March 29, 2000 12:56 pm 1

The MIRV SimpleScalar/PISA Compiler

Matthew Postiff, David Greene, Charles Lefurgy, Dave Helder and Trevor Mudge
{ postiffm,greened,lefurgy,dhel der,tnm} @eecs.umich.edu
EECS Department, University of Michigan
1301 Beal Ave., Ann Arbor, M| 48109-2122

Abstract

We introduce a new experimental C compiler in this report. The compiler, called MIRV, is
designed to enable research that explores the interaction between the compiler and
microarchitecture. This introductory paper makes comparisons between MIRV and GCC.
W\e natice trends between the compilers and optimization levels across SPECint1995 and
SPEC2000. Finally, we provide a set of SmpleScalar/PISA binaries to the research com-
munity. As we improve the compiler, we encourage architecture researchers to use these
optimized binaries as reference programs for architecture research.

1. Introduction

The design of computers in general and microprocessors in particular has shown a steady
increase in both performance and complexity. Advanced techniques such as pipelining and out-of -
order execution have increased the design and verification effort required to create a viable prod-
uct. To overcome some of these problems, hardware designers have been exploring ways to move
functionality into the compiler. From RISC to current designs such as Intel’s |A64, the compiler
has played a greater role in simplifying the hardware while maintaining the current trend of per-
formance improvement.

The MIRV compiler is designed to analyze trade-offs between compile-time and run-time
knowledge of program behavior. MIRV enables research into this area in four ways. First, the
compiler isbuilt with amodular filter architecture. This allows the researcher to easily write opti-
mizations and explore their placement in the phase ordering. Second, the retargetable code gener-
ator and low-level optimizer support both commercially available microprocessors and the
popular SimpleScalar simulation environment. This allows both realistic performance evaluation
as well as explorations into next-generation computer instruction set architecture. Third, MIRV
provides an interface for program instrumentation and profile back-annotation. This allows stud-
ies into runtime behavior as well as profile-guided optimizations. Fourth, the compiler environ-
ment that we have developed around MIRV provides easy regression testing, debugging, and
extraction of performance characteristics of both the compiler and the compiled code.

In this report we introduce MIRV and compare its performance to the GCC compiler. This
report also introduces a package of SPEC binary executables which are compiled with GCC and
MIRV at various optimization levels. The purpose of this document is to explain the compilation
and simulation environment in which the binaries were produced and to summarize the perfor-
mance differences between the compiled code. Several notable results are presented.

The organization of the rest of this paper is as follows. Section 2 describes the compilation
environment that we used to generate the results shown. Similarly, Section 3 outlines the simula-

March 29, 2000 12:56 pm 2

tion environment. Section 4 introduces the performance graphs shown in the appendices and Sec-
tion 5 describes some interesting observations made from the performance graphs. We conclude
with Section 6. The appendices contain detailed compilation and simulation results as well as pro-
vide additional detail on the optimizations that were performed during compilation.

2. Compilation Environment

We tested seven compiler configurations. The first is labeled ‘SSsup’ which is the Sim-
pleScalar supplied binary, available at the SimpleScalar web site [2]. The next three configura-
tions were compiled in our test environment with the GCC 2.7.2.3 port to the PISA instruction set.
This tool is available from UC-Davis [7]. We also used a pre-release version of binutils 2.9.5 for
the assembler and linker. These were slightly modified from sources at Cygnus [8]. The final
three configurations were compiled with MIRV and used the same assembler and linker as the
GCC builds.

The MIRV compiler implements the most common optimization passes. The exact order
of application of the optimzation filters is given in Table 4 in Appendix A. For comparison,
Appendix B contains the optimizations applied in the GCC compiler.

MIRV always applies register coalescing and graph coloring register allocation in the
backend, regardless of the optimization level. The allocator is implemented with the standard
graph coloring algorithm except that it does not implement live range splitting or rematerializa-
tion [3]. This means that it is not fair to compare GCC -O0 with mirv -O0 since GCC does not
perform register allocation at the -O0 optimization level.

3. Simulation Environment

The SimpleScalar 3.0 sim-outorder simulator was used with default parameters [4]. Table
1 shows the relevant default parameter values. All simulations were performed in little-endian
mode.

We used the SPEC95 integer benchmarks and several of the SPEC00 benchmarks [5, 6].
All benchmarks were run to completion on the data set indicated in the table; we modified the
supplied input sets to allow the simulations to complete in a reasonable amount of time (about 100
million instructions). The benchmarks are described in Table 2 and the exact input sets are shown
in Table 3.

4. SPEC Performance Graphs

The full set of graphs comparing MIRV to GCC can be found in Appendices C and D.
These graphs show various metrics for each of the eight SPEC95 benchmarks and selected
SPECO00 benchmarks. Table 6 explains each of the graphs and any special notes on how the data
was gathered. For the SPEC95 benchmarks, we include the PISA binary supplied on the SimpleS-
calar website [2] as a comparison point. These benchmarks were compiled with the arguments “-
02 -funroll-loops”. There are no supplied binaries for SPEC00 benchmarks, so no information
appears for those in our graphs. The full set of results is attached in Appendix F.

March 29, 2000 12:56 pm

SimpleScalar
parameter

Value

fetch queue size
fetch speed

decode, width

issue width

commit width

RUU (window) size
LSQ

FUs

branch prediction

L1 D-cache

L1 I-cache

L2 unified cache
memory latency
memory width
Instruction TLB
DataTLB

4
1

4

4 out-of-order, wrong-path issue included
4

16

8

alu:4, mult:1, memport:2, fpalu:4, fpmult;1

2048-entry table of 2-bit counters, 4-way 512-set BTB, 3 cycle extra mispre-
dict latency, non-speculative update, 8-entry return address stack

128-set, 4-way, 32-byte lines, LRU, 1-cycle hit, total of 16KB
512-set, direct-mapped 32-byte line, LRU, 1-cycle hit, total of 16KB
1024-set, 4-way, 64-byte line, 6-cycle hit, total of 256K B

18 cyclesfor first chunk, 2 thereafter

8 bytes

16-way, 4096 byte page, 4-way, LRU, 30 cycle miss penalty

32-way, 4096 byte page, 4-way, LRU, 30 cycle miss penalty

Table 1. Simulation parameters for sim-outorder (the defaults).

Category Benchmark Description
compress A in-memory version of the common UNIX utility.
gcc Based on the GNU C compiler version 2.5.3.
go Aninternationally ranked go-playing program.
SPECINt95 Ij peg I magg compression/decompression on in-memory images.
li Xlisp interpreter.
m88ksim A chip simulator for the Motorola 88100 microprocessor.
perl Aninterpreter for the Perl language.
vortex An object oriented database.
SPECp2000 art R'ecogni.zes obj e'cts i'n athermal image usj ng a neura! network.
equake Simulation of seismic wave propagation in large basins.
i Data compression program that uses Lempel-Ziv coding (LZ77) as
9z1p its compression algorithm.
mef A benchmark derived from a program used for single-depot vehicle
SPECint2000 scheduling in public mass transportation.
vortex A single-user object-oriented database transaction benchmark which
exercises a system kernel coded ininteger C.
vpr Performs placement and routing in Field-Programmable Gate Arrays.

Table 2. Descriptions of the benchmarks used in this study.

