
QGuard: Protecting Internet Servers from Overload

Hani Jamjoom� John Reumanny

and Kang G. Shin
Department of Electrical Engineering and Computer Science,

The University of Michigan
Ann Arbor, MI 48109

fjamjoom, reumanng@eecs.umich.edu

Abstract

Current operating systems are not well-equipped to han-
dle sudden load surges that are commonly experienced
by Internet servers. This means that service providers
and customers may not be able to count on servers being
available once their content becomes very popular. Re-
cent Denial-of-Service attacks on major e-commerce sites
have capitalized on this weakness.

Remedies that were proposed to improve server be-
havior under overload require substantial changes to the
operating system or applications, which is unacceptable
to businesses that only want to use the tried and true.
This paper presentsQGuard, a much less radical solution
to providing differential QoS, protection from overload
and some DoS attacks. QGuard is an adaptive mecha-
nism that exploits rate controls for inbound traffic in or-
der to fend off overload and provide QoS differentiation
between competing traffic classes.

Our Linux-2.2.14-based QGuard prototype provides
freely configurable QoS differentiation (preferred cus-
tomer treatment and service differentiation) and effec-
tively counteracts SYN and ICMP-flood attacks. Since
QGuard is a purely network-centric mechanism, it does
not require any changes to server applications and can
be implemented as a simple add-on module for any OS.

�Hani Jamjoom is supported by the Saudi Arabian Ministry of
Higher Education

yJohn Reumann is supported by IBM’s Research Fellowship Pro-
gram

Our measurements indicate no performance degradation
on lightly loaded servers and only a small reduction of ag-
gregated server throughput (less than 2%) under overload.
Well-behaved “preferred customers” remain virtually un-
affected by server overload.

1 Introduction

Recent blackouts of major web sites, such as Yahoo, eBay,
and E*Trade, demonstrated how susceptible e-business is
to simple Denial-of-Service (DoS) attacks [9, 11]. Using
publicly available software, amateur hackers can chose
from a variety of attacks such as SYN or ping-floods to
lock out paying customers. These attacks either flood
the network pipe with traffic or pound the server with re-
quests, thus exhausting precious server resources. In both
attack scenarios, the server will appear dead to its paying
(or otherwise important) customers.

This problem has been known since the early 1980’s
[5]. Since then, various fixes have been proposed [4, 17,
23]. Nevertheless, these fixes are only an insufficient an-
swer to the challenges faced by service providers today.
What makes things more difficult today is that service
providers want to differentiate between their important
and less important clients at all times, even while draw-
ing fire from a DoS attack.

The recent DoS attacks are only one instance of poorly
managed overload scenarios. A sudden load surge, too,
can lead to a significant deterioration of service quality

(QoS) — sometimes coming close to the denial of ser-
vice. Under such circumstances, important clients’ re-
sponse time may increase drastically. More severe con-
sequences may follow if the amount of work-in-progress
causes hard OS resource limits to be violated. If such fail-
ures were not considered in the design of the service, the
service may crash, thus potentially leading to data loss.

These problems are particularly troubling for sites that
offer price-based service differentiation. Depending on
how much customers pay for the service, they have dif-
ferent QoS requirements. First of all, paying customers
want the system to remain available even when it is heav-
ily loaded. Secondly, higher-paying customers wish to see
their work requests take priority over lower-paying cus-
tomers when resources are scarce. For example, a Web
site may offer its content to paying customers as well as
free-riders. A natural response to overload is not to serve
content to the free-riders. However, this behavior cannot
be configured in current server OSs.

Although pure middleware solutions for QoS differ-
entiation [1, 14] exist, they fail when the overload oc-
curs before incoming requests are picked up and man-
aged by the middleware. Moreover, middleware solu-
tions fail when applications bypass the middleware’s con-
trol mechanisms, e.g., by using their own service-specific
communication primitives or simply by binding commu-
nication libraries statically. Therefore, much attention
has been focused on providing strong performance man-
agement mechanisms in the OS and network subsystem
[4, 6, 7, 12, 15, 19, 20, 23, 25]. However, these solutions
introduce more controls than necessary to manage QoS
differentiation and defend the server from overload.

We propose a novel combination of kernel-level
and middleware overload protection mechanisms called
QGuard. QGuard learns the server’s request-handling
capacity independently and divides this capacity among
clients and services according to administrator-specified
rules. QGuard’s differential treatment of incoming traf-
fic protects servers from overload and immunizes the
server against SYN-floods and the so-called “ping-of-
death.” This allows service providers to increase their ca-
pacities gradually as demand grows since their preferred
customers’ QoS is not at risk. Consequently, there is no
need to build up excessive over-capacities in anticipation

of transient request spikes. Furthermore, studies on the
load patterns observed on Internet servers show that over-
capacities can hardly protect servers from overload.

This paper is organized as follows. We present our de-
sign rationale in Section 2 and discuss its implementation
in Section 3. Section 4 studies QGuard’s behavior in a
number of typical server overload and attack scenarios.
Section 5 places QGugard in the context of related work.
The paper ends with concluding remarks in Section 6.

2 What is QGuard?

Internet servers suffer from overload because of the un-
controlled influx of requests from network clients. Since
these requests for service are received over the network,
controlling the rate at which network packets may enter
the server is a powerful means for server load manage-
ment. QGuard exploits the power of traffic shaping to pro-
vide overload protection and differential service for Inter-
net servers. By monitoring server load, QGuard can adapt
its traffic shaping policies without anya priori capacity
analysis or static resource reservation. This is achieved
by the cooperation of the four QGuard components:traf-
fic shaper, monitor, load-controller, andpolicy-manager
(see Figure 1).

2.1 The Traffic Shaper

QGuard relies on shaping the incoming traffic as its only
means of server control. Since QGuard promises QoS dif-
ferentiation, differential treatment must begin in the traffic
shaper, i.e., simply controlling aggregate flow rates is not
good enough.

