � � � ; Tn and a relationship table T1n described as in Section 4.1.
Furthermore, the tables Tt, t = 1::n have rt records, and T1n has r1n records. We also assume that rt <<
r1n;8t; t = 1::n. As described previously, in order to run the standard association rules algorithm [4, 20], the
�rst step is to build the join of the n+ 1 tables: T = T1 1 T1n 1 T2 1 : : : 1 Tn. The table T has attributes
(id1; a11; � � � ; a1m1

; id2; a21; � � � ; a2m2
; � � � ; idn; an1; � � � ; anmn

), and has r1n records.
Let,

� k be the length of the longest candidate itemset when the Apriori algorithm is run on T

� cij be the i
th candidate of length j when the Apriori algorithm is run on T

� lij be the i
th frequent itemset of length j when the Apriori algorithm is run on T

� jcij j be the number of candidates of length j when the Apriori algorithm is run on T

� jlij j be the number of frequent itemsets of length j when the Apriori algorithm is run on T

� sij be the support (number of occurrences) of candidate cij at table T

� kt be the length of the longest candidate itemset when the modi�ed Apriori algorithm is run on Tt

� k1n be the length of the longest candidate itemset when the Apriori algorithm is run on T , such that
the items belong to more than one primary table (k1n � k)

� jctij j be the number of candidates of length j where all the items belong to table Tt, t = 1::n, when the
Apriori algorithm is run on T

� jc1nij j be the number of candidates of length j where the items belong to more than one primary table,
when the Apriori algorithm is run on T
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� jltij j be the number of frequent itemsets of length j where all the items belong to table Tt, when the
Apriori algorithm is run on T

� jl1nij j be the number of frequent itemsets of length j where the items belong to more than one primary
table, when the Apriori algorithm is run on T

� stij be the support (number of occurrences) of candidate cij at table Tt. If not all the items in cij
belong to table Tt, s

t
ij = 0

We divide up the processing costs into I/O and CPU, and we examine each in the following.

5.2 I/O Cost

The I/O cost concerns the cost of accessing the data. In the Association Rules algorithm, this cost is directly
related to the size of the database and the number of scans performed.

� Apriori on table T :

cost of join+ r1n

nX

t=1

(mt) + k � r1n

nX

t=1

(mt)

where the �rst term is the cost necessary to compute the join of the tables, the second term is the cost
of writing the computed join (so that the Apriori algorithm can run), and the last term is the cost of
scanning the database when the Apriori algorithm is run (k scans of the database 4).

� I/O saving:

n � r1n +

nX

t=1

rt +

nX

t=1

kt(mt + 1)rt + cost of join

where the �rst two terms correspond to step 1 of the algorithm presented in Section 4.1, �rst counting
occurrences and second storing the occurrences to be used in the next step. The third term corresponds
to step 2 of the algorithm, i.e., running the modi�ed Apriori algorithm on the primary tables, and the
last term corresponds to step 3: we need to compute the join in order to count itemsets across the
primary tables, without having to save the result of the join though.

� Memory saving:

n � r1n +
nX

t=1

rt +
nX

t=1

kt(mt + 1)rt + cost of join + r1n

nX

t=1

(mt) + k1n � r1n

nX

t=1

(mt)

when comparing to I/O saving, we added the costs of saving the join and scanning table T k1n times.

We do not explicitly compute the cost of the join, since our aim is to compare the approaches, and the
cost of the join is the same in either. For the I/O saving approach, we see that the dominant summation is
the scanning of the primary tables (kt times for each table Tt), and for the Apriori on table T approach, the
dominant term is the scanning of table T k times. Given that kt � k; t = 1::n, and rt � r1n, we see that
as far as I/O cost, our �rst approach o�ers a big saving as compared to �rst computing the join and then
running the Apriori algorithm.

For the Memory saving approach, multiple scans of table T are necessary (last summation in cost formula),
and therefore savings in I/O costs are not so evident, and, as mentioned in Section 4.1, our approach may
even be more expensive. It will depend on how k1n compares to k. In practice, k1n can be much smaller
than k, since more related items tend to be stored together.

4In some cases, the algorithm performs one extra scan since the longest candidate itemset could be longer than the longest
frequent itemset, but we ignore this case in our cost formulas since this extra scan is not so signi�cant when compared to the
rest of the cost. The same is true for our decentralized approach.
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5.3 CPU Cost

For easy of understanding, we divide up the CPU costs into four:

� subset: given a row and a set of candidate itemsets, determining the candidates present at the given
row.

