SpliCS - Split Latency Cache System

Abstract

Memory access latencies are much larger than processor cycle times, and this gap has
been increasing over time. Cache performance is critical to bridging this gap. Since caches
cannot be both large and fast, cache design involves hierarchies with trade-offs between access
times and miss ratios. This paper introduces a novel primary cache design, called the Split
Latency Cache System (SpliCS). SpliCS employs two data stores: a small, fast cache (A) and
a larger, but slower cache (B), inclusion is maintained and both caches are accessed in parallel.
SpliCS improves the effectiveness of the cache hierarchy by allowing very fast access to some
lines while still allowing a large primary cache to be used. QOur results using an out-of-order
processor model show that relative to a similarly configured traditional cache, SpliCS' achieves
a 12 to 13% improvement in CPI on commercial applications and 14 to 18% improvement in
CPI on some benchmarks from the SPEC suite.

1 Introduction

As the gap between the main memory access time and the processor clock cycle widens,
minimizing the data access time is crucial for achieving high performance. Primary caches
are designed to provide the most frequently used data items with a minimum delay to the
processor. However, caches cannot be both large and fast. Large primary caches have a low
miss ratio but large access time; small primary caches decrease the access time, at the cost
of increased miss ratio. Qur experiments running commercial applications on an out-of-order
processor model show that, on an average, doubling the cache size decreases the miss ratio
by 25%, but doubling the cache access latency of a cache increases the cycles per instruction
(CPI) by 9%. Hence, there is an inherent trade-off between miss ratio and average access time.

Traditional approaches to decrease the average access time focus on:

e Increasing the memory bandwidth: interleaving main memory, wider busses between

levels of the memory hierarchy.

e Hiding the memory latency: more levels of memory hierarchy, using prefetching tech-

niques.

Our experiments using one more level of memory hierarchy, an L0 cache, show an average
increase of 8.3% in CPI over that of a traditional L1 cache. This counterintuitive result
confirms Emma’s observation that L0 caches cannot be conceptualized in the same manner

as the L1 caches [5]. While our L0 cache is nonblocking and services hits to other lines when



misses are still pending, it stalls on a second miss to any line which decreases the overall
performance. These issues are further explained in section 4.1.

New designs ([8], [15], [11], [7], [6]) have been proposed that incorporate an additional buffer
and do more active primary cache management. These designs focus on modifying placement
and replacement policies in the primary cache to reduce miss ratio and have been evaluated on
noncommercial applications. Our evaluation of these designs (presented in section 6) reveals
that on commercial applications their performance is generally worse than similarly configured
traditional caches of higher associativity (>= 2).

In this work we modify the design of the primary caches, to achieve a reduction in access
time without increasing the miss ratio and analyze it using both commercial applications and
some benchmarks from the SPEC95 suite. Our design, called the Split Latency Cache System
(SpliCS), uses 2 caches: a small, fast cache (A) and a larger, slower cache (B). The contents
of cache A are strictly included in cache B.

The key difference between SpliCS and a traditional hierarchy is that caches A and B are
accessed in parallel; thus cache B is part of the primary cache and a miss in cache A that
hits in cache B is served in the cache B’s latency time rather than A plus B latency time.
More importantly, SpliCS has an advantage over an L.1 cache because the very fast cache A (1
cycle access latency in this paper) enables cache B to be larger and slower than a conventional
primary cache whose configuration is heavily influenced by cycle time constraints. We evaluate
several methods of managing data placement and replacement within SpliCS and compare the
performance of SpliCS to a traditional cache hierarchy. Our results on an out-of-order processor
model indicate that, relative to a similarly configured traditional cache, SpliCS achieves a 12
to 13% reduction in CPI for commercial applications and 14 to 18% reduction in CPI for the
benchmarks from the SPEC suite.

The rest of this paper is organized as follows. In section 2 we present our design, the
Split Latency Cache System (SpliCS). In section 3, we describe the experimental framework
and the benchmarks used in this study. In section 4 we discuss the results of the simulations
for a traditional L1 cache system and a traditional (L0 + L1) cache system. In section 5 we
present the results using SpliCS. Relevant prior work is discussed in section 6. Conclusions

and promising directions for future work are discussed in section 7.



