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Abstract Our measurements indicate no performance degradation
on lightly loaded servers and only a small reduction of ag-

Current operating systems are not well-equipped to h&segated server throughput (less than 2%)_uno_|er overload.
dle sudden load surges that are commonly experiené’(\!%”'behaved “preferred customers” remain virtually un-
by Internet servers. This means that service providéféected by server overload.

and customers may not be able to count on servers being

available once their content becomes very popular. Re- .

cent Denial-of-Service attacks on major e-commerce sitts INntroduction

have capitalized on this weakness.

Remedies that were proposed to improve server fecent blackouts of major web sites, such as Yahoo, eBay,
havior under overload require substantial changes to fd E*Trade, demonstrated how susceptible e-business is
operating system or applications, which is unacceptaBlesimple Denial-of-Service (DoS) attacks [9, 11]. Using
to businesses that only want to use the tried and trpgiblicly available software, amateur hackers can chose
This paper presen@Guard a much less radical solutionffom a variety of attacks such as SYN or ping-floods to
to providing differential QoS, protection from overloadock out paying customers. These attacks either flood
and some DoS attacks. QGuard is an adaptive mechig network pipe with traffic or pound the server with re-
nism that exploits rate controls for inbound traffic in orduests, thus exhausting precious server resources. In both
der to fend off overload and provide QoS differentiatiodttack scenarios, the server will appear dead to its paying
between competing traffic classes. (or otherwise important) customers.

Our Linux-2.2.14-based QGuard prototype provides This problem has been known since the early 1980’s
freely configurable QoS differentiation (preferred cu$®]- Since then, various fixes have been proposed [4,17,
tomer treatment and service differentiation) and effe€3]. Nevertheless, these fixes are only an insufficient an-
tively counteracts SYN and ICMP-flood attacks. Sind&ver to the challenges faced by service providers today.
QGuard is a purely network-centric mechanism, it do¥éhat makes things more difficult today is that service
not require any changes to server applications and &gaviders want to differentiate between their important

be implemented as a simple add-on module for any Cd less important clients at all times, even while draw-

, , , . . - ing fire from a DoS attack.
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9 can lead to a significant deterioration of service quality




(QoS) — sometimes coming close to the denial of sef transient request spikes. Furthermore, studies on the
vice. Under such circumstances, important clients’ ridad patterns observed on Internet servers show that over-
sponse time may increase drastically. More severe coapacities can hardly protect servers from overload.

sequences may follow if the amount of work-in-progress

. . > This paper is organized as follows. We present our de-
causes hard OS resource limits to be violated. Ifsuchfaﬂ 'S paper ganiz W P u

'gg rationale in Section 2 and discuss its implementation

ection 3. Section 4 studies QGuard’s behavior in a

humber of typical server overload and attack scenarios.
These problems are particularly troubling for sites th&ection 5 places QGugard in the context of related work.

offer price-based service differentiation. Depending drne paper ends with concluding remarks in Section 6.

how much customers pay for the service, they have dif-

ferent QoS requirements. First of all, paying customers

want the system to remain available even whenitis heg¥- \ANhat is QG uard?

ily loaded. Secondly, higher-paying customers wish to see

heir work r ke priori ver lower- in -
their work requesits take priority over lower-paying Cu\i?etgrnet servers suffer from overload because of the un-

tomers when resources are scarce. For example, & ntrolled influx of requests from network clients. Since
site may offer its content to paying customers as well 2 qu . '
ese requests for service are received over the network,

free-riders. A natural response to overload is not to serve : )
P cqntrollmg the rate at which network packets may enter

content to the free-riders. However, this behavior cannl’ . eris a ful f load
be configured in current server OSs. poweriul means for Server load manage-
ment. QGuard exploits the power of traffic shaping to pro-

Although pure middleware solutions for QoS differvide overload protection and differential service for Inter-

entiation [1, 14] exist, they fail when the overload omet servers. By monitoring server load, QGuard can adapt

curs before incoming requests are picked up and mas-traffic shaping policies without arg priori capacity

aged by the middleware. Moreover, middleware solanalysis or static resource reservation. This is achieved

tions fail when applications bypass the middleware’s copy the cooperation of the four QGuard componetrts:-

trol mechanisms, e.g., by using their own service-specific shaper monitor, load-controller, andpolicy-manager

communication primitives or simply by binding commu¢see Figure 1).

nication libraries statically. Therefore, much attention

has been focused on providing strong performance man-

agement mechanisms in the OS and network subsysrk  The Traffic Shaper

[4,6,7,12,15,19,20,23,25]. However, these solutions

introduce more controls than necessary to manage @@§uard relies on shaping the incoming traffic as its only

differentiation and defend the server from overload. ~ means of server control. Since QGuard promises QoS dif-

é‘Frentiation, differential treatment must begin in the traffic

We propose a novel combination of kernel-lev . . . .
. . . sr&aper, i.e., simply controlling aggregate flow rates is not
and middleware overload protection mechanisms calle od enough

