A Prefetch Taxonomy

Viji Srinivasan, Edward S Davidson, Gary S Tyson

e-mail: sviji@eecs.umich.edu, davidson@eecs.umich.edu, tyson@eecs.umich.edu

Abstract

The difference in processor and main memory cycle time has necessitated the use of aggressive prefetching
techniques to reduce or hide main memory access latency. However, prefetching can significantly increase
memory bandwidth and unsuccessful prefetches may even pollute the primary cache. Although the current
metrics, coverage and accuracy, do provide an impression of the overall quality of a prefetching algorithm,
they are simplistic and do not unambiguously and precisely explain the performance of a prefetching algorithm.
In this paper, we wntroduce a new and complete taronomy for classifying prefetches, accounting for the
difference n traffic and musses generated by each prefetch. Qur classification of individual prefetches is
very useful in identifying the specific strengths and weaknesses of an existing prefetch implementation and
we demonstrate it by applying our taxonomy to two implementable prefetching techniques. Based on the
histogram of prefetches by category we developed a static filter to reduce/eliminate polluting prefetches of any

qiven prefetching technique.

1 Introduction

As processor speeds have increased over the past few decades, the gap between memory access
latency and the processor cycle time has steadily increased. Use of multi-level cache hierarchies
has been a traditional solution to bridging this gap. However, with superscalar processors now
executing multiple instructions per cycle, even greater demand is placed on the cache system.
Prefetching is a technique that reduces memory access latency by fetching lines into cache before
a demand reference. In theory, we could prefetch each missing cache line so that it arrives in cache
just before its next reference. However, in reality aggressive prefetching techniques are speculative;
they must predict the prefetch addresses. Hence the following issues arise:

e Some addresses are not accurately predicted limiting the effectiveness of speculative prefetch-

ing techniques.
e Even when the prediction is accurate and the prefetch is issued early enough to cover the

nominal latency, the full memory latency may not be hidden due to additional delays caused

by limited available memory bandwidth.

e Prefetched lines, whether correctly predicted or not, may be issued too early and pollute the

cache by replacing more desirable lines.

Effective prefetching depends on achieving good miss coverage with sufficient accuracy to avoid
saturating the memory bus with useless prefetches and polluting the cache. Traditionally coverage
and accuracy have been used as metrics to evaluate the effectiveness of a prefetching algorithm.
Prefetch coverage is the fraction of misses that are eliminated by the prefetching algorithm. Prefetch
accuracy estimates the quality of the prefetching algorithm as a fraction of all prefetches that are
useful. To measure coverage and accuracy, prefetches are broadly classified into two categories
: good and bad. Good prefetches are referenced by the application before they are replaced and
bad prefetches are replaced before they are referenced. If a conventional cache has M misses
without using any prefetching technique and has G good prefetches and B bad prefetches with

some prefetching algorithm, we can measure prefetch coverage and accuracy as follows:

Coverage = G/M, (1)
Accuracy = G/(G + B). (2)

Although coverage and accuracy do provide an impression of the overall quality of a prefetching
algorithm, they are simplistic and do not unambiguously and precisely explain the performance
of a prefetching algorithm. Using the simple example in Figure 1 we show that maximizing good
prefetches, or even getting reasonable coverage with high accuracy is not the true objective of a

prefetching technique.

Referencestream: A B C D (At1) (B+1)

LRU LRU LRU LRU LRU
‘@0l v w AV AV ALYV D+l A
e@l| X | B Al | X B | Afl B | Atl B | Afl
e@2] Y| C Y| C Btl| Y C | Bt C Bt
“@3| Z|D Z|D Z|D Ctl| Z D | Cl

@ Initid (b) Feich A (0 Fetch B (o) Feich C (6) Fech D
contents Prefeich A+l Prefetch B+l Prefetch C+1L Prefeich D+l

Figure 1: Cache access outcomes with NSP

The cache used in this example has 4 sets with 2-way associativity and uses an LRU replacement
policy. The initial contents of the cache are given in Figure 1(a). The reference stream consists of
the 6 unique line addresses, A, B, C, D, (A + 1), and (B + 1), which map to sets 0, 1, 2, 3, 1,
and 2 respectively. The total misses for this cache without any prefetching technique is 3 (missing
lines : A, (A 4+ 1) and (B + 1)). We now consider the cache access outcomes using the Next
Sequential Prefetching (NSP) technique [19]. Figure 1(b) shows the cache contents after the miss
to line A is resolved. In NSP the next sequential line (A + 1) is prefetched along with A. Line
(A + 1) replaces the LRU line B of set 1. Figures 1(c,d,e) show the contents of the cache after the
references to B, C' and D, respectively, are resolved. Of the 4 prefetches, 2 are bad and 2 are good.
Therefore, the coverage is 66.7% and the accuracy is 50%. Although NSP does eliminate 2 of the
3 misses, it introduces 3 new misses. Therefore the total misses with NSP is increased from 3 to 4.
Furthermore, NSP increases the total traffic from 3 to 8 cache lines. This example illustrates that
a prefetch technique, even with 66.7% coverage and 50% accuracy can actually increase the miss
ratio and more than double the memory traffic.

Prefetch side-effects on the misses and traffic are thus critical in designing an efficient prefetching
technique. Coverage and accuracy, as seen above, do not provide a direct indication of performance,
and can be very misleading metrics. Furthermore, even direct measurements of the total change in
misses and total traffic do not provide much insight on the underlying causes of that net change
and how the performance of a prefetching technique may be improved. There is a need for a more
refined classification of individual prefetches that gives more insights into how a given prefetching
technique works.