To provide differentiation, the QGuard traffic shaper as-
sociates incoming packets with their traffic classes. Traf-
fic classes may represent specific server-side applications
(IP destinations or TCP and UDP target ports), client pop-
ulations (i.e., a set of IP addresses with a common prefix),
DiffServ bits, or a combination thereof. Traffic classes
should be defined to represent business or outsourcing
needs. For example, if one wants to control the request
rate to the HTTP service, a traffic class that aggregates

2

incoming
service requests

user-spacekernel-space

statistics

load
digestCPU

Memory
subsystem

Network
subsystem

Filesystem

load-controllermonitor

traffic shaper TCP/IP

policy-manager
daemon

service differentiation
requirements defined

by sysadmin

server apps

up-call

set of traffic policies

traffic shaping policy

Figure 1:The QGuard architecture

* -> 111.1.1.2:80 TCP, SYN

111.1.1.1:111
 TCP, SYN 111.1.1.*.* -> 111.1.1.2:80 TCP, SYN

111.1.1.1:* -> 111.1.1.2:80 UDP
.
.
.

Web preferred

Web standard

Some UDP service
incoming packet header

packet
matcher

Traffic classes

111.1.1.2:80

Figure 2: Classifying incoming traffic

all TCP-SYN packets sent to port 80 on the server should
be introduced. This notion of traffic classes is commonly
used in policy specifications for firewalls and was pro-
posed initially by Mogulet al. [18]. Figure 2 displays
a sample classification process. Once the traffic class is
defined, it may be policed.

For effective traffic management, traffic classification
and policing are combined intorules. Each rule speci-
fies whether a traffic class’ packets should be accepted or
dropped. Thus, it is possible to restrict certain IP domains
from accessing certain (or all) services on the server while
granting access to others without affecting applications
or the OS. As far as the client and servers OS’s are
concerned, certain packets simply get lost. Such all-or-
nothing scheme are used for server security (firewalls).
However, for load-control more fine-grained traffic con-
trol is necessary. Instead of tuning out a traffic source
completely, QGuard allows the administrator to limit its
packet rate. Thus, preferred clients can be allowed to

submit requests at a higher rate than non-preferred ones.
Moreover, QGuard also associates a weight representing
traffic class priority with each rule. We refer to these pri-
oritized, rate-based rules asQGuard rules. QGuard rules
accept a specific traffic class’ packets as long as their rate
does not exceed the maximal rate specified in the rule.
Otherwise, a QGuard rule will cause the incoming pack-
ets to be dropped.

QGuard rules can be combined to provide differential
QoS. For example, the maximal acceptance rate of one
traffic class can be set to twice that of another, thus deliv-
ering a higher QoS to the clients belonging to the traffic
class identified by the rule with the higher acceptance rate.
The combination of several QGuard rules — the building
block of QoS differentiation — is called aQGuard filter
(henceforth filter). They may consist of an arbitrary num-
ber of rules. Filters are the inbound equivalent of CBQ
polices [10].

3

2.2 The Monitor

Since QGuard does not assume to know the ideal shaping
rate for incoming traffic, it must monitor server load to
determine it. Online monitoring takes the place of offline
system capacity analysis.

The monitor is loaded as an independent kernel-module
to sample system statistics. At this time the administrator
may indicate the importance of different load-indicators
for the assessment of server overload. The monitoring
module itself assesses server capacity based on its obser-
vations of different load indicators. Accounting for both
the importance of all load indicators and the system ca-
pacity, the monitor computes theserver load-index. Other
kernel modules may register with the monitor to receive a
notification if the load-index falls into a certain range.

Since the monitor drives QGuard’s adaptation to over-
load, it must be executed frequently. Only frequent ex-
ecution can ensure that it will not miss any sudden load
surges. However, it is difficult to say exactly how often
it should sample the server’s load indicators because the
server is subject to many unforeseeable influences [13],
e.g., changes in server popularity or content. Therefore,
all relevant load indicators should be oversampled signif-
icantly. This requires a monitor with very low runtime
overheads. The important role of the monitor also re-
quires that it must be impossible to cause the monitor to
fail under overload. As a result of these stringent perfor-
mance requirements we decided that the logical place for
the monitor is inside the OS.

2.3 The Load-Controller

The load-controller is an independent kernel module, for
similar reasons as the monitor, that registers its overload
and underload handlers with the monitor when it is loaded
into the kernel. Once loaded, it specifies to the monitor
when it wishes to receive an overload or underload no-
tification in terms of the server load-index. Whenever it
receives a notification from the monitor it decides whether
it is time to react to the observed condition or whether it
should wait a little longer until it becomes clear whether
the overload or underload condition is persistent.

The load-controller is the core component of QGuard’s

overload management. This is due to the fact that one
does not know in advance to which incoming rate the
packets of individual traffic classes should be shaped.
Since one filter is not enough to manage server overload,
we introduce the concept of afilter-hierarchy(FH). A FH
is a set of filters ordered by filter restrictiveness (shown
in Figure 3). These filter-hierarchies can be loaded into
the load-controller on demand. Once loaded, the load-
controller will use monitoring input to determine the least
restrictive filter that avoids server overload.

The load-controller strictly enforces the filters of the
FH, and any QoS differentiation that are coded into the
FH in the form of relative traffic class rates will be im-
plemented. This means that QoS-differentiation will be
preserved in spite of the load-controllers dynamic filter
selection.

Assuming an overloaded server and properly set up FH,
i.e.,

� all filters are ordered by increasing restrictiveness,
� the least restrictive filter does not shape incoming

traffic at all,
� and the most restrictive filter drops all incoming traf-

fic,

the load-controller will eventually begin to oscillate be-
tween two adjacent filters. This is due the fact that the
rate limits specified in one filter are too restrictive and not
restrictive enough in the other.

Oscillations between filters are a natural consequence
of the load-controller’s design. However, switching be-
tween filters causes some additional OS overhead. There-
fore, it is advantageous to dampen the load-controller’s
oscillations as it reaches the point where the incoming
traffic rate matches the server’s request handling capac-
ity. Should the load-controller begin to oscillate between
filters of vastly different acceptance rates, the FH is too
coarse-grained an should be refined. This is the policy-
manager’s job. To allow the policy-manager to deal with
this problem, the load-controller keeps statistics about its
own behavior.

Another anomaly resulting from ineffective filter-
hierarchies occurs when the load-controller repeatedly
switches to the most restrictive filter. This means that no
filter of the FH can contain server load. This can either
be the result of a completely misconfigured FH or due

4

Figure 3: A sample filter-hierarchy

to an attack. Since switching to the most restrictive pol-
icy results in a loss of service for all clients, this condi-
tion should be reported immediately. For this reason the
the load-controller implements an up-call to the policy-
manager (see Figure 1). This notification is implemented
as a signal.

