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Abstract

Significant strides have been made in achieving strong semantics and security guarantees within
group communication and multicast systems. However, the scope of available security policies in these
systems is often limited. In contrast, the applications that require the services provided by these sys-
tems can differ significantly in their security policy needs. Often application designers have to either
make significant compromises in using a given group communication system or build their own cus-
tomized solutions, an error-prone task. This paper presents Antigone, a framework that provides a suite
of mechanisms from which flexible application security policies may be implemented. With Antigone,
developers may choose a policy that best addresses their security and performance requirements of an
application requiring group communication. We describe the Antigone’s mechanisms, consisting of a
set of micro-protocols, and show how different security policies can be implemented using those mech-
anisms. We also present a performance study illustrating the security/performance tradeoffs that can be
made using Antigone. Through an example conferencing application, we demonstrate the use of the
Antigone applications programming interface and consider the use of policy in several distinct session
environments.

1 Introduction

Increases in the power of digital communication has lead to the emergence of useful business, commercial,
and personal information management systems. However, the security models under which these appli-
cations and services operate are often limited. Many existing systems define a single threat model during
development. Thus developers, rather than users and administrators, largely define the security services
available to the participants and data. As a result, issues such as performance, availability, and trust are
weighed during software design, and not within the context of a specific application session.

The lack of support for user-defined requirements in existing applications highlights the need for greater
control over the types and use of software services. Increasingly, softwarepolicies are used to address
this need. Derived from predefined rules and runtime context, apolicy defines the relevant behaviors and
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infrastructure requirements of the participants and applications at the time at which software is used. Thus,
by using policies, an application may address the changing requirements of each session independently.

In this paper we describe the Antigone system[1], a framework for the flexible definition and implemen-
tation of security policies in group communication systems. A central element of the Antigone architecture
is a suite ofmechanismsthat provide the basic services needed for secure groups. Policies are implemented
through the composition and configuration of these mechanisms. Mechanisms are composed in different
ways to address new requirements and environmental constraints. Thus, Antigone does not dictate the avail-
able security policies, but provides high-level mechanisms for implementing them. Although the study of
policy is applicable to a great many application domains, we focus centrally on issues of security policies
in group communication. However, the design and analysis of Antigone may provide useful insights for the
architects of policy frameworks in other domains.

Each Antigone mechanism provides some set of facilities needed for secure group communication
through the implementation of one or more securitymicro-protocols. Antigone provides micro-protocols
implementing a number of facilities useful in secure groups; member authentication, join, session key and
membership view distribution, application messaging, process failure, and member leave.

Reliable detection of process failures is a central requirement of several important security policies.
Antigone provides an efficient approach to detect process failures in group communication. This approach,
calledsecure heartbeats, uses an approach similar to one-time passwords to amortize the cost of keep-alive
generation over many messages. Unlike many other approaches to failure detection in groups, no assump-
tions about the availability of reliable communication or public key certificates are needed. Thus, using this
approach, many of the costs typically associated with failure detection in groups may be eliminated.

To support the needs of users in group communication systems, we have developed a taxonomy of
security policies. We identify dimensions along which a range of group communication policies can be
configured, and describe the often subtle differences between policies found within these dimensions.

Addressing the security requirements of group communication is complicated not only by the lack of
globally available security services, but also by the limited availability of efficient group communication
services (e.g., multicast). Antigone provides a single abstraction for unreliable group communication that
can be configured to use unicasts or multicasts. Using this abstraction, applications can avoid dependence
on multicast, but where available, realize its performance advantages.

The majority of secure group communication systems present in the literature are designed to address
the requirements of a limited range of users and environments. Conversely, Antigone seeks to address a wide
range of environments within a single framework. We do not expressly attempt to discover new solutions for
secure groups, but identify ways in which existing approaches may be efficiently integrated and controlled.
We state the following as the primary goals of Antigone:

1. Flexible Security Policy- An application should be able to specify and implement a wide range of
security policies, with appropriate performance tradeoffs.

2. Flexible Threat Model- The system should support threat models appropriate for a wide range of
applications.

3. Security Infrastructure Independence- The framework should not be dependent on the availability of
a specific security infrastructure or technology.

4. Transport Layer Independence- The solution should not depend on the availability of any single
transport mechanism (such as IP Multicast [2]). On the other hand, our solution should be able to take
advantage of available multicast services.

5. Performance- The performance overheads of implementing security policies should be kept low.
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An early version of Antigone has been integrated into thevic [3] video-conferencing system. The result
of that effort, called the Secure Distributed Virtual Conferencing (SDVC) application, was used to broadcast
the September 1998 Internet 2 Member Meeting to several sites across the United States. Using high speed
cryptographic algorithms we are able to attain television-like secure video frame rates (30 frames/second)
over a LAN. Details of the implementation and our experiences deploying SDVC can be found in [4, 5].

In the next section, we describe related work in secure groups, policy management, and composable
architectures and protocols. Section 3 considers a design space of secure group communication policies.
Section 4 details the Antigone architecture, operation, and protocols. Section 5 presents results of a perfor-
mance study investigating the costs associated with several important security policies. Section 6 presents
an overview of the Antigone API through an example application. Section 7 considers the factors contribut-
ing to the selection of an application policy and illustrates their use within several session environments.
Finally, Section 8 presents concluding remarks and directions for future work.

2 Related Work

Often cited as the genesis of current group communication technologies, the ISIS [6] and later HORUS
[7] frameworks provide interfaces for the construction of group architectures. Using these frameworks,
developers can experiment with a number of protocol features through the composition and configuration of
protocol modules. One important feature introduced by the HORUS system was a comprehensive security
architecture. A central contribution of this architecture was the identification of a highly fault-tolerant key
distribution scheme. Process group semantics are used to facilitate secure communication. A single session
key is used throughout each HORUS session. However, vulnerability of the group to attacks from past or
future members is limited. Application messages have sender authenticity and may be confidential.

Virtual private networks provide an abstraction in which applications designed for (logically) local net-
work traffic can be executed across physically larger networks. The Enclaves system [8] extends this model
to secure group communication. Enclaves secures the group content from previous members by distributing
a new group key after any member leaves the group. Also, it is implied that the group key should be changed
periodically. Enclaves distributes group membership information but is not dependent on it. Messages have
confidentiality and through point-to-point communication, sender authenticity.

The RAMPART system [9] provides secure group communication in the presence of actively malicious
processes and Byzantine failures. Protocols in RAMPART rely heavily on distributed consensus algorithms
to reach agreement on the course of group action. Secure channels between pairs of members are used to
ensure message authenticity. Authenticity guarantees are used to ensure the accuracy of the group views1

constructed through membership protocols. The security context is not changed through shared session
keys, but through the secure distribution of group views. Application messages have sender authenticity and
integrity.

An often cited limitation of existing group communication systems is their inherent lack of scalabili-
ty. In [10], Mittra defines the 1 effects n failure, where a single membership change event can effect the
entire group. Mittra’s Iolus system addresses this limitation through locally maintained subgroups. Each
subgroup maintains its own session key, which is modified after a member leaves. Therefore, the effect of
a membership change is localized to the subgroup in which it occurs. Iolus provides confidentiality through
encryption under session keys.

Key hierarchies [11, 12] provide an efficient alternative to subgrouping in achieving scalable, secure key
distribution. A key hierarchy is singly rooted n-ary tree of cryptographic keys. The interior node keys are

1A groupview is the set of identities associated with members of the group during a period where no changes in membership
occur. When the membership changes (a member joins, leaves, fails, or is ejected), a new view is created. This is a similar concept
to Birmans’s group view [6].
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assigned by a session leader, and each leaf node key is a secret key shared shared between the session leader
and a single member. Once the group has been established, each member knows all the keys between their
leaf node key and the root. As changes in membership occur, rekeying is performed by replacing only those
keys known (required) by the leaving (joining) member. Rekeying without membership changes can be
achieved by inexpensively replacing the root key. Thus, the total cost of rekeying in key hierarchies scales
logarithmically with group size.

The Group Key Management Protocol (GKMP) [13] attempts to minimize the costs associated with ses-
sion key distribution by loosening the requirement that the group content be protected from past and future
members. After being accepted into the group, newly joined members receive a Key Encrypting Key (KEK)
under which all future session keys are delivered. A limitation of this approach is that misbehaving mem-
bers can only be ejected by the establishment of a new group. GKMP reduces the costs of authentication by
introducing a peer-to-peer review process in which potential members are authenticated by active members
of the group. The joining member’s authenticity is asserted by existing members. GKMP provides periodic
rekeying. Note that this is a key management protocol, and as such does not mandate how the session key is
used.

The Group Secure Association Key Management Protocol (GSAKMP) [14] defines an architecture and
protocol used to implement secure multicast groups. Policy is implemented in GSAKMP through the dis-
tribution of session specificpolicy tokensdistributed to each group member. Similar in spirit to the security
associations (SA) of IPSec [15] used for peer communication, the policy token defines the security require-
ments and access control for a lightweight multicast session. Much of the philosophy on which the policy
layer of Antigone is based was developed from ideas present in the GSAKMP specification (see Section4.3).

The IPSec [15] standards enable secure peer communication through the introduction of network layer
security mechanisms. The Scalable Multicast Key Distribution (SMKD)[16] standard extends this approach
to the multicast environment. Developed for the Core Based multicast routing protocol [17], SMKD uses
the router infrastructure to distribute session keys. As the multicast tree is constructed, leaf routers obtain
the ability to authenticate and deliver session keys to joining members. Thus, the overheads associated with
member authentication and key management can be distributed among the leaf routers. Similar to GKMP,
SMKD provides periodic rekeying.

Introduced in [18] by Blaze et. al., trust management provides a unified approach for the specification
and evaluation of access control. At the core of any trust management system is a domain independent
language used to specify the capabilities, policies, and relationships of participant entities. Applications
implementing trust management consult an evaluation algorithm (engine) for access control decisions at run-
time. The engine evaluates the access control request using pre-generated specifications and environmental
data. Therefore, applications need not evaluate access control decisions directly, but defer analysis to the
trust management engine. Through rigorous analysis, the PolicyMaker [18] trust management engine has
been proven to be correct. Thus, with respect to access control, any application using PolicyMaker is
guaranteed to evaluate each decision correctly. However, enforcement is left to the application. Several
other systems (e.g., KeyNote [19] and REFEREE [20]) have extended the trust management architecture to
allow easier integration with user applications and a minimal set of enforcement facilities.