In this paper we introduce a new, accurate and complete taxonomy, called the Prefetch Traffic
and Miss Taxonomy (PTMT), for classifying prefetches and precisely accounting for the difference
in traffic and misses generated by each prefetch. PTMT quantifies the usefulness of a prefetch in
terms of the difference in misses and the net traffic increase that are due to the outcome of both the
prefetch and the line replaced to accommodate the prefetch. PTMT’s classification of individual
prefetches has proven to be very useful in identifying the specific strengths and weaknesses of an
existing prefetch implementation. Furthermore, the taxonomy helps answer the following questions:

e How can a prefetch technique eliminate those prefetches that pollute the cache?

e How can a prefetch technique reduce useless prefetches and thus relieve the pressure on the

available memory bandwidth?

e What new insights does the prefetch classification provide for improving the performance of
the prefetching technique?
The key to PTMT is the simultaneous simulation of a conventional cache with no prefetching

and another cache that implements some prefetching technique. Using this model we analyze

each prefetch and assign it a -1, 0, or +1 net change in misses and a cost of 0, 1 or 2 lines of
additional traffic that it causes relative to the conventional cache. The completeness of PTMT
assures that the extra traffic and the difference in misses based on PTMT plus the traffic and
misses of the conventional cache always exactly matches the total traffic and misses of the cache
with the prefetch technique. PTMT therefore provides new and precise metrics for evaluating a
given prefetching technique. Furthermore, by separately tabulating the strengths and weaknesses
of a prefetch technique, PTMT provides insights for improving it.

The rest of this paper is organized as follows. Section 2 describes the prefetch traffic miss
taxonomy. Section 3 uses PTMT to measure the effectiveness of two common prefetching algo-
rithms, Next Sequential Prefetching and Shadow Directory Prefetching. In section 4 we describe
insights derived from the taxonomy to improve the performance of these prefetching techniques.

We conclude in section 5.

2 Prefetch Traffic and Miss Taxonomy

The Prefetch Traffic and Miss Taxonomy (PTMT) categorizes each prefetch according to 2 factors,
whether it remains in the cache until its next reference or is replaced before then, as well as the

outcome of the next reference to the line evicted to accommodate this prefetch.

2.1 Cache Configuration

Classifying prefetches using PTMT fundamentally requires the simultaneous simulation of two
identically configured caches, a conventional cache without any prefetching, conv-cache, and one
with some prefetching technique of interest, pf-cache. As our goal is to study the effect of prefetching
on the cache performance, we prefetch directly into the cache and do not consider using a separate
prefetch buffer [10]. There is no restriction on the size, associativity, or line size of these two caches,
except that they are the same.

In this paper, we refer to lines in each cache as prefetched or regular based on the following;:
A line that is prefetched into the pf-cache is called a prefetched line until it is either replaced or
referenced; after being referenced it is called a regular line until it is replaced. All other lines in
either cache are called regular lines. A 1-bit tag is maintained in the pf-cache to distinguish between
regular and prefetched lines.

As our focus is on the number of cache lines fetched from the next level of memory, we assume
that the caches are write-through and no-write-allocate, and the traffic to the next level of memory
due to stores is ignored. LRU replacement is used. Each set of the cache is implemented in the

simulation as an LRU stack. All new lines entering the cache via a miss or a prefetch are pushed

onto the top of the LRU stack (the most recently used position); lines leave the set from the bottom
of the stack. If there are n lines in a set, the top of the LRU stack is referred to as position 0 and
the bottom of the stack is referred to as position (n - 1). A prefetch is squashed if the line is already

present in the cache.

2.2 Prefetch Classification

The references to lines in the pf-cache can be broadly classified into two types — those that are
associated with a prefetch (i.e., references to a prefetched line or to a line that was replaced to
accommodate a prefetch), and those that are not. PTMT accounts for all extra misses and traffic

associated with both categories of references.

2.2.1 References to Lines Associated With a Prefetch

Suppose line z is prefetched into pf-cache and replaces line y. In the pf-cache there are only two
possible next events for line z : a hit, i.e., it remains in the pf-cache until its next reference, or a
replacement, i.e., z is replaced before its next reference. In the conv-cache, the next reference to

line z is either a hit or a miss.

X is prefetched

Wait for next line x event

in the pf-cache

"Hit" : x remained in the
pf-cache until its next reference

"Replaced": x replaced from the
pf-cache beforeitis referenced

@ xisa'useless" prefetch
@ Costis 1line of extra traffic in
pf-cache (no difference in misses)
® Next reference to x, and its
conv-cache outcome is irrelevant to
evaluating this prefetch

Check conv-cache
outcome for this
X reference

@ conv-cache retained x -
® prefetch saved 1 miss

refetch cost 1 line of
o ® Each cache incurs 1 line of

extra traffic (no difference traffic to fetch x (no extra traffic)

in misses) @ npotentially "useful” prefetch

Figure 2: Events in pf-cache and conv-cache for line z

Figure 2 shows all the possible events for line z in the pf-cache and the conv-cache and Table 1
summarizes the extra traffic and misses associated with each combination.

When line z is a hit in the pf-cache, the following two possibilities arise:

e hit-hit : Line z is a hit in both caches. The pf-cache incurs 1 cache line of extra traffic to

prefetch z.

e hit-miss : Line z is a hit in the pf-cache and a miss in the conv-cache. This appears to be a
useful prefetch. However, the usefulness of this prefetch depends on what happens next to the
replaced line y. Note that when the pf-cache incurs one fewer miss relative to the conv-cache

we represent it as -1 extra misses.

Fuvents for x in Extra
pf-cache | conv-cache | Traffic | Misses
hit hit 1 0
hit miss 0 -1

replaced | don’t care 1 0

Table 1: Cost of events in pf-cache and conv-cache for line z

When z is replaced from the pf-cache before being referenced, it does not matter whether z is
present or absent in the conv-cache and we refer to the outcome as “don’t care”. Hence the only

possible combination when z is replaced from the pf-cache is:

e replaced-don’t care : The next reference to z in the pf-cache may be satisfied by another
prefetch or by a demand miss. A second prefetch of z (after the replacement of the first
prefetched line, but before the next reference to z) is simply classified independently of the
first prefetch. Therefore, the only cost associated with the replaced z prefetch is 1 cache line

of additional traffic in the pf-cache.

Similarly, let us consider all the possible outcomes of line y (the line that the z prefetch replaced
in the pf-cache). In the pf-cache, line y is either a miss or is prefetched before its next reference.
In the conv-cache, line y is either a hit, i.e., it remains in the cache until its next reference, or
is replaced before its next reference. Figure 3 shows all the possible outcomes for line y in the
pf-cache and the conv-cache; Table 2 summarizes the extra traffic and misses associated with each
combination.