2.4 The Policy-Manager

The policy-manager fine-tunes filter-hierarchies based on
the effectiveness of the current FH. A FH is effective
if the load-controller is stable, i.e., the load-controller
does not cause additional traffic burstiness. If the load-
controller is stable, the policy-manager does not alter the
current FH. However, whenever the load-controller be-
comes unstable, either because system load increases be-
yond bounds or because the current FH is too coarse-
grained, the policy-manager attempts to determine the
server’s operating point from the oscillations of the load-
controller, and reconfigures the load-controller’s FH ac-
cordingly.

Since the policy-manager focuses the FH with respect
to the server’s operating point, it is the crucial component
to maximizing throughput during times of sustained over-
load. It creates a new FH with fine-granularity around
the operating point, thus reducing the impact of the load-
controller’s oscillations and adaptation operations.

The policy-manager creates filter-hierarchies in the fol-
lowing manner. The range of all possible acceptance
rates that the FH should cover — an approximate range
given by the system administrator — is quantized into
a fixed number of bins, each of which is represented
by a filter. While the initial quantization may be too
coarse to provide accurate overload protection, the policy-

manager successively zooms into smaller quantization in-
tervals around the operating point. We call the policy-
manager’s estimate of the operating point thefocal point.
By using non-linear quantization functions around this fo-
cal point, accurate, fine-grained control becomes possi-
ble. The policy-manager dynamically adjusts its estimate
of the focal point as system load or request arrival rates
change.

The policy-manager creates filter-hierarchies that are
fair in the sense of max-min fair-share resource alloca-
tion [16]. This algorithm executes in two stages. In the
first stage, it allocates the minimum bandwidth to each
rule. It then allocates the remaining bandwidth based on
a weighted fair share algorithm. This allocation scheme
has two valuable features. First, it guarantees a minimum
bandwidth allocation for each traffic class (specified by
the administrator). Second, excess bandwidth is shared
among traffic classes based on their relative importance
(also specified by the administrator). Figure 3 shows an
example FH that was created in this manner. This fig-
ure shows that the policy-manager makes two exceptions
from the max-min fair-share rule. The leftmost filter ad-
mits all incoming traffic to eliminate the penalty for the
use of traffic shaping on lightly-loaded servers. Further-
more, the rightmost filter drops all incoming traffic to al-
low the load-controller to drain residual load if too many
requests have already been accepted.

There are some situations that cannot be handled using
the outlined successive FH refinement mechanism. Such
situations often result from DoS attacks. In such cases,
the policy-manager attempts to identify ill-behaved traf-
fic classes in the hope that blocking them will end the
overload. To identify the ill-behaved traffic class, the
policy-manager first denies all incoming requests and ad-
mits traffic classes one-by-one on a probational basis (see

5

Figure 8) in order of their priority. All traffic classes that
do not trigger another overload are admitted to the server.
Other ill-behaved traffic classes are tuned out for a con-
figurable period of time (typically a very long time).

Since the policy-manager uses floating point arithmetic
and reads configurations from the user, it is implemented
as a user-space daemon. This also avoids kernel-bloating.
This is not a problem because the load controller already
ensures that the system will not get locked-up. Hence, the
policy-manager will always get a chance to run.

3 Implementation

3.1 The Traffic Shaper

Linux provides sophisticated traffic management for out-
bound traffic inside its traffic shaper modules [8]. Among
other strategies, these modules implement hierarchical
link-sharing [10]. Unfortunately, there is nothing compa-
rable for inbound traffic. The only mechanism offered by
Linux for the management of inbound traffic isIP-Chains
[21] — a firewalling module. To our advantage, the fire-
walling code is quite efficient and can be modified easily.
Furthermore, the concept of matching packet headers to
find an applicable rule for the handling of each incoming
packet is highly compatible with the notion of a QGuard
rule. The only difference between a QGuard’s and IP-
Chains’ rules is the definition of a rate for traffic shaping.
Under a rate-limit a packet is considered to be admissi-
ble only if the arrival rate of packets that match the same
header pattern is lower than the maximal arrival rate.

QGuard rules are fully compatible with conventional
firewalling policies. All firewalling policies are enforced
before the system checks QGuard rules. This means that
the system with QGuard will never admit any packets that
are to be rejected for security reasons.

Our traffic shaping implementation follows the well-
known token bucket[16] rate-control scheme. Each rule
is equipped with a counter (remaining tokens),
a per-second packetquota , and a timestamp to
record the last token replenishment time. Theremain-
ing tokens counter will never exceedV � quota

with V representing the bucket’s volume. We modified

Figure 4: A QGuard Firewall Entry

the Linux-based IP-Chains firewalling code as follows.
The matching of an incoming packet against a number
of packet header patterns for classification purposes (see
Figure 2) remains unchanged. At the same time, QGuard
looks up the traffic class’quota , timestamp , and
remaining tokens and executes the token bucket
algorithm to shape incoming traffic. For instance, it is
possible to configure the rate at which incoming TCP-
SYN packets from a specific client should be accepted.
The following command:

qgchains -A qguard --protocol TCP --syn

--destination-port --source 10.0.0.1 -j

RATE 2

allows the host10.0.0.1 to connect to the Web
server at a rate of two requests per second. The syntax of
this rule matches the syntax of Linux IP-Chains, which we
use for traffic classification. We chose packets as our unit
of control because we are ultimately interested in control-
ling the influx of requests. Usually, requests are small and,
therefore, sent in a single packet. Moreover, long-lived
streams (e.g., FTP) are served well by the packet-rate ab-
straction, too, because such sessions generally send pack-
ets of maximal size. Hence, it is relatively simple to map
byte-rates to packet-rates.

3.2 The Monitor

The Linux OS collects numerous statistics about the sys-
tem state, some of which are good indicators of overload
conditions. We have implemented a lightweight monitor-

6

ing module that links itself into the periodic timer inter-
rupt run queue and processes a subset of Linux’s statistics
(Table 1). Snapshots of the system are taken at a default
rate of 33 Hz. While taking snapshots the monitor updates
moving averages for all monitored system variables.