The only anomalous behavior we observed during simulations was in the vortex bench-
mark, where we discovered that the SimpleScalar supplied binary had been compiled with the flag
“DOPTIMIZE’. The GCC and MIRV binaries that we initially built were not compiled with this
flag because we did not know about it. The flag turns on various optimizations in the vortex code

March 29, 2000 12:56 pm

Category Benchmark Input
compress 30000 g 2131
gcc regclass.i
go 99 null.in
SPECINt95 i J.peg specmun.ppm, —compr on.quality 25, other args asin training run
li boyer.lsp (reference input)
m88ksim ctl.lit (train input)
perl jumble.pl < jumble.in, dictionary up to 'angeline’ only
vortex 250 parts and 1000 people, other variables scaled accordingly
art -scanfile c756hel.in -trainfilel al10.img -stride 2 -startx 134 -starty
SPECfp2000 220 -endx 139 -endy 225 -objects 1 (test input)
equake < inp.in (test input)
gzip input.compressed 1 (test input)
mcf inp.in (test input)
SPECInt2000 | vortex 250 parts and 1000 people, other variables scaled accordingly
net.in arch.in place.in route.out -nodisp -route_only -
vpr route_chan_width 15 -pres_fac_mult 2 -acc_fac 1 -
first_iter_pres_fac 4 -initial_pres_fac 8 (test input)

Table 3. Description of benchmark inputs.

itself (it is a preprocessor directive). We added ‘-DOPTIMIZE’ to our simulations and the anom-
aly was solved.

5. Performance Observations

Several interesting observations can be made from the data shown in Appendices C and D.
These observations could fall into several categories which are examined in the following subsec-
tions. It is important to keep in mind the simulator configuration shown in Table 1.

5.1 Comparing MIRV to GCC

GCC has no register allocation in -O0. MIRV has graph coloring allocation and register
coalescing (simple copy propagation). Since GCC and MIRV unoptimized code is otherwise very
similar, we can use these two bars to show an estimate of the importance of register allocation.
For example, MIRV -O0 execution times are often 20% faster than GCC -O0 and sometimes
much faster. This benefit is solely due to register allocation. MIRV-O1 and -O2 performs a little
worse than GCC. This is borne out in the graphs on cycles and dynamic counts of instructions,
memory references and branches. The dynamic instruction mix graphs point out that MIRV is uni-
formly higher than GCC in all categories of instructions (Appendix E), particularly in memory
operations. When MIRV produces better code than GCC, it is often because it has reduced the
number of ‘other’ instructions (this happens in go, ijpeg, vortex, and vortex00).

The graphs show that dynamic instruction count is often a very good indication of the
number of cycles the benchmark will take to execute. However, there are several counter-exam-
ples. For instance, the mirv-O2 instruction count for perl is 2% worse than for GCC-0O2 but the
binary executes 9.6% faster. The opposite happens on go.

March 29, 2000 12:56 pm 5

5.2 Comparing SPEC95 to SPEC00

There are several characteristics that differentiate SPEC95 from SPECO00. IPC ranges
from 1 to 2 for SPEC95 and 0.6 to 1.8 for SPEC00. The average number of instructions per
branchis4 to 6 for SPEC95 and 4 to 8 for SPECOO (ignoring ijpeg and the unoptimized binaries).

SPECOQO instruction cache miss rates are very low except for the vortex benchmark. The
instruction cache ssimulated in this work is 16KB. The floating point benchmarks art and equake
have very small source code — each is only one source file and have 1270 and 1513 lines of source
code, respectively. The integer benchmark mcf is similarly small at 2412 lines of code. These
benchmarks are similar to compress, ijpeg, and 1i95 in the SPEC95 suite. The other SPEC95
benchmarks have a much higher miss ratio than SPEC00. SPECO00 vortex has slightly higher miss
rate than SPEC95 version of vortex.

SPECO0 data cache miss rates are much higher than SPEC95. Whereas SPEC95 miss rates
are generally less than 2% (5% for compress), SPECO00 miss rates are usually around 4%. art is a
particularly notable example with up to a 40% miss rate. Within a given compiler, optimization
generally makes the data miss rate worse. This is to be expected as optimizations cause more effi-
cient use of registers, thus eliminating the “easy” load and store operations and leaving those that
are essential to the algorithm. A prime example of this is the art benchmark, where the data cache
miss rate increases from 15% to 40% as optimizations are enabled from -O0 to -O2. At the same
time, however, the number of data references is cut by a factor of three. The low fruit has been
harvested and the “essential” memory accesses remain in the benchmark. The unified L2 cache
suffers a higher miss rate in SPECO00 as well.

The SPECOO0 binaries presented here are much smaller than the binaries for SPEC95. This
is one reason that the instruction cache performs so much better for SPEC00. On the other hand,
the instruction window is much busier in the SPECOO0 than it is in SPEC95 as shown in the regis-
ter-update-unit utilization graph. One might expect smaller programs to make less usage of the
instruction window, but because of the high data cache miss rates it appears that instructions are
held up longer in the window.

To summarize the differences between SPEC00 and SPEC95, we saw that IPC and data
cache performance were lower for the newer benchmarks, but that these programs exercised the
instruction cache less because of their smaller code size. This points out the importance of select-
ing the appropriate set of benchmarks for a given architectural study. Instruction cache studies
should probably avoid many of the SPEC00 benchmarks because they do not stress the instruction
cache. On the other hand, data cache studies would emphasize SPECO0O0 because it strains the data
side of the caching system much more than SPEC95. SPECO00 also seems to require a bigger
instruction window to avoid window-full stalls. The two suites together seem to provide a nice
complement of characteristics; most studies should use both suites.

5.3 Comparing Optimization Characteristics

MIRV and GCC optimizations exhibit similar characteristics across most of the bench-
marks but are there exceptions. For example, -O2 optimization usually produces code that runs
slightly faster than -O1 code. However, in the case of the vortex benchmark, -O2 code is slightly
worse than -O1 code for MIRV. This is due to register promotion which in this case increases the
register pressure to the point of introducing additional spilling code.

March 29, 2000 12:56 pm 6

Branch prediction accuracy is generally much worse for unoptimized binaries. One reason
for thisis simply the larger number of branches that are executed (20% fewer branches are exe-
cuted in -O2 than in -00). For both SPEC95 and SPECQO0, prediction accuracies range from
roughly 82% to 98% and usually optimizations increase prediction accuracy by 4% or more.

GCC optimizations usually increase the number of instructions retired per cycle (IPC) but
for MIRV the opposite isthe case.

Both compilers typically demonstrate a reduction in instruction-cache miss rate with opti-
mizations enabled. For vortex, MIRV optimizations also result in an increase in instruction cache
miss rate but GCC optimizations actually improve instruction cache performance for this bench-
mark. For the li benchmark, the reverse occurs.

6. Obtaining and Installing the Binaries

The version 1 binaries used to produce the data in this report are available on the MIRV
website [1], including the binaries supplied on the SimpleScalar website [2]. The README file
there explains how to install the binaries.

7. Conclusion

This report has introduced the MIRV compiler. As its performance improves, we encour-
age architecture researchers to use these binaries in conjunction with the SimpleScalar simulation
environment as examples of highly optimized programs. As they evolve, these will include
advanced optimizations that are not available in GCC and so should be more representative of
state-of -the-art compilation techniques.

Acknowledgments

This work was supported by DARPA grant DABT63-97-C-0047. Simulations were per-
formed on computers donated through the Intel Education 2000 Grant.

References

[1] http://www.eecs.umich.edu/mirv
2] ftp://ftp.cs.wisc.edu/sohi/Code/simpl escal ar/simplebench.littl e.tar

[3] Preston Briggs. Register Allocation via Graph Coloring. Rice University, Houston, Texas,
USA. Tech. Report. April, 1992.