The Security Policy System (SPS) [21] is an architecture supporting the flexible definition and distri-
bution of policies used to define IPSec (peer communication) security associations (SA)s. In SPS, policy
databases warehouse and distribute specifications to policy clients and servers. Policy servers coordinate
(with clients) the interpretation, negotiation, and enforcement of SA policies. The scope of policy in SPS
is limited. To simplify, SPS policies state acceptable access control and identify the use of cryptographic
message transforms (i.e. access control and message security).

The Secure Multicast Research Group (SMuG) is an IRTF sponsored research body chartered with the
task of investigating technologies and frameworks for secure multicast. The SMuG efforts are directed at
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three problem areas defining the central tasks required by secure multicast systems. These areas include
multicast data security, key management, and policy management. A proposal architecture and detailed
description of these efforts can be found in [22]. Findings and solutions of the SMuG research group are
intended to fuel future standards.

The micro-protocol [23, 24] design methodology is useful when constructing systems with dynamic
protocol stacks. Using micro-protocols, a system designer may decompose system facilities into their atomic
components.Composite protocolsare constructed from a collection of the smaller micro-protocols. Hence,
differing facilities and guarantees may be provided through composition. In [24], the authors define a suite
of micro-protocols used for maintaining group membership views in distributed systems.

3 A Taxonomy of Group Security Policies

Applications, depending on the perceived risks and performance requirements, require different levels of
security. In Antigone, requirements for security are met through the specification, distribution, and enforce-
ment of a session specific group policies. In this section, we outline several dimensions along which a
group policy may be defined. However, as needed by new applications and environments, additional policy
dimensions may be added to Antigone with minimal effect on its design.

We focus this discussion on those dimensions deemed essential for secure multi-party communication.
The dimensions we have identified as essential for group applications and environments include:session
rekeying policy, data security policy, membership awareness policy, process failure policy, andaccess con-
trol policy. A session rekeying policy defines a set of events after which the session security context is
required to be changed (i.e. group rekey). A data security policy defines the security guarantees applied to
application messages. A membership policy dictates the availability and accuracy guarantees of member-
ship information. A process failure policy defines the type of failures detected by the system, and where
available, the means of recovery. An access control policy states the rights (and potentially the responsibil-
ities) of the group members. The remainder of this section describes the nature and implications of these
policy dimensions.

3.1 Session Rekeying Policy

A popular approach used to implement secure groups among trusted members is the distribution and sub-
sequent maintenance of shared symmetric session keys. An important issue in the use of these keys is
determining when a session must be rekeyed, i.e., the old session key is discarded and a new session key is
sent to all members. The session rekeying policy states the desired properties of the rekeying process. These
properties indicate the lifetime and acceptable exposure of the session keys to past and future members of
the group, and represent threats from which the group is required to be resistant. Four important rekeying
properties are:

� session key independence- This property requires that possession of a session key does not give any
meaningful information about past or future session keys.

� membership forward secrecy- This property states that a member leaving the group cannot obtain
meaningful information about future group communication. This requires that possession of a ses-
sion key does not give any meaningful information about future session keys (calledperfect forward
secrecy), and that session keys are replaced after each member leaves the group.

� membership backward secrecy- This property states that a member joining the group cannot obtain
meaningful information about past group communication. This requires that possession of a session
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key does not give any meaningful information about past session keys (calledperfect backward secre-
cy), and that session keys are replaced after each member joins the group.

� limited-lifetime - This property states that a session key has a maximum lifetime (which may be
measured in time, bytes transmitted, or some other globally measurable metric). Thus, a session
key with a limited-lifetime is required to be discarded (and the session rekeyed) when its lifetime is
reached.

Rekeying properties may be combined in different ways to precisely define the desired group security.
For example, a group may wish to enforce a policy with both membership forward secrecy and limited-
lifetime. Thus, the group would be protected from future members, and each session key would have
some maximum lifetime. The combination of these two properties identifies a particular threat model for
the group. Thus, as user environments evolve, their associated threat models may be addressed through
combinations of rekeying properties.

Session key independence is a prerequisite for both membership forward and backward secrecy. If the
process over which a key is derived is not independent, then a member may surreptitiously obtain past
and future session keys. Throughout, unless otherwise specified, we will assume rekeying is session key
independent.

A close relationship exists between session rekeying and group membership. Applications often need
protection from members not in the currentview. Therefore, as determined by the group threat model,
changes in membership may require the session to be rekeyed. If rekeying is not performed after each
change in membership, the view does reflect a secure group, but indicates only the set of members that are
participating in the session. Past members may retain the session key and continue to receive content. Future
members may record and later decode current and past content. In applications that need protection from
past or future members, rekeying after membership events is necessary.

We say that a group security policy issensitiveto an event if the group changes the security context
in response to the observation of the event. Typically, the security context is changed by distributing a
new session key (rekeying). A group security policy is often sensitive togroup membership events. Group
membership events include; (1)JOIN event, which is triggered when a member is allowed to join the
group; (2)LEAVEevents, which is triggered when a member leaves the group; (3)PROCESS FAILURE
events, when a member is assumed to have failed in some manner; and (4)MEMBER EJECTevents, when
a previously admitted member is purged from the group according to some group policy. A policy is called
time-sensitive if it rekeys after a specified time interval has passed since the last session rekey.

The sensitivity of a policy to group membership events directly defines the group threat model. For
example, consider a group model that is sensitive only toMEMBER EJECTevents. Because the session is
always rekeyed after an ejection, no ejected member can access current session keys. Thus, an application
is assured that no ejected member will have access to the current session content. However, the session is
not protected from members that have left voluntarily, are assumed to have failed, or join in the future. This
policy defines theejection secrecyrekeying property.

Sensitivity mechanisms can be used to build a large number of session rekeying policies. In the following
text, we define and illustrate four general purpose policies that are representative of the kinds of secure
groups found in existing systems.

3.1.1 Time-sensitive Rekeying Policy

Independent of membership events, groups implementing a time-sensitive policy periodically rekey based on
a maximum session key lifetime. The group limits the exposure of the session to cryptanalysis by using the
key only for a limited period. Groups implementing a time-sensitive rekeying policy measure key lifetimes
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by wall-clock time. Other kinds of limited-lifetime rekeying operate essentially in the same way, save the
means by which the lifetime is calculated. For example, a system supporting limited-lifetimes based on
bytes transmitted would rekey when a threshold of data has been transmitted under a particular session key.
The GKMP [13, 25] protocol implements a time-sensitive rekeying policy.

By periodically rekeying, the group may be protected from an adversary who wishes to block the delivery
of new session keys. An adversary who blocks rekeying messages may intend for the group to continue to
use an old session key. With a time-sensitive rekeying policy, if a new key is not successfully established
after the current session key expires, group members can choose to no longer communicate rather than use a
session key with an expired lifetime. Independent of other factors, almost all existing systems provide some
form of limited-lifetime rekeying.

An example on-line subscription service illustrates the use of time-sensitive rekeying. In this service,
paying members are periodically sent a session key that is valid until the next subscription interval. Because
knowledge of a session key is predicated only on member subscriptions, there is no need to support sensi-
tivity to membership events. Members may join or leave the group without loss of security; they have the
right to all content for which they have paid.

Typically, systems implementing limited-lifetime rekeying (only) useKey Encrypting Keys(KEK) [13]
to reduce the costs of rekeying. Rekeying via KEKs is not session key independent. Thus, because the KEK
provides access to all session keys and content, the group is not protected from past or future members. Note
that systems that use KEKs cannot forcibly eject members without additional infrastructure.

Another promising approach is to use KEKs only where no relevant membership events have occurred
since the last rekey. In this way, a group is able to achieve the performance of KEKs when no loss of security
results, and the strength afforded of other rekeying approaches elsewhere. Key hierarchies [11, 12] use a
similar approach to reduce the costs associated with group rekeying.

3.1.2 Leave-Sensitive Rekeying Policy

Groups implementing a leave-sensitive policy rekey afterLEAVE, PROCESS FAILURE, andMEMBER E-
JECT events. The threat model implied by leave-sensitive groups states that any member who has left the
group will not have access to current or future content. For example, a business conferencing system that
supports negotiations between a company’s representatives and a supplier may benefit from leave-sensitive
rekeying. Once the supplier leaves, a leave-sensitive rekey policy would prevent subsequent discussions
from being available to the supplier, even if the supplier is able to intercept all the messages. Leave-sensitive
policies achieve membership forward secrecy. The Iolus [10] implements a form of leave-sensitive rekeying.

A consideration of groups implementing leave-sensitive policies is the requirement for liveness. Unless
each group member periodically asserts their presence in the group, process failures cannot be detected. In
large or highly dynamic groups, the cost of these assertions may be prohibitive.

3.1.3 Join-sensitive Rekeying Policy

Groups implementing a join-sensitive policy rekey only afterJOIN events. The threat model implied by
join-sensitive groups states that any member joining the group should be unable to access past content.
Join-sensitive policies achieve membership backward secrecy.

In large or highly dynamic groups, the cost of rekeying after each join can be prohibitive. For example,
in network broadcasts the number of receivers is often large, and little control over member arrival and de-
parture can be asserted. However, the threat models associated with join sensitivity are not commonly found
in applications such as broadcasting. Several techniques may be used to mitigate the costs of implementing
join sensitivity (e.g., batched joins, minimum session key lifetimes). In practice, a join-sensitive rekeying
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policy is likely to be used in conjunction with a time-sensitive or leave-sensitive policy to limit the duration
over which past members can access current session content.

3.1.4 Membership-sensitive Rekeying Policy

Groups implementing a membership-sensitive policy rekey after every membership event. The threat model
implied by membership-sensitive groups states that joining members will not have access to past content,
and that past members will not have access to current or future content. Thus, this policy is the combina-
tion of leave-sensitive and join-sensitive rekeying. Membership-sensitive policies achieve both membership
backward and forward secrecy.