QGuard QGuard learns the server’s request—handlir%)
capacity independently and divides this capacity amongTo provide differentiation, the QGuard traffic shaper as-
clients and services according to administrator-specifig@ciates incoming packets with their traffic classes. Traf-
rules. QGuard’s differential treatment of incoming trafic classes may represent specific server-side applications
fic protects servers from overload and immunizes tkk® destinations or TCP and UDP target ports), client pop-
server against SYN-floods and the so-called “ping-ofations (i.e., a set of IP addresses with a common prefix),
death.” This allows service providers to increase their daiffServ bits, or a combination thereof. Traffic classes
pacities gradually as demand grows since their prefergitbuld be defined to represent business or outsourcing
customers’ QoS is not at risk. Consequently, there is needs. For example, if one wants to control the request
need to build up excessive over-capacities in anticipatitate to the HTTP service, a traffic class that aggregates

ures were not considered in the design of the service,
service may crash, thus potentially leading to data loss
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Figure 1:The QGuard architecture
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Figure 2: Classifying incoming traffic

all TCP-SYN packets sent to port 80 on the server showldbmit requests at a higher rate than non-preferred ones.
be introduced. This notion of traffic classes is commonioreover, QGuard also associates a weight representing
used in policy specifications for firewalls and was praraffic class priority with each rule. We refer to these pri-
posed initially by Mogulet al. [18]. Figure 2 displays oritized, rate-based rules &uard rules QGuard rules

a sample classification process. Once the traffic clasa@xept a specific traffic class’ packets as long as their rate
defined, it may be policed. does not exceed the maximal rate specified in the rule.
Ocherwise, a QGuard rule will cause the incoming pack-

For effective traffic management, traffic classificati
ets to be dropped.

and policing are combined intaules Each rule speci-
fies whether a traffic class’ packets should be accepted oQGuard rules can be combined to provide differential
dropped. Thus, itis possible to restrict certain IP domai@®S. For example, the maximal acceptance rate of one
from accessing certain (or all) services on the server whitaffic class can be set to twice that of another, thus deliv-
granting access to others without affecting applicatiorsing a higher QoS to the clients belonging to the traffic
or the OS. As far as the client and servers OS’s akass identified by the rule with the higher acceptance rate.
concerned, certain packets simply get lost. Such all-dihe combination of several QGuard rules — the building
nothing scheme are used for server security (firewallbjock of QoS differentiation — is called @Guard filter
However, for load-control more fine-grained traffic corthenceforth filter). They may consist of an arbitrary num-
trol is necessary. Instead of tuning out a traffic sourber of rules. Filters are the inbound equivalent of CBQ
completely, QGuard allows the administrator to limit itpolices [10].

packet rate. Thus, preferred clients can be allowed to



2.2 The Monitor overload management. This is due to the fact that one
does not know in advance to which incoming rate the
Since QGuard does not assume to know the ideal shapiagkets of individual traffic classes should be shaped.
rate for incoming traffic, it must monitor server load t&ince one filter is not enough to manage server overload,
determine it. Online monitoring takes the place of offlinee introduce the concept offédter-hierarchy(FH). A FH
system capacity analysis. is a set of filters ordered by filter restrictiveness (shown

The monitoris loaded as an independent kernel-modlgeFigure 3). These filter-hierarchies can be loaded into

to sample system statistics. At this time the administralt e Ioad-co_ntroller on_demar_ld. Once Ioad_ed, the load-
may indicate the importance of different Ioad-indicato%)mro'!erV\."" use monlt.orlng input to determine the least
for the assessment of server overload. The monitoriheggtr'cuve filter that avoids server overload.

module itself assesses server capacity based on its obseFhe load-controller strictly enforces the filters of the
vations of different load indicators. Accounting for botlrH, and any QoS differentiation that are coded into the
the importance of all load indicators and the system daH in the form of relative traffic class rates will be im-
pacity, the monitor computes tiserver load-indexOther plemented. This means that QoS-differentiation will be
kernel modules may register with the monitor to receivepmeserved in spite of the load-controllers dynamic filter
notification if the load-index falls into a certain range. selection.

Since the monitor drives QGuard’s adaptation to over-Assuming an overloaded server and properly set up FH,
load, it must be executed frequently. Only frequent eke.,
ecution can ensure that it will not miss any sudden load, i filters are ordered by increasing restrictiveness,
surges. However, it is difficult to say exactly how often e the least restrictive filter does not shape incoming
it should sample the server’s load indicators because the traffic at all,
server is subject to many unforeseeable influences [13]s and the most restrictive filter drops all incoming traf-
e.g., changes in server popularity or content. Therefore, fic,

all relevant load indicators should be oversampled signjfie |oad-controller will eventually begin to oscillate be-
icantly. This requires a monitor with very low runtim&yeen two adjacent filters. This is due the fact that the

overheads. The important role of the monitor also rgsie jimits specified in one filter are too restrictive and not
quires that it must be impossible to cause the monitor {otrictive enough in the other.

fail under overload. As a result of these stringent perfor-

mance requirements we decided that the logical place foPScillations between filters are a natural consequence
the monitor is inside the OS. of the load-controller's design. However, switching be-

tween filters causes some additional OS overhead. There-

fore, it is advantageous to dampen the load-controller’s
2.3 The Load-Controller oscillations as it reaches the point where the incoming

traffic rate matches the server’s request handling capac-
The load-controller is an independent kernel module, fity. Should the load-controller begin to oscillate between
similar reasons as the monitor, that registers its overlddters of vastly different acceptance rates, the FH is too
and underload handlers with the monitor when it is loadedarse-grained an should be refined. This is the policy-
into the kernel. Once loaded, it specifies to the monitoranager’s job. To allow the policy-manager to deal with
when it wishes to receive an overload or underload nivis problem, the load-controller keeps statistics about its
tification in terms of the server load-index. Whenever d@wn behavior.
re_ceiyesa notification from the monitor i.t.decides Whem('?‘rAnother anomaly resulting from ineffective filter-
it is time to react to the observed condition or Whetherm
should wait a little longer until it becomes clear wheth%
the overload or underload condition is persistent.

erarchies occurs when the load-controller repeatedly
lvitches to the most restrictive filter. This means that no
filter of the FH can contain server load. This can either
The load-controller is the core component of QGuardi® the result of a completely misconfigured FH or due