[4] Douglas C. Burger and Todd M. Austin. The SimpleScalar Tool Set, Version 2.0. Univer-
sity of Wisconsin, Madison Tech. Report. June, 1997.

[9] Standard Performance Evaluation Corporation. SPEC CPU95. http://www.spec.org/osg/
cpu9s/, Warrenton, Virginia, 1995.

[6] Standard Performance Eval uation Corporation. SPEC CPU2000. http://www.spec.org/osg/

March 29, 2000 12:56 pm

cpu2000/, Warrenton, Virginia, 2000.
[7] http://arch.cs.ucdavis.edu/RAD/gcc-2.7.2.3.ss.tar.gz
[8] http://sourceware.cygnus.com/binutils/

March 29, 2000 12:56 pm

Appendix A. MIRV Optimizations

Frontend Backend
OEtel\r/lllze Filter Applied OEteIC]ellze Filter Applied
-02 -fscalRepl Aggr -01 -fpeephol el
-03 -fcallGraph -01 -fpeepholel
-03 -finline -01 -fblockClean
-03 -ffunctCleaner -01 -fcse
-02 -floopUnroll -01 -fcopy_propagation
-01 -farray ToPointer -01 -fconstant_propagation
-01 -flooplnversion -01 -fdead code_elimination
-01 -fconstantFold -01 -fpeepholed
-01 -fpropagation -01 -fpeepholel
-01 -freassociation -01 -fcse
-01 -fconstantFold -01 -fcopy_propagation
-01 -farithSimplify -01 -fconstant_propagation
-02 -fregPromote -01 -fdead code_elimination
-01 -fdeadCode -01 -fpeephol el
-01 -flooplnduction -01 -fpeepholel
-01 -fLICodeMotion -01 -flist_scheduler
-01 -fCSE -00 -freg_alloc
-01 -fpropagation -01 -flist_scheduler_aggressive
-01 -fCSE -01 -fpeepholed
-01 -farithSimplify -01 -fpeepholel
-01 -fconstantFold -O1 -fcselocal
-01 -fpropagation -01 -fcopy_propagation
-04 -fLICodeMotion -01 -fdead code_elimination
-01 -farithSimplify -01 -fpeepholel
-01 -fconstantFold -01 -fblockClean
-01 -fstrengthReduction -01 -fleafopt
-02 -fscalRepl Aggr
-01 -farithSimplify
-01 -fdeadCode
-01 -fcleaner

Table 4. Order of optimization filter application in MIRV. Since the system is based on MIRV-to-
MIRYV filters, filters can easily be run more than once, as the table shows. The frontend filters
operate on the MIRV high-level IR while the backend filters operate on a quad-type low-level IR.

March 29, 2000 12:56 pm 9

Appendix B. GCC Optimizations

The table shows the optimization sequence when ‘-O3 -funroll-loops’ is turned on. The
following flags are enabled: ‘-fdefer-pop -fomit-frame-pointer -fcse-follow-jumps -fcse-skip-
blocks -fexpensive-optimizations -fthread-jumps -fstrength-reduce -funroll-loops -fpeephole -
fforce-mem -ffunction-cse functions -finline -fcaller-saves -fpcc-struct-return -frerun-cse-after-
loop -fschedule-insns -fschedule-insns2 -fcommon -fgnu-linker -mgas -mgpOPT -mgpopt’. The
table is somewhat incomplete because of the lack of documentation on GCC internal operations.

Optimization Applied
jump optimization
cse
jump optimization
loop invariant code motion
strength reduction (induction variables)
loop unroll
cse
coalescing
scheduling (first pass)
register allocation (local, then global)
insert prologue and epilogue code
sheduling (second pass)
branch optimizations (delayed and shortening)
jump opitmization
dead-code elimination

Table 5. Optimization flags in GCC 2.7.2.3/PISA. The GCC compiler is
flag based, meaning that an optimization is either on or off. Multiple
invocations of an optimization require a special flag (e.g. -frerun-cse-
after-loop).

March 29, 2000 12:56 pm

Appendix C. SPEC95 Results

Execution Cycles

350
@ SSsy|
|| MW gcc
300 o gccol
OgccO2
H mrvoo
. 250 = @mirvol
A W mirvO2
2 200
£
9 150
°
>
© 100
50
0 | 8| | 8|
o » ° S & N D 5+
> S 2) 2 & &'
§ & ° « N & < &
N N
§
Retired Dynamic Memory References
160
@ SSsup
[| mgccoo
140 O gccOl
ogccO2
. 120 + mmirvoo
2 @ mirvOl
é—) 100 | mirvO2
E
@
3
3
c
o
5]
‘©
14
Retired Dynamic Stores
50
45 ¢ @SSsy =
mgcc B
40 H DOgccOl _| L
0 gcc02
35 1 Emrvoo L
@ @ mirvol
E 30 4 EmirvO2 ||
'E g
@
3 i
2
7] i
IPC
25
@ SSsup
mgccO0
2.0 I} OgecOl -
1 ogccO2
W mirvO0
@ mirvOl
15 EmirvO2 [
8]
a
1.0 : —
0.5 —
0.0 ——
» P O) P N D 5+
S > & %) » @&
& & S V& <
& N

Branches (millions) Loads (millions) Instructions (millions)

IPB

300

Retired Dynamic Instructions

10

@ SSsup
mgccO0
OgccOl
250 | ggeco2
W mirvO0
@mirvOl
200 | mmirvO2
150
100
50
0
) o o S » N > 5+
& & & & ¢ &
S & S .\\Q § %Q;l_e § 40\@
& &
(JO
Retired Dynamic Loads
100
90 +{ DSSsu
| mirvO2
) o o S » N > 5+
S O L & N &
& & S .\\Q § %Q;l_e § 40\@
& &
(JO
Retired Dynamic Branches
60
[} SSsug
m gccOX
50 Dgccg%
0 gcc!
u ?nrvoo
O mirvol
40 1 mmrvO2
30
20
10 H
0 | |
%) » o S o N N S
& & & & § &
§ & e < N &° < &
N <&
(JO
Average Instructions Per Branch
16
14 +- @SSsup
mgccO0
OgecOl
12 4 Biccos
W mirvo0
10 44 @ mirvOl
mmirvO2
8 |
6
4
2
0 |
%) o o > o N N S
¢ > 2 & > @
§ & k »\g N &° < &
N <&

March 29, 2000 12:56 pm

Accuracy

Miss Rate

Miss Rate

Branch Prediction Accuracy

100%
98% +H @ SSsug
| gccOl I
96% 4 O9gccol 1 LA H B
o gcc%%
W mirv —
94% 11 @mrvol | [] m it
929 U | mirvO2 i il A A
90% H | H HiH
88% H H
86% H
84% H
82% H
80% — T T T T T T
» $ o 3 & N N 3+
$ & R S
) & S K
& &
00
L1 Data Cache Miss Rate
6%
N mn
5% ([l =} SSsug
m gcc O
0gccOl
4% LK 0gcco2 |
W mirvoo
gmirvol
3% | mirvo2
2%
1%
0% I:uTI]
» ‘o O) P &
& F s @ & §
§ 9
S N
00
L2 Miss Rate
12%
o @mSSsup ||
10% I8 mgccO0
O gccOl
ogccO2
8% W mirvO0 [
@ mirvol
| mirvOo2
6%
4%
2%
o0 1o |
» o o N QA e
Qc'& ef’r? N N € o & N
§ Q B
S N
&