Because each membership event triggers rekeying, the group view defines exactly those members who
have access to current content. Membership-sensitive policies are often among the most expensive to im-
plement. Thus, these policies are typically avoided unless strictly needed by an application.

Applications with comprehensive security requirements often need membership sensitivity. For ex-
ample, in reliable group communication systems, ensuring the security of message delivery (e.g., atomicity,
reliability) requires tight control over the group. The RAMPART [9] system provides a type of membership-
sensitive service.

3.1.5 Other Rekeying Policies

It often desirable for other (application level) events to influence rekeying. For example, in a business con-
ferencing application, a policy may state that rekeying occur only when a member with the roleSupplier
leaves. In providing policies that integrate application semantic with rekeying, the group can achieve exactly
the desired behavior at a minimal cost.

It may be important for the group to be more sensitive at certain times, but less at others. Similarly,
groups may wish sensitivity to be a function of group size or resource availability. In this way, a group can
adapt to the capabilities of the available infrastructure.

The number of factors that can contribute to rekeying policies is unbounded. As new application or
environmental constraints emerge, new rekeying policies can be defined. Thus, as is available in Antigone,
it is advantageous to allow developer defined events to affect when and how the group is rekeyed.

3.2 Data Security Policy

The canonical policy, a data security policy states the security guarantees applied to application messages.
The most common types of data security are:integrity, confidentiality, group authenticity, andsender au-
thenticity. These policies are essential for protecting the application content, and define in large part the
quality of security afforded by the group.

Confidentiality guarantees that no member outside the group may gain access to session content. Al-
though typically implemented through encryption under the session key, other techniques may be used to
limit content exposure. For example, confidentiality may be achieved though the use steganography, or
through encryption of only critical portions of messages.

Integrity guarantees that any modification of a message is detectable by receivers. As they are funda-
mentally insecure, one cannot trust underlying reliable communication (point to point TCP [26], reliable
group communication [27]) to guarantee integrity. Sequence numbers, checksums, and other components
of these protocols can be trivially altered by adversaries to manipulate message content. The use of session
keyed message authentication codes (MAC) [28] is an inexpensive way to achieve message integrity.

Group authenticity guarantees that a received message was transmitted by some member of the group,
and is typically a byproduct of other data security policies. In many cases, proof of the knowledge of
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the session key (as achieved through most confidentiality and integrity guarantees) is sufficient to establish
group authenticity.

Sender authenticity (also known as source authentication) guarantees the sender of a message can be
uniquely identified. Achieving sender authenticity is expensive using known techniques (e.g., off-line sig-
natures [29], stream signatures [30]). Thus, for high throughput groups, sender authenticity is often avoided.

One may consider a number of other useful data security policies. For example, some systems may
require non-repudability. A non-repudability policy guarantees that the sender of a message cannot later
deny transmission. Another potential policy is anonymity, in which the sender of a message specifically
cannot be identified. There are several ongoing works investigating these and other policies.

Closely related to data security policies, acipher-suitepolicy is one or more cryptographic algorithms
used to enforce specified policies. As encryption algorithms have varying availability and characteristics,
a cipher suite policy should support the specification of acceptable algorithms, parameters, and modes.
A cipher suite policy is relevant not only to data security policies, but to any policy using cryptographic
techniques. Thus, it is important to understand the strengths and weaknesses of each algorithm with respect
to the policy for which it is used.

Note that a single policy need not apply to every message. In many applications, individual messages
have unique data security requirements, depending on the nature of the message and the assumed threat
model. Thus, is is useful to provide facilities for the per-message specification of data security policies.

3.3 Membership Policy

Identification of the group membership is an important requirement for a large class of applications. For
example, many reliable group communication systems need accurate membership information for correct
operation. Conversely, as seen in typical multicast applications, members of other systems need not be aware
of group membership at all. In this second environment, providing other services (such as reliability and
fault-tolerance) is commonly left to the application. Because each relevant change in membership requires
the distribution of new group views, guaranteeing the correctness and availability of membership views can
be costly.

A membership policy states the availability and accuracy requirements of view distribution. Views need
only be as accurate as required by an application. Thus, it is useful to provide a range of membership
guarantees with associated costs. Several useful membership policies include:

� best-effort membership- In this policy, membership data will be delivered as available and convenient.
No guarantees about the accuracy or timeliness of this information are provided. However, it is
expected that due-diligence is expended in providing accurate views.

� positive membership- This policy guarantees that all members in the view are participating in the
group. Thus, within some known time bounds, each member in the view is guaranteed to have not
exited the group, failed, or been ejected. This policy is useful in applications that need to determine
exactly who is participating in a session.

� negative membership- This policy guarantees that every member who has access to the session key is
listed in the view. This policy is useful in applications that need to ensure that particular entities are
not present.

� perfect membership- This policy guarantees that all members in the view are participating in the
group, and that every member who has access to the session key is listed in the group view. That is,
both positive and negative membership is provided.
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Confidentiality of group membership is a requirement of some applications. However, concealing mem-
bership from members and non-members is difficult in current networks. This is primarily due to ability
of adversaries to monitor messages on the network. These messages expose the source and destination of
packets (in the case of unicasts) and at the multicast tree (in the case of IP multicasts). In mounting this
traffic analysis attack, an adversary may deduce a close approximation of group membership.

3.4 Process Failure Policy

A process failure policy states the set of failures to be detected, the security required by the failure detection
process, and the means and security of recovery. The defining characteristic of a failure detection mechanism
is its fault model. The fault model defines the types of behavior exhibited by a faulty process that the
mechanism will detect. Typical crash models include fail-stop, message omissions, or timing errors [31]. In
the strongest (Byzantine failure) model, a faulty process may exhibit any behavior whatsoever.

Often, the failure detection process itself is required to be secure. In securing the failure detection,
the group is protected from the masking of process failures by adversaries. However, protecting the group
from an adversary who attempts to generate false failures may be more difficult. Failures may be forced
by blocking all communication between the group participants. Thisdenial of service attackis difficult to
address solely in software.

3.5 Access Control Policy

An access control policy states which participants may perform actions or access information. These indi-
vidual capabilities, calledrights, provide a road-map for the group operation. The definition of participant
identities, the enumeration of rights, and the mapping of identities to rights are the core components of an
access control policy.

A key component of access control is the means by which group members are authenticated. Members
are often authenticated at or before joining a group using public key certificates (e.g., PGP [32]), or through
the use of centralized authentication servers (e.g., Kerberos [33]). In other applications, such as pay-per-
view broadcasts, group members can establish rights through credentials obtained from application specific
subscriptions [34]. In many cases, the true identity of the member need not be known (e.g., anonymous
groups).

Access control models typically are gleaned from the organization of the participants in the target appli-
cation domains or underlying communication infrastructure. In [14], rights are assigned to each member as
needed to carry out the duties of a particularrole. For example, a member who is assumes theMember role
is assigned the right to access the session key.

4 Antigone Architecture

In this section, we present the design of the Antigone framework and they ways in it is used to implement
secure groups. Described in Fig. 1, the Antigone architecture consists of three software layers; the broadcast
transport layer, the mechanism layer, and the policy layer.

The broadcast transport layer defines a single abstraction for unreliable group communication. Due
to a number of economic and technological issues, multicast is not yet globally available. Where needed,
Antigone emulates multicast groups using the available network resources. The broadcast transport layer is
described in detail in Section 4.4.

The mechanism layer provides a set of mechanisms used to implement security policies. Each mecha-
nism represents a set of basic features required for secure groups. Policies are flexibly defined and imple-
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Figure 1: Antigone consists of three middleware layers; the broadcast transport layer, the mechanism layer,
and the policy layer. The broadcast transport layer provides a single group communication abstraction
supporting varying network environments. The mechanism layer provides a set of micro-protocols and
software services used to implement secure groups. The policy layer implements a suite of general purpose
policies.

mented through the composition and configuration of mechanisms. We describe the design and operation of
the Antigone mechanisms and associated micro-protocols in Section 4.2.

The policy layer provides a suite of general purpose policies. These available policies represent those
commonly needed in secure group communication systems. Clearly, there are some policies beyond what
is available in this layer. Where required, an application may implement policies through direct integration
with the broadcast transport and mechanisms layers. An overview of the policies supported by Antigone is
presented in Section 4.1, and details of the operation of policy layer is described in Section 4.3.

4.1 Supported Policies

In this section we briefly describe the policies supported by the Antigone policy layer. We detail the way
these policies are represented, distributed, and supported in section 4.3.

Antigone assumes that all group members are trusted, i.e., members do not attempt to circumvent the
security of the system. We note that in some environments, this assumption may not be warranted. For
example, the RAMPART [9] system assumes that a subset of the group membership may be malicious.
There are known techniques addressing these scenarios (e.g., secure majority voting). As protection of the
group from malicious members requires solutions with significant design complexity and performance costs,
we chose not to address these threats in the initial version of Antigone. However, as described in Section 4,
additional infrastructure addressing these threats may be easily integrated into Antigone. We assume that
in mounting an attack, non-members (adversaries) may attempt to intercept messages, modify messages, or
prevent messages from being delivered.

All rekeying in Antigone is session key independent. Thus, we provide a stronger guarantee than time-
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sensitive groups that use KEKs; a member who has left the group may continue to access the group content
only until the next rekey. A past member cannot access current or future group content without again joining
as a member. However, to take advantage of its performance, we may choose to implement KEKs into future
versions of Antigone. Antigone supports the rekeying policies defined by their sensitivity to membership
events and key lifetimes described in Section 3.1.

The data security policies supported by Antigone include confidentiality, integrity, and sender authen-
ticity. Specified in the group policy, one or more of these properties are guaranteed for application level
messages.

We note that membership policies are strongly tied to the rekeying process. Based on membership and
rekeying policies, the same events that trigger rekeying can also require distribution of a new group views.
Antigone currently provides mechanisms to distribute keys with and without membership information. Thus,
when membership information is distributed, the accuracy and timeliness of group views is strictly deter-
mined by the rekeying policy. For example, limited-lifetime rekeying provides best-effort membership, and
membership-sensitive rekeying provides perfect membership.