2 SpliCS - Split Latency Cache System
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Figure 1: SpliCS Block Diagram

Figure 1 presents a high-level block diagram of SpliCS with 2 caches — labeled A and
B. Cache A is smaller and faster than cache B and may have different associativity. When
a datum is present in cache A, the cache system can respond more quickly than when the
datum is in cache B. Thus, SpliCS has variable latency cache hits, similar to systems that use
congruence class prediction, set prediction or other multiple probing techniques [16, 4].

The contents of cache A are strictly included in cache B. This simplifies maintenance of
the data and enables the use of a single directory structure for both caches, if desired. and
Cache-writes, caused by stores from the processor are written to both caches when the data
are present. However, cache B is a write-back cache when viewed from the next level of the
memory hierarchy. With the exception of a 1 line buffer for sending data from cache B to
cache A, there are no queues associated with cache A. Cache B has an organization similar to
a conventional L1 cache. Using the same line size for both the caches simplifies maintenance
of inclusion.

In modern microprocessor designs, the latency of the primary cache access path has tradi-
tionally been a critical component determining the cycle time. It is desirable to have the largest
primary cache possible without extending the cycle time. However, achieving acceptable cache

miss rates in multiprocessors necessitates the use of larger primary caches than the desired



cycle time allows. SpliCS is specifically targeted at this issue. SpliCS enables the design of a
high capacity primary cache with rapid access to a small portion of the data without negatively
impacting cycle time. Our results show that 4 out of 5 hits are serviced by cache A. Thus
cache B is used less frequently and therefore can be larger and thus slower than a conventional
primary cache. Cache B’s larger capacity will result in fewer misses. Furthermore, SpliCS also
enables a power tradeoff relative to a conventional cache so that we can design cache B to
operate at a lower power and more slowly than would otherwise be required.

The SpliCS directory, however, must be able to respond within the cycle time limit allowed
by the small cache A and yet cover the data of the larger cache B. Conversations with our
circuit designers indicate that this is quite feasible. By using a single directory, the placement
of data in cache A may be restricted by the organization of cache B. If an implementation
requires more flexible mappings of data in cache A to boost utilization, a separate directory
for cache A can be used. Since cache A is so small — at most 32 lines in this study — the area
expense for a separate directory is tolerable. Our results use two directories that are probed

in parallel.

2.1 Cache Access Algorithm in SpliCS

We now present the details of the cache access in SpliCS. When we have a reference to a line

y the following possibilities exist:

e Case 1: Line y is in cache A (and in cache B):
The requested line is made the most recently used line in its set in cache A and the
critical word is forwarded to the processor in 1 cycle (cache A’s access latency). As the
contents of cache A are strictly included in cache B, the line is also present in cache B.
For every store in cache A, the line in cache B is also updated. For every hit in cache A,

the line in cache B is also made the most recently used line in its set.

e Case 2: Line y is in cache B, not in cache A:
The critical word is forwarded to the processor in 3 or 5 cycles (cache B’s latency) and the
requested line is made the most recently used line in cache B. In addition, vy is promoted
to cache A. A first-in-first-out buffer (BtoAbuf) is situated between cache A and cache

B, as illustrated earlier in Figure 1. When a line is promoted from cache B to cache A,



it is copied to this buffer and is subsequently copied to cache A from the buffer when
A has a free cycle. Since the BtoAbuf has finite size, not all promotions from cache B
make it to cache A. For example, when a reply (for a pending miss) from the next level
is processed, it might require the line being promoted to be cast out. In that case, the
line being promoted is squashed in the BtoAbuf and never makes it to cache A, thereby

maintaining strict inclusion of cache A with respect to cache B.

e Case 3: Line y is not present in cache B (also not in cache A):
The requested line is retrieved from the next level of memory hierarchy and placed in
cache B and the critical word is bypassed to the processor. If in the process, we replace a
line from cache B to make room for line y, then to maintain strict inclusion we must also
invalidate the replaced line from cache A (if present). Line y is made the most-recently-

used line in cache B and is also copied to cache A.

e Case 4: Line y is present in the BtoAbuf buffer:
It implies line y is in the process of being promoted to cache A as a result of prior
reference. However, cache B must also have a copy of this line, the actions are similar to

Case 2, except that no new promotion is generated.

o Case 5: Line y is a pending miss:
If a prior request to line y is still being serviced, the cache blocks (i.e., it does not process
any new requests) until the pending access to line y is resolved using one of the three
cases (1, 2 or 3). Faster ways of handling this case could be devised, but we chose this

simple way of handling it for these initial evaluation of SpliCS.