When loading the monitoring module into the kernel,
the superuser specifies overload and underload conditions
in terms of thresholds on the monitored variables, the
moving averages, and their rate of change. Moreover,
each monitored system variable,xi, may be given its own
weight, wi. The monitor uses overload and underload
thresholds in conjunction with the specified weights to
compute the amalgamatedserver load index— akin to
Steere’s “progress pressure” [24]. To define the server
load index formally we introduce the overload indicator
function,Ii(Xi), which operates on the values of moni-
tored variables and moving averagesXi:

Ii(Xi) =

8><
>:
1 if Xi indicates an overload condition

�1 if Xi indicates an underload condition

0 otherwise

For n monitored system variables the monitor com-

putes the server load index as
nP
i=1

Ii(Xi). Once this value

has been determined, the monitor checks whether this
value falls into a range that triggers a notification to other
modules (see Figure 5). Modules can simply register for
such notifications by registering a notification range[a; b]
and a callback function of the form

void (* callback) (int load index)

with the monitor. In particular, the load-controller — to be
described in the following section — uses this monitoring
feature to receive overload and underload notifications.

Since the server’s true capacity is not known before the
server is actually deployed, it is difficult to define over-
load and underload conditions in terms of thresholds on
the monitored variables. For instance, the highest possible
file-system access rate is unknown. If the administrator
picks an arbitrary threshold, the monitor may either fail
to report overload or indicate a constant overload. There-
fore, we implemented the system to dynamically learn the
maximal and minimal possible values for the monitored
variables, rates of change, and moving averages. Hence,
thresholds are not expressed in absolute terms but in per-
cent of each variable’s maximal value. Replacing absolute

-100

0

100

monitoring
load index

registered

call-back for load
 con

troller

f

f

f low

normal

high

current load

check
periodically

Figure 5: The monitor’s notification mechanism

values with percentage-based conditions improved the ro-
bustness of our implementation and simplified adminis-
tration significantly.

3.3 The Load-Controller

QGuard’s sensitivity to load-statistics is a crucial design
parameter. If QGuard is too sensitive, it will never set-
tle into a stable state. On the other hand, if QGuard is
too insensitive to server load, it will fail to protect it from
overload. For good control of QGuard’s sensitivity we
introduce three different control parameters:

1. The minimal sojourn time,s, is the minimal time be-
tween filter switches. Obviously, it limits the switch-
ing frequency.

2. The length of the load observation history,h, deter-
mines how many load samples are used to determine
the load average. The fraction1h is the grain of all
load-measurement. For example, a history of length
10 allows load measurements with 10% accuracy.

3. A moderator value,m, is used to dampen oscilla-
tions when the shaped incoming packet rate matches
the server’s capacity. To switch to a more restric-
tive filter, at leastm times more overloaded than un-
derloaded time intervals have to be observed. This
means that the system’s oscillations die down as the
target rate is reached, assuming stable offered load.

Small values form (3–6) serve this purpose reasonably
well. Since boths andm slow down oscillations, rela-
tively short histories (h 2 [5; 15]) can be used in deter-
mining system load. This is due to the fact that accurate
load assessment is necessary only if the server operates

7

Indicator Meaning
High paging rate Incoming requests cause high memory consumption, thus severely limiting

system performance through paging.
High disk access rate Incoming requests operate on a dataset that is too large to fit into the file cache.
Little idle time Incoming requests exhaust the CPU.
High outbound traffic Incoming requests demand too much outgoing bandwidth, thus leading to buffer

overflows and stalled server applications.
Large inbound packet backlog Requests arrive faster than they can be handled, e.g., flood-type attacks.
Rate of timeouts for TCP SYN-attack or network failure.
connection requests

Table 1: Load indicators used in the Linux implementation

close to its operating point. Otherwise, overload and un-
derload are obvious even when using less accurate load
measurements. Since the moderator stretches out the av-
eraging interval as the system stabilizes, measurement ac-
curacy is improved implicitly. Thus, QGuard maintains
responsiveness to sudden load-shifts and achieves accu-
rate load-control under sustained load.

For statistical purposes and to allow refinement of fil-
ter hierarchies, the load-controller records how long each
filter was applied against the incoming load. Higher-level
software (Section 3.4) can query these values directly us-
ing the newQUERYQGUARDsocket option. In response
to this query, the load-controller will also indicate the
most recent load condition (e.g.,CPUOVERLOAD) and
the currently deployed filter (Figure 6).

The load-controller signals an emergency to the load-
controller whenever it has to switch into the most restric-
tive filter (drop all incoming traffic) repeatedly to avoid
overload. Uncontrollable overload can be a result of:

1. ICMP floods

2. CPU intensive workloads

3. SYN attacks

4. Congested inbound queues due to high arrival rate

5. Congested outbound queues as a result of large
replies

6. The onset of paging and swapping

7. File system request overload

To avoid signaling a false uncontrollable overload,
which happens when the effects of a previous overload
are still present, the system learns the time,t, that it takes

for the system to experience its first underload after the
onset of an overload. The timet indicates how much sys-
tem load indicators lag behind control actions. If2t > s
(sojourn time,s), then t

2
is used in place of the minimal

sojourn time. Thus, in systems where the effects of con-
trol actions are delayed significantly, the load-controller
waits for a longer time before increasing the restrictive-
ness of inbound filters. Without the adaptation of min-
imal sojourn times, such a system would tend to over-
steer, i.e., drop more incoming traffic than necessary. This
problem occurs whenever server applications queue up
large amounts of work internally. Server applications that
decouple workload processing from connection manage-
ment are a good example (e.g., the Apache Web server).
However, if per-request work is highly variant, QGuard
fails to stabilize. In such cases, a more radical solution
like LRP [4] becomes necessary.

3.4 The Policy-Manager

The policy-manager implements three different features.
First, it performs statistical analysis to dynamically ad-
just the granularity of the FH and estimates the best point
of operation. Second, it identifies and reacts to sustained
overload situations and tunes out traffic from malicious
sources. Finally, it creates a FH that conforms to the ser-
vice differentiation requirements.

The policy-manager views a FH as a set ofn filters
fF0; F1; :::; Fng. As described in Section 2.1, filterFi
consists of a set of QGuard rulesfri;0; ri;1; :::; ri;mg. For
convenience we introduce some notation to represent dif-
ferent attributes of a filter.

