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Abstract

In this report we describe a method for building an attention function on the two
dimensional torus. Such a function is used as an analytic switch by an underactuated
robotic system to change its attention from one controlled cyclic process to another. A
point in the torus represents two phase variables which each describe the progress of a
cyclic system around a circle, such as that of a bouncing ball or a hopping leg. The
attention function is designed so that under a certain flow on the torus, attention is
paid to the phase which will next become zero.






1 Introduction

In [2] we introduced a method for regulating the phases of two cyclic processes and applied
it to the task of juggling two balls with a robotic paddle. To juggle one ball, the paddle uses a
mirror law [1] which takes the form of a reference trajectory u(t) that the paddle must follow. The
reference trajectory pu(t) guides the paddle to go down when the ball goes up and up when the ball
goes down, hence the name “mirror law”, and is such that the collisions between ball and paddle
take the ball to an asymptotically stable orbit. To juggle two balls, we introduce two mirror laws
and py between which the paddle must alternate its attention. Controlling the paddle’s attention
so that it tracks the appropriate mirror law is the subject of this report. The attention function,
denoted by s, will be designed so that the paddle “attends” to ball one (s = 1) for some time before
and after ball one collisions, attends to ball two (s = 0) near ball two collisions, and smoothly
switches between the two reference trajectories u; as needed. We also want that s does not change
the attention of the paddle between collisions with the same ball (e.g. in a 3:2 juggle, the paddle
will hit the balls in the order ball 1, ball 1, ball 0, ball 1, ball 0 — over and over). In combination
with the mirror laws the attention function results in the conglomerate reference trajectory

p=sp1+ (1= s)pz.

To describe the bouncing balls as cyclic processes [2], we introduce phase variables ¢; € S!, for
i = 1,2, and consider points of the form (¢;, ¢2) € T2 We so arrange the definition of ¢; so that
the points where ¢; = 0 correspond to collisions between the paddle and ball ¢:. Furthermore we
construct mirror laws so that the system, in the limit, behaves according to

(il):m(é) and A(bg:qul—l—%(modl) (1)

where A and B are integers. For example with A: B = 1:1, (1) encodes the task of juggling two
balls so that one is at its apex while the other is colliding with the paddle.
The following reference field, also introduced in [2], has (1) as a stable limit cycle:

R(¢17¢2)T = K1 ( g ) - H2VV(¢17¢2)- (2)

The collisions are controlled so that they “service” this reference dynamic system. Thus, the
attention function we construct in this report presupposes that points on the torus flow according
to this system. By careful design, therefore, we have reduced the problem of designing the attention
function to that of determining which points in T? will flow to which collisions next under the action
of (2). The limit cycle for a particular case is illustrated in Figure 1 and the associated vector field
is shown in Figure 2.
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Figure 1: The task of phase regulation characterized as a limit cycle (shown on the unit square and

unwrapped on the plane). The limit cycle can be parameterized by t — (At, Bt + ﬁ) Note that
the y-intercept is ﬁ.

2 The Construction

Let T? denote the two dimensional torus S x S*, where S! is the circle obtained via the quotient
topology on S'/Z. A point in this representation of T2 is therefore of the form (z (mod 1),y (mod 1))
for some z,y € R. In this paper we will generally work in the covering space R? or restrict our
attention to [0,1]?> — thinking of the torus as the square [0, 1] with opposite edges identified. The
attention function we define is a two times differentiable function s : [0, 1]? — [0, 1], as required by
PID control, that remains C? under the identification of opposite edges.

The construction of s takes several steps. First, we consider just the attracting limit cycle of
the reference field R (2) as encoding the essential behavior of the system. Collisions occur where
this cycle crosses either of the two sections ¢, = 0 or ¢ = 0 of T?, thereby defining a characteristic
sequence of collisions in the limiting behavior. We define a function s; from the limit cycle to the
interval [0, 1] where s; = 1 near ¢; = 0 and s; = 0 near ¢ = 0 and varies smoothly between these
extremes at all other points. Next, we extend s; to a switch function on the rectangle [0, 1] x [—1, 1]
via an operation that is like a reverse deformation retraction. The result is a switch function on a
2-dimensional strip built around a copy of the limit cycle. The rectangle is then stretched, rotated
and offset to lie between the lines Ay = Bx and Ay = Bz + 1. Finally, this strip is wrapped around
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Figure 2: The reference field R(¢1, ¢2) for A: B = 3:2.

T? to complete the construction. These steps are illustrated in Figure 3. We describe the details
next.

2.1 The Attention Function on the Limit Cycle

To construct sy, we first examine some basic properties of the limit cycle and in particular the
sequence of collisions that a given A: B generate. To this end, parameterize the limit cycle in (2)
by t — (At, Bt + 55) (taken modulo 1), t € R.

Definition 2.1 A hit point is a pair (¢1, ¢2) where either ¢; =0 d 1) or ¢2 =0 (mod 1).

(mo
Hit points occur along the limit cycle when At = 0 (mod 1) or Bt + 75
when there is some j € Z such that

=0 (mod 1) or equivalently

] 1 1
t:i or t = —

: =050 3)

Property 2.1 On the limit cycle, points of the form (k,k) € Z* are not hit points. That is, hits
do not occur simultaneously.

Proof: Suppose (k,k) € Z? is a hit point on the limit cycle. Then for some ¢, At = k and
Bt + ﬁ = k. Thus, substituting k/A for ¢ in the second equation gives
t 1

Brtaz=*

5
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Figure 3: The construction of an attention function for the case A: B = 3:2. (a) The attention
function on an ideal version of the limit cycle of (2) with dots added to indicate when hits occur.
(b) The limit cycle extended to [0,1] x [—1,1]. (c) The strip in (b) wrapped around TZ.

or equivalently
1
Bk+-=k

which is a contradiction. The term on the left hand side is not an integer, while the term on the
right hand side is. O

It is convenient to define 0 = 2AB, for it allows us an easy characterization of hit points, as
the following property demonstrates.