SpliCS caches can be used for instruction or data caches. In this paper, only the data
cache uses a SpliCS organization. While we have similar very positive results using SpliCS for
an instruction cache, presentation of those data would add little to this paper. When both
instruction and data caches use SpliCS organizations, observed reduction in CPI exceed those

presented in this paper; they are, in effect, complementary.



3 Experimental Framework

We use trace-driven simulations to evaluate the performance of the primary caches. For this
paper we use a cycle-level processor timer developed and used for many years by the mi-
croprocessor performance group at the IBM T. J. Watson Research Center for the study of
microarchitectures. The timer used in this study was based on a non-product configuration
called LOOP which stands for Limited Out-of-Order Processor. In LOOQOP, instructions can
issue out of program order only in a limited instruction window and only if they are completely
independent of both the other instructions executing and the instructions before them in the
issue queue.

The goal of LOOP is to explore simple pipeline implementation options and as such LOOP
does not have reservation stations or register renaming hardware. While it might at first
glance seem impractical to omit reservation stations and renaming hardware, these omissions
greatly simplify the implementation and allow for a shorter and higher-frequency pipeline.
The lack of reservation stations and renaming clearly limits the exploitable instruction level
parallelism. However, when instructions are scheduled such that independent operations are
near each other in the instruction stream, LOOP performs dynamic instruction scheduling
to reduce the impact of cache misses or other long latency operations. LOOP does have an
extra pipe stage at the end of the pipeline for retiring completed instructions in order. Thus
LOOP is aimed at catching the low-hanging fruit of out-of-order execution while enabling a
fast, simple implementation. As in the LOOP processor model, the memory system model is
detailed and simulates bus transfers, bus contention, and the resulting queuing.

The LOOP processor model is configured to have a 6 stage pipeline with two integer
execution units, 1 floating-point execution unit, 1 load-store unit, and a branch unit. It has
4 instruction buffers, each of which can hold 4 instructions. The instruction decode window
is capable of holding 8 instructions. LOOP can dispatch at most the first 4 instructions
in the decode window. At most 4 operations can be executing in a given cycle. Also, 4
operations can write back their results in a cycle. Only one load or store can be initiated per
cycle because there is only one load-store unit and one port to the primary cache. Branch
prediction is performed using a 10 entry link-stack, an 8K entry branch target buffer and an

8K entry gshare-like conditional branch predictor. PowerPC’s load-multiple and store-multiple



instructions are broken down according to the data bus widths for accessing the instruction
and data caches.

The LOOP memory system model has two TLBs (data and instruction) with a 40 cycle
penalty for a TLB miss. It has two levels of memory hierarchy (I.1 and [.2) and a main memory
with a 30 cycle access latency. The L2 cache is 4MB with 128 byte lines, 8-way associativity
and a 10 cycle access latency for the leading edge. The system has separate L1 instruction
and data caches which maintain strict inclusion with the L2 cache. The L1 instruction cache
has a 2 cycle access latency and is 64KB with 128 byte lines and 2-way associativity. LRU
replacement policy is used by all the caches. The L1-L2 bus is 32 bytes wide; transferring
a cache line requires 4 bus cycles. As the focus of this study is the design of the L1 data
cache we study its performance for different sizes, associativities and access latencies. The L1
instruction cache and the L2 cache configuration remains unchanged for the rest of the paper.

We describe the latency of the L1 caches in terms of their load-use penalty. The load-use
penalty is the number of cycles after a load instruction performs its address generation and
before the data can be used by a subsequent instruction. A 1-cycle cache requires one address
generation cycle and 1 cache access cycle. Similarly, a 3-cycle cache requires one address

generation cycle and 3 cache access cycles.

3.1 Benchmarks Studied

We ran traces of database workloads, namely TPCC and TPCD, and a set of 12 benchmarks
from the SPEC suite on RS6000, collected by by the microprocessor performance group at
the IBM T. J. Watson Research Center. Table 1 presents the total number of instructions
and the memory references of the applications. All the benchmarks in the SPEC suite were
run using the reference inputs and we chose the execution profile suggested in [3]. For 9 (go,
ijpeg, li, perl, mgrid, applu, fpppp, tomcatv) SPEC applications, we skipped the first billion
instructions in the program and traced the next 500 million instructions. For gee, we skipped
only 100 million instructions (since it ran for about 500 million instructions). For m88ksim and
sulcor, we took 10 uniformly spaced contiguous samples of 50 million instructions. Charney
and Puzak [3] validate the segment traces by examining the top ten blocks which account for
most of the instructions in the execution and show that the execution profile for the chosen

500 million instructions closely matches the execution profile for the full workloads.