For ease of explanation we discuss the possible outcomes of y in the conv-cache prior to the
possible outcomes of y in the pf-cache. When line y is a hit in the conv-cache, the following
possibilities arise:

e miss-hit : Line yis a miss in the pf-cache and a hit in the conv-cache due to early (premature)

replacement of y in pf-cache.
o prefetched-hit : If yis a hit in the conv-cache and is prefetched back into the pf-cache (after

being replaced to accommodate z), the outcome of this y prefetch falls into one of the 3 cases

in Table 1. So we must not attribute the cost of that y prefetch to this z prefetch.

When y is replaced from the conv-cache before being referenced, whether the next reference to

y is replaced

by x prefetch

Wait for next line y event

in conv-cache

"Hit" :y remained in the

conv-cache until its next reference

"Replaced": y replaced from the
conv-cache before its next reference

Check pf-cache

outcome for this
y reference

PREFETCHED :y was prefetched
between the replacement and
this reference

@ Starts another ® llineof extratraffic| | g

instance of Figure 2 to demand fetch y

@ pf-cache incurred

@ No cost attributed

@ Each cache will incur 1 line of traffic

to fetch y into cache (if needed).

0 extra traffic and 0 difference in
misses attributed to x prefetch unless
yis prefetched in pf-cache

before its reference.

But a prefetch starts a new instance of

Figure 2 and cost of this x prefetch is
the same.

1 extra miss

to x prefetch

Figure 3: Events in pf-cache and conv-cache for replaced line y

FEuvents for y in Extra
pf-cache | conv-cache | Traffic | Misses
miss hit 1 1
prefetched hit 0 0
don’t care replaced 0 0

Table 2: Cost of events in pf-cache and conv-cache for replaced line y

yin the pf-cache is satisfied by a prefetch or demand fetch is irrelevant in evaluating this z prefetch.

Hence the only possible combination is:

o don’t care-replaced : We refer to the y reference in the pf-cache as “don’t care” since the

cost attributed to the z prefetch is based on a demand fetch/miss of y in the pf-cache. If yis

prefetched back into the pf-cache the change in cost will be correctly calculated and attributed
to that prefetch.

Cases pf-cache outcomes conv-cache outcomes Extra
z (prefetched) y (replaced) z (prefetched) y (replaced) Traffic | Misses
1 hit miss hit hit 2 1
2 hit prefetched hit hit 1 0
3 hit don’t care hit replaced 1 0
4 hit miss miss hit 1 0
5 hit prefetched miss hit 0 -1
6 hit don’t care miss replaced 0 -1
7 replaced miss don’t care hit 2 1
8 replaced prefetched don’t care hit 1 0
9 replaced don’t care don’t care replaced 1 0

Table 3: Cost in traffic and miss for the 9 case pairs

Table 4: Three categories of prefetches derived from the 9 case-pairs

Category Cases
Useful Prefetches 5,6
Useless Prefetches | 2, 3,4, 8, 9

Polluting Prefetches 1,7

To quantify the extra traffic and misses incurred due to a prefetch we combine the cases in

Table 1 with the cases in Table 2. The 9 combined cases are presented in Table 3. These are

further grouped into 3 categories based on the amount of extra traffic and misses generated and

presented in Table 4.

From Table 3 we see that cases 5 and 6 save a miss and yet cause no additional traffic. These

are the only Useful Prefetches. Useless Prefetches waste bandwidth (1 additional line of traffic)

without saving any cache miss. Finally, Polluting Prefetches decrease performance by requiring 2

lines of additional traffic and causing an additional miss.

2.2.2 References to Lines Not Associated With a Prefetch

In section 2.2.1 the possible outcomes of prefetched lines and the lines they replaced were described
and the associated extra traffic and misses were derived. But in an associative cache (associativity
> 1) those may not be the only altered outcomes due to prefetching; the re-ordering of the LRU
stack may induce side-effects on some of the regular lines that remain in the LRU stack. In this
section, we derive the extra traffic and misses associated with these lines which are not directly
associated with a prefetch.

Table 5 lists the possible combinations of the outcomes in the pf-cache and the conv-cache for

a line z that is not associated with a prefetch.

Outcomes for z in Category
pf-cache | conv-cache

Hit Hit PH-CH

Miss Miss PM-CM

Miss Hit PM-CH

Hit Miss PH-CM

Table 5: Possible outcomes in both caches for lines not associated with a prefetch

For PH-CH and PM-CM outcomes of line z the pf-cache clearly incurs no additional traffic
or misses relative to the conv-cache. If only these two cases occur for lines not associated with
prefetches, then the 9 case pairs of Table 3 would fully account for the cost in traffic and misses of
any prefetching technique. We now show that although the PM-CH outcomes can occur, they can
easily be detected and their costs are then incorporated in the taxonomy. Finally we show that the
PH-CM outcomes cannot occur if zis a regular line.

First consider PM-CH. This case is possible only when prior to this reference of z the following
events occurred at some time since the last reference to z: (i) z became the LRU line in the pf-cache
and was then replaced to accommodate a regular line; and (ii) z was retained in the conv-cache until
this reference. This reference to z would then cost 1 additional miss and 1 cache line of additional
traffic in the pf-cache relative to the conv-cache. The following simple example illustrates an
occurrence of this case.

In this example the pf-cache and the conv-cache are 2-way associative. We focus on one set of
these caches. Initially, as shown in Figure 4(a), suppose the contents of the set are the same in both
caches (regular lines z and y, where y is the LRU line). Now if the prefetching technique initiates
a prefetch for line w, we obtain the cache state shown in Figure 4(b). The pf-cache prefetches w

and replaces y; the traffic and misses due to the prefetch can be accounted from Table 3. Note

pf-cache Time conv-cache

AN NI R

b) ‘ W‘ X ‘ ‘ X ‘ y ‘ Prefetching w, displaces y from pf-cache
c) ‘ z ‘ w ‘ ‘ z ‘ X ‘ Reference to z, displaces x from pf-cache

but x is still retained in conv-cache

Figure 4: Prefetch Side-effect example

that the contents of conv-cache do not change. While in this state, suppose the program references
line z; we have a miss in both the pf-cache and the conv-cache and the resulting cache contents
are shown in Figure 4(c). Finally, suppose that there is now a reference to z, which is a regular
line. The outcome is a miss in the pf-cache and a hit in the conv-cache, which leads to 1 cache line
of additional traffic and 1 extra miss in the pf-cache relative to the conv-cache. An ideal prefetch
algorithm would not have prefetched line w and would have instead prefetched line 2. The PM-CH
case therefore an indirect consequence of poor speculative prefetching. We refer to this case, case

10, as a Side-effect of prefetching. An occurrence of case 10 is detected by noting when:

e Different blocks are replaced on a demand miss in both caches. For example, the demand miss

to zin Figure 4 and

e the block replaced in the pf-cache (z in Figure 4) remains in the conv-cache until its next

reference.