Antigone supports detection of fail-stop faults of group members. To prevent problems due to timing
errors, synchronized clocks and timestamps are not used in the Antigone protocols. However, some mecha-
nisms for failure detection and time-sensitive rekeying rely on timeouts at individual processes. A process
whose clock progresses at an incorrect rate may take longer to detect failures (if its clock progresses too
slow) or may mistakenly assume that there is a failure (if its clock progresses too fast and thus times out).

Antigone implements a simple access control infrastructure. We define one access control right; the
ability to gain access to the group. Group access is controlled through an Access Control List (ACL) stored
at the group leader (see Section 4.2). Once a member has gained access to the session key, they may freely
transmit and receive messages from the group.

4.2 Security Mechanisms

Policy in Antigone is implemented through the composition and configuration of software modules called
mechanisms. Each Antigone mechanism consists of a set of behaviors and associated micro-protocols de-
signed to perform some service required by secure groups. The mechanisms layer defines six mechanisms;
authentication, member join, session key and group membership distribution, application messaging, fail-
ure detection, and member leave. The micro-protocols associated with these mechanisms are presented in
Fig. 2.

All communication between policy-implementing software and mechanisms is through Antigone-specific
events. Possibly in response to the observation of an external event (e.g., message arrival, member join), the
mechanisms layer generates and delivers mechanism events to the policy layer. Where required, the policy
layer directs mechanism operation through the generation and delivery of policy events.

Policy events are also used to direct mechanism composition. Composition and configuration events
are generated by the policy layer in response to the arrival or creation of a group policy. Mechanisms
receiving these events initialize the appropriate services and internal state variables. A map of subsequent
mechanism behavior is derived from data included in the event. For example, theANTI SET POLICY2

event is triggered when the group policy has been established at a group member. The current failure
detection mechanism creates a number of detection timers upon reception of this event. Data included with
the event indicate the parameters with which the mechanism is to operate (e.g., timer values).

Before describing the operation of each mechanism, we define the Antigone group model, notation, and
use of cryptography. Fig. 3 shows the principals in an Antigone logical group. A distinct member of the

2Named events containing the prefixANTI indicate that they are specific to Antigone. The use of the prefix anti- in this context
does not imply negation.
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Authenticate
1. A! SL : A;G; I0 (authentication request)
2. SL! TTP : SL;A; I1 (pair key request)
3. TTP ! SL : f[�SL;A = fAgKSL

� fSLgKA
]; I1gKSL

(pair key response)
4a.SL! A : SL;A; fg;A; I0; I2; [policy block]; PuGg�SL;A (authentication response)
4b. SL! A : SL;A;G; I0;H(SL;A;G; I0)g�SL;A (authentication reject)

Join
5. A! SL : A; fA; I2g�SL;A (join request)

Rekey/Group Membership
6a.SL! A : g; SSL; (A; fg; SKgg�SL;A); fH(g; SSL; (A; fg; SKgg�SL;A))gSKg

(key distribution)

6b. SL! A : g; SSL; (A; fg; SKgg�SL;A); B;C;D:::;
fH(g; SSL; (A; fg; SKgg�SL;A); B;C;D; :::)gSKg

(key/group membership distribution)

6c. SL! group : g + 1; SSL; (A; fg + 1; SKg+1g�SL;A); (B; fg + 1; SKg+1g�SL;B ); : : : ;
fH(g; SSL; (A; fg + 1; SKg+1g�SL;A); : : :)gSKg+1

(session rekey)

Application Messaging
7a.A! group : g;A; [msg]; fH(g;A;msg)gSKg (with integrity)
7b. A! group : g; fA; [msg]gSKg (with confidentiality)
7c. A! group : g; fA; [msg]gSKg ; fH(g; fA; [msg]gSKg )gSKg (with integrity and confidentiality)
7d.A! group : g;A; [msg]; fH(g;A;msg)gCA (with sender authenticity)

Failure Detection
8. A! SL : SiA; Æ

k�i; g; A; S0A; Æ
k; fH(g;A; S0A; Æ

k)g�SL;A (member heartbeat)
9. SL! group : SiSL; Æ

k�i; g; SL; S0SL; Æ
k; fH(g; SL; S0SL; Æ

k)gPrG (session leader heartbeat)
10.A! SL : g;A (key retransmit request)

Leave
11.A! SL : A; fg;A; SA; fg;BgSKg

g�SL;A (leave request)

Figure 2: Antigone Micro-Protocol Description - micro-protocols for the various operating modes. Acom-
posite protocolis constructed from the selection of a subset of these modes. In implementing some group
policies, a subset of these micro-protocols are omitted entirely.

group, called thesession leader(SL), is the arbiter of group operations such as group joins, leaves, etc. We
chose an arbitrated group because of its low cost and its appropriateness for existing multicast applications.
For example, in a secure pay-per-view video application, a broadcaster would provide a session leader
that enforces the desired access control and key distribution policies. As needed, additional mechanisms
implementing peer groups3 can be introduced.

External to the group, thetrusted third party(TTP) is a service used by the session leader to authenticate
potential group members. Each potential memberA of a group (including the session leader) has a shared

3A peer groupis a group in which there is no unique session leader. In these groups, a subset of the membershipcontributeto
the process in which consensus of shared group state (e.g., session keys, membership) is achieved. Typically, the costs associated
with algorithms achieving consensus in peer groups are significantly higher than those in arbitrated groups. The RAMPART system
[9] implements a highly secure peer group.

13



...

Member 1

Member 2

Member 3

Member n

Trusted
Third Party

LAN/WAN

Session
Leader

Figure 3: An Antigone group consists of an arbiter called thesession leaderand a set of group members. Ex-
ternal to the group, thetrusted third partyis used to authenticate potential group members. No assumptions
are made about the network topology or connectivity.

secretKA registered with the TTP. This secret key is generated and registered with theTTPbefore the party
attempts to join any session. We assume an out of band method for registering these keys.

It is assumed that all potential group members know the identity of the session leader and TTP prior
to joining a session. The process whereby the existence, identities, and initial parameters of each session
are discovered is outside the scope of Antigone. However, there are a number or known approaches and
software for the session advertisement (e.g., SDR [35, 36]).

In our protocol descriptions, we use the termSL to refer to the identity of the session leader,A to refer
to a current or potential member of the session, andTTP to refer to the trusted third party.fXgk denotes a
messageX encrypted under the keyk. The view identifier,g, is used to uniquely tag the changing views of
group membership. The termSKg refers to a session key in viewg, andSKg+1 for the (next) viewg + 1.
The termI, possibly with a subscript, denotes a nonce value. Key distribution protocols based on Leighton-
Micali key distribution [37] define a term�A;B, called apair key, used to support secure communication
between collaborating membersA and B. Derived from the pair key, the session leader and a potential
memberA maintain a shared secret key�SL;A. A cryptographic hash for the textx is denotedH(x). The
MD5 hash algorithm [38] is used in the current implementation. However, MD5 can easily be replaced with
any suitably strong hash function.

The format of the identity, nonce, key, and view identifier values used in our current protocol imple-
mentation are as follows. Each identity is a unique 16 byte null terminated ASCII string of alphanumeric
characters. A potential member is assigned this value when registering a long term key with theTTP. Nonce
values are unique 64 bit values. To ensure that nonces are not reused, some source of monotonic values,
such as the system clock, may be used. Key format is algorithm dependent. The DES standard used for sym-
metric encryption throughout is defined for an eight byte key (including eight parity bits). A view identifier
g is the concatenation of a group identifier and nonce value. The group identifierG is an eight byte, null
terminated name string that uniquely identifies the session. The nonce is an eight byte nonce value. A new
view identifier (g + 1) is created through the concatenation of the group identifier with a freshly generated
nonce.

A policy block is distributed by the session leader to each group member during the authentication
process (message4a in Fig. 2). Defined by policy-implementing software, the policy block is an arbitrary
byte string stating the group policy. We describe the definition and use of this data by the policy layer in
Section 4.3.

Associated with each memberA is a sequence number,SA (SSL for the session leader). Sequence num-
bers are initially set to 0, and reset following each session rekey. Heartbeat messages are used by Antigone
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to detect failed links and processes. The heartbeat messages contain the member’s sequence number and a
one-time password (Æ). The sequence number is incremented by 1 for each subsequent heartbeat message.
We describe the use of heartbeats by the failure detection mechanism in Section 4.2.5.

A session leader creates anasymmetric key pair(PuG, PrG) for each session during initialization. The
public key exponent (PuG) is given to potential members during the authentication process, and is later used
to verify the authenticity of session leader heartbeats. Where sender authenticity is required, we assume the
existence of an authenticated certificate distribution service [32, 39] that provides access to the public key
certificates of each group member (CA). Note that certificate distribution services are not required for the
generation or distribution of the session asymmetric key pair.

We use DES [40] for all encryption in the current implementation. Its inherent strength is evident from
its 20-year history, yet its 56-bit key length has long been the subject of debate. Related algorithms such
as triple-DES [41] or DESX [42] offer the strength of DES with considerably longer keys. Our protocols
are not tied to any specific property of DES, and may be replaced with other cryptographic algorithms as
necessary.

We assume that all processes that have achieved membership, and thus have been authenticated, adhere
to the system specification. We assume that no member willingfully discloses its long term or session keys.
All members trust theTTPnot to disclose their long term key, and to generate pair keys according to the
specification. The following text describes each of the Antigone mechanisms and their associated micro-
protocols. All cited message numbers refer to Fig. 2.

4.2.1 Authentication Mechanism

The authentication mechanism provides facilities for a potential group member to initiate communication
with the session leader. Using this mechanism, the session leader authenticates the potential group member
and negotiates ashared secret key. The shared secret key is later used to implement a secure channel between
the two parties.

We use the provably secure Leighton-Micali key distribution algorithm [37] to authenticate the joining
process and negotiate the shared secret. The central advantage of the Leighton-Micali algorithm is its low
cost; it uses symmetric key encryption throughout, with none of the modular exponentiation operations
associated with public key cryptosystems. Traditional public key cryptography requires significantly more
computation than symmetric algorithms. The de-facto standard for public-key cryptography, RSA [43],
can be up to 100 times slower in software and 1000 times slower in hardware than DES, the predominant
symmetric algorithm [28]. Additionally, the lack of universally available certificate services reinforced our
decision to use symmetric cryptography.