Benchmark | Instructions | Memory Refs
(millions) (millions)

TPCC 100 36
TPCD 58 21
126.gcc 453 151
099.go 500 188
132.ijpeg 500 162
130.1i 500 218
124.m88ksim 400 145
134.perl 500 215
110.applu 500 225
145 .fpppp 500 265
104.hydro2d 500 210
107.mgrid 500 205
103.su2cor 500 230
101.tomcatv 500 208

Table 1: Benchmark characteristics

4 Results with Traditional Caches

To understand the effect of change in size and access latency we evaluated the performance
of traditional primary caches with different access latencies and sizes. As the trends in the
results for different associativities and line sizes remained the same, we only present the results
for the L1 data cache with an associativity of 2 and line size of 128 bytes. The cache size was
varied from 32KB to 256KB and the access latency was varied from 1 to 5 cycles. Figure 2
shows the CPI for the database workloads.

A traditional data cache with 1-cycle access latency provides a lower bound on achievable
CPI. As the latency increases from 1 to 3 cycles the average CPI increases by 8%. As we
further increase the latency from 3 to 5 cycles the CPI increases by 12.5%. Although the miss
ratio of these caches decreases with increase in size, the penalties in CPI of the 3 and 5 cycle
caches relative to the ambitious 1 cycle cache are considerable.

Figures 3 and 4 show the CPI for the SPEC benchmarks. Our results show that the
average miss ratio of SPEC benchmarks is less than 3% for a 64KB L1 data cache. Since
the performance was not significantly affected by increasing the cache size further, we present
results only for 32KB and 64KB caches. Figures 3 and 4 shows that on an average, the CPI

increases by 5.3% as the latency increases from 1 to 3 cycles.
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Figure 2: CPI for TPCC and TPCD using traditional L1 data cache
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Figure 4: CPI for SPECint and SPEC{p using 64KB traditional .1 data cache

From the above results we see that there is a clear trade-off between size and speed of
the L1 caches. We also observe that for the database workloads, the 256 KB cache with 1
cycle latency performs the best. However, the available technology may make it prohibitively
expensive to build such a cache.

The above results motivate the need to explore different alternatives to achieve the per-
formance of a large and fast cache using a combination of a small, fast cache and a larger
but slower cache. A straightforward way to achieve the effect of a faster cache is to use one
more level of memory hierarchy in front of 1. To evaluate this, we added an L0 data cache
to our design. The L0 cache is added between the processor and the .1 data cache as shown
in figure 5 and is queried by the processor. The L1 data is queried only on a miss in the L0
cache.

In our simulations, the L0 cache is a write-through cache All the updates to the items in
the L0 cache are propagated to the L1 via the L0-L1 bus. The L0 cache model is similar to
the detailed L1 cache model.

The LO cache is a non-blocking cache and processes hits under miss. However, similar to
the L1 caches, the L0 cache also “blocks” on a second miss to the same line, i.e., while a miss
to a line y is being serviced, the L0 cache processes hits or misses to other lines, but blocks on

another reference to line y.
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4.1 Results with a LO + L1 Cache

We simulated an L0 data cache with 128 byte lines and 1 cycle access latency varying its size
from 1KB to 4KB. We varied the associativity of this cache from 1 to 4. As the trends of the
results remained the same, we present results only for 4KB, 2-way associative L0 cache with

128 byte lines and 1 cycle access latency.

a
TPCC : L0 cache : 4KBB2-way, 128 byte lines TPCD : L0 cache : 4KBB2-way, 128 byte lines
2.0 2.0
3cycle 3cycle
5cycles 5cycles
15 15
c c
] ]
I3 3]
2 2
D D
= £10¢t
] ]
o o
[} 0
Q9 Qo
&) &)
9 9
05 05
0.0 0.0
32KB 64KB 128KB 256KB 32KB 64KB 128KB 256KB
L1 data cache size (128 bbte lines, 2-way assoc) L1 data cache size (128 bite lines, 2-way assoc)

Figure 6: CPI for TPCC and TPCD using (O + L1) data cache

Figure 6 shows the CPI for the database workloads. As in section 4, we present results for

SPEC benchmarks using only 32KB and 64KB L1 caches with 3 cycle access latency. Figure 7
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shows the CPI for the SPECint and SPECfp benchmarks.
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Figure 7: CPI for SPECint and SPECfp benchmarks using (1.0 + L1) data cache

Contrary to intuition, we observe that the (LO + L1) system performs worse than the
traditional L1 cache system shown in Figures 2, 3, and 4. It is important to note that although
the accesses that hit in L0 take 1 cycle, those that miss in L0 take 4 or 6 cycles if they hit in
the L1 cache.