Property 2.2 All hit points are of the form (At, Bt + ﬁ) where t = 2 for some n € Z.
Proof: Suppose (At, Bt + ﬁ) is a hit point. Then either At = k or Bt + ﬁ = k for some integer
k. In the first case, t = 2Bk/o so that n = 2Bk. In the second case t = (24k — 1)/o so that
n=2Ak—-1. 0

We define the partial function A : Z — {0,1, L} to determine which kind of hit point 2 is, if it
is a hit point at all. We let 1 correspond to a ball one hit, and 0 to a ball two hit. We correspond
the special object L (to mean undefined) to the case that neither ball is hit. Then we have

Proposition 2.1 Lett = 2 and P = (At, Bt + ﬁ) Define the function h : Z — {0,1, L} by
h(n) = 1 when P is a ball 1 hit point (i.e. At =0), h(n) = 0 when P is a ball 2 hit point (i.e.



Bt + 55 =0) and h(n) = L when P is not a hit point. Then

1if 22ez
h(n) =14 0 if B ¢ 7 (4)

1 otherwise .

Note by Property 2.1 that h is well defined. The proof is a simple rewriting of the conditions that
(At, Bt + 57) be a hit point.

For those n such that h(n) = L, we have to decide which ball to attend to. An obvious choice
is to have the paddle attend to the ball that will be hit next. So we define a new function A

recursively:
(n) = { h(n) if h(n) # L (%)

h(n+ 1) otherwise.

The functionj@ is the basis for the switch function on T?, which we are now prepared to build.
Notice that h is defined on the integers, but is described completely by its values on the set
{0,1,2,....,0—1}:

Property 2.3 h(n+ ko) = h(n) for all integers k.

Proof: First we show that % € Z is equivalent to M € Z. Accordingly, if % = 7 for some
j € Z then
ko)A
(n+ho)d _ Az
o
since kA is an integer. Conversely, if M = j for some j € Z then
A
M i _kAez.
o
By a similar argument, @ € Z is equivalent to M € Z. The desired result follows. O

Next, we define a function s on the interval [0, 1] by dividing [0, 1] into ¢ subintervals [, 2£L],

0 < 7n < 0. The function & tells us what to do at the endpoints of these intervals. Thus, s ()
agrees with A(ot) when ot is an integer, or equivalently, when |ot| = [ot]. We just need to fill in
the rest of the intervals. We will need C? step functions up : R®> =+ R and down : R® — R. The
function up(t, a,b) is used to fill in an interval [a,b] wherein h(a) = 0 and h(b) = 1. It is thus 0
when t < a, between 0 and 1 when @ < ¢t < b and 1 otherwise. Such a function can be constructed
with polynomial splines of degree 6. down is defined similarly. The function down is used, for



example, between the second and third hit points in Figure 3(a). The smoothed function s; is then

Notice that s1(0) = s;(1) by Property 2.3. This function is shown for the case A: B = 3:2in
Figure 3(a).

2.2 Extending the Attention Function to T?

We further extend s; to the function sg : [0, 1] x [—1, 1] — [0, 1] defined by

2(2,) = bly)s(#) + 5 (1~ b(y)

where
b(y) = Up(y7 07 6) : down(y, 1- €, 1)

Here, € is some small number that defines the width of the “borders” along y = 1 and y = —1.
This function is shown is Figure 3(b) as a contour plot. Note that if we form a cylinder or M&bius
strip from the domain of sy by identifying the segment x = 0 with the segment z = 1, then s is
C? along the identification line. This follows from the cyclic nature of A noted above.

We next take the domain of sy, distort it and wrap it around T? to complete the attention
function. We wish for the line ¥ = 0 in the domain of s; to be mapped to the limit cycle on 72
Thus we define a map f:[0,1] x [-1,1] = R? by

(-1 216+ (5) @

As desired, f(t,0)" = (At, Bt + 35)7T.
The final step is to collapse the image of f down to [0,1]%. For this we simply set w(z,y) =
(z (mod 1),y (mod 1)) and obtain the desired switch function

s(p1,d2) = s20 [ ow (41, ¢2). (8)

Since we designed sy so that for all z, sy(z,£1) = %, we are assured that along the “seams” of the

wrapped sy, s is still 2. Notice that the paddle pays attention to neither ball along the seam. This



is certainly a choice which we could have made differently. A contour plot of the case A: B =3:2
is shown if Figure 3(c).

Presently, although we know w=!

exists, we have only been able to find it for specific cases of A
and B and a general formula has yet to be found. For practical purposes, however, it is not likely
that arbitrary attention functions are useful. Rather, an attention function will be worked out for
each of the basic cases 1:1, 1:2, 2:3 and 2:5 for example.

3 Concluding Remarks

The class of attention functions we have constructed is probably not the only useful class.
Simpler constructions may be found. We have simply demonstrated that a useful place to start the
construction is on the limit cycle, describing the sequence of collisions a stable juggle admits and
building up attention mechanisms from there.

It remains to be seen whether these functions are practicable in hardware implementations or
if they require further tuning, to accommodate follow through for example, as the work on spatial
juggling [3] suggests they may. We are also not certain that attention functions, or similar such
functions, will find general utility in robotics or if they are limited in use to the juggling domain.
One promising direction, initiated in [2], is to turn juggling upside down into walking, running and
hopping. The purpose of the attention function (or some extension of the idea to more than two
phases) is then to direct the attention paid by a walking robot by its legs to the ground.
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