A prospective member initiates the authentication process by sending message 1 to the session leader
containing her identity (A), the session identifier (G), and a nonce value (I0). Upon reception of this
message, the session leader asks the policy-implementing software (policy layer) ifA should be allowed
access to the sessionG (see Section 4.3). If access is denied, the requested is rejected via message 4b.A
notifies the application of the rejection upon reception of message 4b.

If A is to be allowed access toG, the session leader obtains a member specific pair key�SL;A from the
TTP (messages 2 and 3). Derived from two identities and their associated long term keys, the pair key is
used to establish an ephemeral secure channel between the processes. To prevent replay attacks, the session
leader verifies the encrypted nonce valueI1 included in theTTP’s response. The session leader computes
the shared secret key as follows. The session leader generates the valuefAgKSL

. This value is XOR-ed with
the pair key�SL;A received from theTTP. The resulting value is the shared secret key (fSLgKA

= �SL;A)
is known only by session leader and the prospective memberA. A need not communicate with theTTP to
obtain the shared secret keyfSLgKA

= �SL;A; she can compute it directly.
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After obtaining the shared secret key, the session leader responds with an authentication response mes-
sage (4a). The response contains the identities of the session leader and the potential group member, and
a block encrypted with the shared secret key�SL;A. The encrypted block contains the view (g) and group
member (A) identifiers, the group member nonce (I0), a session leader nonce (I2), the policy block, and the
group public key (PuG). Upon receiving this message,A decrypts the contents using�SL;A and verifies the
nonceI0. If the nonce is correct, she knows the response is both fresh (through validation of the nonce) and
authentic (from the use of shared secret key).

4.2.2 Join Mechanism

The join mechanism provides facilities for a previously authenticated process to gain access to the group.
A potential member initiates the join process by transmitting message 5 containing her identity (A) and the
session leader nonce (I2) encrypted under the secret key shared bySL andA. A uses knowledge ofI2 to
prove the completion of the authentication process.

Upon reception of message 5, the session leader validates the nonce value (I2). If the nonce is not valid,
the join request is ignored and the group continues. If the nonce is valid, the new member is accepted into
the group. The means by which the group member is accepted into the group (i.e. the session key and
group view are updated and potentially distributed) is determined by the configuration of the Rekey/Group
Membership mechanism (see below).

Mutual authentication is achieved through the verification of the secretsA andSLshare with theTTP.
The potential member must be in possession of the secret shared with theTTP to obtain the session leader
nonceI2. A is convinced that message 4a is fresh and authentic by validating the encrypted nonce valueI0
sent in the original authentication request (message 1).

4.2.3 Rekey/Group Membership Mechanism

The Rekey/Group Membership mechanism provides facilities for the distribution of group membership
viewsand session keys. We note the distinction betweensession rekeyingand session key distribution.
In session rekeying, a new session key is created and distributed to all group members. In session key dis-
tribution, the current session key is distributed to newly joined or current group members. The decision to
rekey or distribute an existing session key is dependent on the group rekeying policy. As such, the policy
layer directs all keying and group membership operations (see Section 4.3).

Each key distribution message (6a, 6b, and 6c) contains a group identifier (g), the latest session leader
sequence number (SSL), and aMessage Authentication Code(MAC) calculated over the entire message
(H(: : :)SKg orH(: : :)SKg+1). The group identifier and sequence number identify the current group context.
The MAC ensures integrity of the message.

Session keys are distributed viasession key blocks(A; fg; SKgg�SL;A). The intended member of each
block is identified by the group member identifier (A), and the remainder of the block is encrypted using
the secret key shared withA, �SL;A. If, after decryption, the group identifier matches the identifier in the
message header, the member is assured that the block was created by the session leader. If the MAC is valid,
the member is assured that the message was not modified in transit. Thus, if both are valid, the member can
accept the new session key, group identifier, and view as correct and authentic.

Messages 6a and 6b are used for the distribution of current session keys. Message 6a contains a session
key block for one member. Message 6b contains a session key block for one member and enumerates the
current group view (B;C;D; : : :). Message 6c is used to rekey the session and contains a session key block
for each member. The group view is extracted from 6c from the unencrypted portions of the individual
session key blocks.
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Rekeying in Antigone is similar to key distribution after aLEAVEoperation in the Iolus system [10].
The session leader caches the shared secret keys, so creating this message is fast: encryption of 24 bytes
(8 bytes of session key plus 16 bytes of group identifier) per member. Members receiving a 6a, 6b, or 6c
extract the session key using the shared secret key and begin using it immediately. Note that the size of this
message grows linearly with group size (O(n)), where n is the number of members in the group).

We note that key hierarchies (see Section 2) can significantly reduce rekeying costs (O(log(n))). How-
ever, protocols for these algorithms are considerably more complex than that defined for the current Antigone
rekeying mechanism. In the interest of reducing initial development effort, we deferred the investigation of
key hierarchies to future work. We are in the initial stages of implementing a key hierarchy based rekeying
mechanism, and plan to introduce it in the next version of Antigone.

4.2.4 Application Messaging Mechanism

The application messaging mechanism provides facilities for the secure transmission of application lev-
el messages. The available security guarantees include;confidentiality, integrity, group authenticity, and
sender authenticity.

Message integrity is achieved throughMessage Authentication Codes(MAC). A MAC is generated by
encrypting a hash of the message under the session key. A receiver determines the validity of a MAC by
decrypting and verifying the hash value. If the hash is correct, the receiver is assured that message has not
been modified in transit. Confidentiality is achieved through the encryption of the message under the session
key. Group authenticity is a byproduct of either confidentiality or integrity.

Sender authenticity is achieved by digital signature [44]. The signature is generated using the private
key exponent associated with the sender’s certificate. Receivers obtain the sender’s certificate and verify the
signature using the associated public key. Note that a byproduct of the use of digital signatures is message
integrity.

Due to the computational costs of public key cryptography, the use of per-message digital signatures to
achieve sender authenticity is infeasible in high throughput groups. Several efforts have identified ways in
which these costs may be mitigated [29, 30, 45]. While the speed of these algorithms is often superior to
strictly on-line signature solutions, their bandwidth costs make them infeasible in high-throughput group-
s. Achieving efficient sender authenticity in high throughput unreliable communication is an outstanding
research issue.

Message 7a shows the format of a message with integrity only, message 7b shows confidentiality only,
and 7c shows a message with both integrity and confidentiality. Group authenticity can be achieved through
messages 7a, 7b, or 7c. Message 7d shows the format of a message with sender authenticity.

4.2.5 Failure Detection Mechanism

The failure detection mechanism provides facilities for the detection and recovery of failed processes. An
application’s threat model may require the system to tolerate attacks in which an adversary prevents delivery
of rekeying material. Thus, without proper failure detection, members who do not receive the most recent
session information will continue to transmit under a defunct session key. Additionally, the accuracy of
membership information is in part determined by the ability of the session leader to detect failed processes.
Thus, the goal of the failure detection mechanism is to determine a) which members are operating, and b)
that each process has the most recent group state (session keys and group view).

Defined in messages 8 and 9, Antigone usessecure heartbeatsto detect failed or disconnected processes.
The presence of the sequence number in the heartbeat ensures that it is fresh. The heartbeat group identifier
is used to verify that the sending process has the most recent group state.
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As directed by the policy layer, each process (including the session leader) periodically transmits heart-
beat messages. The session leader detects incorrect or failed processes through the absence of correct mem-
ber heartbeats (message 8). If a threshold of contiguous member heartbeats is not received, the member
is assumed failed and expelled from the group. Similarly, group members confirm the session leader state
and connectivity through session leader heartbeat messages (message 9). If a number of contiguous session
leader heartbeat messages is not received, the member assumes that the session leader has failed and exits
the group.

A member detecting a lost rekey, key distribution, or heartbeat message can initiate recovery by sending
a key retransmit message (message 10). The key retransmit message indicates to the session leader that
the member requires the most recent group state. The session leader sends a recent key/group membership
distribution message (6a, 6b, or 6c) in response to the key retransmit message.

Antigone uses hash chains [46] to amortize the cost of heartbeat generation over many messages4. A
hash chain is the sequence of values resulting from the repeated application of a secure hash function (f )
on some initial value. For example, given an initial valuex and chain of lengthk + 1, the hash chain is:
ff0(x) = x; f1(x); f2(x); : : : ; fk(x)g. Because, by definition, (even partial) inversion off is not feasible,
knowledge off i(x) gives no meaningful information to derivef i�1(x), for somei; 0 < i < k. By revealing
fk(x) securely, the remaining values can be used in reverse order as proof of the knowledge ofx. This is
useful as in authentication schemes (one-time passwords) because only a person who has knowledge ofx
can generate the intermediate values.

The secure heartbeats (messages 8 and 9) are generated as follows. Initially, the sending processA
generates a random valuex of length equal to the output of the hash function (e.g., MD5 has a 128 bit
output). Then, A applies hash function a member-determined number of times (k) to generate the following
hash chain:

Æ0 = x; Æ1 = f(x); Æ2 = f2(x); : : : ; Æk = fk(x)

A generates aheartbeat validation blockcontaining the group identifierg, her identityA, the first heartbeat
sequence number for which this hash is to be usedS0A, the last value in the hash chainfk(x) = Æk, and a
MAC covering these fields:

g;A; S0A; Æ
k; fH(g;A; S0A; Æ

k)g�SL;A

A heartbeat message is generated by concatenating the current sequence number (SiA = S0A + i) and the
next value in the hash chain (in reverse order,Æk�i) with the validation block. Because encryption is only
required when creating the validation block and the hash chain itself is cached, heartbeat generation is fast.
When the values of a chain are exhausted (i > k) or the session is rekeyed, the member generates a new
hash chain and the associated validation block.

Messages 8 or 9 can be validated by checking the MAC and calculating:

fS
i
A
�S0

A(Æk�i) = Æk.

If the relation holds, then the heartbeat is valid. The heartbeat is authentic because of the use of the shared
secret key (or group private key) in the validation block. The heartbeat is fresh because of the presence of
the next value in the hash chain. After receiving and validating the initial heartbeat for a hash chain, subse-
quent MAC validation can be achieved by byte comparison of a validation block of a previously validated
heartbeat. Thus, heartbeat validation is fast.