Finally, we analyze the case when the outcome of line 2z is PH-CM. The proof of Theorem 1,
which depends on Lemmas 1 and 2 shows that this case cannot occur if z is a regular line. An

PH-CM outcome is thus possible only when z is a prefetched line in the pf-cache.

Lemma 1 For a given set S the number of regular lines in the pf-cache is never more than the

number of reqular lines in the conv-cache.

Proof: In the conv-cache all the lines of set S are regular. However, in the pf-cache, set S might
contain some prefetched lines. Since both caches have the same associativity, each set of the pf-cache

has at most the same number of regular lines as the conv-cache.

Lemma 2 The stack position pf(l) of a reqular line | in a set S of the pf-cache is always greater

than or equal to the position conv(l) of the same line in the conv-cache.

Proof: Note that whenever line [is referenced, it moves to stack position 0 in both caches, and
remains or becomes a regular line in the pf-cache. This condition satisfies the lemma. Hence it

remains to show that the lemma is satisfied until the next reference to [. We do this by showing

10

that every type of cache event either preserves pf(l) > conv(l) or causes [to no longer be a regular
line in the pf-cache (which satisfies the lemma until the next reference to /, since [again becomes
a regular line in the pf-cache only upon its next reference). Let A be the associativity of set S.
Consider any non-reference interval of [and let T" be the initial portion of that interval during

which [is a regular line in the pf-cache. Consider the following exhaustive list of possible events in

T.

(a) References to or prefetches in other sets: These have no effect on the position of [in set S.

(b) A prefetch of a line m (# l)in set S: In this case, the position of line [increases by 1 in the
pf-cache, while it remains unchanged in the conv-cache. Thus, if pf(l) > conv(l) prior to this

event, pf(l) > conv(l) after this event.

(c) A reference to some line m (# 1) in set S: Prior to this reference, let pf(m) and conv(m)
be the position of m in the pf-cache and the conv-cache, respectively. (If line m is absent in
either of the caches, its position is defined to be A (the associativity itself).) The following

possibilities arise:

1. pf(m) > pf(l),conv(m) > conv(l): This increases the position of line / in both caches
by 1, and hence pf(l) > conv(l) is preserved after this reference to m. (Note that pf(m)
and/or conv(m) could be A.)

2. pf(m) > pf(l),conv(m) < conv(l): Since conv(m) < conv(l), line m was referenced
earlier in T'. However, pf(m) > pf(l) implies that [was replaced and prefetched in the
pf-cache after the m reference. Since [is not referenced during T, [must be a prefetched

line which contradicts the assumption that [is a regular line.

3. pf(m) < pf(l),conv(m) < conv(l): This does not alter the position of / in either cache,

and hence pf(l) > conv(l) is preserved after this reference to m.

4. pf(m) < pf(l), conv(m) > conv(l): Since conv(m) > conv(l), line m was not referenced
earlier in 7. Considering also that pf(m) < pf(l), it must be that m was prefetched
earlier in T'. Thus m is a prefetched line in the pf-cache. This is the only case in which
conv(l) increases by 1 and pf(/) remains unchanged. However, this event occurs only
after a corresponding occurrence during 7" of event (b) above, in which pf(/) increases by
1 and conv(l) remains unchanged. Therefore, this case can only arise if pf(l) > conv(l).
Hence even though conv(l) is now increased by 1, pf(l) > conv(l) is preserved after this

reference to m.
|]

Theorem 1 The outcome that line z is a hit in the pf-cache (PH) and a miss in the conv-cache

(CM) can occur only if z is a prefetched line in the pf-cache.

11

Proof: Suppose line z is a hit in the pf-cache and a miss in the conv-cache. This implies that,
prior to this reference of z, the stack position of line z in the pf-cache was less than its position
in the conv-cache (which is, by definition, A). From Lemmas 1 and 2, this is not possible if z is a

regular line. Hence the proof. [|

Theorem 1 shows that the PH-CM outcome cannot occur for regular lines. Thus the PM-
CH outcome (case 10) and the 9 case pairs of Table 3, constitute a complete set of cases for
the taxonomy. The PTMT case histogram thus provides a new and accurate basis for comparing

prefetch techniques. Table 6 summarizes the cost in traffic and misses for the 10 cases.

Category Cases Extra
Traffic | Misses
Useful Prefetches 5, 6 0 -1
Useless Prefetches | 2,3,4,8,9 1 0
Polluting Prefetches 1,7 2 1
Prefetch Side-effect 10 1 1

Table 6: The Prefetch Taxonomy

From Table 6 we observe that, except for case 10, the extra traffic is always one more than the
extra misses. Since the 10 cases of PTMT completely and disjointly account for all the extra traffic

and the extra misses of a prefetch technique, equations 3 and 4 are satisfied.

Missespf cache = MisseScony cache — useful prefetches 4 polluting prefetches 4+ dm (3)
Trafficps cache = Trafficcony cache + useless prefetches + 2 * polluting prefetches 4 6t (4)

Since each occurrence of the only remaining case 10, causes 1 additional line of traffic and 1

extra miss relative to conv-cache, ém = &t = number of case 10 occurrences.