Miss Rate

Bytes (millions)

Percentage

11

L1 Instruction Cache Miss Rate

10%
9%
8% @ SSsy| i
| gcc B
7% OgccOl |
1 o gcc%zo
W mirve
6% @ mirvOol I
5% | mirvO2 |
4% H
3% -
2% H
1% H
0% i 8§
) » 3 & D 5+
&S e @ & ¢ &
S @ " N
N N
00
Text Size 2
35
3.0
=} SSsug
25 W gccOl
. OgecOl [
H ggccO2
| mirvo0
20 @mirvol [~
m mirvo2
15
1.0
05
0.0 T
o » 3 N D 5+
& RN &8 €
o) & < <
N N
00
Percent Cycles RUU Full
70%
60% n @ SSsup
mgccO0
50% OgecOl
OgccO2
H W mirvo0
40% @mrvol
mmirvo2
30%
20%
N [ITI:[
0%
) 0 o > & N N
S 5 S ¢ N &
& g 68’

March 29, 2000 12:56 pm

Graph

Special Notes

Execution Cycles

Retired Dynamic Instructions
Retired Dynamic Memory References
Retired Dynamic Loads

Retired Dynamic Stores

Retired Dynamic Branches

IPC

Average Instructions Per Branch
Branch Prediction Accuracy

L1 Instruction Cache Miss Rate
L1 Data Cache Miss Rate

Text Size 2

L2 Miss Rate
Percent Cycles RUU Full

Table 6. Explanation of the graphs in Appendices C and D. Statistics without further
explanation are simply the statistic that is produced by the default sim-outorder simulator.

sim_cycle
sim_num_insn
sim_num_refs
sim_num_loads
sim_num_stores
sim_num_branches
sm_IPC

sim_IPB
bpred_bimod.bpred_dir_rate
ilL.miss rate

dil.miss rate

Thisis computed as bfd_section_size(abfd, sect) of
the “.text” section in the binary. This is slightly
more accurate than Id_text_size. SimpleScalar

instructions are 64-bits each.
ul2.miss_rate
ruu_full

12

March 29, 2000 12:56 pm

Appendix D. SPECO00 Results

3500
@ SSsup
3000 mgccO0 L
OgecOl
OgccO2
W mirvO0
. 2500 @mrvol [
| mirvO2
2000
E
@
3
S 1500
3
2
& 1000

IPC

Execution Cycles

o SSsug
W gccO

OgccOl
ogecO2
W mirvo0
@ mirvol
mmirvo2

artoo equake00 gzip00 mcf00

vortex00 vpro0

Retired Dynamic Memory References

500
0
arto0 equake00 gzip00 mcf00 vortex00 vpro0
Retired Dynamic Stores
500
o SSSug
450 mgccO0 ||
O gccOl
ogccO2
400 Emirvo0 =
@ mirvol
m mirvO2

art00 equake00 gzip00 mcf00 vortex00 vpro0
IPC
2.0
| | @SSsup
18 W gccO0
ogccOl [_
1.6 +— DgccO2
W mirvO0
1.4 1| @mvol
) | mirvO2
1.2 4
1.0 §
0.8 7
0.6
0.4
0.2
0.0
arto0 equake00 gzip00 mcf00 vortex00 vpro0

13

Retired Dynamic Instructions

7000
@ SSsup
mgccO0 ||
6000 Ogccol
OgccO2
| mirvoo
5000 @mrvol [
mmirvO2
E 4000
@
c
2 3000
5]
2
@
£ 2000
1000
0
arto0 equake00 gzip00 mcf00 vortex00 vpro0
Retired Dynamic Loads
3000
o SSSBS
m gce
2500 Bk H
ogccO2
] mrvg{l)
o mirv!
2000 Emvo2
2
2
E 1500
@
k=]
&
o
- 1000
500
0
arto0 equake00 gzip00 mcf00 vortex00 vpro0
Retired Dynamic Branches
600
o SSSUS
m gccOX
OgccOl
500 Ogcco2 H
W mirvoo
@ mirvol
W mirvo2

£
@
3
=
G
c
o
o

art00 equake00 gzip00 mcf00 vortex00 vpro0

Average Instructions Per Branch

@ SSsy|

| mirvOo2

artoo equake00 gzip00 mcf00

vortex00 vpr00

March 29, 2000 12:56 pm

Accuracy

Miss Rate

Miss Rate

100%

98%

96%

94%

92%

90%

88%

86%

84%

82%

80%

Branch Prediction Accuracy

o SSsug
H gccOl
OgccOl

@ mirvol
m mirvO2

arto0 equake00 gzip00 mcf00 vortex00 vpro0o
L1 Data Cache Miss Rate
50%
@ SSsy|
5% [} gccog
OgccOl
40% (1 ggccoz 1
| mirvo0
@mirvOl
35% mmrvo2 -
30%
25%
20%
15%
10%
5%
0%
arto0 equake00 gzip00 mcf00 vortex00 vpro0
L2 Miss Rate
50%
45% | mSSsup ||
W gccO0
40% - OgecOl
ogccO2
35% - mmirvo0 —
@ mirvOl
30% 1 Emirvo2 ||
25%
20% -
15%
10%
5% -
0% -

artoo

equake00

gzip00

mcf00 vortex00 vpro0

Miss Rate

Bytes (millions)

Percentage

14

L1 Instruction Cache Miss Rate

10%
o SSscu)g
[| mgce
9% o gccol
0gec02
8% 1— m %vaO
@ mirvOol
7% L mEmirvO2
6%
5%
4%
3%
2%
1%
0% +
arto0 equake00 gzip00 mcf00 vortex00 vpro0
Text Size 2
14
o SSsug
1.2 - Egccol
o gcc8%
ggcc
i Irvo0
1.0 @mirvol
m mrvO2
0.8
0.6
0.4
0.2
0.0
artoo equake00 gzip00 mcf00 vortex00 vpro0
Percent Cycles RUU Full
100%
SSsi
90% +—f B gcc! 5
OgccOl
80% 0 geco2
B mrvO0
9 @ mirvol
0% | mirvo2
60%
50%
40%
30%
20%
10%
0%

artoo

equake00 gzip00 mcf00 vortex00 vpro0

15

March 29, 2000 12:56 pm

Appendix E. Dynamic Instruction Mix Results

Dynamic Instruction Mix

O other

O branches
M stores

O loads

300

,
0 0 0
re) o wn
N N - -

(suoljjiw) suonaniisu| slweuiqg

‘NOE_E.mwQ.__
‘HOE_E.mm&_
‘oOE_E.mwQ.__

| 20996-Hadll

I TO296-Hadl

I 009296-6adl

| dnsss-6adl

| ZOoMIw-0b

I TOMIW-0b

| 0OMIWw-06

| 20296-06

| T0O226-06

I 00926-06

I dnsss-ob

| ZOMIW-G6SSaIdwod
| TOMIW-G6SSaIdWod
| 00MIW-G6SSaIdWod
I 20996-g6ssa1dwod
| T0296-G6ssa1dwod
| 00996-g6ss21dwod
I dnsss-gssalidwod
| ZONIW-G6006