4The use of hash chains in Antigone is similar to those found in one-time password authentication systems [47, 48].
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Policy JOIN LEAVE FAILURE EJECT

Time-sensitive N N N N
Leave-sensitive N Y Y Y
Join-sensitive Y N N Y
Membership-sensitive Y Y Y Y

Table 1: Rekeying policies are defined by their sensitivity to membership events. Join-sensitive groups are
MEMBEREJECTsensitive to allow for member ejection.

It is worth noting that network congestion that causes message loss may be exacerbated by retransmit
requests. This problem, known assender implosion, is likely to limit the efficiency of Antigone in large
groups or on lossy networks. A retransmit mechanism similar to SRM [27] addressing this limitation is
planned for the next version of Antigone. This mechanism will distribute retransmission costs by allowing
any member to respond to a request. Such requests are made a random time after loss detection (the delay
is computed as a function of the measured distance from the session leader). Members observing a retrans-
mission request suppress local requests, and wait until the desired message is received or a timeout occurs.
Members receiving retransmission requests for data they have received delay the response randomly before
retransmitting (the length of the delay is a function of the distance from the requester). If it is noted that
some other member has performed the retransmission, the request is ignored. Note that this approach in no
way affects the security of Antigone, but only serves to reduce the cost of retransmission request processing.

With respect to group members, the goal of the current failure protection mechanism is the reliable
detection of a session leader’s failure, not its recovery. As needed, additional mechanisms can be introduced
in the future that implement recovery algorithms using primary backup, replication, or voting protocols to
establish a new session leader.

4.2.6 Leave Mechanism

The leave mechanism provides facilities for members to gracefully exit the group. A member sends message
11 to indicate that it is exiting the group. Because knowledge of the shared secret key is required, message
11 is unforgeable. Because the sequence number and group identifier are present and encrypted, it cannot be
replayed. Upon reception of message 11, the session leader will remove the member from the current view
and rekey the session as directed by the policy layer.

A member may also use message 11 to request the ejection of another member from the group. The
identity of the member to be ejected is placed in thefg;BgSKg block (asB). The session leader receiving
a message with this format will eject the member and rekey the session as directed by the policy layer.

4.3 Policy Specification and Enforcement

In this section, we show how policy can be implemented through the composition and configuration of
Antigone mechanisms. The policy layer allows selection from a wide range of policies roughly corre-
sponding to the taxonomy presented in Section 3. While this section illustrates the ways in which one can
implement policy, Antigone’s mechanisms and architecture are in no way restricted to those defined by the
policy layer. Applications that require custom policies can, of course, implement their own through direct
integration with the mechanisms layer.

In the policy layer, group policies are embodied by thepolicy blockdata structure. Stated by the session
leader, a session specific policy block is distributed to each group member at the time at which they are
authenticated. Subject to session leader authentication, this policy is accepted without negotiation. We note
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several ongoing works investigating policy negotiation [49, 21], but defer their analysis to future work. The
policy block contains the following six fields:

GG TheGG field is used to specify the sensitivity of the rekeying process to membership events. The poli-
cies (TIME SENS, LEAVESENS, JOIN SENS, andMEMBERSENS) correspond to the definitions
presented in Section 3.1. Table 1 describes these policies in terms of their sensitivity to membership
events.

RK TheRK field is used to specify the lifetime of session keys. Current session key lifetimes are mea-
sured by wall-clock time.

SG TheSG field is used to specify one or more security guarantees to be applied to application messages.
The available guarantees are:confidentiality, integrity, andsender authenticity. A side effect of the
selection of several of these guarantees is that application messages will have thegroup authenticity.

MM TheMM field states the group membership policy (distribution of group views). If membership
information is specified byMM , group views are distributed during every rekeying operation and
session key retransmit response.

FP TheFP states the group failure policy. The current version of Antigone supports the detection and
recovery of fail-stop failures only. If the boolean valuedFP policy states failures are to be detected,
heartbeat messages are transmitted periodically.

HB TheHB field is used to specify the periodicity of heartbeat messages, if any.

Note that, for proper operation, several policies are dependent on guarantees provided by other policies. For
example, a failure-sensitive membership policy requires the presence of failure detection. In the absence
of a failure detection policy, group views may violate the membership policy by incorrectly indicating the
presence of failed or disconnected processes. Currently, there is no enforcement of policy dependencies in
the policy layer. Users of this layer are advised to carefully consider dependencies during the creation of a
group policy.

The following text describes in detail how these group policies are implemented through the underlying
mechanisms.

4.3.1 Rekeying Policy

The rekeying policy states when the group security context is to be changed (i.e. a new session key is
distributed). Based on the rekeying sensitivity and session key lifetime indicated by the stated policy, the
policy layer initiates rekeying after the observation of each relevant event (e.g., a member join, expiration
of a session key). Described in Table 1, the group rekey policy (GG) determines after which membership
events the session leader rekeys the group. In time-sensitive groups, the session leader rekeys the group after
the expiration of the timer associated with theRK field.

RK states the maximum lifetime (in seconds) of each session key. In groups that do not desire limited-
lifetime rekeying,RK is set to0. Upon reception of a session key with a limited-lifetime, each member
resets a key lifetime timer toRK. If the timer expires before a new session key is received, the member
considers the current session key expired. The member then requests that the session leader send a new
session key or exits the group. In the normal case, the session leader will rekey a session prior to the
expiration of this timer.

Through minor modification of the existing policy layer, developers can implement a number of other
rekeying policies. For example, the session leader can rekey only when certain members join or leave the
group, or implement limited-lifetime rekeying based on bytes transmitted.
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A policy issue arises during the transition of session keys. During a rekey, application data such as
continuous media may continue to be broadcast. Because of delays in the delivery of the session key, a
member may receive a message encrypted with a session key that it does not yet or will never possess. We
present several solutions below. Note that this shortcoming is not unique to Antigone; any system without
distributed commitment is required to address key transition.

The session key transition problem is difficult to address with a single general solution. In applications
with low throughput characteristics, it may be reasonable to buffer data until the new key arrives. High
performance applications, such as video-conferencing, have much higher throughput requirements and thus
can not buffer data for long. Buffering is a reasonable solution only if the delay is likely to be short. A
second solution is to establish a waiting period during which all transmitted data is encrypted under the old
session key. Here, a newly joined member is unable to receive session content until the waiting period is
over. Similarly, during the wait period, exited, failed, and ejected members are able to continue receiving
session content. A third solution is to transmit each message under both the old and new session keys for
some (presumably short) period. In this approach, the sender encrypts a one-time per-message random key
under both the new and old session keys. The message itself is encrypted under random key. The ciphertexts
of the random key and message would then be broadcast to the group in each message. A receiver would
then reverse the process with an available session key. As in the wait period, this solution does not protect
the group from members who have exited, failed, or been ejected.

After weighing these solutions, we have chosen to drop any message for which the member does not
currently possess the key. In the average case delays will be acceptable, yielding little data loss. Recovery
from lost data is left to the application. However, after obtaining more practical experience with Antigone,
we may choose to reassess this decision.

A related problem occurs when received messages are encrypted with previous session keys (i.e. senders
have not received a new session key). The acceptance of such messages could compromise group security.
However, because of message timing in existing group applications, such situations are likely to occur in
practice. Thus, we must weigh the security of the group against packet loss. The current version of Antigone
implements a conservative solution in which all messages received with previous session keys are dropped.

4.3.2 Membership Policy

The membership policy states requirements for the secure distribution of group views. If this policy states
membership is required, views are presented during session key distribution and rekeying. Thus, the accu-
racy of the group view is guaranteed only at the time at which the group is rekeyed. Similarly, the form
of group membership guarantee is strictly determined by the rekeying policy. For example, time-sensitive
groups (with no membership sensitivity) provide a best-effort rekeying, and membership-sensitive groups
provide perfect membership.

4.3.3 Process Failure Policy

Once the underlying failure detection mechanism has been configured (as dictated by theFP andHB
policy values), the policy layer plays no further role in the processing of failures. All heartbeat messages
and retransmit requests are handled transparently by the underlying mechanisms layer. However, in the event
of an unrecoverable error (e.g., loss of group communication), the policy layer dictates the course of action.
In the current implementation, unrecoverable errors are reported to the application for user notification and
the member is disconnected from the group.

Failure protection is useful in conjunction with a range of rekeying policies. For large groups, rekeying
can be more expensive than the generation and transmission of session leader heartbeats. In such cases, the
session leader can set the heartbeat interval to be lower than the rekey interval. The lower heartbeat interval
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ensures that members do not use an old key beyond that interval. In the absence of heartbeats, the rekey
interval bounds the time over which an old key may be used.

4.3.4 Data Security Policy

The data security policy defines the set of guarantees to be applied to application level messages. It is up
to the application to make judicious use of the available guarantees, depending on application requirements.
The performance associated with the various data security policies are described in Section 5.

The current policy layer software applies the group data security policy (SG) to all application level
messages. In many contexts, it may be desirable for applications to determine those guarantees to be applied
to each message independently. As necessary, the policy layer may be modified to provide per-message data
security policies.

4.3.5 Access Control Policies

Access control in the policy layer is performed at the time at which each member is authenticated. Based on
a pre-configured access control list (ACL) at the session leader, the authentication request will be accepted
or rejected. A member who receives an acceptance will continue by joining the group in the manner defined
by the group policy. A member who is rejected is expected to refrain from further communication with the
group.

4.4 Communication Services

Multicast services have yet to become globally available. As such, dependence on multicast would likely
limit the usefulness of Antigone. Through the broadcast transport layer, Antigone implements a single group
communication abstraction supporting environments with varying network resources. Applications identify
at run time the level of multicast supported by the network infrastructure. This specification, called abroad-
cast transport mode, is subsequently used to direct the delivery of group messages. The broadcast transport
layer implements three transport modes;symmetric multicast, point-to-point, andasymmetric multicast.

The symmetric multicast mode uses multicast to deliver all messages. Applications using this mode
assume complete, bi-directional multicast connectivity between group members. In effect, there is no logical
difference between this mode and direct multicast.