ADMINISTRATIVE GOALS
UDP service:  minimum rate: 10 pkt/s weight: 0

Web standard: minimum rate: 10 pkt/s weight. 1
RESTRICTIVENESS » Web preferred: minimum rate: 10 pkt/s weight: 2
estimated estimated estimated estimated

capacity UDP service: allow all| capacity UDP service: 10 pkt/s | capacity UDP service: 10 pkt/s | capacity UDP service: 0 pkt/s
Web standard: allow all | 10Q Web standard: 33 pkt/s | 50 Web standard: 17 pkt/s 0  Web standard: 0 pkt/s
00 Web preferred: allow all pkt/S Web preferred: 57 pkt/s pkt/s Web preferred: 23 pkt/s pkt/s Web preferred: 0 pkt/s

F F F F

[ 1 2 3

Figure 3: A sample filter-hierarchy

to an attack. Since switching to the most restrictive pahanager successively zooms into smaller quantization in-
icy results in a loss of service for all clients, this condtervals around the operating point. We call the policy-
tion should be reported immediately. For this reason theanager’s estimate of the operating pointfiheal point
the load-controller implements an up-call to the policyBy using non-linear quantization functions around this fo-
manager (see Figure 1). This notification is implementedl point, accurate, fine-grained control becomes possi-
as a signal. ble. The policy-manager dynamically adjusts its estimate

of the focal point as system load or request arrival rates

] change.
2.4 The Policy-Manager _ _ . .
The policy-manager creates filter-hierarchies that are

The policy-manager fine-tunes filter-hierarchies based G N the sense of max-min fair-share resource alloca-
the effectiveness of the current FH. A FH is effectiion [16]. This algorithm executes in two stages. In the
if the load-controller is stable, i.e., the Ioad—controllé(VT’t stag:}e, It iellllocateshthe minimum banded;h to each
does not cause additional traffic burstiness. If the lod4"€: _Itht ednfa_ ocr::ltes 1 Ie re_rr?alnlnﬁ_barllldmd_t bashed on
controller is stable, the policy-manager does not alter fRdVeighted fair share algorithm. This allocation scheme
current FH. However. whenever the load-controller bggs two valuable features. First, it guarantees a minimum
comes unstable, either because system load increase®BBdwidth allocation for each traffic class (specified by
yond bounds or because the current FH is t00 coarE%Q administrator). Second, excess bandwidth is shared
grained, the policy-manager attempts to determine ALong traﬂ!c classes base_d_on their re_Iatlve importance
server's operating point from the oscillations of the load@!SC Specified by the administrator). Figure 3 shows an

controller, and reconfigures the load-controller's FH agxample FH that was_created b fig—
cordingly. ure shows that the policy-manager makes two exceptions

from the max-min fair-share rule. The leftmost filter ad-

Since the policy-manager focuses the FH with respesits all incoming traffic to eliminate the penalty for the
to the server's operating point, it is the crucial componegiée of traffic shaping on lightly-loaded servers. Further-
to maximizing throughput during times of sustained oveiore, the rightmost filter drops all incoming traffic to al-
load. It creates a new FH with fine-granularity aroungyy the load-controller to drain residual load if too many

the operating point, thus reducing the impact of the |Oaﬂ;quests have already been accepted.

controller’s oscillations and adaptation operations. o .
There are some situations that cannot be handled using

The policy-manager creates filter-hierarchies in the fghe outlined successive FH refinement mechanism. Such
lowing manner. The range of all possible acceptansguations often result from DoS attacks. In such cases,
rates that the FH should cover — an approximate rang@ policy-manager attempts to identify ill-behaved traf-
given by the system administrator — is quantized int classes in the hope that blocking them will end the
a fixed number of bins, each of which is representggerioad. To identify the ill-behaved traffic class, the
by a filter. While the initial quantization may be togolicy-manager first denies all incoming requests and ad-
coarse to provide accurate overload protection, the poligits traffic classes one-by-one on a probational basis (see



Figure 8) in order of their priority. All traffic classes that SYN pkts from 10.0.1.111

do not trigger another overload are admitted to the server. replenish at
Other ill-behaved traffic classes are tuned out for a con- max packet rate
figurable period of time (typically a very long time). .
remaining
Since the policy-manager uses floating point arithmetic tokens E \
and reads configurations from the user, it is implemented ———
as a user-space daemon. This also avoids kernel-bloating. incoming
This is not a problem because the load controller already packets"@* ACCEPT
ensures that the system will not get locked-up. Hence, the DENY ¢

policy-manager will always get a chance to run. Figure 4: A QGuard Firewall Entry

the Linux-based IP-Chains firewalling code as follows.
The matching of an incoming packet against a number
of packet header patterns for classification purposes (see
3.1 The Traffic Shaper Figure 2) remains unchanged. At the same time, QGuard
looks up the traffic classuota , timestamp , and
Linux provides sophisticated traffic management for ouemaining _tokens and executes the token bucket
bound traffic inside its traffic shaper modules [8]. Amonglgorithm to shape incoming traffic. For instance, it is
other strategies, these modules implement hierarchipabsible to configure the rate at which incoming TCP-
link-sharing [10]. Unfortunately, there is nothing compaSYN packets from a specific client should be accepted.
rable for inbound traffic. The only mechanism offered byhe following command:
Linux for the management of inbound trafficlR-Chains
[21].— afirev.vallin'g mle_JIe. To our advantag.e', the ﬁr%’gchains ‘A qguard --protocol TCP -syn
walling code is quite efficient and can be modified eas'l)fdestination-port —-source 10.0.0.1 -j
Furthermore, the concept of matching packet header%t E 2
find an applicable rule for the handling of each incoming
packet is highly compatible with the notion of a QGuard
rule. The only difference between a QGuard'’s and IP-allows the host10.0.0.1  to connect to the Web
Chains’ rules is the definition of a rate for traffic shaping€rver at a rate of two requests per second. The syntax of
Under a rate-limit a packet is considered to be admis8iis rule matches the syntax of Linux IP-Chains, which we
ble only if the arrival rate of packets that match the sarige for traffic classification. We chose packets as our unit
header pattern is lower than the maximal arrival rate. ©f control because we are ultimately interested in control-
ling the influx of requests. Usually, requests are small and,
) . - . . - erefore, sent in a single packet. Moreover, long-lived
firewalling policies. All firewalling policies are enforce treams (e.g., FTP) are served well by the packet-rate ab-