� actual counting: after determining the candidates present in a row, incrementing the associated coun-
ters.

� determining frequent itemsets: at the end of each iteration of the Apriori algorithm (i.e., after each
scan) all counters are examined to determine the frequent candidates.

� generating candidates: generating the candidates for the next iteration.

5.3.1 Subset

The subset function is executed for each row of the database, at each scan. This function can be implemented
simply, for example, generating all possible itemsets from the given row, and comparing with the possible
candidates. This approach turns out to be expensive, and there has been considerable e�ort put into actually
improving this function [4, 1]. It is diÆcult to assess the cost for this function, since it is highly dependent
on the data set distribution. However, the cost is dependent on the length of the row (e.g., m for table T ),
and on the number of candidates (jcij j for table T ). Let f(p; q) be the cost of the subset function for a row
of length p and a candidate set of size q.

The costs are:

� Apriori on table T :
kX

j=1

r1n � f(m; jcij j)

for each iteration j, we perform the subset function on each row read (r1n rows), with parameters m,
the length of the row, and jcij j, the number of candidates at iteration j.

� I/O saving:
nX

t=1

ktX

j=1

rt � f(mt; jc
t
ij j) +

kX

j=1

r1n � f(mt; jl
t
ij j)

where the �rst summation corresponds to the modi�ed Apriori cost at the primary tables, and the
second corresponds to step 3 of our algorithm, i.e., when we count the itemsets that have items across
tables. For each entry in the joined table (although not materialized), we have to perform subset
functions to determine which frequent itemsets are present in a speci�c row.

� Memory saving:
nX

t=1

ktX

j=1

rt � f(mt; jc
t
ij j) +

k1nX

j=1

r1n � f(m; jc1nij j)

where m =
Pn

t=1mt and jc
1n
ij j = jcij j �

Pn
t=1 jc

t
ij j. The �rst summation corresponds to the modi�ed

Apriori cost at the primary tables, and the second summation indicates the counting of itemsets that
have items across tables, the same way it is done on Apriori (except with a smaller set of candidates).
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The comparison of our �rst approach (I/O saving) with Apriori is diÆcult without a formula for the cost
f(p; q). Comparing the �rst summation of the equation for our approach with the equation for the Apriori
on table T , wee see that the former terms are much smaller, given that mt < m, jctij j < jcij j, kt < k and
rt � r1n, for t = 1::n. The terms for the second summation are harder to compare. However, it is always
the case that jlij j � jcij j, and in many cases, jlij j � jcij j, in particular, jci2j is in general much larger than

the entire set of frequent itemsets, i.e., jci2j �
Pk

j=1 jlij j. Also, the terms are multiplied by r1n and in fact,
they can be multiplied by less than r1n depending on the distribution of the data (e.g., in case two entries
in T1n that have the same value for id1 are close enough so that the subset function does not need to be
recomputed), and in the case of the Apriori on table T approach, we cannot take advantage of that. With
that in mind, it is not hard to convince ourselves that our approach will be cheaper than the Apriori on
table T approach.

As far as our second approach, Memory saving, again, it is diÆcult to compare the costs, although
we notice that the only term that is multiplied by r1n has a considerable smaller set of candidates in our
approach than in the original Apriori.

Of course, in order to assess the real di�erence in cost of the two approaches, we need a more rigorous
analysis or empirical evaluation.

5.3.2 Actual Counting

For each row of the database, after we perform the subset function, we execute the actual counting. The
cost here depends on the number of times we have to increment the counters, which is nothing less than the
support of the various candidate itemsets.

The costs are:

� Apriori on table T :
kX

j=1

X

8i

sij

� I/O saving:

nX

t=1

ktX

j=1

X

8i

stij +

kX

j=1

X

8i;cij =2Tt;t=1::n

sij +

P
n

t=1
ktX

j=1

X

8f

s
0

fj

where the �rst summation corresponds to counting during the modi�ed Apriori at the primary tables,
the second summation corresponds to counting on the third step (for table T ), and the last summation
corresponds to counting of \false candidates", i.e., the candidates which would not have been considered
if we were running the Apriori on table T , due to pruning at each step.

� Memory saving:
nX

t=1

ktX

j=1

X

8i

stij +

kX

j=1

X

8i;cij =2Tt;t=1::n

sij

where the �rst and second summations are the same as the �rst and second summations of the I/O
saving approach.