2.3 Prefetch Chains

From Table 3 we observe that in cases 2, 5 and 8, the line that was replaced to accommodate a
prefetch is subsequently prefetched into the pf-cache before its next reference. For example, let line
z be prefetched and let it replace line y (referred to as (z, y)). If (z, y) falls into one of cases 2, 5
or 8, then line y must have been prefetched back into the pf-cache prior to its next reference, and
replaced some line, say z, forming (y, z). Since the conv-cache outcome for line yin (z, y) is a hit,

the conv-cache outcome for line y in (y, z) has to be a hit too. Thus, (y, z) has to be one of cases

12

1, 2, or 3 only. Since cases 2, 5, and 8 require at least one more prefetch for completion, they form
a part of a chain of at least 2 prefetches. Therefore, the total cost associated with a case 2, 5, or
8 prefetch should include the cost of all prefetches in the chain. Since cases 2 and 8 are useless
prefetches we focus our discussion on useful chains which start with case 5 followed by case 1, 2,

or 3 prefetches.

e Case 1 has a cost of 2 blocks of extra traffic and 1 additional miss which makes chain of cases

(5 and 1) not favorable.

e Case 2 has a cost of 1 additional block of traffic and does not cost any extra miss, which when
linked with case 5 costs a total of 1 block of extra traffic to save 1 miss. Furthermore, we
showed above that case 2 must be followed by another prefetch of cases 1, 2 or 3. Thus no
linked chain can end with a case 2 prefetch and the linked chain’s cost depends on its length.
Note that a case 2 followed by a case 1 prefetch is clearly not favorable. However, case 2
followed by cases 2 or 3 may or may not be favorable depending on the relative importance of
traffic and misses. For example, if case 5 is followed by n case 2 prefetches, which is in turn
followed by a chain-ending case 3 prefetch, the pf-cache incurs a total cost of (n 4 1) blocks
of extra traffic to save 1 miss. This linked list thus becomes progressively less desirable as n

grows.

e Case 3 has a cost of 1 additional block of traffic and does not cost any extra miss. Since case
3 replaced a block that is also replaced in the conv-cache before its next reference, case 3 ends

the linked chain.

Therefore, the prefetch that is always beneficial is case 6. An ideal prefetching algorithm should
maximize the occurrence of case 6 prefetches. It should never generate prefetches belonging to cases,
4,7, 8, or 9. Depending on the length of the resultant chains, the prefetching technique may or

may not benefit from case 5 prefetches.

3 Experimental Framework

In section 2 we discussed our classification and demonstrated that PTMT accounts for the direct
and indirect costs of all the prefetches in the program. We now apply PTMT to variants of two

common prefetching techniques and derive some insights into how to improve their performance.

3.1 Implementable Prefetching Algorithm

Many software and hardware methods have been proposed to predict addresses and issue prefetches.

Software prefetching techniques [3, 6,7, 11, 12, 13, 15, 18] derive hints from global program analysis

13

and insert explicit prefetch instructions only when they are deemed likely to be useful. But existing
software-based selection methods are limited to the kind of data access patterns (constants or
strides) that are easiest to recognize at compile time. On the other hand, hardware prefetching
techniques [1, 4, 5, 9, 10, 14, 16, 17, 19], rely on speculation about future memory-access patterns
based on an observed run-time pattern history.

To illustrate the use of PTMT we chose two well-known hardware prefetching algorithms from

among the above techniques.

e Next Sequential Prefetching
Next sequential prefetching (NSP), [8, 19], is a simple prefetching technique in which a prefetch

for line (b + 1) is issued (if not already present in the cache) whenever block b is accessed.
To control the number of useless prefetches, a variant called tagged prefetching [8] has been
proposed. In this A tag bit associated with each cache line is set when the line is brought to
cache by a prefetch access. A prefetch to the next sequential line is triggered whenever there
is a cache miss or when there is a hit to a block whose tag bit is set (prefetched line). After
initiating the prefetch, the tag bit is reset. In essence, this technique exploits an application’s
spatial locality and uses the data addresses to predict the next sequential address as the
prefetch address. Our experiments (omitted due to space constraints) using NSP with and
without tags indicate that the tagged variant generally has higher accuracy, but lower coverage
than NSP without tags. The selective prefetching afforded by the tags does help reduce the
useless and the polluting prefetches, but the overall miss rate is similar for both techniques.

In this paper we use only the tagged variant of NSP.

e Shadow Directory Prefetching
Shadow Directory Prefetching (SDP), proposed in [16], is a hardware based prefetching tech-

nique in which a history of the referencing patterns is maintained in a hardware table. For
each line in L2, a shadow address is maintained in the L2 cache directory along with the
address of the currently resident line. The shadow address refers to the next line accessed in
L2 after the currently resident line was last accessed. Whenever we have an L2 cache hit, we
issue a prefetch for the corresponding shadow address in the directory. To reduce the number
of useless prefetches, a 1-bit confirmation scheme was proposed. A confirmation bit was added
to each shadow entry in 1.2 cache directory indicating whether that line was referenced (1) or

not referenced (0) while still in L1 after its last prefetch.

14

3.2 Simulation Environment and Results

The SimpleScalar simulator [2] and its functional cache simulator were used to apply PTMT to
six benchmarks from SPECint95 and five from SPECfp95. The benchmarks were compiled with
gce -O3 option and run up to 1 billion instructions with the reference input set. As the trends
of the results were similar for the different cache configurations, we present results only for data

prefetching using a 16KB, 4-way associative data cache with 32 byte lines.

Benchmark | Miss rate Coverage Accuracy Misses Prefetches
(%) (%) (105 lines) (108 lines)

NSP | SDP | NSP | SDP | NSP | SDP NSP SDP | NSP | SDP
compress 11.0 9.5 0.20 0.32 26.3 69.9 11.8 10.3 10.0 6
gee 2.8 2.8 0.40 | 0.30 | 47.2 | 64.4 7.0 7.0 7.9 4.4
go 2.8 2.7 0.25 | 0.22 | 30.3 | 42.0 7.8 7.4 6.7 4.1
jpeg 0.7 1.6 0.69 | 0.20 | 80.2 | 42.0 1.2 2.9 2.8 1.5
li 2.1 3.8 0.59 | 0.23 | 71.8 | 454 1.2 2.0 2 1.3
perl 1.7 1.8 0.35 | 0.18 | 474 | 63.2 4.3 4.4 3.8 1.5
apsi 5.0 5.5 0.35 | 0.31 | 36.6 | 49.5 11.8 12.9 | 16.5 | 10.8
applu 1.2 5.5 0.80 | 0.02 | 98.1 | 17.2 2.7 12.6 | 10.5 1.8
turb3d 1.3 1.9 0.54 | 0.29 | 59.6 | 54.8 2.9 4.4 5.5 3.2
swim 273 | 21.8 | 0.08 | 0.25 | 103 | 73.1 70.8 56.9 | 55.2 | 244
wave 5.7 7.1 0.45 | 0.31 | 48.6 | 61.4 11.6 14.3 18 9.9