TOMIW-G6906

| 0OMIW-56296
I 209296-G56206
I T0O226-G6206
I 00296-66206

dnsss-g6006

T
o [} o
o n

Dynamic Instruction Mix

ZONIW-X3UOA

TOMIW-X3UOA

0OMIW-X3UOA

20206-x3110A

TO296-x810A

009296-x8110A

dnsss-xalon

ZOMIw-|1ad

TOMIW-|1ad

0OMIW-|1ad

20296-pad

TO296-pad

00996-11ad

dnsss-pad

COMIW-wWis}ggw

TOMIW-WIS}g8wW

OOMIW-WIs}ggw

20296-wisxggwW

TO296-wisxggW

_ _ 00296-wisyggw

7 | dnsss-wisiggw

CONIW-S6l|

TOMIW-S6!|

O other

_ _ 0OMI-G6I|

20296-56l|

O branches
M stores
M loads

T0O996-G6l|

00296-G6l|

dnsss-s6ll

500

450

, , , ,
0 0 0 0 0 0 0 0 0
o n o n o n o o

< ™ (5] N N — —

(suoljiw) suonanisu| dlweuiqg

16

March 29, 2000 12:56 pm

Dynamic Instruction Mix

7000

Obranches

6000
5000
4000
3000
2000
1000

(suoljjiw) suonaniisu| dlweukg

ZoMIW-00dizB
TOMIW-00dizB
00MIW-00d1z6
209296-00d1z6
T0296-00d1z6
00226-00d1z6
dnsss-0odizb
ZOMIw-0paxenba
TOMIW-00axenba
0OMIW-00axenba
20296-009xenba
T0O296-00axenba
00996-009xenba
dnsss-gpaxenba
ZONIW-00Me
TOoMIW-00Me
ooMIW-00Me
20296-001e
TO206-00ue
00926-00ue

dnsss-ooue

Dynamic Instruction Mix

1600

O branches

o o o
o o O o o o [=}
< N O
— - -

(suoljjiw) suonaniisu| slweuiqg

ZOMIW-004dA
TOMIW-004dA
00MIW-004dA
209226-004dA
T0226-004dA
009226-004dA
dnsss-004dA
ZOMIW-00XSUOA
TONIW-Q0X3HOA
OONIW-Q0X3HOA
20996-00X3UO0A
TO296-00X3UOA
00996-00X3LOA
dnsSS-00XauoA
ZONIW-00oW
TOMIW-00oW
0ONIW-00oW
20996-005ow
T10996-00)0W
00996-00JoW

dnsss-00oWw

March 29, 2000 12:56 pm

Appendix F. Detailed Results

Table F.1. Number of execution cycles.

cycles SSsup gccO0 gccOl gccO2 mirvO0 mirvO1 mirvO2
gcc9s 133,198,943| 200,481,213 137,146,750| 135,925,630 199,353,822| 153,676,261| 155,570,866
compress95 | 74,128,332| 108,056,529 76,954,251 74,120,871| 101,465,965 73,727,346 71,995,564
go 144,963,348 289,772,154| 153,516,403| 143,099,654| 177,020,674| 136,487,401| 144,615,493
ijpeg 60,867,889| 116,708,870 62,016,032 60,362,407 68,882,890 59,562,890 59,092,026
li95 111,990,825 198,753,658 123,987,875| 122,404,069| 171,851,043| 126,223,376 119,688,571
m88ksim 73,873,102| 203,182,527 87,329,609 73,359,777| 143,770,331 97,886,738| 100,992,063
perl 91,785,556| 118,283,857| 104,616,089 94,904,097 99,226,691 84,818,970 88,070,759
vortex 144,218,250 222,066,885| 150,370,197| 159,279,949| 211,559,470| 164,531,061| 167,160,492
art0o 0] 8,183,059,761| 3,932,008,214| 3,691,442,317| 5,664,033,174| 3,896,938,836(3,978,797,881
equake00 0] 1,983,885,959| 1,228,292,079| 1,129,167,092| 1,592,383,199|(1,246,462,154(1,097,503,110
gzip00 0] 1,458,535,132| 741,395,794| 729,502,893| 995,964,507 789,611,147 830,910,020
mcf00 0| 300,632,079| 185,845,520 180,043,497 216,663,192 176,769,988 176,698,141
vortex00 0| 222,071,242| 150,275,946| 159,022,773| 211,142,086 165,024,308 166,842,914
vproo 0| 960,620,460| 497,678,504| 497,481,148| 667,190,527 513,963,243| 505,800,410

Table F.2. Number of dynamic instructions.

dyninsn SSsup gccO0 gccO1 gccO2 mirvO0 mirvO1 mirvO2
gcc9s 121,291,882 173,501,299 124,358,856| 122,048,567| 165,479,820| 136,597,068| 135,902,282
compress95 | 124,007,203| 202,848,107 127,320,796 123,989,867 182,370,014 128,062,400(124,117,434
go 132,918,691| 268,225,327 146,032,235| 134,765,723| 179,700,961| 131,900,396 132,506,089
ijpeg 123,953,291 221,597,997| 125,493,959| 124,300,853 138,774,682| 114,940,431| 114,701,757
li95 173,968,882 277,800,863| 176,326,885| 173,607,213| 234,372,535| 177,251,019| 177,236,548
m88ksim [119,317,263 214,992,826 124,426,497| 119,670,756| 184,779,644 122,942,402 123,731,658
perl 108,713,654 129,120,457| 110,119,889| 109,608,239| 127,682,949| 111,669,505| 111,731,966
vortex 153,682,491 207,233,844| 157,864,689| 157,918,608| 205,467,402| 168,991,471| 168,981,011
art00 0] 6,269,718,143| 2,270,057,265| 2,024,827,366| 3,883,917,755(2,131,438,659(2,137,494,813
equake00 0] 2,984,585,045| 1,502,806,229| 1,459,964,520(1,967,861,216(1,519,585,190(1,382,962,709
gzip00 0] 2,149,944,982| 1,308,126,550| 1,276,220,491| 1,840,361,191| 1,448,658,876(1,531,669,686
mcf00 0| 405,724,021| 209,934,857| 202,016,959| 277,494,737 200,422,476 200,424,704
vortex00 0| 207,393,055| 158,021,459 158,075,450 205,626,182 169,148,892 169,138,288
vproo 0] 1,510,303,511| 710,968,666 710,087,319|1,013,762,258(722,299,249 708,193,105

March 29, 2000 12:56 pm

Table F.3. Number of dynamic memory references.

dynRefs SSsup gccO0 gccO1l gccO2 mirvO0 mirvO1 mirvO2
gcc9s 49,334,757 73,873,363 49,352,753 49,361,737 58,200,460 54,892,416 55,461,383
compress95 | 43,664,405 71,087,446 45,453,686 43,616,577 63,318,786 46,089,721 43,413,349
go 36,716,606 82,177,020 39,763,447 38,071,493 44,760,506 42,363,336 43,109,104
ijpeg 31,856,721 86,688,154 31,571,618 31,708,996 34,770,808 34,330,551 34,393,731
li95 74,677,881 141,546,686 74,055,835 72,648,246 96,516,071 77,473,882 77,450,411
m88ksim 37,052,641 94,852,549 37,360,061 37,214,551 54,389,895 39,072,683 39,001,729
perl 49,025,762 59,632,004 49,364,718 49,074,054 54,951,417 48,596,001 48,677,929
vortex 81,564,028| 117,310,095 84,338,484 84,884,654| 111,006,867 93,174,770 93,165,111
art0o 0] 2,953,356,736| 572,664,757 562,834,944|1,561,619,480(748,113,677 668,403,628
equake00 0] 1,146,908,255| 485,738,408 494,960,252| 636,607,655 526,424,173 510,722,043
gzip00 0| 760,957,701| 410,885,840 402,533,982 522,098,333 460,619,365 533,499,622
mcf00 0| 191,667,384 77,491,719 77,874,104] 100,389,133 76,623,066 76,623,066
vortex00 0| 117,424,086 84,450,640 84,996,918| 111,120,145 93,287,517 93,277,714
vproo 0| 769,568,893| 290,026,962| 285,158,550| 463,760,059 320,832,075 308,995,984