We now compare our approaches with the Apriori. I/O saving: for a given cij , we have that: if cij 2 Tt,
for some t = 1::n, it will be counted stij times (stij � sij); o.w., it will be counted sij times, which is the
same as on the latter approach. So, comparing the �rst two summations of the I/O saving algorithm with
the Apriori on table T , we can see that our approach could be much cheaper depending on the percentage
of itemsets belonging to individual tables, and in the worse case, the same. The last summation, where we
are counting the \false candidates", is the cost that is extra, i.e., does not appear in the approach where
Apriori is run on table T . We analyze two cases:
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� a large percentage of the frequent itemsets belong to the primary tables. In this case, there will be a
lot of savings by counting these itemsets in the primary tables, as opposed to the table T . It will
then, most likely pay o� having to count the extra \false candidates" indicated in the last term of our
approach.

� a large percentage of the frequent itemsets do not belong to the individual primary tables. In this case,
we will not be saving so much by counting in the primary tables, but on the other hand, since the
number of frequent itemsets computed on step 2 is not so large as compared to the \true candidates",
we will not be counting so many \false candidates".

Also, it is the case that \false candidates" do not have a high support (otherwise they would have been
frequent), so it can turn out not to be a big penalty. Finally, we again notice that in order to assess the real
costs, we need a more rigorous analysis or empirical evaluation.

Memory saving: Since our second approach does not count false candidates, this approach, in terms of
actual counting could be much better than the Apriori on table T approach, depending on the percentage
of itemsets belonging to individual tables, and in the worst case, the same.

5.3.3 Determining Frequent Itemsets

The lasts two cost components (determining frequent itemsets and generating candidates) contribute the
least to the �nal cost of the algorithms. For completeness, we include them in this analysis. Frequent
itemsets are determined once for each iteration, and the function consists of visiting all the counters and
determining which ones were found to be frequent.

� Apriori on table T :
kX

j=1

X

8cij

1

� I/O saving:

kX

j=1

X

8cij

1 +

P
n

t=1
ktX

j=1

X

8c0
ij

1

� Memory saving:
kX

j=1

X

8cij

1

This is the only cost where the Apriori on table T approach wins our �rst approach. This is because in
our approach we incur the cost of counting the \false candidates" that are not considered in the traditional
Apriori algorithm. Our second approach has the same cost as the traditional Apriori algorithm approach.
However, as it was mentioned before, this component of the �nal cost in negligible as compared to the other
components.
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5.3.4 Generating Candidates

This function is executed once for each iteration, after we determine the itemsets that were found to be
frequent. The cost is dependent on the number of frequent itemsets found. Let the cost be g(S), where S is
the set of frequent itemsets.

� Apriori on table T :
kX

j=1

g(jlij j)

� I/O saving:
nX

t=1

ktX

j=1

g(jltij j)

� Memory saving:
nX

t=1

ktX

j=1

g(jltij j) +

k1nX

j=1

g(jl1nij j)

For the I/O saving approach, we only generate candidates when running the modi�ed Apriori on the
primary tables. On the Memory saving approach, we also generate candidates when discovering association
rules across multiple tables. However, given that jltij j � jlij j and jl

1n
ij j � jlij j we would expect that the cost

of generating candidates is cheaper in both our approaches. So, our approaches presents some savings with
regards to generation of candidates, although as we mentioned in the previous section, this cost is negligible
when compared to the other components.

6 Empirical Validation

We identify situations where one can bene�t from our approach, less in the context of time savings, but
more to consider situations where applying the Apriori algorithm is infeasible (e.g., when there is no space
available to store the join of the tables). Our primary goal is to study the problem of mining decentralized
data (and not just improving the eÆciency of existing algorithms). Nevertheless, we would like our approach
to be no worse than the traditional approach to the discovery of association rules, and as our results indicate,
it performed better in all cases studied. We restricted our attention to the case with three decentralized
tables: two primary tables and one relationship table.

6.1 Experimental Setup

In order to evaluate our approach, we ran experiments on synthetic data. We used the data generator
provided in [4]; such data is frequently used for evaluation of association rules algorithms. Since our study
is based on decentralized data, and the data generated in [4] is centralized (i.e., one table), we used the
synthetic data generator to generate the primary tables T1 and T2. The parameters for the generator were:
N , the number of items; jDj, the number of transactions; jT j, the average length of transactions; jI j the
average length of the maximal potentially frequent itemsets.