Table 7: Miss rate, coverage, accuracy, misses and prefetches for NSP and SDP

Table 7 shows the miss rate, coverage, accuracy, misses, and prefetches for NSP and SDP. On
average, NSP has higher coverage and lower accuracy than SDP. For benchmarks with sequential
access patterns (e.g., ijpeg, li, applu, turb3d), NSP outperforms SDP. SDP is generally far more
selective than NSP as seen from the total traffic (misses + prefetches) in Table 7, (SDP has
only 79% of NSP traffic for SPECint and 87% for SPECfp benchmarks) implying that most of the
NSP traffic is useless. For example, in perl, the miss rate is down to 1.7% for NSP from 1.8% for
SDP, but the total traffic is up from 5.9 for SDP to 8.1 million lines for NSP. These metrics do not
separately quantify the extra traffic and extra misses due to polluting and useless prefetches and
hence they do not provide much insights for improving the techniques.

Fienreighrs the digibution et prefetahghintertheid raeserin featifiarkasingongpranemyt
for ijpeg, li, applu, turb3d). confirming the lower accuracy for NSP. The additional traffic of NSP
is wasted on polluting and useless prefetches (e.g., in go the polluting prefetches are up from 10%

for SDP to 13% for NSP). Swim exhibits a classic example of polluting and useless prefetches

15

Polluting Prefetches
Useless Prefetches
Useful Prefetches

Polluting Prefetches
Useless Prefetches
Useful Prefetches

H

8

=]
|
|
\
\
|
|
\

=
o
o
S

o
o
S

50.0 +

% of prefetches inf each category
% of prefetches in each category

Genmm NN _Em y

compess gec go ijpey li
5(a) SPEC IntBenchmarks

perl apsi appiu turtiBd swim waweb

5(b) SPEC FpBenchmarks

Figure 5: Classification of prefetches for NSP and SDP

(left bar = NSP, right bar = SDP)

(Total Prefetches in each scheme normalized to 100)

outweighing the effects of the useful prefetches (useless prefetches are up from 24% for SDP to 81%
for NSP).

Benchmark | Prefetch Side-Effects -
Benchmark | Prefetch Side-Effects
NSP SDP
NSP SDP
compress 27,190 439,852 - —
- apsi 14,771 218,877
gee 374,931 216,086
- - applu 5,739 4,317
go 581,908 394,167
— turb3d 610 15,473
1jpeg 55,390 103,897 - -
- swim 16,418 9,418
li 23,702 37,237
wave 35,994 5,984
perl 273,032 97,386

Table 8: Prefetch Side-Effects (Case 10)

Table 8 presents the number of side-effect cases identified in section 2 showing indirectly the
effect of speculative prefetching on the LRU stack. There are very few case 10 occurrences compared
to the total prefetches (0.03 to 0.04 per prefetch) as seen from Table 7.

From the histogram of the prefetches by category we identified the need for a filter to decrease
the polluting prefetches. We have proposed such a filter and use PTMT to evaluate its effectiveness

in the next section.

16

4 Static Filter

We have proposed a Static Filter (SF) [20] which attempts to reduce polluting prefetches so as to
minimize the impact of the prefetching technique on the bandwidth requirements and at the same
time to retain the achieved reduction in miss rate.

For a given prefetching technique an access to line z is called a prefetch trigger of line y,
if the access to z may initiate a prefetch of y. Most hardware prefetching techniques use data
addresses as prefetch triggers (e.g., NSP uses an access to line z as a trigger to prefetch line z +
1). However, many of these schemes use additional enabling mechanisms to qualify the trigger —
i.e., to actually perform the prefetch when its trigger occurs only if the enable condition is set.
For example, NSP does not prefetch line z + 1 if the access to z is not a cache miss. Our Static
Filter (SF) uses profiling to provide an additional enable mechanism that must also be satisfied.
The profile is used to determine which load instructions tend to generate data references that are
useful prefetch triggers, and marks those loads as enabled. At run time SFE disables the hardware
prefetch mechanism unless the load making a trigger access is enabled. Since the characteristics of
the load instructions of the program tend to be stable across runs, profiling is an effective way to
select enabled loads.

In the profiling phase of SF, we simulate a conventional cache without prefetching; whenever
a line is brought into cache we maintain (or create) an entry in a table (we used an LRU table of
2K entries for our experiments) that records the current time and the PC of the load instruction
that accessed the data. Whenever there is a demand miss to cache line y we check if at least one of
its prefetch triggers, z, is present in the table. If z is present!, we know the time that = was most
recently brought into cache, t2, and the load instruction, L1, that accessed z to begin that cache
tour. The prefetching technique P, would have prefetched y along with z at time ¢2. To determine
if that prefetch is potentially useful, we check the time ¢1 of the most recent access to z, the line
chosen for replacement now (to accommodate y): If 12 > ¢1 the prefetch is deemed potentially
useful; if t2 < t1 it is not.

We use a heuristic to select loads to be enabled. For each load instruction we find the ratio of
the number of misses it incurs to the number of potentially useful prefetches triggered by the load.
If the potentially useful prefetches are more than 50% of the misses we mark this load instruction
as enabled.

In the implementation phase, the baseline technique P with SI initiates a prefetch only if the

prefetch triggering data access is issued by an enabled load. Our results have shown that SF achieves

'If z is not present, we do not have the necessary information and assume that by default the prefetch of y is not

potentially useful.

17

a significant reduction in the traffic requirements of the prefetching techniques while preserving the
reduction in miss rate that they achieve without SF. In the context of this paper, SF shows how

our metrics can be used to improve the quality of existing prefetch techniques.

4.1 Results using Static Filter

We present the miss rate in conjunction with the total traffic to illustrate the tradeoffs between
misses and bandwidth. The the usefulness and accuracy of prefetches are assessed via the PTMT

prefetch histogram.