Table F.4. Number of dynamic load instructions.

loads SSsup gccO0 gccOl gccO2 mirvO0 mirvO1 mirvO2
gcc9s 31,872,008 51,867,054 32,314,881 31,743,080 39,225,924 35,149,405 35,430,480
compress95 | 26,561,283 44,501,502 28,354,482 26,517,372 39,664,588 28,257,749 26,602,114
go 27,464,121 64,392,437 30,374,262 28,144,373 34,362,737 30,791,030 31,143,981
ijpeg 22,283,318 63,619,861 22,431,106 22,204,793 25,129,726 24,116,600 24,135,665
li95 45,493,244 95,161,631 45,743,456 44,478,428 60,466,443 47,584,005 47,570,254
m88ksim 22,795,190 67,768,522 23,053,841 22,877,056 34,470,734 23,987,331 23,949,875
perl 29,091,584 36,461,407 29,386,498 29,019,370 33,099,127 28,844,092 28,905,023
vortex 43,439,863 70,196,006 45,404,268 45,113,080 65,182,812 50,703,090 50,701,232
artoo 0| 2,487,176,786| 427,202,096 417,372,265(1,405,139,878| 598,432,397| 518,482,248
equake00 0| 960,634,992| 369,058,638| 371,111,611| 517,248,426 393,834,619| 381,554,065
gzip00 0| 538,118,773| 293,914,705| 281,592,756| 377,580,781 323,275,044 360,690,739
mcf00 0| 129,482,527 44,316,226 44,692,447 56,798,038 43,412,222 43,412,222
vortex00 0 70,242,839 45,449,812 45,158,651 65,229,268 50,749,024 50,747,094
vproo 0| 611,078,869| 211,472,979| 206,577,571| 370,396,557 241,442,330 227,526,190

Table F.5. Number of dynamic store instructions.

stores SSsup gccO0 gccO1l gccO2 mirvO0 mirvO1 mirvO2
gcc9s 17,462,749 22,006,309 17,037,872 17,618,657 18,974,536 19,743,011 20,030,903
compress95| 17,103,122 26,585,944 17,099,204 17,099,205 23,654,198 17,831,972 16,811,235
go 9,252,485 17,784,583 9,389,185 9,927,120 10,397,769 11,572,306 11,965,123
ijpeg 9,573,403 23,068,293 9,140,512 9,504,203 9,641,082 10,213,951 10,258,066
li95 29,184,637 46,385,055 28,312,379 28,169,818 36,049,628 29,889,877 29,880,157
m88ksim 14,257,451 27,084,027 14,306,220 14,337,495 19,919,161 15,085,352 15,051,854
perl 19,934,178 23,170,597 19,978,220 20,054,684 21,852,290 19,751,909 19,772,906
vortex 38,124,165 47,114,089 38,934,216 39,771,574 45,824,055 42,471,680 42,463,879
artoo 0| 466,179,950| 145,462,661 145,462,679 156,479,602| 149,681,280| 149,921,380
equake00 0| 186,273,263| 116,679,770 123,848,641 119,359,229| 132,589,554| 129,167,978
gzip00 0| 222,838,928| 116,971,135 120,941,226| 144,517,552 137,344,321 172,808,883
mcf00 0 62,184,857 33,175,493 33,181,657 43,591,095 33,210,844 33,210,844
vortex00 0 47,181,247 39,000,828 39,838,267 45,890,877 42,538,493 42,530,620
vproo 0| 158,490,024 78,553,983 78,580,979 93,363,502 79,389,745 81,469,794

March 29, 2000 12:56 pm

Table F.6. Number of dynamic branch instructions.

branches SSsup gccO0 gccOl gccO2 mirvO0 mirvO1 mirvO2
gcc9s 24,419,621 32,075,384 24,911,740 24,768,175 31,987,107 27,208,037 26,912,338
compress95 | 22,449,938 29,619,589 22,447,525 22,447,525 29,375,803 23,225,364 22,761,010
go 20,226,745 26,490,233 20,469,933 20,427,880 25,320,029 20,972,690 20,919,284
ijpeg 11,147,615 16,411,284 11,200,098 11,196,216 16,144,036 11,361,376 10,258,101
li95 39,563,998 56,677,574 40,721,926 40,494,851 51,263,724 41,047,678 41,047,678
m88ksim 23,229,288 32,048,286 23,644,444 23,633,461 33,171,563 24,432,348 22,807,367
perl 20,807,945 24,539,960 21,121,515 21,051,780 24,802,448 21,758,211 21,701,676
vortex 24,386,128 29,994,803 23,970,139 23,940,982 31,815,320 27,718,552 27,718,547
art0o 0| 496,824,799| 305,175,270 286,672,217 497,835,745 340,464,793 245,074,081
equake00 0| 245,887,275| 194,340,192| 194,287,976 237,936,428 196,680,682 172,950,878
gzip00 0| 315,190,379| 237,097,158 237,096,998 304,468,516 246,300,098 246,142,642
mcf00 0 60,507,881 44,050,368 43,662,048 56,701,362 44,567,160 44,566,440
vortex00 0 30,006,871 23,981,934 23,952,777 31,827,429 27,730,466 27,730,461
vproo 0| 134,367,823| 102,717,592| 102,668,076 131,409,609 102,297,479 101,097,016

Table F.7. Total number of instructions executed (speculative and non-speculative)

totalinsn SSsup gccO0 gccO1l gccO2 mirvO0 mirvO1 mirvO2
gcc9s 142,731,598 197,785,893 146,101,963 143,256,471 191,364,706| 160,882,289| 159,878,583
compress95 | 145,313,204| 229,548,689| 152,356,955 145,305,225 209,208,842 151,114,523 147,488,798
go 164,694,798 302,160,340 178,262,378| 166,919,747 213,106,429| 164,904,141| 164,675,171
ijpeg 132,673,455| 230,974,241| 134,451,425 133,029,864 147,785,767| 123,363,879| 123,029,721
li95 212,072,618 320,561,618 214,215,027| 207,172,196| 277,786,734| 225,526,301 225,799,749
m88ksim 127,989,542| 222,049,480| 132,583,890 128,182,216 194,087,300| 139,146,769| 140,645,885
perl 124,387,461 141,813,436| 124,294,619 125,604,111 143,100,557| 125,829,147| 125,925,468
vortex 157,204,562| 211,428,230| 161,684,192 161,403,187 209,951,844| 172,990,766| 172,832,047
artoo 0] 6,599,861,689| 2,601,964,628| 2,358,665,668(4,086,289,721| 2,298,462,334| 2,417,414,263
equake00 0] 3,079,987,564| 1,585,588,414| 1,541,774,603| 2,063,294,135(1,621,353,296| 1,432,807,184
gzip00 0] 2,373,936,872| 1,485,265,785| 1,445,983,553| 2,055,284,906| 1,617,370,836(1,700,150,401
mcf00 0| 446,599,029| 250,260,853| 242,563,503| 312,157,139 238,801,643 238,804,394
vortex00 0| 211,582,549| 161,787,572| 161,568,409| 210,097,534 173,132,592 173,290,978
vproo 0] 1,633,462,350| 825,282,672| 823,844,499|1,128,487,567| 839,225,111| 825,515,677