The two main factors contributing to this decrease in the performance of the 1.0 cache are:
(i) the high miss rate of the LO cache (12 to 13% for the database workloads and 5 to 7% for
the SPEC benchmarks), and (ii) the stalls due to LO “blocking”. As explained above the L0
cache stalls when there is a reference to an already pending miss. In Tables 2 and 3 we present
the percentage of the total cycles spent in L0 stalls for an (L0 4 L1) system and compare it to
the traditional system without L0 cache. We see that on an average the (L0 4 L1) system has
about 3 to 4 times as many stall cycles as the system without the L.O. Note that the design
with L0 cache has negligible stall cycles due to .1 “blocking”. This is to be expected because
of the reduction in the number of L1 accesses. However, the L0 stalls are in the critical path
and decrease the overall performance.

These results indicate that adding one more level of memory hierarchy is not the solution

to approaching the performance of a faster and bigger, but infeasible .1 cache. The rate at
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Size of L1 | % of cycles in stalls for Size of L1 | % of cycles in stalls for
(KB) L1 (Lo + L1) (KB) L1 (Lo + L1)
32 4.67 10.07 32 2.21 6.26
64 3.63 9.78 64 1.49 5.56
128 2.89 8.64 128 1.28 5.37
256 2.33 8.18 256 1.12 5.25

Table 2: % of Cycles in Stalls for L1 and (L0 + L1) system using a 3 cycle L1 cache
(TPCC and TPCD workloads)

Size of L1 | % of cycles in stalls for Size of L1 | % of cycles in stalls for
(KB) L1 (Lo + L1) (KB) L1 (Lo + L1)
32 2.67 8.01 32 12.2 19.32
64 1.01 4.99 64 11.3 18.52

Table 3: % of Cycles in Stalls for L1 and (L0 + L1) system using a 3 cycle L1 cache
(SPECint and SPECfp workloads)

which the requests/replies occur between L0 and L1 is higher than the available bandwidth.
Multi-porting the L0 cache may alleviate some of the queuing delays. For example, by allowing
the LO cache to process new requests from the processor using one port and process replies
from the L1 using another port some of the queuing delays can be reduced. However, true
multi-porting is a very expensive and impractical solution. These results motivated us to

design the SpliCS where the L0 “blocking” is eliminated.

5 Results with SpliCS Caches

In this paper we present results for a system with only the L1 data cache designed as SpliCS.
The rest of the system is the same as described in section 3. As with the L0 cache we simulated
cache A with 128 byte lines and 1 cycle access latency. We varied the size of cache A from
1KB to 4KB and its associativity from 1 to 4. As the trends of the results remained the same,
we present results for one of the cache A configurations, namely, 4KB, 2-way associative cache
with 128 byte lines and 1 cycle access latency. Cache B’s configuration is the same as the L1
data cache configuration in section 4.

To more easily compare the performance of all the systems modeled, we present the CPI

13
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Figure 8: CPI for TPCC

for the database workloads for all the caches in Figures 8 and 9. Each group of bars represents

a given size of L1 for the conventional caches or the size of cache B for the SpliCS cache.

Within each group of bars, we present from left to right the lower bound CPI using a 1 cycle
L1 cache, CPI for SpliCS with 3 or 5 cycle cache B and 1 cycle cache A, CPI for (L0 4+ L1)

cache, with 3 or 5 cycle L1 cache and 1 cycle L0 cache, and CPI for a traditional L1 cache

with 3 or 5 cycle latency.
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As we increase the latency of cache B, the benefits of the small, fast cache A becomes more
evident. For instance, with a 5-cycle cache B, SpliCS achieves higher performance than a tra-
ditional L1 cache of twice the size. Similarly SpliCS cache using a slower cache B outperforms
a traditional L1 cache with a faster access. For example, the CPI using SpliCS with 5 cycle
cache B is lower than the CPI using a 3 cycle traditional L1 cache of similar configuration.
This suggests that SpliCS enables building larger caches with much higher latencies without
being penalized. Compared to a similarly configured traditional cache SpliCS achieves a 12 to