In order to generate T12, we wrote our own generator which takes as arguments: jDj, the number of rows
(or transactions) in the �nal table T (where T = T1 1 T12 1 T2), and R, the average number of repetitions of
entries in T12 (remember: r12 � r). For each line generated for table T12, we randomly pick one transaction
from table T1, one from table T2, and the number of repetitions for this entry was selected from a Poisson
distribution (with mean = R). We then computed the join of the three tables, and stored table T , in order to
compare with running the original Apriori algorithm. After computing the join, we determined the average
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length of transactions for table T . The cost of the join was not included in the results, since all the algorithms
have to compute the join at one point (i.e., without necessarily materializing the table).

We implemented the I/O saving approach, the Memory saving approach, and a limited version of the
Hybrid approach (in which we switch to the I/O saving approach after the �rst pass). Our experiments
were performed using a 200 MHz Pentium Pro machine with 256 Mbytes of RAM, running Linux. We ran
extensive evaluations, among which we selected four representative experiments. The parameters for the
four experiments, together with the resulting average length of transactions for the resulting table, are listed
in Figure 5.

Parameters for testing

Parameters Test 1 Test 2 Test 3 Test 4

T1 N 500 500 500 500

jDj 1000 1000 100000 100000

jT j 10 20 6 6

jIj 4 6 4 4

T2 N 550 550 550 550

jDj 1200 1200 100000 100000

jT j 10 20 7 7

jIj 4 6 4 4

T12 jDj 100000 100000 10000000 10000000

R 50 50 50 300

T jT j 20 38 13 13

Figure 5: Parameters for testing.

6.2 Experimental Results

We ran experiments for various support values, where the hash tree for the Apriori algorithm (please refer
to [4]) always �t completely in memory. In case the hash tree does not �t in memory, the savings provided
by our approach would be even greater, given that at each pass, the number of candidates that our approach
has to check is smaller than the original Apriori algorithm.

For clarity and easy of comparison, we present the results in the following way: �rst, we plot the time
taken by the Apriori algorithm when run against table T , and second, the time taken by our approach
divided by the time taken by the Apriori approach, what we refer to as normalized results. The results are
presented in Figures 6 to 9.

For the �rst two experiments (Test 1 and Test 2), the �les are reasonably small (Table T with only
100000 transactions), and our goal was to verify whether our approach could provide some CPU savings,
considering that the entire table �t in main memory. We veri�ed that for both experiments, our approach
performed better, with the exception of the I/O saving algorithm. The reason for I/O saving approach
performing poorly in this case, is that, as we explained in Section 4.1, when there are too many candidates
from the primary tables, the number of false candidates grows exponentially. In such a situation, the I/O
saving approach becomes infeasible. For lower values of support, the savings provided are not so signi�cant,
but our algorithm still performs no worse than the Apriori.

For Test 3 and Test 4, the �les were larger, and we were able to assess the savings provided by scanning
the big table T fewer times. For Test 4 speci�cally, we see that the I/O saving algorithm performs well
for all support values, which is an advantage with our approach since the I/O saving algorithm need never
materialize the computed join, and therefore, there are no excessive space requirements.

Our algorithms were run serially, i.e., �rst we ran modi�ed Apriori on table T1, then we ran modi�ed
Apriori on table T2, and then step 3 of our algorithm on table T to compute frequent itemsets across tables
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Figure 6: Results for Test 1.

Figure 7: Results for Test 2.

(I/O saving, Memory saving, or Hybrid). Therefore, the times shown, account for the running time on
the primary tables as well. If the original tables were physically distributed, this part of the load would be
divided, i.e., the modi�ed Apriori would run concurrently on the primary tables, and the actual running times
for our approach would be much lower (due to parallelism). The savings are likely to be even more signi�cant
when there are more than two primary tables involved, and we are currently extending our implementation
to run with an arbitrary number of tables.

6.3 Comparison with Cost Analysis

In this section we brie
y discuss our cost model in retrospect. We modi�ed our code to keep track of the
number of times each operation was performed. For example, for computing the subset, a counter was
incremented each time a node in the hash tree was accessed, and each time an itemset contained in a leaf
was checked against a transaction (i.e., a row in the database).