8

maximal
restrictiveness

minimal
restrictiveness

monitor

user-level
control

alarm signal
unmanagable
load

kernel

user-space

underload signal

overload signal

Load-Controller

on
overload

on
underload

count

count

overload
or

underload?

current
filter

Figure 6: The Load-Controller

TIME(Fi) is the amount of time for which the load-
controller usedFi to contain system load. This at-
tribute can be directly read from the statistics of the
load-controller.

RATE(Fi) is the rate at whichFi accepts incom-
ing packets. This is the sum of the rates given
for all QGuard rules,j, that belong to the filter,
RATE(Fi; j).

Since QGuard provides fair-share-style resource allo-
cation, the policy-manager must create filter hierarchies
where adjacent filtersFi andFi+1 satisfy the following:
if a packet is admissible according to QGuard ruleri+1;j ,
then it is also admissible according to ruleri;j . How-
ever, the converse is not necessarily true. First, this im-
plies that corresponding rules from different filters within
a FH always specify the same traffic class. Second,
RATE(Fi+1; j) < RATE(Fi; j) for all j. Furthermore,
F0 always admits all andFn drops all incoming traffic.
The monotonicity of the rates in a filter-hierarchy is a re-
sult of our commitment to fair-share resource allocation.

The FH defined above guarantees that there is at least
one filter,Fn, that can suppress any overload. Moreover,
if there is no overload, no packet will be dropped by the
load-controller becauseF0 admits all packets. Depending
on the amount of work that it takes to process each re-
quest and the arrival rate of requests, the load-controller
will oscillate around some filter near the operating point
of the system, i.e., the highest incoming rate that does not
generate an overload. Since the rate difference between

Normalized Input Rate

Q
ua

nt
iz

at
io

n
In

te
rv

al

f(x)

r 0 r 1 r 2 r 3 r 4 r 5 r 6 r 7

q 2

Figure 7: The compressor function forq = 1=2

filters is discrete, it is unlikely that there is one particular
filter that shapes incoming traffic exactly to the optimal
incoming rate. Therefore, it is necessary to refine the FH.
To construct the ideal filterF � that would shape incom-
ing traffic to the maximal request arrival rate of the server,
the policy-manager computes thefocal point (FP)of the
load-controller’s oscillations:

FP :=

nP
i=1

TIME(Fi) �RATE(Fi)

NP
i=1

TIME(fi)

Whether or not the policy-manager uses a finer quan-
tization around the focal point depends on the load-
controller’s stability (absence of oscillations covering
many filters). To switch between different quantization
grains, the policy-manager uses a family ofcompressor
functions[22] that have the following form:

fq(x� FP) =

(
(x� FP)q for x � FP

�(FP � x)q for x < FP

Our experimental configuration only usedfq(x) for
q = f1; 1=2; 1=3g; Figure 7 showsf1=2(x). The hori-
zontal lines reflects the quantization of the same function
based on 8 quantization levels (the dashes on they-axis).
The ranges for each interval, marked on thex-axis, illus-
trate how their widths become smaller as they approach
the focal point. Therefore, we only need to decreaseq to

9

Figure 8: State transition diagram for the identification of mis-
behaving traffic classes

achieve higher resolution around the focal point. To com-
pute the range values of each quantization interval, we ap-
ply the inverse function (a polynomial). This is illustrated
by the shaded area in Figure 7.

Under the assumption that the future will resemble the
past, compressor functions should be picked to minimize
the filtering loss that results from the load controller’s
oscillations. However, this requires keeping long-term
statistics, which in turn requires a large amount of book-
keeping. Instead of bookkeeping, we choose a fast heuris-
tic that selects the appropriate quantization,q, based on
the load-controller’s statistics. Simply put, if the load-
controller only applies a small number of filters over a
long time, a finer resolution used. More specifically, if
the load-controller is observed to oscillate between two
filters, it is obvious that the filtering-grain is too coarse
and a smallerq is used. We found that it is good to switch
to a smallerq as soon as the load-controller is found os-
cillating over a range of roughly 4 filters.

When a new FH is installed, the load-controller has no
indication as to which filter it should apply against incom-
ing traffic. Therefore, the policy-manager advances the
load-controller to the filter in the new FH that shapes in-
coming traffic to the same rate as the most recently used
filter from the previous FH. The policy manager does not
submit a new FH to the load-controller if the new hier-
archy does not differ significantly from the old one. A
change is significant if the new FP differs more than 5%
from the previous one. This reduces the overheads created
by the policy-manager, which includes context switches
and the copying of an entire FH.

The above computations lead to improved server
throughput under controllable overload. However, if the

load-controller signals a sustained (uncontrollable) over-
load, the policy-manager identifies misbehaving sources
as follows (see also Figure 8).

Assumed Bad: Right after the policy-manager recognizes
that the load-controller is unable to contain the overload,
each traffic class is labeled as potentially bad. In this state
the traffic class is temporarily blocked.

Tryout : Traffic classes are admitted one-by-one and in
priority order. A “tryout-admission” is probational and
used to identify whether a given traffic class is causing
the overload.

Good: A traffic class that passed the “tryout” state with-
out triggering an overload is considered to be “good.” It
is admitted unconditionally to the system. This is the nor-
mal state for all well-behaved traffic classes.

Bad: A traffic class that triggered another overload while
being tried out is considered to be a “bad” traffic class.
Bad traffic classes remain completely blocked for a con-
figurable amount of time.

To avoid putting traffic classes on trial that are inac-
tive, the policy-manager immediately advances such traf-
fic classes from state “tryout” to “good.” All other traffic
classes must undergo the standard procedure. Unfortu-
nately, it is impossible to start the procedure immediately
because the server may suffer from residual load as a re-
sult of the attack. Therefore, the policy-manager waits
until the load-controller settles down and indicates that
the overload has passed.

The problem of delayed overload effects became evi-
dent in the context of SYN-flood attacks. If Linux 2.2.14
is used as the server OS, SYN packets that the attacker
places in the pending connection backlog queue of the at-
tacked server take 75 s to time out. Hence, the policy-
manager must wait at least 75 s after entering the recov-
ery procedure for a SYN-attack. Another wait is may be-
come necessary during the recovery period after one of
the traffic classes revealed itself as the malicious source
because the malicious source had a second chance to fill
the server’s pending connection backlog.