13% reduction in CPI for commercial applications.
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Figure 10: CPI for SPECint and SPEC{p using 32KB L1 caches

More importantly, SpliCS outperforms the (L0 + L1) system. The features distinguishing
SpliCS from the (LO + L1) system and accounting for its superior performance are: (i) The
A and B caches of SpliCS are probed in parallel. Simultaneous probing of caches A and
B eliminate the need to communicate a miss in cache A to cache B. The cache A miss is
automatically serviced from the cache B array and the reply is sent directly to the processor,
(i) Cache-writes, caused by stores from the processor are written to both caches when the
data are present. This eliminates the need to propagate stores to the next level of memory
hierarchy unlike the (LO + L1) system and, (iii) Cache A of SpliCS does not “block”. This is

one of the principal contributor for the performance of SpliCS. Our results in section 4.1 show
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Figure 11: CPI for SPECint and SPEC{p using 64KB L1 caches

that the large percentage of stalls in the (L0 + L1) system due to the L0 cache “blocking” is
critical to the loss of its performance. This is completely eliminated in the SpliCS.

Similarly, we present the CPI for all the caches using SPEC benchmarks in Figures 10 and
11. The trend of the results remain the same for all the SPEC benchmarks. Results for some
of the benchmarks like go, gcc, and tomcatv show that an L0 cache reduces the performance
substantially. Moreover, the trends in the results remain the same across different cache sizes.
Here again, we see that SpliCS outperforms an (L0 + L1) system and achieves a 14 to 18%

reduction in CPI than a similarly configured traditional cache.

6 Related Work

Numerous schemes exist to reduce the effective memory latency seen by the processor ([1], [2],
[6], [7], [8], [9], [10], [11], [12], [13], [15], [17], [18], [19], [20], [21]). Among these, we review the
prior work that is most related to SpliCS.

The Victim Caching approach proposed in [8] introduces a small fully-associative “victim
buffer” between the primary direct-mapped (DM) cache and the next level of memory hierarchy.
This method reduces conflict misses by storing lines replaced from the primary cache in the

victim buffer. References that miss in the primary cache are looked up in the victim buffer.
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If found in the buffer, they are served to the processor with a very low miss penalty; and are
promoted to the primary cache. Since the victim buffer is fully-associative, lines that reside
in the victim buffer may be associated with any set of the primary cache. The victim buffer
helps reduce conflict misses in hot sets. However, the swaps between the primary cache and
the victim buffer can potentially become a bottleneck. A principal difference between SpliCS
and the victim cache is the strict inclusion of cache A in cache B. Inclusion avoids costly
swaps between cache B and cache A. As in victim cache, the hit latencies of the two caches
are different, but due to its indirect access path a hit in the victim buffer has a larger latency
than the larger primary cache. Furthermore, the role of cache A is very different from a victim
buffer; our goal in SpliCS is to retain the most recently used lines in cache A.

The Non-Temporal Streaming (NTS) cache proposed in [15] supplements the conventional
direct-mapped cache with a small parallel fully associative “NTS” cache. Lines that have
exhibited temporal locality are placed in the main cache and the rest are placed in the NTS
cache. This relieves the conflicts in the main cache. However, lines from the NTS cache are not
promoted to the main cache even if they exhibit temporal locality during their lifetime in the
NTS cache. Subsequent conflicts among temporal and among non-temporal lines within their
available cache space may lead to inefficient utilization of one or the other space. In addition,
the NTS method assumes that the access latency is the same for both its caches.

The evaluation of the TPCC workload on the Victim and NTS caches (Figure 12) shows
that these schemes do perform better than a single direct-mapped cache. However, a single
two-way associative cache generally outperforms both these schemes.

One of the main reasons for the lower performance of NTS and victim caches than a single
2-way associative cache, is the large working set of commercial applications. In addition, the
spatial and temporal locality exhibited by commercial applications is difficult to capture at
word-granularity. EKven though these results are on a no-timing model and therefore the swaps
required in victim caches are all free and done instantaneously, victim cache performance is
still worse than a single two way associative cache.