For experiments Test 1 and Test 2, the process was CPU intensive (the percentage of the total time that
was CPU time ranged from 99% to 100%). We now compare the numbers we gathered by counting the
operations with the running time reported in Section 6.2. For Test 1, with minimum support = 0.5%, 179M
operations were performed for the subset computation (i.e., accessing the tree as well as checking itemsets at
the leaves) for the Memory saving approach, and 290M for the Apriori approach. For the counting function,
there were 5.2M operations for the Memory saving approach while for the Apriori approach the number
was 13M. The costs for the candidate generation and determining frequent itemsets were 1M each for the
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Figure 8: Results for Test 3.

Figure 9: Results for Test 4.

Memory saving approach, and less than 1M each for the Apriori approach. We see that the subset component
accounted for 96% of the total cost for the Memory saving approach, and 95% of the total cost of the Apriori
approach. We also see that the ratio of the number of operations of Memory saving/Apriori is 62% considering
only the subset component, and 61% considering all four components. By our empirical evaluation, the ratio
found for the total running time was 58% (see Figure 6), which is close within experimental errors.

Component by component, we note that the ratio was less than one (and therefore a win for our approach)
for both the subset and counting components. For the other two components, Apriori was more eÆcient. As
mentioned in Section 5, these components are negligible, and the ratio was close to one (in the candidate
generation component, the ratio was 1.02). The reason is that, for the original Apriori algorithm, the frequent
itemsets used for generating the candidates for the next pass are already in the hash tree, whereas in our
case, we read in the frequent itemsets generated from applying the modi�ed Apriori to the primary tables.
This leads us to consider improvements in the the Memory saving algorithm. In case all tables are at the
same site, we could execute steps 2 and 3 of our algorithm (see Section 4.1) concurrently so that the frequent
itemsets from the primary tables are readily available. Of course, there are other considerations, e.g., if we
were to execute concurrently, a considerable amount of memory would be needed to store all three hash trees
at the same time.

For experiments Test 3 and Test 4, the I/O component was more signi�cant than for the previous
experiments, given that the percentage of CPU time was considerably lower, e.g., the percentage of CPU
time for Test 4, Apriori approach, was 36%. Again, for Test 4, with minimum support = 0.5%, the time
spent by I/O (i.e., total time { CPU time) was 606.11 seconds for the Apriori approach, and 143.93 seconds
for the Hybrid approach. Therefore the Hybrid/Apriori ratio was 0.24%. When we compare the size of
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the data �les for each one of the approaches, we have that the Apriori algorithm performed 5 passes on a
671Mbyte �le, and the Hybrid approach performed 3 passes on a 3.4Mbyte �le, 5 passes on a 3.8Mbyte �le
and 2 passes on a 671Mbyte �le. By taking the Hybrid/Apriori ratio, we get 0.23%, which is again very
close.

We made similar analyses for other experiments, with other support values, and the �ndings for both
CPU and I/O were similar. The results demonstrate that our cost analysis provides us with an accurate
estimation of the total cost of the algorithm.

7 Conclusions

In this paper, we examined the issues associated with mining decentralized data. We motivated the need
for developing decentralized techniques, and identi�ed problems to be addressed. We described the mining
of association rules for the case of a star schema wherein several smaller dimension tables are associated by
foreign keys to a central fact table, and presented an algorithm that adapts standard algorithms to work
eÆciently with such data. In contrast to approaches where the data would have been joined �rst to form
a single table, we exploited the foreign key relationships to develop decentralized algorithms that execute
concurrently on the separate tables, and thereafter merge the results. We provided analyses to assess
our techniques, and we presented empirical evaluation for particular cases to validate the performance.
Our preliminary study suggests that the adapted techniques are viable alternatives to �rst joining the
decentralized tables into a single warehoused table prior to mining.

We restricted our attention to one speci�c organization of decentralized data { the star schema tables
{ which represent a case of tables associated by foreign key relationships. There are several ways in which
our work needs to be extended. Although we believe that it is feasible to generalize our approach, there
are many possible formats of database design (not only the star schema), and many factors that could
determine how our approach could be applied (e.g., the memory constraints which would limit the feasible
solutions). Also, we considered decentralized data residing in one location, whereas a set of decentralized
though related tables may be allocated to reside at several sites in a distributed environment. In such cases,
not only are the I/O and processing costs of importance, but also, the communication costs among the sites
or processors. Finally, our approach was validated empirically for only a speci�c type of star schema (i.e.,
for two dimension tables and one fact table), and further experimentation is necessary to extend the study
to realistic cases.. We expect that our research in mining decentralized (perhaps non-warehoused) data will
become increasingly important as focus shift toward scaling up to real-life, distributed datasets.
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