before the system checks QGuard rules. This means {3l tion 00, because such sessions generally send pack-
the system with QGuard will never admit any packets thals ot maximal size. Hence, it is relatively simple to map
are to be rejected for security reasons. byte-rates to packet-rates

Our traffic shaping implementation follows the well-
knowntoken buckefl16] rate-control scheme. Each rule .
is equipped with a counterrgmaining _tokens ), 3-2 The Monitor

a per-second packequota , and atimestamp to ) o

ing _tokens counter will never exceed’ x quota tem state, some of which are good indicators of overload
with V' representing the bucket's volume. We modifiegPnditions. We have implemented a lightweight monitor-

3 Implementation

QGuard rules are fully compatible with convention



ing module that links itself into the periodic timer inter- ® frign B
rupt run queue and processes a subset of Linux’s statistics g
(Table 1). Snapshots of the system are taken at a defaulicheck % 5
rate of 33 Hz. While taking snapshots the monitor updatesriodically f S€
moving averages for all monitored system variables. normal 5 g
When loading the monitoring module into the kernel, %
the superuser specifies overload and underload conditions . flow %
in terms of thresholds on the monitored variables, the -100 =
moving averages, and their rate of change. Moreover, monitoring
each monitored system variabig, may be given its own load index

weight, w;. The monitor uses overload and underload
thresholds in conjunction with the specified weights to
compute the amalgamatsérver load index— akin to values with percentage-based conditions improved the ro-
Steere’s “progress pressure” [24]. To define the Sen;y;tnes_s of our implementation and simplified adminis-
load index formally we introduce the overload indicatdfation significantly.

function, I;(X;), which operates on the values of moni-

tored variables and moving averages 3.3 The Load-Controller

Figure 5: The monitor’s notification mechanism

1 if X; indicates an overload condition

I;(X;) = { —1 if X; indicates an underload conditionQGuard'’s sensitivity to load-statistics is a crucial design
0 otherwise parameter. If QGuard is too sensitive, it will never set-
tle into a stable state. On the other hand, if QGuard is
For n monitored system variables the monitor comeo insensitive to server load, it will fail to protect it from
overload. For good control of QGuard’s sensitivity we

i=1 introduce three different control parameters:

has been determined, the monitor checks whether thi . . . . . .

value falls into a range that triggers a notification to other- 1 "€ minimal sojourn time, is the minimal time be-
modules (see Figure 5). Modules can simply register for tWween filter switches. Obviously, it limits the switch-

putes the server load index &s I;(X;). Once this value

such notifications by registering a notification rati@e] ing frequency. _ _
and a callback function of the form 2. The length of the load observation histoky,deter-
void (* callback) ( int load _index ) mines how many load samples are used to determine

with the monitor. In particular, the load-controller—tobe  the load average. The fractignis the grain of all
described in the following section — uses this monitoring  /0ad-measurement. For example, a history of length

feature to receive overload and underload notifications. 10 allows load measurements with 10% accuracy.
3. A moderator valuem, is used to dampen oscilla-

Since the server's true capacity is notknown before the - tjons when the shaped incoming packet rate matches

server is actually deployed, it is difficult to define over-  the servers capacity. To switch to a more restric-
load and underload conditions in terms of thresholds on e filter. at leastn times more overloaded than un-

the monitored variables. For instance, the highest possible yerioaded time intervals have to be observed. This

file-system access rate is unknown. If the administrator - means that the system’s oscillations die down as the

picks an arbitrary threshold, the monitor may either fail target rate is reached, assuming stable offered load.
to report overload or indicate a constant overload. There-

fore, we implemented the system to dynamically learn i@l values fonn (3-6) serve this purpose reasonably
maximal and minimal possible values for the monitorelfé!l- Since boths andm slow down oscillations, rela-
variables, rates of change, and moving averages. Heritgy short histories € [5,15]) can be used in deter-
thresholds are not expressed in absolute terms but in FBI1ING system load. This is due to the fact that accurate
cent of each variable's maximal value. Replacing absollf@d assessment is necessary only if the server operates



Indicator Meaning

High paging rate Incoming requests cause high memory consumption, thus severely limiting
system performance through paging.

High disk access rate Incoming requests operate on a dataset that is too large to fit into the file cache.

Little idle time Incoming requests exhaust the CPU.

High outbound traffic Incoming requests demand too much outgoing bandwidth, thus leading to buffer

overflows and stalled server applications.