Polluting Prefetches Polluting Prefetches
Useless Prefetches Useless Prefetches
Useful Prefetches Useful Prefetches

21000 F—— T T I b 21000 F 1 1

o o

o o

]]

[[

(8] (8]

< <

Q Q

]]

(7] [

£ e —

1) [

2 2

S 500 L S 500

[(] —

° °

Q Q

s k]

B3 — == B3 =

00 B mm 00 - |
compress gec go ijpey] perl apsi applu turtisd swim wawes
6(a) SPEC IntBenchmarks 6(b) SPEC FpBenchmarks

Figure 6: Classification of prefetches for SF-NSP and SF-SDP
(left bar = SF-NSP, right bar = SF-SDP)

(Total Prefetches in each scheme normalized to 100)

e Prefetch Traffic Analysis

Figure 6 shows the improved prefetch histogram when SFE is applied to NSP and SDP. Fur-
thermore, as the total prefetches issued by SF-NSP and SF-SDP differ significantly, each is far
less than those issued using NSP and SDP alone, the improvement in the histogram is even

more significant.

For both SPECint and SPECfp benchmarks, SF-NSP has only about 2 to 3% polluting
prefetches (e.g., in go, the polluting prefetches 2% for SF-NSP, vs. 13% for NSP). Overall,
SF-NSP is dominated by useful prefetches, indicating the improvement due to the selectivity
of SF. However, for some benchmarks like go, li and apsi, SF may be too selective and decrease

coverage.

18

Traffic (millions of cache blocks)

Similarly, SF-SDP has only 2 to 3% polluting prefetches. Unlike SF-NSP, we see that SF-SDP,
unfortunately, also decreases the total number of useful prefetches, and this will increase the
miss rate. (as seen in Figure 10). SF’s reduction in polluting prefetches and hence in total

traffic will not be effective unless SI' preserves the decrease in miss ratio achieved by NSP or

SDP alone.

Total Traffic

Conv Cache
SF-NSP Cache Conv Cache
200 1 ORIG-NSP Cache SF-NSP Cache

1000 ORIG-NSP Cache

g
[5]
<}
Qo
]
c
Q
@
o
°
2
100 £ 500+t
E
2
g
00 . : 0.0 - - :
Compress Gec Go jpey Li Perll Awe Apsi Applu TumBd Swim Wave5 Awe Ave - Swim
7(a) SPEC Intbenchmarks 7(b) SPEC Fpbenchmarks

Figure 7: NSP : Traffic(millions of blocks): Cache: 16KB, 4-way, 32B blocks

In all the subsequent figures the leftmost bar is the result for conventional cache, the second
bar is for a cache using SF on a baseline technique and the rightmost bar is for a cache using
baseline technique alone.

Figures 7(a) and 7(b) present the total traffic for the SPECint and SPECfp benchmarks using
NSP as the baseline technique. Using SF we observe an average of 30% reduction in traffic
for SPECint benchmarks. Although SPECfp benchmarks are known to have sequential access
patterns, SF still achieves an average of 25% reduction in traffic (excluding swim). Here and
in the subsequent figures, the last group of bars shows the average results excluding swim. For
swim NSP has almost twice as much traffic as SF-NSP. This leads to more cache pollution, as
we will see when we compare the corresponding miss rates for NSP and SF-NSP in Figure 9(b).
Figures 8(a) and 8(b) present the total traffic using SDP as the baseline technique. Since SDP
is more selective than NSP, we do not achieve the same the improvement using SF on SDP as

on NSP. SF reduces traffic by 20% for SPECint and 15% for SPECfp benchmarks.
Miss Rate
Figures 9(a) and 9(b) show the miss rate for SPECint and SPECfp benchmarks using SF on

19

Traffic (millions of cache blocks)

Miss rae (%)

150

10.0

50

0.0

100

50

0.0

Conv Cache
r SF-SDP Cache
ORIG-SDP Cache

amwess Gec Go ljpeg Li Perl Awe
8(a) SPEC Intbenchmarks

60.0

400 |

Traffic (millions of cache blocks)

0.0

:

Conv Cache
SF-SDP Cache
ORIG-SDP Cache

Apsi Applu TumiBd Swim Wave5 Awe Ave - Swim
8(b) SPEC Fpbenchmarks

Figure 8: SDP : Traffic(millions of blocks): Cache: 16KB, 4-way, 32B blocks

Conv Cache
SF-NSP Cache
ORIG-NSP Cache

amwess Gee Go ljpey Li Perll Awe
9(a) SPEC Intbenchmarks

30.0

Conv Cache
SF-NSP Cache
ORIG-NSP Cache

Miss rae (%)

0.0

Apsi Applu TumBd Swim Wave5 Awe Ave - Swim
9(b) SPEC Fpbenchmarks

Figure 9: NSP: Miss rate: Cache: 16KB, 4-way, 32B blocks

20

Miss rae (%)

NSP. NSP achieves an average miss rate reduction of 24% for SPECint and 46% for SPECfp
relative to a conventional cache. SF-NSP reduces the miss rate by 20% and 48% for SPECint
and SPECfp respectively, indicating that we are not eliminating very many useful prefetches
by using SF. From Figures 5 and 6, average useful prefetches for SPECint are up from 45%
for NSP to 81% for SF-NSP. However, for benchmarks with predominantly sequential access
patterns, (e.g., li and ijpeg) SF may be too selective On the other hand for gcc and go where
selectivity is more important, the NSP miss ratio is well preserved. A clear trade-off between
misses and traffic is seen for compress; using NSP a 10% reduction in miss rate is achieved
with a 40% increase in traffic relative to SF-NSP; this may or may not be desirable depending
on the available bandwidth.

The high miss rate (average of 8% without prefetching) of SPECfp, vs. the SPECint bench-
marks, suggests that a 16KB cache may be too small to capture the working set of these
benchmarks. This makes prefetching more critical for improving performance; NSP and SF-
NSP have comparable performance. For swim, NSP has more misses than SF-NSP due to cache
pollution caused by excessive prefetching. This is confirmed by our observation in Figure 7(b)

that the NSP:SF-NSP prefetch traffic ratio for swim is very high (about 10 times).