10

Figure 9: Testbed

4 Evaluation

To study QGuard’s performance under various work-
loads, we implemented a load-generating server appli-
cation. This server load generator can be configured to
generate different types of load depending on the UDP or
TCP port on which it received the request. The server ap-
plication is fully parallel and uses threads from a thread-
pool to serve incoming requests. The generated load may
consist of four configurable components: CPU activity,
memory usage, file accesses, and the generation of large
response messages. We also implemented a client-side
request generator which could simulate an arbitrary num-
ber of parallel clients. Each client can be configured to
submit requests at a specific rate with random (Poisson-
distributed) or constant inter-arrival times to the load-
generating server.

The load generating server was run on its own Intel
Pentium-based PC (450 MHz, 210 MB memory). Up to
400 simulated clients located on two other PCs request
service at an average rate of 1 req/s. Client and server
were connected through FastEthernet (see Figure 9).

For each test run, we established a baseline by compar-
ing the QGuard-controlled server’s performance against
the server without QGuard. We found that QGuard fully
achieved the goals for which it was designed: differen-
tial QoS and defense from overload attacks. We further
found that QGuard degrades maximal server throughput
only minimally — 2-3% (see Figure 10). This degrada-
tion results from the limitation of the input rate and the
fact that we configured QGuard to keep the server’s re-
source utilization at and below 99%.

4.1 Providing Differential QoS

The main objective in QGuard’s design was graceful QoS
degradation under overload. To study QGuard’s behavior,
we split our experiments into two series: one that stud-

Figure 10: Performance loss due to QGuard

ies the differential treatment of homogenous services —
a typical preferred vs. standard services scenario — and
of heterogenous services. In both cases, 200 clients were
configured to request the preferred service while number
of clients requesting the standard service increased from
0 to 200. Each measurement point represents the average
response time or throughput over a 12 minute interval.

In the first experiment, we set the relative share of pre-
ferred vs. standard service to 4:1. As Figure 11 shows,
QGuard clearly distinguishes the preferred from the stan-
dard service since the throughput of the preferred service
remains stable as we increase the number of clients for
standard service. This compares favorable with the ap-
proximately 40% performance drop that clients for pre-
ferred service would have experienced without QGuard
protection. The results are even more dramatic in terms
of clients’ response time (Figure 12).

These results remain valid if one differentiates across
clients instead of services. The only difference in the
setup would be to configure traffic classes based on source
addresses rather than destination services.

In a second series of experiments with services of het-
erogeneous workloads, we configured the preferred ser-
vice to be CPU intensive and the standard service to be
memory intensive. We set the priority of the preferred
service to 10 and that of standard service to 1. This
large ratio is very critical for maximizing system through-
put because the maximal throughput of the CPU inten-
sive service was an order of magnitude higher than that

11

Figure 11: Throughput of preferred customers as the load from
standard clients grows

of memory-intensive service. If the weights are not cho-
sen appropriately (approximately reflecting the different
maximal throughput values), then rounding errors in fa-
vor of the resource-heavy service’s shaping rate can lead
to significant performance degradation for the preferred
service.

Aside from the previously mentioned limitation, Fig-
ures 13 and 14 show that QGuard performs well even if
the workload is very heterogeneous. Without QGuard, the
performance of clients requesting preferred service drops
severely as demand for the standard service increases.
With QGuard, the performance of both services matches
the QoS differentiation requirements exactly, i.e., clients
of preferred service are served at 10� the rate of client of
standard service.

The extreme increase in the clients’ response time
(around 40 clients) is a result of Linux’s memory man-
agement. The likelihood of swapping increases as more
non-preferred clients compete for service until swapping
is inevitable (40 simultaneous non-preferred customers).
Beyond this point there is always a number of requests
from non-preferred clients swapped out so that the pre-
ferred customers’ requests receive a larger share of the
CPU, thus improving their response time. However, re-
sponse times with QGuard are still 3 times better than
without.

Figure 12: Response time of seen by preferred customers

Figure 13: Throughput for preferred customers when standard
customers request memory intensive services (e.g. database
joins)

4.2 Effective SYN-Flood Defense

One of the main motivations behind our research on in-
bound traffic controls for overload defense mechanisms
was the recent surge in the number of DoS attacks ex-
perienced by major Internet servers. To put QGuard to
the test, we configured the server to provide service to
three different client populations: preferred customers
from host 1, standard service customers from host 2, and
best-effort service for the rest of the world. 200 seconds
into the measurement, we launched a SYN-flood attack
on the server from a spoofed (unreachable) address. Ser-
vice was quickly disrupted (point [b] in Figure 15). How-
ever, after a short time [c], QGuard detects the DoS attack

12

Figure 14: Response time seen by preferred customers

Figure 15: Restoring service under SYN-flood attacks

and disallows all incoming traffic until all SYN packets
that are currently present in the server’s connection back-
log time out (point [d]). Then it enables client accesses
in priority order ([d] and [e]). Since neither standard nor
preferred clients cause the SYN-flood, they are labeled as
goodtraffic classes. Once QGuard admits all other clients
[g] — including the attacker — the service experiences
another disruption which is detected by QGuard at point
[h]. Upon detection, best-effort clients are denied access
to the server and service resumes [j] after all false SYN
packets that the attacker placed on the server during its
temporary admission time out. The graph shown in Fig-
ure 15 represents a typical test run (not the best case).

As we studied the behavior of QGuard under SYN-
floods, we found that it is difficult to distinguish a SYN-

flood from a surge in legitimate requests until spoofed
SYN packets begin to time out. Since this timeout is very
large in the regular Linux kernel (75 s) the recovery phase
takes quite long. Almost all of the recovery time can be at-
tributed to this generous timeout. One may argue that we
should simply wipe out all SYN packets in the server’s
backlog once a SYN attack has been discovered to speed
up recovery. However, this is not possible without vio-
lating the TCP protocol. Such a protocol alteration could
break some client/server applications.