The Assist Cache [11] implemented in HP-7200, places a conventional primary cache in
parallel with a small fully associative “assist” cache, guaranteeing a one-cycle lookup in both
units. Blocks from memory are first loaded into the assist cache and are promoted to the

primary cache only if they exhibit reuse (as determined statically at compile time). Unlike
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Figure 12: Misses per 1000 instructions for NTS and Victim caches

Assist Cache, SpliCS tracks the cache line reuse dynamically. In essence, the assist cache
serves as a staging area for the incoming lines before those marked temporal find a place in the
primary cache. The guaranteed one-cycle look-up in both caches restricts the size of the assist
cache and increases the cycle time. SpliCS differs from Assist Cache again in the inclusion of
cache A in cache B. More importantly, SpliCS allows different latencies for the two caches,
thereby relaxing the size restrictions on the larger cache B.

The goal of the above multi-lateral caches (Victim, NTS, or Assist) is to improve the miss
rate of the L1 cache using an associated buffer. In essence, the size of the L.1 cache is increased
to alleviate conflicts and capacity misses. This in turn improves the overall performance.
SpliCS is orthogonal to these caches because the main motivation of our design is to provide a
faster access to a subset of the cache lines. Since the contents of cache A are strictly included
in cache B, SpliCS does not augment the size of .1 using cache A. Therefore, the performance
benefits of SpliCS comes from the variable access latency and not due to reduction in the L1
miss rate.

The most related prior work is the Most-Recently-Used(MRU) cache proposed by So and
Rechtschaffen at IBM [18]. The MRU cache assumes that the most-recently-used(MRU) cache
entry of each set is placed in a fast MRU cache and the rest are placed in a relatively slow
primary cache. In this approach, for every change in the MRU we have to move a cache entry

from the primary cache to the MRU cache. The caches are accessed in parallel and provide
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faster access if the datum is found in the MRU cache. However, unlike the cache A of SpliCS,
the MRU cache is always direct-mapped and the number of sets of the MRU cache is the same
as the number of sets in the primary cache. Thus the MRU cache helps retain only one line
per set and does not alleviate the misses of a “hot” set. SpliCS does not restrict the capacity,
associativity or line size of cache A.

The Fetch Target Buffer (FTB) presented in [14], is a design similar in spirit to SpliCS.
However, the role of the F'TB is to improve the branch throughput by having multiple levels
of branch target buffers. Similar to the parallel probing of the caches A and B of SpliCS, the

multiple levels of FTBs are probed in parallel to speed-up the access to branch outcomes.

7 Conclusions

In this paper we introduced a new approach to manage the primary cache and improve its
performance. SpliCS is a design to optimize the performance of a primary cache using a small,
fast cache (A) in association with a larger, slower cache (B). Our results show that, relative to
a similarly configured traditional cache, SpliCS achieves a 12 to 13% improvement in CPI on
database workloads and 14 to 18% improvement in CPI on some benchmarks from the SPEC
suite.

In modern microprocessor designs it is desirable to have the largest primary cache possible
without increasing the access latency. Figure 13 shows the alternative designs for the L1 cache.
Our results using traditional L.1 caches show a big gap in performance between a 1 cycle and 3
or 5 cycles L1 cache. This inherent trade-off between access latency and cache sizes motivates
design alternatives to increase the cache size without being penalized by larger access latency.
The obvious solution of adding another level of memory hierarchy (L0 cache) does not alleviate
the access time constraint. On the contrary, the small size of the L0 cache necessitated by the
faster access time requirement, is detrimental to the performance. SpliCS is a solution that
combines the best of both worlds by providing faster access without the associated problems
of a memory hierarchy and a larger and slower cache to decrease the miss rate. The key
features distinguishing SpliCS from a traditional hierarchy are the parallel probing of the
cache directories (or using a single directory) for the two partitions to enable faster access to

data and minimum communication between the two partitions by using simultaneous writes to
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both caches. By careful evaluation using a very detailed timer we have demonstrated that these

design choices lead to the superior performance of SpliCS across different sets of applications.
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Figure 13: Alternative Designs for L1 cache

SpliCS can be applied to both instruction and data cache. In addition, SpliCS does not
place any restriction on the size or associativity of the two caches. Each cache is normally
designed to be as large as its access latency allows, subject to space limitation on the die. This
flexibility in its design parameters and the better balance it achieves between effective latency

and size distinguishes SpliCS from other proposed designs.
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