Conv Cache Conv Cache
SF-SDP Cache SF-SDP Cache
ORIG-SDP Cache ORIG-SDP Cache
100
200 |
g
@
E
8
F =
50 10.0
00 — - - 0.0 . - -
Compress Gec Go jpeg Li Perll Awe Apsi Applu TumtBd Swim Wave5 Awe Ave - Swim
10(a) SPEC Int benchmarks 10(b) SPEC Fpbenchmarks

Figure 10: SDP : Miss rate: Cache: 16KB, 4-way, 32B blocks

Figures 10(a) and 10(b) show the miss ratio using SDP as the baseline technique. Neither SDP
nor SF-SDP shows a significant improvement in miss rate for these benchmarks. SF-SDP has
a 10 to 15% increase in the miss rate relative to SDP. However, SDP issues 70 to 80% more
prefetches than SF-SDP in order to achieve this reduction in miss rate. SF-SDP performs as
well as SI-NSP for SPECint benchmarks, but not as well for SPECfp benchmarks.

21

Our results using NSP and SDP as baseline techniques show that PTMT did identify the
useless and polluting prefetches and that SI' did significantly reduce these harmful prefetches while
retaining nearly all of the useful prefetches of the baseline techniques. Thus SF does, as claimed,
reduce the bandwidth requirement of a baseline technique while preserving its reduction in miss

rate.

5 Conclusion

PTMT analyzes each prefetch and assigns it 0, 1 or 2 blocks of additional traffic and a -1, 0, or 41
net change in misses that it causes relative to a conventional cache. The key to this classification
is the simultaneous simulation of two caches — a cache with prefetching and a conventional cache.

The three major contributions in this paper are,

e A classification that completely describes the 9 possible outcomes that encompass a prefetched

line and the line it evicts from the cache.

e A classification which further describes the effect of prefetching on the LRU ordering within

a cache set (case 10) and the indirect effect this has on the miss rate and traffic.

e An Analysis of the chaining effects among prefetches so as to understand how even a useful

prefetch (case 5) may not be beneficial in a broader context.

Using the above classification we derived new metrics to evaluate a given prefetching technique
by quantifying the additional traffic penalty that each prefetch incurs in order to potentially save a
cache miss and hide the memory access latency.

We have demonstrated the usefulness of PTMT by applying it to two implementable prefetch-
ing techniques (NSP and SDP). Based on the prefetch classification observed for NSP and SDP
we developed a static filter to reduce/eliminate polluting prefetches. Our results show that SF
eliminates nearly all the polluting prefetches and achieves a significant reduction in the prefetch

traffic of the baseline techniques with only a modest increase in miss rate.

References

[1] J. Bennett, M. Flynn, “Prediction Caches for Superscalar Processors”, Proceedings of the 30th Annual
Int’l Symposium on Microarchitecture, December 1997, pp 81-91.

[2] D. Burger, T. Austin, “The SimpleScalar Tool Set, Version 2.0,” Technical Report TR 1342, University
of Wisconsin, Jun 1997.

[3] D. Callahan, K. Kennedy, A. Porterfield, “Software Prefetching,” Proceedings of the 4th Symposium on
Architectural Support for Programming Languages and Operating Systems, April 1991, pp 40-52.

[4] M. Charney, T. Puzak, “Prefetching and memory system behavior of the SPEC95 benchmark suite,”
IBM Journal of Research and Development, Vol 41, Number 3, May 1997.

22

[5]

[19]
[20]

T. Chen, J. Baer, “Reducing Memory Latency via Non-blocking and Prefetching Caches,” Fifth In-
ternational Conference on Architectural Support for Programming Languages and Operating Systems,

October 1992, pp 51-61.

T. Chen, J. Baer, “A Performance Study of Software and Hardware Data Prefetching Schemes,” Pro-
ceedings of the 21st Annual Int’l Symposium on Computer Architecture, April 1994, pp 223-232.

W. Chen, S. Mahlke, P. Chang, W. Hwu, “Data Access Microarchitectures for Superscalar Processors

with Compiler-Assisted Data Prefetching,” Proceedings of the 24th Int’l Symposium on Microarchitec-
ture, November 1991, pp 69-73.

J.D. Gindele, “Buffer Block Prefetching Method,” IBM Tech. Disclosure Bull. 20, 2, July 1977, pp
696-697.

D. Joseph, D. Grunwald, “Prefetching Using Markov Predictors,” Proceedings of the 24th Int’l Sympo-
stum on Computer Architecture, May 1997, pp 252-263.

N. Jouppi, “Improving Direct-Mapped Cache Performance by the Addition of a Small Fully-Associative
Cache and Prefetch Buffers,” Proceedings of the 17th Int’l Symposium on Computer Architecture, May
1990, pp 364-373.

A Klaiber, H Levy, “An Architecture for Software-Controlled Data Prefetching,” Proceedings of the 18th
Int’l Symposium on Computer Architecture, May 1991, pp 43-53.

M. Lipasti, W. Schmidt, S. Kunkel, R.Roediger, “Spaid: Software Prefetching in pointer and call inten-
sive environments,” Proceedings of the 28th Annual Int’l Symposium on Microarchitecture, November

1995, pp 231-236.

C-K Luk, T. Mowry, “Compiler based Prefetching for recursive data structures,” Proceedings of the 7th
Int’l Conference on Architectural Support for Programming Languages and Operating Systems, October
1996, pp 222-233.

S. Mehrotra, L. Harrison, “Examination of a Memory Access Classification scheme for Pointer-Intensive
and Numeric Programs,” Proceedings of the 10th Int’l Conference on Supercomputing, May 1996, pp
133-139.

T. Mowry, M. Lam, A. Gupta, “Design and Evaluation of a Compiler Algorithm for Prefetching,” Pro-
ceedings of the 5th Int’l Conference on Architectural Support for Programming Languages and Operating
Systems, October 1992, pp 62-73.

J. Pomerene, T. Puzak, R. Rechtschaffen, F. Sparacio, “Prefetching System for a Cache Having a Second
Directory for Sequentially Accessed Blocks,” U.S. Patent 4,807,110, Feb 1989.

A. Roth, A. Moshovos, G. Sohi, “Dependence Based Prefetching for Linked Data Structures,” Proceed-
wngs of the 7th Int’l Conference on Architectural Support for Programming Languages and Operating
Systems, October 1997, pp 115-126.

A. Roth, G. Sohi, “Effective Jump-Pointer Prefetching for Linked Data Structures,” Proceedings of the
26th Int’l Symposium on Computer Architecture, May 1999, pp 111-121.

A. Smith, “Cache Memories,” ACM Computing Surveys, Sept. 1982, pp 473-530.

reference removed for double blind reviewing

23