March 29, 2000 12:56 pm

Table F.8. Total number of memory references executed (speculative and non-specula-

tive).

totalrefs SSsup gccO0 gccO1l gccO2 mirvO0 mirvO1 mirvO2
gcc9s 57,644,574 82,971,897 57,441,491 57,468,393 65,405,756 63,848,148 64,271,568
compress95 | 51,242,289 79,852,930 55,180,437 51,199,467 72,576,616 55,207,752 52,843,584
go 44,987,931 92,231,388 47,675,386 46,637,129 51,533,660 52,652,047 53,144,911
ipeg 33,743,078 88,824,590 33,280,042 33,610,579 36,390,406 36,239,829 36,373,765
i95 89,978,781 165,736,202 87,894,372 85,331,607| 114,404,632 96,624,795 96,718,638
m88ksim 40,537,475 98,421,283 40,590,766 40,650,549 57,198,876 44,358,129 44,540,365
perl 54,572,928 64,639,181 54,224,137 54,952,336 60,183,338 54,290,123 54,119,775
vortex 83,117,340 119,568,855 85,989,966 86,394,959| 112,849,860 94,888,095 94,848,785
art00 0[3,122,895,929| 626,774,507| 640,161,117|1,658,947,251| 801,274,286 751,495,150
equake00 0 1,185,730,979| 504,513,549| 520,254,297| 654,951,428 560,047,648 524,313,794
gzip00 0| 839,817,109| 464,332,540| 454,703,182| 577,101,119| 516,330,530 596,370,658
mcf00 0| 210,989,597 89,090,863 91,249,222| 109,810,364 88,765,109 88,766,011
vortex00 0 119,689,422 86,104,426 86,506,518| 112,958,574 94,990,488 95,078,399
vpro0 0 832,443,022| 336,006,141| 331,069,790| 526,463,967| 374,287,250 362,455,251

Table F.9. Instructions per cycle.

IPC SSsup gccO0 gccOl gccO2 mirvO0 mirvO1 mirvO2
gcc9s 0.91 0.87 0.91 0.90 0.83 0.89 0.87
compress95 1.67 1.88 1.65 1.67 1.80 1.74 1.72
go 0.92 0.93 0.95 0.94 1.02 0.97 0.92
iipeg 2.04 1.90 2.02 2.06 2.01 1.93 1.94
li95 1.55 1.40 142 1.42 1.36 1.40 1.48
m88ksim 1.62 1.06 1.42 1.63 1.29 1.26 1.23
perl 1.18 1.09 1.05 1.15 1.29 1.32 127
vortex 1.07 0.93 1.05 0.99 0.97 1.03 1.01
art00 0.00 0.77 0.58 0.55 0.69 0.55 0.54
equake00 0.00 1.50 122 1.29 1.24 122 1.26
gzip00 0.00 147 1.76 1.75 1.85 1.83 1.84
mcf00 0.00 1.35 1.13 112 1.28 1.13 1.13
vortex00 0.00 0.93 1.05 0.99 0.97 1.03 1.01
vpro0 0.00 157 1.43 1.43 1.52 141 1.40

March 29, 2000 12:56 pm

Table F.10. Instructions per branch.

IPB SSsup gccO0 gccOl gccO2 mirvO0 mirvO1 mirvO2
gcc9s 4.97 541 4.99 4.93 5.17 5.02 5.05
compress95 5.52 6.85 5.67 5.52 6.21 5.51 5.45
go 6.57 10.13 7.13 6.60 7.10 6.29 6.33
ijpeg 11.12 13.50 11.20 11.10 8.60 10.12 11.18
li95 4.40 4.90 4.33 4.29 4.57 4.32 4.32
m88ksim 5.14 6.71 5.26 5.06 5.57 5.03 5.43
perl 5.22 5.26 5.21 5.21 5.15 5.13 5.15
vortex 6.30 6.91 6.59 6.60 6.46 6.10 6.10
art00 0.00 12.62 7.44 7.06 7.80 6.26 8.72
equake00 0.00 12.14 7.73 7.51 8.27 7.73 8.00
gzip00 0.00 6.82 5.52 5.38 6.04 5.88 6.22
mcf00 0.00 6.71 4.77 4.63 4.89 4.50 4.50
vortex00 0.00 6.91 6.59 6.60 6.46 6.10 6.10
vpro0 0.00 11.24 6.92 6.92 7.71 7.06 7.01

Table F.11. Branch prediction accuracy.

BPrate SSsup gccO0 gccO1l gccO2 mirvO0 mirvO1 mirvO2
gcc9s 88.70% 87.39% 89.10% 88.96% 85.69% 88.41% 88.22%
compress95 90.00% 90.76% 90.00% 90.00% 83.99% 90.40% 90.16%
go 81.68% 84.42% 81.87% 81.84% 82.31% 81.95% 81.72%
ijpeg 92.61% 93.80% 92.66% 92.66% 93.10% 92.74% 92.02%
li95 92.48% 86.91% 92.58% 92.51% 85.47% 92.40% 92.40%
m88ksim 96.18% 89.45% 95.98% 96.40% 88.97% 94.34% 94.02%
perl 93.34% 93.05% 93.87% 93.77% 91.61% 94.38% 94.38%
vortex 96.80% 87.57% 96.28% 96.98% 88.57% 96.92% 97.12%
art0o 0.00% 89.58% 83.95% 82.84% 92.24% 89.77% 84.28%
equake00 0.00% 94.93% 93.65% 93.65% 94.71% 93.69% 95.84%
gzip00 0.00% 90.85% 93.41% 93.41% 88.35% 93.15% 93.14%
mcf00 0.00% 85.12% 90.88% 90.88% 83.51% 90.81% 90.81%
vortex00 0.00% 87.57% 96.27% 96.98% 88.58% 96.92% 96.73%
vproo 0.00% 88.46% 90.91% 90.90% 84.22% 90.71% 90.31%

Table F.12. L1 instruction-cache miss rate.

IL1miss SSsup gccO0 gccOl gccO2 mirvO0 mirvO1 mirvO2
gcc9s 6.58% 7.41% 6.71% 6.84% 7.65% 6.92% 7.11%
compress95 0.01% 0.01% 0.01% 0.01% 0.01% 0.01% 0.01%
go 4.91% 5.07% 4.50% 4.59% 4.42% 4.19% 4.82%
ijpeg 0.42% 0.29% 0.28% 0.39% 0.46% 0.49% 0.31%
li95 0.58% 0.54% 1.35% 1.80% 1.47% 1.28% 0.77%
m88ksim 2.67% 7.47% 4.03% 2.72% 4.64% 3.98% 4.10%
perl 4.48% 5.70% 6.12% 4.69% 3.72% 3.54% 3.88%
vortex 6.98% 8.23% 7.12% 8.19% 7.89% 7.68% 7.95%
art00 0.00% 0.00% 0.00% 0.00% 0.01% 0.01% 0.00%
equake00 0.00% 0.36% 2.09% 1.26% 3.14% 1.75% 0.57%
gzip00 0.00% 2.41% 0.00% 0.00% 0.01% 0.02% 0.01%
mcf00 0.00% 0.09% 0.19% 0.20% 0.13% 0.19% 0.18%
vortex00 0.00% 8.23% 7.12% 8.19% 7.89% 7.68% 7.77%
vproo 0.00% 0.15% 0.13% 0.14% 0.16% 0.15% 0.25%

March 29, 2000 12:56 pm

Table F.13. L1 data-cache miss rate.