4.3 Tuning out the “Ping-of-Death”

The “ping-flood” attack exploits the fact that the process-
ing of ICMP requests is kernel-based, thus generally pre-
empting all other system activities. In this scenario an at-
tacker either directly or through so called zombies sends
a never ending stream of ICMP ping packets to a server.
Although the per-request processing overhead of ping is
quite low, the large number of packets leads to a complete
lock-up of the server. To create a lock-up situation on the
experimental server, we flooded it on both of its incoming
interfaces at the maximal packet rate of 100Mbps Ether-
net.

At 100 s in Figure 16, the start of the ping-flood, the
server’s throughput plummets in response to the high
workload placed on the system due to ICMP request pro-
cessing. QGuard responds to the excessive load immedi-
ately and reduces the acceptance rate for ICMP packets
until service throughput almost reaches pre-attack levels
(after 175 s). The reason why the maximal throughput
is not quite reached is that QGuard still admits a small,
manageable amount ofping requests. QGuard’s reac-
tion is caused by three events: almost all busy cycles are
executed on behalf of the system, a large backlog of in-
coming packets, and high CPU utilization.

Since QGuard successfully defends the system from
this kind of attack, it is quite safe to connect a QGuard
protected server directly to the Internet even through high-
bandwidth links. However, QGuard can only mitigate the
effect that such a ping-flood has on the incoming link’s
available bandwidth. The sources of the attack may still
saturate incoming bandwidth by flooding the link. How-
ever, a QGuard protected system does not aggravate the

13

Figure 16: QGuard’s response to an ICMP flood

problem by sending replies over the same congested link.

5 Related Work

A number of commercial and research projects address
the problem of server overload containment and differen-
tial QoS. Ongoing research in this field can be grouped
into three major categories: adaptive middleware [2, 3,
14], OS [4, 6, 12, 15, 17, 20, 23] and network-centric so-
lutions [7, 19].

5.1 Middleware for QoS Differentiation

Middleware solutions coordinate graceful degradation
across multiple resource-sharing applications under over-
load. Since the middleware itself has only little control
over the load of the system, they rely on monitoring feed-
back from the OS and application cooperation to make
their adaptation choices. Middleware solutions work only
if the managed applications are cooperative (e.g., by bind-
ing to special communication libraries).

IBM’s workload manager (WLM) [3] is the most com-
prehensive middleware QoS management solution. WLM
provides insulation for competing applications and capac-
ity management. It also provides response time manage-
ment, thus allowing the administrator to simply specify
target response times for each application. WLM will
manage resources in such a way that these target response

times are achieved. However, WLM relies heavily on
strong kernel-based resource reservation primitives, such
as I/O priorities and CPU shares to accomplish its goals.
Such rich resource management support is only found
in resource rich mainframe environments. Therefore, its
design is not generally applicable to small or mid-sized
servers. Moreover, WLM requires server applications to
be WLM-aware. WebQoS [14] models itself after WLM
but requires fewer application changes and weaker OS
support. Nevertheless, it depends on applications binding
to the system’s dynamic communication libraries. We-
bQoS is less efficient since it manages requests at a later
processing stage (after they reach user-space).

5.2 Operating System Mechanisms for
Overload Defense and Differential QoS

Due to the inefficiencies of user-space software and the
lack of cooperation from legacy applications, various OS-
based solutions for the QoS management problem have
been suggested. OS-level QoS management solutions do
not require application cooperation, and they strictly en-
force the configured QoS.

The Scout OS [23] provides apathabstraction, which
allows all OS activity to be charged to the resource budget
of the application that triggered it. When network pack-
ets are received, for example, they are associated with
a path as soon as their path affiliation is recognized by
the OS; they are then handled using to the resources that
are available to that path. Unfortunately, to be effective
Scout’s novel path abstraction must be used directly by
the applications. Moreover, Scout and the other OS-based
QoS management solutions [4, 6, 12, 15, 20] must be con-
figured in terms of raw resource reservations, i.e., they
do not manage Internet services on the more natural per
request-level. However, these solutions provide very fine-
grained resource controls but require significant changes
to current OS designs.

Mogul’s and Ramakrishnan’s work [17] on the receive
livelock problem has been a great inspiration to the design
of QGuard. Servers may suffer from the receive livelock
problem if their CPU and interrupt handling mechanisms
are too slow to keep up with the interrupt stream caused
by incoming packets. They solve the problem by making

14

the OS slow down the interrupt stream (by polling or NIC-
based interrupt mitigation), thus reducing the number of
context switches and unnecessary work. They also show
that a monitoring-based solution that uses interrupt miti-
gation only under perceived overload maximizes through-
put. However, their paper only targets receive-livelock
avoidance and does not consider the problem of providing
QoS differentiation — an important feature for today’s In-
ternet servers.

5.3 Network-Centric QoS Differentiation

Network-centric solutions for QoS differentiation is be-
coming the solution of choice. This is due to the fact that
they are even less intrusive than OS-based solutions. They
are completely transparent to the server applications and
server OSs. This eases the integration of QoS manage-
ment solutions into standing server setups. Some network
centric-solutions are designed as their own independent
network devices [7], whereas others are kernel-modules
that piggy-back to the server’s NIC driver [19].

Among the network-centric solutions is NetGuard’s
Guardian [19], which is QGuard’s closest relative.
Guardian, which implements the firewalling solution on
the MAC-layer, offers user-level tools that allow real-time
monitoring of incoming traffic. Guardian policies can be
configured to completely block misbehaving sources. Un-
like QGuard, Guadian’s solution is not only static but also
lacks the QoS differntiation since it only implements an
all-or-none admission policy.

6 The Future of QGuard

Since the QGuard prototype still requires the addition of
kernel modules to the Internet server’s OS, some poten-
tial users may shy away from deploying it. We quoted
the same issue earlier as a reason for the popularity of
network-centric solution for the QoS-management prob-
lem. Therefore, we believe that QGuard should fol-
low the trend. It would ideally be built into a sepa-
rate firewalling/QoS-management device. Such a device
would be placed in between the commercial server and the
Internet, thus protecting the server from overload. Such

a setup necessitates changes in the QGuard monitoring
architecture. Further research is necessary to determine
whether an SNMP-based monitor can deliver sufficiently
up-to-date server performance digests so that QGuard’s
load-controller can still protect the server from overload
without adversely affecting server performance.