Large inbound packet backlog | Requests arrive faster than they can be handled, e.g., flood-type attacks.
Rate of timeouts for TCP SYN-attack or network failure.

connection requests

Table 1: Load indicators used in the Linux implementation

close to its operating point. Otherwise, overload and uier the system to experience its first underload after the
derload are obvious even when using less accurate laadet of an overload. The tinténdicates how much sys-
measurements. Since the moderator stretches out thetem load indicators lag behind control actions24f> s
eraging interval as the system stabilizes, measurement(gaojourn time,s), then% is used in place of the minimal
curacy is improved implicitly. Thus, QGuard maintainsojourn time. Thus, in systems where the effects of con-
responsiveness to sudden load-shifts and achieves at@l-actions are delayed significantly, the load-controller
rate load-control under sustained load. waits for a longer time before increasing the restrictive-
For statistical purposes and to allow refinement of fi>>> Of_ mbou_nd filters.  Without the adaptation of min-
éﬂal sojourn times, such a system would tend to over-

ter hierarchies, the load-controller records how long ea e d i ina traffic th Thi
filter was applied against the incoming load. Higher-lev@ﬁeer"'e" rop more incoming traffic than necessary. This

software (Section 3.4) can query these values directly fik0P/ém occurs whenever server applications queue up

ing the newQUERYQGUARBocket option. In responsearge amounts of work intemally. Server appli_cations that
to this query, the load-controller will also indicate thgecouple workload processing from connection manage-

most recent load condition (e.gCPUOVERLOApPand ment are a good example (e.g., the Apach_e Web server).
the currently deployed filter (Figure 6). H(_)wever, if _per-request work is highly varlar_wt, QGua_rd
fails to stabilize. In such cases, a more radical solution
The load-controller signals an emergency to the lodgke LRP [4] becomes necessary.
controller whenever it has to switch into the most restric-
tive filter (drop all incoming traffic) repeatedly to avoid
overload. Uncontrollable overload can be aresultof: 3.4 The Policy-Manager

1. ICMP floods . . .

i ) The policy-manager implements three different features.
CPU intensive workloads First, it performs statistical analysis to dynamically ad-
SYN attacks just the granularity of the FH and estimates the best point
Congested inbound queues due to high arrival ratef operation. Second, it identifies and reacts to sustained
Congested Outbound queues as a resu't of |a@@l’|0ad situations and tunes out traffic from malicious
replies sources. Finally, it creates a FH that conforms to the ser-
vice differentiation requirements.

akrwn

6. The onset of paging and swapping
7. File system request overload The policy-manager views a FH as a setrofilters
o . Fy, Fy,...,F,}. As described in Section 2.1, filtdf;
To avoid signaling a false uncontrollable overloa@onsists of a set of QGuard rulés; o, ;. 1, ..., 7i.m }. FOr
which happens when the effects of a previous overlogghvenience we introduce some notation to represent dif-
are still present, the system learns the timéhat it takes ferent attributes of a filter.
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Figure 6: The Load-Controller Figure 7: The compressor function fgr= 1/

TIME(F;) is the amount of time for which the Ic
controller usedF; to contain system load. This
tribute can be directly read from the statistics «
load-controller.

filters is discrete, it is unlikely that there is one particular
filter that shapes incoming traffic exactly to the optimal
incoming rate. Therefore, it is necessary to refine the FH.
To construct the ideal filteF™* that would shape incom-
ing traffic to the maximal request arrival rate of the server,
RATE(F;) is the rate at whichF; accepts inco... the policy-manager computes tfeeal point (FP)of the

ing packets. This is the sum of the rates givdaad-controller’s oscillations:

for all QGuard rules,j, that belong to the filter,

n
RATE(F}, j). >~ TIME(F;) «* RATE(F;)
FP = = ——
Since QGuard provides fair-share-style resource allo- S TIME(f;)
cation, the policy-manager must create filter hierarchies i=1
where adjacent filter; and F;,, satisfy the following: ) .
if a packet is admissible according to QGuard mle, ;, Whether or not the policy-manager uses a finer quan-

then it is also admissible according to rulg;. How- fization around the focal point depends on the load-
ever, the converse is not necessarily true. First, this ifRntrollers stability (absence of oscillations covering
plies that corresponding rules from different filters withiany filters). To switch between different quantization
a FH always specify the same traffic class. Secorfdains, the policy-manager uses a familyoaimpressor
RATE(F;,1,j) < RATE(F}, j) for all j. Furthermore, functiong[22] that have the following form:

Fy always admits all and, drops all incoming traffic.
The monotonicity of the rates in a filter-hierarchy is a re-
sult of our commitment to fair-share resource allocation. (z — FP)1 forxz > FP

fyz —FP) = {_(FP—J;)q for z < FP

The FH defined above guarantees that there is at least
one filter, F},, that can suppress any overload. Moreover,
if there is no overload, no packet will be dropped by the Our experimental configuration only usgg(z) for
load-controller becausk, admits all packets. Depending; = {1,1/2,1/3}; Figure 7 showsf, »(x). The hori-
on the amount of work that it takes to process each montal lines reflects the quantization of the same function
quest and the arrival rate of requests, the load-controliersed on 8 quantization levels (the dashes oy thgis).
will oscillate around some filter near the operating poifithe ranges for each interval, marked on #haxis, illus-
of the system, i.e., the highestincoming rate that does teite how their widths become smaller as they approach
generate an overload. Since the rate difference betwéanfocal point. Therefore, we only need to decrepse



load-controller signals a sustained (uncontrollable) over-

overload & load, the policy-manager identifies misbehaving sources
aC”Ze/ as follows (see also Figure 8).