DL1miss SSsup gccO0 gccO1l gccO2 mirvO0 mirvO1 mirvO2
gcc9s 1.54% 1.11% 1.53% 1.54% 1.39% 1.47% 1.46%
compress95 5.23% 3.32% 4.85% 5.19% 3.62% 4.90% 5.18%
go 2.01% 1.00% 1.93% 2.05% 1.71% 1.85% 1.88%
ijpeg 0.90% 0.36% 0.91% 0.91% 0.82% 0.84% 0.84%
li95 1.81% 1.02% 1.82% 1.86% 1.58% 1.88% 1.88%
m88ksim 0.72% 0.31% 0.73% 0.71% 0.50% 0.69% 0.68%
perl 0.60% 0.61% 0.58% 0.58% 0.50% 0.55% 0.55%
vortex 1.81% 1.28% 1.75% 1.76% 1.41% 1.61% 1.62%
art0o 0.00% 8.96% 40.73% 41.97% 15.18% 32.12% 34.55%
equake00 0.00% 1.94% 4.38% 4.29% 3.35% 4.05% 4.18%
gzip00 0.00% 2.50% 4.48% 4.54% 3.58% 4.01% 3.47%
mcf00 0.00% 6.35% 12.99% 12.77% 10.31% 13.10% 13.10%
vortex00 0.00% 1.29% 1.76% 1.77% 1.42% 1.62% 1.63%
vproo 0.00% 1.68% 4.02% 4.07% 2.42% 3.65% 3.71%

Table F.14. Program text size (measurement 1)

textSize SSsup gccO0 gccO1l gccO2 mirvO0 mirvO1 mirvO2
gcc9s 2,166,768 2,934,576 2,000,448 1,962,672 2,830,848 2,279,776 2,538,240
compress95 103,840 109,584 105,456 105,264 107,712 105,232 107,552
go 621,600 934,112 581,824 566,400 678,432 561,280 620,144
ijpeg 396,976 520,848 364,752 365,904 414,704 377,280 474,784
li95 180,640 207,792 176,528 176,160 199,536 182,640 183,680
m88ksim 286,864 383,024 289,712 286,608 354,784 308,736 328,192
perl 535,584 627,024 506,992 503,008 621,392 559,184 568,320
vortex 990,928 1,195,328 977,424 966,704 1,132,080 1,017,072 1,017,200
art0o 0 131,504 120,384 119,456 123,328 120,384 144,304
equake00 0 154,048 125,904 126,624 134,976 129,232 159,888
gzip00 0 230,448 201,264 200,768 214,720 200,512 213,632
mcf00 0 127,056 114,176 114,400 117,872 115,056 115,600
vortex00 0 1,195,328 977,424 966,704 1,132,080 1,017,072 1,017,152
vproo 0 439,328 322,768 314,320 363,040 328,336 437,968

Table F.15. Program text size (measurement 2, as described in Table 6).

textSize2 SSsup gccO0 gccOl gccO2 mirvO0 mirvO1 mirvO2
gcc9s 2,166,320 2,934,128 2,000,000 1,962,224 2,830,400 2,279,328 2,537,792
compress95 103,392 109,136 105,008 104,816 107,264 104,784 107,104
go 621,152 933,664 581,376 565,952 677,984 560,832 619,696
ijpeg 396,528 520,400 364,304 365,456 414,256 376,832 474,336
li95 180,192 207,344 176,080 175,712 199,088 182,192 183,232
m88ksim 286,416 382,576 289,264 286,160 354,336 308,288 327,744
perl 535,136 626,576 506,544 502,560 620,944 558,736 567,872
vortex 990,480 1,194,880 976,976 966,256 1,131,632 1,016,624 1,016,752
art00 0 131,056 119,936 119,008 122,880 119,936 143,856
equake00 0 153,600 125,456 126,176 134,528 128,784 159,440
gzip00 0 230,000 200,816 200,320 214,272 200,064 213,184
mcf00 0 126,608 113,728 113,952 117,424 114,608 115,152
vortex00 0 1,194,880 976,976 966,256 1,131,632 1,016,624 1,016,704
vproo 0 438,880 322,320 313,872 362,592 327,888 437,520

March 29, 2000 12:56 pm

Table F.16. Unified L2 miss rate.

UL2miss SSsup gccO0 gccO1l gccO2 mirvO0 mirvO1 mirvO2
gcc9s 2.17% 2.14% 2.02% 2.01% 2.28% 2.24% 2.35%
compress95 9.55% 9.36% 9.69% 9.67% 9.60% 9.63% 9.60%
go 5.77% 11.20% 6.79% 5.89% 7.44% 5.97% 6.13%
ipeg 6.31% 9.06% 7.67% 6.37% 5.82% 6.03% 8.68%
i95 0.10% 0.10% 0.07% 0.06% 0.06% 0.07% 0.09%
m88ksim 3.04% 0.67% 2.01% 3.00% 1.25% 1.93% 1.85%
perl 0.75% 0.54% 0.62% 0.73% 0.80% 0.94% 0.86%
vortex 2.70% 1.99% 2.51% 2.18% 2.41% 2.10% 2.02%
art00 0.00% 48.12% 48.12% 48.12% 48.10% 48.10% 48.12%
equake00 0.00% 19.08% 11.51% 15.20% 7.37% 12.55% 20.65%
gzip00 0.00% 1.08% 3.09% 3.07% 3.32% 3.09% 3.29%
mcf00 0.00% 18.57% 18.52% 18.48% 18.61% 18.48% 18.51%
vortex00 0.00% 1.98% 2.47% 2.11% 2.37% 2.29% 2.38%
vpro0 0.00% 9.42% 10.22% 10.22% 9.72% 10.19% 9.74%

Table F.17. Percentage of time RUU is full.

RUUFull SSsup gccO0 gccOl gccO2 mirvO0 mirvO1 mirvO2
gcc9s 10.85% 10.67% 11.22% 10.18% 12.79% 10.27% 10.03%
compress95 52.81% 52.03% 51.37% 52.79% 41.33% 49.48% 51.12%
go 23.26% 27.97% 27.20% 24.06% 22.93% 21.98% 20.38%
iipeg 58.00% 49.83% 61.33% 57.70% 60.23% 43.31% 47.60%
li95 28.32% 21.41% 25.25% 24.63% 22.34% 23.61% 24.52%
m88ksim 20.21% 7.28% 21.58% 18.90% 23.88% 21.37% 23.52%
perl 10.44% 8.43% 8.19% 10.70% 12.80% 11.60% 10.33%
vortex 9.90% 4.34% 9.19% 7.65% 4.96% 5.90% 5.63%
arto0 0.00% 27.55% 88.72% 90.29% 78.48% 74.73% 81.46%
equake00 0.00% 61.10% 43.80% 40.57% 33.83% 36.70% 40.26%
gzip00 0.00% 32.27% 64.87% 62.00% 53.08% 53.88% 46.69%
mcf00 0.00% 31.31% 58.99% 55.55% 32.76% 55.36% 55.40%
vortex00 0.00% 4.30% 9.05% 7.54% 4.84% 5.86% 5.74%
vpr00 0.00% 39.11% 60.04% 61.02% 37.09% 46.48% 44.41%