Another future direction for the QGuard architecture
would be to embed it entirely on server NICs. This would
provide the ease of plug-and-play, avoid an additional net-
work hop (required for a special QGuard frontend), and
reduce the interrupt load placed on the server’s OS by
dropping packets before an interrupt is triggered. Another
advantage of the NIC-based design over our current pro-
totype is that it would be a completely OS-independent
solution.

In this paper we have proven that it is possible to
achieve both protection from various forms of overload
attacks and differential QoS using a simple monitor-
ing control feedback loop. Neither the core networking
code of the OS nor applications need to be changed to
benefit from QGuard’s overload protection and differen-
tial QoS. QGuard delivers surprisingly good performance
even though it uses only inbound rate controls. QGuard’s
simple design allows decoupling QoS issues from the un-
derlying communication protocols and the OS, and frees
applications from the QoS-management burden. In the
light of these great benefits, we believe that inbound traf-
fic controls will gain popularity as a means of server
management. The next step for future firewall solutions
is to consider the results of this study and add traffic
shaping policies and a simple overload control-loop sim-
ilar to QGuard’s load-controller. As we have shown in
this paper, these two mechanisms may suffice for the de-
sign of sophisticated QoS management solutions such as
QGuard’s policy-manager.

7 Acknowledgements

We gracefully acknowledge helpful discussions with, use-
ful comments from, and the support of Kang Shin, Brian
Noble, and Padmanabhan Pillai.

References

[1] A BDELZAHER, T., AND BHATTI , N. Web Content Adap-
tation to Improve Server Overload Behavior. InInterna-
tional World Wide Web Conference(May 1999).

15

[2] A BELZAHER, T. F., AND SHIN, K. G. QoS Provisioning
with qContracts in Web and Multimedia Servers. InIEEE
Real-Time Systems Symposium(Pheonix, AZ, December
1999).

[3] A MAN , J., EILERT, C. K., EMMES, D., YOCOM, P.,AND

DILLENBERGER, D. Adaptive Algorithms for Managing
Distributed Data Processing Workload.IBM Systems Jour-
nal 36, 2 (1997), 242–283.

[4] BANGA, G., AND DRUSCHEL, P. Lazy Receiver Process-
ing LRP: A Network Subsystem Architecture for Server
Systems. InSecond Symposium on Operating Systems De-
sign and Implemenation(October 1996).

[5] BELLOVIN , S. M. Security Problems in the TCP/IP Pro-
tocol Suite.Computer Communication Review 19, 2 (April
1989), 32–48.

[6] BRUNO, J., BRUSTOLONI, J., GABBER, E., OZDEN, B.,
AND SILBERSCHATZ, A. Retrofitting Quality of Service
into a Time-Sharing Operating System. InUSENIX Annual
Technical Conference(June 1999).

[7] CISCO INC. Local Director (White Paper)
http://cisco.com/warp/public/cc/ci sco/mkt/scale/locald/
tech/lobalwp.htm. 2000.

[8] DAWSON, T. Linux NET-3-HOWTO. 1999.

[9] ELLIOTT, J. Distributed Denial of Service Attacks and the
Zombie Ant Effect.IT Pro (March 2000).

[10] FLOYD, S., AND JACOBSEN, V. Link-Sharing and Re-
source Management Models for Packet Networks.Trans-
actions on Networking 3, 4 (1995), 365–386.

[11] GARBER, L. Denial-of-Service Attacks Rip the Internet.
Computer(2000).

[12] HAND, S. M. Self-Paging in the Nemesis Operating Sys-
tem. InProceedings of the Third USENIX Symposium on
Operating Systems Design and Implementation(New Ore-
leans, Lousiana, February 1999), USENIX, pp. 73–86.

[13] HEWLETT PACKARD CORP. Ensuring Customer
E-Loyalty: How to Capture and Retain Cus-
tomers with Responsive Web Site Performance.
http://www.internetsolutions.enterprise.hp.com/
webqos/products/overview/e-loyaltywhite paper.pdf.

[14] HEWLETT PACKARD CORP. WebQoS Technical White
Paper. http://www.internetsolutions.enterprise.hp.com/
webqos/products/overview/wp.html, 2000.

[15] JEFFAY, K., SMITH , F., MOORTHY, A., AND ANDER-
SON, J. Proportional Share Scheduling of Operating Sys-
tem Services for Real-Time Applications. InProceedings
of the 19th IEEE Real-Time Systems Symposium(Madrid,
December 1998).

[16] KESHAV, S. An Engineering Approach to Computer Net-
working. Addison-Wesley Publishing Company, 1997.

[17] MOGUL, J. C.,AND RAMAKRISHNAN , K. K. Eliminat-
ing Receive Livelock in an Interrupt-Driven Kernel.Trans-
actions on Computer Systems 15, 3 (August 1997), 217–
252.

[18] MOGUL, J. C., RASHID, R. F.,AND J. ACCETTA, M. The
Packet Filter: An Efficient Mechanism for User-Level Net-
work Code. InProceedings of the 11th ACM Symposium
on Operating Systems Principles and Design(November
1987), ACM.

[19] NETGUARD, INC. Guardian Real-
time Performance Monitoring (RPM).
http://www.netguard.com/supportdoc.html.

[20] REUMANN, J., MEHRA, A., SHIN, K., AND KANDLUR,
D. Virtual Services: A New Abstraction for Server Con-
solidation. InProcedings of the 2000 USENIX Annual
Technical Conference(June 2000), USENIX.

[21] RUSSELL, P. IPCHAINS-HOWTO.
http://www.rustcorp.com/linux/ipchains/HOWTO.html.

[22] SAYOOD, K. Introduction to Data Compression. Morgan
Kaufmann Publishers, Inc., 1996.

[23] SPATSCHECK, O., AND PETERSON, L. L. Defending
Against Denial of Service Attacks in Scout. InThird Sym-
posium on Operating Systems Design and Implemenation
(February 1999), pp. 59–72.

[24] STEERE, D. C., GOEL, A., GRUENBERG, J., MC-
NAMEE, D., PU, C., AND WALPOLE, J. A feedback-
driven proportion allocator for real-rate scheduling. In
Third Symposium on Operating Systems Design and Imple-
mentation(New Orleans, LA, USA, Feb 1999), pp. 145–
58.

[25] STÖCKLE, O. Overload Protection and QoS Differen-
tiation for Co-Hosted Web Sites. Master’s thesis, ETH
Zürich, June 1999.

16