ASSUMED no AD Assumed Bad Right after the policy-manager recognizes
BAD over/oad t/meout that the load-controller is unable to contain the overload,
each traffic class is labeled as potentially bad. In this state

\ . overload the traffic class is temporarily blocked.
persists
Tryout: Traffic classes are admitted one-by-one and in

Figure 8: State transition diagram for the identification of migriority order. A “tryout-admission” is probational and
behaving traffic classes used to identify whether a given traffic class is causing

the overload.
achieve higher resolution around the focal point. To com-

pute the range values of each quantization interval, we @yod: A traffic class that passed the “tryout” state with-
ply the inverse function (a polynomial). This is illustratedyt triggering an overload is considered to be “good.” It
by the shaded area in Figure 7. is admitted unconditionally to the system. This is the nor-

Under the assumption that the future will resemble tiheal state for all well-behaved traffic classes.
past, compressor functions should be picked to minimize
the filtering loss that results from the load controlleréad A traffic class that triggered another overload while

oscillations. However, this requires keeping long-ter Fing t”?d out is con5|d_ered to be a *bad" traffic class.
statistics, which in turn requires a large amount of boo ad traffic classes remain completely blocked for a con-
keeping. Instead of bookkeeping, we choose a fast heur%urable amount of time.

tic that selects the appropriate quantizatignbased on To avoid putting traffic classes on trial that are inac-
the load-controller’s statistics. Simply put, if the loadtive, the policy-manager immediately advances such traf-
controller only applies a small number of filters over #c classes from state “tryout” to “good.” All other traffic
long time, a finer resolution used. More specifically, flasses must undergo the standard procedure. Unfortu-
the load-controller is observed to oscillate between tw@tely, it is impossible to start the procedure immediately
filters, it is obvious that the filtering-grain is too coarseecause the server may suffer from residual load as a re-
and a smalleg is used. We found that it is good to switctsult of the attack. Therefore, the policy-manager waits
to a smallery as soon as the load-controller is found osmtil the load-controller settles down and indicates that
cillating over a range of roughly 4 filters. the overload has passed.

When a new FH is installed, the load-controller has no The problem of delayed overload effects became evi-
indication as to which filter it should apply against incongient in the context of SYN-flood attacks. If Linux 2.2.14
ing traffic. Therefore, the policy-manager advances tiseused as the server OS, SYN packets that the attacker
load-controller to the filter in the new FH that shapes iflaces in the pending connection backlog queue of the at-
coming traffic to the same rate as the most recently ugedked server take 75 s to time out. Hence, the policy-
filter from the previous FH. The policy manager does notanager must wait at least 75 s after entering the recov-
submit a new FH to the load-controller if the new hierery procedure for a SYN-attack. Another wait is may be-
archy does not differ significantly from the old one. Aome necessary during the recovery period after one of
change is significant if the new FP differs more than 5%e traffic classes revealed itself as the malicious source
from the previous one. This reduces the overheads credtedause the malicious source had a second chance to fill
by the policy-manager, which includes context switch&se server’s pending connection backlog.
and the copying of an entire FH.

The above computations lead to improved server
throughput under controllable overload. However, if the

10
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To study QGuard's performance under various wor
loads, we implemented a load-generating server appli-

. . . 170

cation. This server load generator can be configured to ~-w/o QGuard
generate different types of load depending on the UDP ol * with QGuard
TCP port on which it received the request. The server ap- 549 250 300 350 400
plication is fully parallel and uses threads from a thread- Number of Clients

pool to serve incoming requests. The generated load may Figure 10: Performance loss due to QGuard

consist of four configurable components: CPU activit}/ s the differential treatment of homogenous services —
memory usage, file accesses, and the generation of Ia? e . 9 .
; pical preferred vs. standard services scenario — and

response messages. We also implemented a client-§ : .
eterogenous services. In both cases, 200 clients were

Q
onfigured to request the preferred service while number

request generator which could simulate an arbitrary num-
r of parallel clients. Each client can nfigur . X S
ber of parallel clients. Each client can be configured 0? clients requesting the standard service increased from

submit requests at a specific rate with random (Poiss N 200, Each measurement point represents the average
distributed) or constant inter-arrival times to the loa T onsé time or throughput O\p/eralzpminute terval g
generating server. p ghp .

In the first experiment, we set the relative share of pre-

The load generating server was run on its own Intgl . ) .
Pentium-based PC (450 MHz, 210 MB memory). Up tgirred vs. standard service to 4:1. As Figure 11 shows,

400 simulated clients located on two other PCs requ guard clearly distinguishes the preferred from the stan-

service at an average rate of 1 req/s. Client and servi’%}Fd service since the throughput of the preferred service

were connected through FastEthernet (see Figure 9). remains stablg as we increase the number of.cllents for
standard service. This compares favorable with the ap-

For each test run, we established a baseline by compatximately 40% performance drop that clients for pre-
ing the QGuard-controlled server’s performance agaimétred service would have experienced without QGuard
the server without QGuard. We found that QGuard fullyrotection. The results are even more dramatic in terms
achieved the goals for which it was designed: differepf clients’ response time (Figure 12).
tial QoS and defense from overload attacks. We furtherThese results remain valid if one differentiates across
found that QGuard degrades maximal server throughp

t . . . -
only minimally — 2-3% (see Figure 10). This degradaC_Hents instead of services. The only difference in the

tion results from the limitation of the input rate and thgetup would be to configure traffic classes based on source

fact that we configured QGuard to keep the server’s rae(jdresses rather than destination services.

source utilization at and below 99%. In a second series of experiments with services of het-
erogeneous workloads, we configured the preferred ser-
o ] ) vice to be CPU intensive and the standard service to be

4.1 Providing Differential QoS memory intensive. We set the priority of the preferred
service to 10 and that of standard service to 1. This

The main objective in QGuard’s design was graceful Qo&ge ratio is very critical for maximizing system through-
degradation under overload. To study QGuard’s behavigiit because the maximal throughput of the CPU inten-
we split our experiments into two series: one that stugive service was an order of magnitude higher than that

11
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Figure 11: Throughput of preferred customers as the load from Figure 12: Response time of seen by preferred customers
standard clients grows 250