The point-to-point transport mode emulates a multicast group using point-to-point communication. All
messages intended for the group are unicast to the session leader, and relayed to group members via UDP/IP
[50]. As each message is transmitted by the session leader to members independently, bandwidth costs
increase linearly with group size. In some applications, these costs may be prohibitive. For example, a
group of even modest size would have difficultly in maintaining a video transmission with reasonable frame
rates.

In [5], we describe our experiences with the deployment of theSecure Distributed Virtual Conferencing
(SDVC) application. This video-conferencing application is based on an early version of Antigone. The de-
ployed system was to securely transmit video and audio of the September 1998 Internet 2 Member Meeting
using a symmetric multicast service. The receivers (group members) were distributed at several institu-
tions across the United States. While some of the receivers were able to gain access to the video stream,
others were not. It was determined that the network could deliver multicast packets towards the receivers
(group members), but multicast traffic in the reverse direction was not consistently available (towards the
session leader). The lack of bi-directional connectivity was attributed to limitations of the reverse routing of
multicast packets. We present significant technical detail of this issue in [5].
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Figure 4: Group Membership/Session Key message generation costs - Measured and estimated costs asso-
ciated with the generation of key distribution messages in groups of varying sizes and policies.

The limited availability of bi-directional multicast on the Internet coupled with the costs of point-to-point
multicast emulation lead us to introduceasymmetric multicast. This mode allows for messages emanating
from the session leader to be multicast, and all other message to be relayed through the session leader
via unicast. Members unicast each group message directly to the session leader, and the session leader
retransmits the message to the group via multicast. Thus, we reduce the costs associated with point-to-point
group emulation to a unicast followed by a multicast.

5 Performance

This section presents results of a performance study investigating the costs associated with several important
security policies. In Antigone groups, key management and application messaging are likely to consume
the vast majority of network and computational resources. Thus, we study the costs associated with key
distribution messages under several rekeying policies, and identify the latency and throughput characteristics
of application messages under several data security policies. From this analysis, we are able to construct a
rough profile of Antigone group performance.

The experiments described in this section were performed on Intel 200MHz Pentium Pro workstations
running FreeBSD kernel version 3.0. All tests were executed on an unloaded 100 MBit Ethernet LAN.
Application messaging experiments were conducted in an environment containing a single sender and nine
receivers. Throughput is measured over 1 KB messages. Latency is measured over 10 KB messages. All
tests use standard 56 bit DES keys and 512 bit RSA key pairs for symmetric and public key cryptography,
respectively.

Fig. 4 shows the cost of group membership/session key message generation under varying policies and
sizes. Because the contents the session key distribution message 6a is independent of group membership, the
cost of generation is constant. Message 6a requires the generation of one session key distribution block and
Message Authentication Code(MAC). The costs associated with the generation of key distribution message
6b increase slightly with group size. This trend can be attributed to the increasing amount of data to be
hashed (group view). Thus, as the group membership grows, the costs associated with MAC generation
increase. The costs associated with the generation of the session rekey message 6c increase linearly with
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Policy Throughput Latency

Integrity 2577 KB/sec 5710 usec
Confidentiality 1697 KB/sec 8698 usec
Integrity and
Confidentiality

1577 KB/sec 9037 usec

Sender Authenticity (est.) 71 KB/sec 14000 usec

Table 2: Application Messaging Performance - Measured throughput and latency of messaging policies.

group size. A session key block is generated for each member, requiring a distinct cryptographic operation.
Similar to message 6b, the cost of MAC generation increases with group size. However, increases in the
cost of message generation due to MAC construction is significantly less than increases due to session key
block construction.

For comparison, we estimate the rekey message generation costs associated with a key hierarchy ap-
proach in Fig. 4. Rekeying in key hierarchies is performed by the distribution of a number of keys which
is roughly proportional to the log of the group size. Therefore, we see little increase in message cost as the
group becomes larger. This further indicates that key hierarchies can significantly improve the performance
of rekeying in large groups. The cost of rekey message processing by receivers is slightly larger in key
hierarchies (O(log n)) than in the current Antigone mechanism (O(1)).

In all these rekeying messages, the size of each message mirrors its generation costs. For a group of
sizen, the size of message 6a is80 bytes, message 6b is80 + (n � 16) bytes, 6c is40 + (40 � n) bytes,
and the estimated size of a key hierarchy based key distribution message is40 + (40 � log(n)) bytes. Thus,
the bandwidth costs of key distribution in the current Antigone protocols increase linearly with group size.
However, it is expected that these costs will be small with respect to application traffic.

Note that as the UDP protocol is used for delivery, message size will have an effect on the reliability
of key distribution. Long messages will become fragmented, increasing the probability that some fragment
is lost. In UDP, no attempt is made to retransmit lost datagrams. In these cases, Antigone is required to
fall back on its own retransmit mechanism. Additionally, in exceptionally large groups, the size of a key
distribution message may exceed the maximum datagram size. In the future, we will investigate alternative
key distribution mechanisms that address these and other limitations.

Table 2 shows the throughput and latency characteristics of several application message policies. Al-
though not surprising, our experiments show that each policy has a significant affect on message perfor-
mance; stronger policies have less throughput and greater latency. These policies, in order of increasing
cost, areINTEGRITY(message 7a),CONFIDENTIALITY(7b), INTEGRITYandCONFIDENTIALITY(7c),
andSENDERAUTHENTICITY(7d).

Currently, we have not implemented the sender authenticity application message policy, but estimate
its performance. We estimate sender authenticity by the measured cost of MAC generation. In the current
protocol, generating a MAC with sender authenticity requires a single 512 bit private-key encryption. As
these operations will likely dominate the costs of message processing, they serve as a reasonable estimate
of performance.

The performance of application policies costs mirrors the speed of the underlying cryptographic opera-
tions. We use DES [40] to achieve confidentiality, and MD5 [38] to achieve integrity. Our implementation
uses the SSLeay v0.9.0b [51]crypto library. On the test machine, we found that DES encryption (� 3:7
Mbyte/second) is about1=6 the speed of MD5 hashing (� 21 Mbyte/second). The RSA algorithm could
encrypt 71 512 bit blocks a second (� 35 Kbyte/second).
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6 The Antigone API: A Brief Example

This section illustrates the API and use of policy in Antigone through an example audio-conferencing appli-
cation. In this application, an audio conference is initiated by some user serving as the session leader. The
existence and parameters of the conference is advertised by a service external to the application (e.g., SDP
[36]). Conference participants apply for admittance to the group, and if accepted, transmit, receive, and
playback audio data. The policy under which a session operates is strictly determined by the type of confer-
ence and its participants. In the following text, we give a brief overview of the the AntigoneApplications
Programming Interface(API) by describing its use in the audio conferencing application.

Written entirely in C++, the Antigone API consists of 40 classes and over 18,000 lines of source
code. The API has been ported to Linux kernels version 1.2+, 2.0+, FreeBSD Kernel version 3.0,
and Sun OS 5.6. Support for Microsoft Windows 98 and Windows NT is planned for future version-
s of Antigone. Recent versions of the source code and related documentation can be retrieved from
http://antigone.citi.umich.edu .

Fig. 5 presents source code for a simplifiedmain() function of the audio conferencing application
described above. Illustrated in the source code, the use of Antigone within an application can be described in
four phases; the definition of group policy, group creation and initialization, the execution of the application,
and session shutdown. Note that the policy layer is used to implement this conferencing application. As
needed, other policies may be implemented through direct integration with the Mechanisms layer.

Created by the session leader and subsequently delivered to group members during authentication, the
AntiPolicy object embodies group policy. The attributes of this object define the policy parameters described
in Section 4.3 and are used by the policy layer to direct group operation. In any flexible application, the
construction of this object should be determined by application context. Thus, for flexibility, an interface for
user specification of its parameters is desirable. The example application defines policy based on command
line parameters. For brevity, we omit details of the policy object, relegating its construction to the application
specificProcessCommandLineParameters() function. Although not strictly part of the security
policy, user specification of the broadcast transport mode (btPol ), member identity (memberName), and
session address information is also required.

Instantiated by each group member, thePolicyLayer object encapsulates an Antigone session.
Group policies and session parameters are communicated to Antigone through the associated object con-
structor. All group relevant operations are performed through interfaces (object methods) defined on the
session object. Where relevant, the construction of the session objects requires a long term secret key (as
registered with the TTP) (ltsKey ), some application defined error handling information (errorCall-
Back, cbData ), the group broadcast transport mode (btMode ), and session and TTP address informa-
tion. In the case of the session leader, the group policy (antiPolicy ) is also specified.

Antigone errors are reported to an application through callback functions. An application specific call-
back object and associated data are created and passed to the session object during construction. Subsequent
errors are reported, with identifying information, through the callback function. Passed to the callback func-
tion during error processing, the callback data is used to provide additional context where the existence and
identity of an error are insufficient.

The construction of aPolicyLayer object automatically initiates communication with the group. In
the case of the session leader, the appropriate network interfaces are initialized, a session key is generated,
and group information initialized. In the case of a group members, after initializing the appropriate network
interfaces, the group member is authenticated by the session leader and joins the group. Errors are reported
through the callback interface.