. ~>-w/o QGuard
of memory-intensive service. If the weights are not chg- < with QGuard
. . . . o 200
sen appropriately (approximately reflecting the differest
maximal throughput values), then rounding errors in f&-

vor of the resource-heavy service’s shaping rate can |gat$°
to significant performance degradation for the preferrgd \\D\D—m\

service. 5 100 ~g—m——

Aside from the previously mentioned limitation, Fig<,
ures 13 and 14 show that QGuard performs well even§if5° il
the workload is very heterogeneous. Without QGuard, the
performance of clients requesting preferred service dropso ; ; ; ;
severely as demand for the standard service increases. © 50 100 150 200
With QGuard, the performance of both services matches Number of Std. Service Clients
the QoS differentiation requirements exactly, i.e., clienfégure 13: Throughput for preferred customers when standard
of preferred service are served at2@he rate of client of customers request memory intensive services (e.g. database
standard service. joins)

The extreme increase in the clients’ response tifle? Effective SYN-Flood Defense
(around 40 clients) is a result of Linux’s memory man-
agement. The likelihood of Swapping increases as m&@e of the main motivations behind our research on in-
non_preferred clients compete for service until Swappiwund traffic controls for overload defense mechanisms
is inevitable (40 simultaneous non-preferred customerds the recent surge in the number of DoS attacks ex-
Beyond this point there is always a number of requedtgrienced by major Internet servers. To put QGuard to
from non-preferred clients swapped out so that the pfBe test, we configured the server to provide service to
ferred customers’ requests receive a larger share of theee different client populations: preferred customers
CPU, thus improving their response time. However, rom host 1, standard service customers from host 2, and
sponse times with QGuard are still 3 times better th&gst-effort service for the rest of the world. 200 seconds
without. into the measurement, we launched a SYN-flood attack
on the server from a spoofed (unreachable) address. Ser-
vice was quickly disrupted (point [b] in Figure 15). How-
ever, after a short time [c], QGuard detects the DoS attack

12
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> wio QGuard flood from a surge in legitimate requests until spoofed

16 ]i -TF with QGuard SYN packets begin to time out. Since this timeout is very
14 large in the regular Linux kernel (75 s) the recovery phase
12 / \ takes quite long. Almost all of the recovery time can be at-
/ \ tributed to this generous timeout. One may argue that we
10 / \ should simply wipe out all SYN packets in the server's

backlog once a SYN attack has been discovered to speed
up recovery. However, this is not possible without vio-
lating the TCP protocol. Such a protocol alteration could

/ S—o——o—o—o 00— break some client/server applications.

o o
>~
|~

~

Response Time of Pref. Service /s

o N
E

50 100 150 200 4.3 Tuning out the “Ping-of-Death”

Number of Std. Service Clients

Figure 14: Response time seen by preferred customers The “ping-flood” attack exploits the fact that the process-
250 ing of ICMP requests is kernel-based, thus generally pre-

o

@ empting all other system activities. In this scenario an at-

§200 | tacker either directly or through so called zombies sends

P a never ending stream of ICMP ping packets to a server.

3 Although the per-request processing overhead of ping is

5 150 .

e quite low, the large number of packets leads to a complete

& lock-up of the server. To create a lock-up situation on the

5 100 ﬂw WWMV‘\/W experimental server, we flooded it on both of its incoming

§ interfaces at the maximal packet rate of 100Mbps Ether-

(=2

S 50 - net.

g OClass 1

F OClass 2 At 100 s in Figure 16, the start of the ping-flood, the
0¢ 94 deah 1 server’s throughput plummets in response to the high

0 T 1000 workload placed on the system due to ICMP request pro-

cessing. QGuard responds to the excessive load immedi-
ately and reduces the acceptance rate for ICMP packets
and disallows all incoming traffic until all SYN packetsuntil service throughput almost reaches pre-attack levels
that are currently present in the server’s connection ba¢after 175 s). The reason why the maximal throughput
log time out (point [d]). Then it enables client accessés not quite reached is that QGuard still admits a small,
in priority order ([d] and [e]). Since neither standard nananageable amount @ing requests. QGuard’s reac-
preferred clients cause the SYN-flood, they are labeledtias is caused by three events: almost all busy cycles are
goodtraffic classes. Once QGuard admits all other clierggecuted on behalf of the system, a large backlog of in-
[g] — including the attacker — the service experienc&®ming packets, and high CPU utilization.

another disruption which is detected by QGuard at pointSince QGuard successfully defends the system from

[h]. Upon detection, br—_:st-effort clien_ts are denied aCCeHERs kind of attack, it is quite safe to connect a QGuard
to the server and service resumes [j] after all false_SYd}Jotected server directly to the Internet even through high-
packets that thg gttacker placed on the server dqrmg_tf%dwidth links. However, QGuard can only mitigate the
temgorary admission t'mel out. The graphh st?own In F'gﬁect that such a ping-flood has on the incoming link’s
ure 15 represents a typical test run (not the best case). 5y 5jjaple bandwidth. The sources of the attack may still
As we studied the behavior of QGuard under SYNaturate incoming bandwidth by flooding the link. How-
floods, we found that it is difficult to distinguish a SYNever, a QGuard protected system does not aggravate the

Figure 15: Restoring service under SYN-flood attacks
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Aso times are achieved. However, WLM relies heavily on
5 ?ﬁw strong kernel-based resource reservation primitives, such
% 40 as /0 priorities and CPU shares to accomplish its goals.
g \ Such rich resource management support is only found
S 30 in resource rich mainframe environments. Therefore, its
B \ / design is not generally applicable to small or mid-sized
o 20 servers. Moreover, WLM requires server applications to
; be WLM-aware. WebQoS [14] models itself after WLM
% \ ?5 but requires fewer application changes and weaker OS
3 10 - wlo QGuard support. Nevertheless, it depends on applications binding
3 =+ with QGuard to the system’s dynamic communication libraries. We-
0 w w bQoS is less efficient since it manages requests at a later
Y 50 100 Ti1 .1512 /s 200 250 300 processing stage (after they reach user-space).

Figure 16: QGuard's response to an ICMP flood

problem by sending replies over the same congested Iiﬁ(.2 Operating  System MeTChan's_mS for
Overload Defense and Differential QoS

5 Related Work Due to the |neff!C|enC|es of user-space softwar(_e and the
lack of cooperation from legacy applications, various OS-

) ) based solutions for the QoS management problem have

A number of commercial and research projects addregsp, suggested. OS-level QoS management solutions do

the problem of server overload containment and differefot require application cooperation, and they strictly en-
tial QoS. Ongoing research in this field can be groupggice the configured QoS.

into three major categories: adaptive middleware [2, 3, , ) ,
14], OS [4,6,12,15, 17, 20, 23] and network-centric So- The Scout OS [23] providesathabstraction, which
lutions [7, 19]. allows all OS activity to be charged to the resource budget

of the application that triggered it. When network pack-

ets are received, for example, they are associated with
5.1 Middleware for QoS Differentiation a path as soon as their path affiliation is recognized by

the OS; they are then handled using to the resources that
Middleware solutions coordinate graceful degradati@fe available to that path. Unfortunately, to be effective
across multiple resource-sharing applications under ov8gout’s novel path abstraction must be used directly by
load. Since the middleware itself has only little contrdhe applications. Moreover, Scout and the other OS-based
over the load of the system, they rely on monitoring fee@0S management solutions [4, 6,12, 15, 20] must be con-
back from the OS and application cooperation to makgured in terms of raw resource reservations, i.e., they
their adaptation choices. Middleware solutions work onfio not manage Internet services on the more natural per
if the managed applications are cooperative (e.g., by birgiquest-level. However, these solutions provide very fine-
ing to special communication libraries). grained resource controls but require significant changes

IBM’s workload manager (WLM) [3] is the most com—to current OS designs.

prehensive middleware QoS management solution. WLMMogul's and Ramakrishnan’s work [17] on the receive
provides insulation for competing applications and capdtelock problem has been a great inspiration to the design
ity management. It also provides response time manageQGuard. Servers may suffer from the receive livelock
ment, thus allowing the administrator to simply specifgroblem if their CPU and interrupt handling mechanisms
target response times for each application. WLM wi#ire too slow to keep up with the interrupt stream caused
manage resources in such a way that these target resp&ygacoming packets. They solve the problem by making

14



the OS slow down the interrupt stream (by polling or NIGa setup necessitates changes in the QGuard monitoring
based interrupt mitigation), thus reducing the number afchitecture. Further research is necessary to determine
context switches and unnecessary work. They also shatvether an SNMP-based monitor can deliver sufficiently
that a monitoring-based solution that uses interrupt mitip-to-date server performance digests so that QGuard’s
gation only under perceived overload maximizes througbad-controller can still protect the server from overload
put. However, their paper only targets receive-livelockithout adversely affecting server performance.

avoidance and does not consider the problem of proVidin%nother future direction for the QGuard architecture

QoS differentiation — an important feature for today’s IQKIOU|d be to embed it entirely on server NICs. This would

ternet servers. provide the ease of plug-and-play, avoid an additional net-
work hop (required for a special QGuard frontend), and
5.3 Network-Centric QoS Differentiation reduce the interrupt load placed on the server's OS by
dropping packets before an interrupt is triggered. Another
ee_ldvantage of the NIC-based design over our current pro-

Network-centric solutions for QoS differentiation is b X X .
tqtype is that it would be a completely OS-independent

coming the solution of choice. This is due to the fact th )
they are even less intrusive than OS-based solutions. Tﬁ@&“t'on'

are completely transparent to the server applications andn this paper we have proven that it is possible to

server OSs. This eases the integration of QoS managehieve both protection from various forms of overload

ment solutions into standing server setups. Some netwatlacks and differential QoS using a simple monitor-

centric-solutions are designed as their own independinf control feedback loop. Neither the core networking

network devices [7], whereas others are kernel-modutegle of the OS nor applications need to be changed to
that piggy-back to the server’s NIC driver [19]. benefit from QGuard’s overload protection and differen-

Jgal QoS. QGuard delivers surprisingly good performance

Among the network-centric solutions is NetGuard X ) ;
Guardian [19], which is QGuard's closest relativé VN though it uses only inbound rate controls. QGuard’s

Guardian, which implements the firewalling solution oﬁ'mpl_e design allqws .decoupllng QoS issues from the un-
the MAC-layer, offers user-level tools that allow real-tim&€'1Ying communication protocols and the OS, and frees
monitoring of incoming traffic. Guardian policies can p@PPlications from the QoS-management burden. In the
configured to completely block misbehaving sources. Ulﬂght of these great _beneflts, we believe that inbound traf-
like QGuard, Guadian’s solution is not only static but aldlf controls will gain popularity as a means of server

lacks the QoS differntiation since it only implements afanagement. The next step for future firewall solutions
all-or-none admission policy. is to consider the results of this study and add traffic

shaping policies and a simple overload control-loop sim-
ilar to QGuard’s load-controller. As we have shown in
this paper, these two mechanisms may suffice for the de-

6 The Future of QGuard sign of sophisticated QoS management solutions such as
QGuard’s policy-manager.
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