ThePolicyLayer object provides interfaces similar to those available to BSD sockets [52]. Group
messages can be sent or received through the (readMessage() ) and (sendMessage() ) methods, re-
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// Functional Prototypes
void errorCallBack( void *pp, char *text );

// Main Function of Audio Conferencing Application
int main( int argc, char **argv )
{

// Get name, policies, transport mode from command line arguments
AntiPolicy antiPolicy;
char *memberName, cbData = &memberName;
unsigned long saddr, taddr, mcaddr;
short btMode, sport, tport, mcport;
ProcessCommandLineParameters( argc, argv, antiPolicy, &memberName, btMode,

sport, saddr, tport, taddr, mcport, mcaddr );

// Obtain the long term secrect registered with the TTP through
// user password dialog
SecKey ltsKey = GetKeyFromUser();

// Create the Antigone object
PolicyLayer *antiPol = NULL;
if ( issrvr )

// Create a session leader
antiPol = new PolicyLayer( ltsKey, errorCallBack, cbData, btMode,

mcaddr, mcport, sport, taddr, tport,
antiPolicy );

else
// Create the group member

antiPol = new PolicyLayer( ltsKey, errorCallBack, cbData, btMode,
mcaddr, mcport, saddr, sport );

// Loop until done with session
AntiMessage *msg = NULL;
while ( ! done )
{

// Read select for 1 second
if ( readSelectOnAntigoneSockets() != 0 )
{

// Get audio data message from Antigone, play it
antiPol->readMessage( &msg );
playbackAudioSample( msg );

}

// If audio data to transmit, xmit it
if ( msg = getNextAudioSample() != NULL )

antiPol->sendMessage( msg );
}

// Leave the current group, cleanup keys and data
antiPol->Quit();
delete antiPol;

// Return succesfully
return( 0 );

}

Figure 5: Antigone API - Themain() function for an example audio conferencing application.
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spectively. Interfaces are provided to initialize the file descriptor sets used inselect() calls. The message
handling functions of Antigone processAntiMessage objects. These objects implement flexible message
buffers by handling heap operations and bounds checking, and provide interfaces for the insertion and ex-
traction of primitive data types. Developers can avoid many of the complexities associated with buffer
management in application level protocols through the use ofAntiMessage objects.

The conferencing application defines two functions used to process audio data,playbackAudioSam-
ple() andgetNextAudioSample() . As can be expected, these functions read and write audio data to
the audio hardware. During the session, group messages encapsulating audio data are sent and received as
determined by session traffic, and processed through the audio processing functions.

While a member is actively participating in a session, the handling of events (e.g., recoverable failures,
member joins) is transparently performed by the underlying Antigone software. However, a number of
interfaces to group state are available. By accessing group membership, keying material, and policies, the
application may react to changes in group state.

When a user wishes to leave the group, theQuit() method is called. Subsequent destruction of the session
object zeros and deletes all security relevant keys and data. The application can then exit or create a new
session object as desired.

7 Using Policy

The are a myriad of factors that can contribute to an application policy. One must weigh the (sometimes
conflicting) user requirements and environmental constraints in assessing the needs of a given session. The
tradeoffs made during this assessment define the group policy, and indirectly the quality of service provided
to its participants. It may be discovered that a session’s requirements cannot be met with the available
infrastructure. Users making this discovery must either reassess their requirements, introduce additional
infrastructure, or forgo the session. Below, we indicate several factors that can affect a security policy, and
illustrate the use of policy in several session environments.

Performance is often a significant determinant of an application security policy. Each policy should be
able to achieve the needed security without violating an application’s minimal performance requirements.
As noted in Section 5, some policies are inherently expensive to provide. For example, using current so-
lutions, guaranteeing per-packet sender authenticity in high bandwidth applications (e.g., video broadcasts)
is difficult without special purpose hardware. However, as network and computer technologies advance,
performance will likely play a lesser role in determining security policy.

The semantics of an application’s content also contributes greatly to the construction of session policies.
Some security policies are clearly not appropriate for certain sessions. For example, a confidentiality policy
does not make sense in a public chat group. However, an authenticity policy is relevant independent of the
public nature of the session.

Limited availability of network and security infrastructures can restrict group policy. Some policies are
simply not achievable or are prohibitively expensive to implement in the absence of required services. If a
stated policy requires a service unavailable to some set of users, those users cannot securely participate in
the session.

Any number of other factors may contribute to application policy. For example, certain cryptographic
algorithms are prohibited from use or export by some countries. Thus, any policy applied to group (even
partially) contained in such a country must avoid policies requiring the illegal cryptography. Social factors
also may contribute to group policy. For example, an enterprise can state a minimum set of security to be
applied to all inter-office conferencing.

There is no single set of factors that contribute to application policy. Each session must define its
behaviors with an understanding of the needs and capabilities of the participants and content. Because
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Policy Session 1 Session 2 Session 3

Rekeying membership limited lifetime join
Membership yes no yes
Failure yes yes yes
Data Security confidentiality, integrity confidentiality integrity
Transport symmetric point-to-point asymmetric

Table 3: Session Policies - These policies define the operation of audio conferencing application for three
distinct sessions.

policy is a direct derivative of this understanding, there is no “one-size fits all” policy for an application.
Below, we describe the use of policy in the example audio conferencing application defined in Section 6

in three distinct session environments. Note that each policy can be implemented by Antigone without
modification of the application’s executable. An overview of the policies for these sessions are presented in
Table 3.

Session 1 Sales Conference- A sales conference gathers the sales force and customers of companyX to-
gether to discuss some subject of mutual interest. As the conference is sponsored byX, its representatives
will always be present. At any given point, there may be 0 or more customers present. Primarily, the con-
ference participants wish to protect the session from competitors, and where customer private information
is discussed, other customers.

In this conference, it is necessary to limit the exposure of the audio content to only those parties present.
Thus, the group implements a membership-sensitive rekeying policy. For similar reasons, the audio should
be protected from eavesdropping or modification by malicious parties (through confidentiality and integrity
data security policies). It is also important that accurate membership views be distributed (membership
policy), and that notification of failed or disconnected members be timely (failure protection policy).

BecauseX and its customers are likely to have significant IT resources, it is reasonable to assume that
bi-directional multicast will be available (possibly through multicast tunneling [53]). Thus, the group can
achieve near optimal throughput and low latencies through a symmetric multicast transport policy.

Session 2 Internet Telephony- Initiated by a private user on the Internet, this session allows a two or more
parties to conduct personal business. Within the session, the parties are assumed to have had some previous
contact and implicitly trust each other. The participants in these sessions typically want only to protect
content from outside parties.

As the participants know and trust each other, there is no need to protect content from past or future
members. Thus, membership-sensitive rekeying is not necessary. However, to prevent cryptanalysis of
the session key, limited-lifetime rekeying is used. The threat model implied by this session states that the
confidentiality of content is the only data security requirement. Because the parties are likely to know each
others voice, and would be able to immediately detect bad content, integrity and authenticity of content is
not required. Group membership information need not be distributed, but a failure protection policy may be
useful for detecting participant crashes or network failures.

Typically, the Internet Telephony sessions initiated by private users occur over dialup links through
Internet Service Providers (ISPs). As multicast is not widely deployed by ISPs, the group must use the
emulated multicast services implemented by a point-to-point transport policy.

Session 3 Internet Broadcast- In this session, a broadcaster wishes to publicly transmit an audio stream to
a large group of Internet users. The intended audience consists of a set of users who have established some
relationship with the broadcaster. Receivers will not send audio data, only receiving broadcast content. We
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state that, for this particular broadcast, content authenticity is the central security requirement.
The broadcaster may desire to know the identity of the listeners over the course of the broadcast, but may

not need timely membership views. Thus, the group does not provide membership information. Because
protection from past or future members is not required, the group implements a limited-lifetime rekeying
policy. Similarly, the broadcaster may not care that the parties external to the group are able to eavesdrop
content, and only wish to ensure that authentic content is delivered to all valid users. These (group) authen-
ticity and integrity requirements are met through the integrity data security policy. Because of the cost of
implementing failure detection in the potentially large group, it is not enabled.

As we found in our experiences deploying SDVC [5], establishing bi-directional multicast connectivity
to a large number of sites on the Internet is difficult. However, because of the expected group size, the
use of multicast can significantly improve session performance. Thus, the broadcaster may choose to use
asymmetric multicast. As the session leader is the only party transmitting application content, the overhead
associated with asymmetric multicasts will be negligible.

8 Conclusions

The Antigone framework presented in this paper provides flexible interfaces for the definition and imple-
mentation of a wide range of secure group policies. Antigone enabled applications implement policy through
the composition and configuration of security implementingmechanisms. Thus, Antigone does not dictate
the available policies, but provides facilities for building them.

As we have discovered, there are as many distinct policies as there are applications and environments.
We have investigated and documented the critical policy requirements of existing group based applications
and frameworks. It is from this analysis that the set of mechanisms currently defined by Antigone was
synthesized.

The Antigone mechanisms represent the set of facilities required by secure groups. These mechanisms
implement facilities for session key management, data security, membership management, failure detection
and recovery, and access control. Applications use these mechanisms to construct a feature set specific to the
session context and the assumed threat model. Each mechanism provides simple, but substantive, features
needed by various security policies. Through composition, the mechanisms can implement highly complex
group policies. However, these mechanisms are not restricted to any particular implementation. They may
be modified as needed to implement new technologies and policies easily.

We have identified an efficient approach to detect process failures in group communication. Using our
secure heartbeats, we can amortize the cost of keep-alive generation over many messages. Unlike many oth-
er approaches to failure detection in groups, no assumptions about the availability of reliable communication
or public key certificates are needed.

In investigating the security requirements of Antigone groups, we have constructed a suite of general
purpose security policies. These policies represent those that have been found useful or have been suggested
as being useful by various group communication systems. Through the selection of primitive policies,
over 96 distinct kinds of secure groups can be implemented. These policies can be further refined through
selective parameters such as time-outs, acceptable participants, etc. Antigone groups can implement the
security found in the overwhelming majority of existing secure group frameworks through the use of these
policies.

As support for multicast services on today’s networks is inconsistent, Antigone provides an abstract
interface for unreliable group communication. Using this abstraction, applications can avoid dependence
on multicast, but where available, realize its performance. In deploying multicast-based solutions, we have
found that though multicast connectivity in one direction is often possible, achieving bi-directional multicast
is more difficult. As a result, we introduce a transport mode calledasymmetric multicasting. In asymmet-
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ric multicasting, messages emanating from a single source use multicast, and all others use unicast. Thus,
the cost of emulating bi-directional multicast is one additional unicast per message. Antigone’s implemen-
tation also provides interfaces for symmetric multicast (bi-directional) and point-to-point (unicast) group
communication.

Our initial performance study indicates that as security requirements increase, so do performance costs.
This is not a surprising result, but indicates the need for infrastructures that support policies appropriate for
sessions with varying performance requirements.

Any number of factors can contribute to the selection of a security policy. Issues such as performance,
application semantics, service availability, and participant trust can affect the kinds of security appropriate
for a given session. One must weigh these factors in constructing a coherent security policy. Ultimately, the
tradeoffs between security policies cannot be made by developers alone. Often, only users of software are
able to completely articulate security requirements.
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