
1

Banana Tree Protocol, an End-host Multicast Protocol

David A. Helder, Sugih Jamin
University of Michigan

fdhelder, jaming@eecs.umich.edu

Abstract— Multicast is a network technology that
allows a host to efficiently send data to a group of
hosts. IP multicast is one example of multicast that
relies on Internet routers to forward multicast pack-
ets to multicast group members. “End-host mul-
ticast” is another approach where the hosts in the
multicast group form a virtual network and route
multicast data through the graph themselves without
router cooperation.

This paper describes Banana Tree Protocol (BTP),
an end-host multicast protocol we designed and im-
plemented. We have simulated BTP along with other
multicast protocols and theoretically optimal virtual
networks. We find BTP performs well in optimal con-
ditions, but performs poorly in more realistic condi-
tions. We analyze this behavior and find BTP to be
too limited in its allowed graph transformations. We
conclude that an end-host multicast protocol must al-
low nodes to make a wide range of graph transforma-
tions in order to effectively optimize the graph.

Keywords—end-host multicast, multicast

I. INTRODUCTION

A. Motivation

Distributed file sharing (DFS) programs have re-
cently become very popular. Programs like Napster
[1] and Jungle Monkey [2] allow users to download
files from each other in a peer-to-peer fashion. Of-
ten these programs use meta-servers to find other
users or search servers to search for files, but most
notably there is no central file server. The advan-
tage of DFS is that users can download popular files
from nearby hosts. They need not connect to an
overloaded central server. Unfortunately, copyright
issues aside, network administrators are isolating
their networks against Napster because of the large
amount of bandwidth it requires. Multicast would
be an ideal solution to this problem.

Multicast is a network technology that allows a
host to efficiently send data to a group of hosts.
IP Multicast is an implementation of multicast for
IPv4. IP Multicast uses special addresses which the

senders send to and the receivers join to receive the
sent packets. Routers maintain the group lists and
perform the necessary routing.

IP Multicast has several problems: it is not
widely deployed, has a small address space, and can
have long join latencies. Solutions have been pro-
posed to solve some of these problems, however, for
reasons technical and administrative, IP Multicast
has not been globally deployed on the Internet. An-
other approach to multicast is “end-host multicast”
(EM). The idea is that hosts in the multicast group
connect to each other to form a virtual network (i.e.,
a connected graph) The hosts use the virtual net-
work to route multicast data so that it reaches all
members. End-host Multicast does not require sup-
port from routers beyond regular unicast forward-
ing.

The disadvantages of EM are that it requires a
bootstrap process to join the group, may not scale
well beyond a few hundred users, and will likely use
more network resources than IP Multicast. How-
ever, it does solve most of the problems with IP
Multicast: it can be easily deployed since it can
be implemented at the user level, the address space
can be unlimited, and there is often no join latency
problems. EM would be suitable for many appli-
cations that require small multicast groups such as
video conferencing, network games, and distributed
file sharing.

B. Banana Tree Protocol

We have designed and implemented an end-host
multicast protocol called the Banana Tree Protocol
(BTP). BTP was designed for our own distributed
file sharing program, Jungle Monkey (JM) [2]. The
latest version of JM uses BTP. BTP builds multi-
cast trees and primarily provides tree maintenance
and optimization functions. There are two protocols
built on top of BTP that provide additional features
that JM requires: Banana Tree Simple Multicast



2

Protocol (BTSMP) and Banana Tree File Trans-
fer Protocol (BTFTP). BTSMP provides many-to-
many group communication for sending and receiv-
ing packets. JM uses BTSMP to announce files that
the user has available for download. BTFTP pro-
vides one-to-many file distribution. Ideally, BTP
connects the hosts together in a way that does not
waste network resources. For example, if two hosts
are close together in the network, they should be
close together in the virtual network. Using BTP for
peer-to-peer file transfer allows a member to trans-
fer file from a nearby neighbor in the virtual net-
work (ideally, the file is transferred from the closest
host possible). JM uses BTFTP for file transfer.

II. D ESIGN ISSUES

In end-host multicast, the hosts in the multicast
group form a virtual network and route multicast
data through the graph themselves without router
cooperation. We will often refer the virtual network
as the “graph” and hosts in the virtual network as
“nodes”.

A. Design goals

We make the following assumptions to simply
discussion of end-host multicast protocols.
Packets.The unit of data is a packet which contains
an application-level frame. We do not specify a
transport layer. The transport layer may be stream-
based or datagram-based. Hence the protocol does
not need to be reliable. Packets may be lost, du-
plicated, or corrupted. Protocols layered above an
end-host multicast protocol must provide reliability
if it is desired.
Distributed. The protocol must be distributed. The
hosts are solely responsible for maintaining the
graph and fault tolerance. Using a centralized
server is not desirable because it is a single point
of failure and can be a bottleneck.
Dynamic membership.Group membership must be
dynamic. Hosts must be able to join and leave the
group at any time.
Self-correcting, self-optimizing topology.The pro-
tocol must allow hosts to dynamicly modify the
graph to optimize it and to repair graph partitions.
Hosts optimize the graph by adding and removing
links to improve its performance. Performance is
measured by latency, cost, degree, or other metrics.

These metrics are defined and discussed in the next
section. Hosts add links to repair graph partitions.
Graph partitions can occur if a host leaves or fails.
Multiple senders.There are multiple senders in the
multicast group. Alternatively, we could have as-
sumed that there is a single-sender and use multiple
groups when there are multiple senders. However,
this may be inefficient if there are more than a few
senders. If one of the sender sends more than the
others, e.g. in a distant lecture application where
participants may ask an occasional question, we call
the sender that sends more thedominantsender.
Multicast routing only.The protocol provides mul-
ticast routing only. Unicast routing may be added to
run conventional routing algorithms over the topol-
ogy. However, this is not a requirement.
Links are bidirectional.Links in the graph are bidi-
rectional. That is, if nodeA can forward packets to
nodeB, nodeB can forward packets to nodeA. We
will also assume there is only connection between
two connected hosts.
Scaling. The group does not need to scale to more
than a few hundred members.

B. Topology issues

The topology for an end-host multicast protocol
is important because it affects how later design is-
sues are addressed. These issues include routing,
graph optimization, and partition avoidance, detec-
tion, and repair. We will first discuss these is-
sues in section II-B.1 and then discuss how two
topologies—trees and meshes—could address these
issues in section II-B.2.

B.1 Topology design issues

Routing. When a node receives a packet, it must
decide which neighbor(s) to forward the packet to.
Ideally, the packet will reach each host once and
only once.
Optimization.Nodes can modify their connectivi-
ties to optimize the performance of the group. In
this section, we consider three performance met-
rics: cost, latency, and degree. These metrics are
presented in [3]. As usual, these performance met-
rics represent trade-offs in the design space.
1. Latency is the average distance between two

nodes in the virtual network. We define the dis-
tance between two adjacent nodes to be the network



3

round-trip-time between them. We will also call
this distancelink cost. We define the distance be-
tween two non-adjacent nodes to be the sum of the
link costs of the edges in the path through the graph
between the nodes.
Latency matters in interactive applications such as
video conferencing and network games. Some ap-
plications, such as collaborative work applications,
require a low node-to-node latency. In these appli-
cations, a complete graph (i.e., the graph formed by
connecting every node to every other node) would
provide the theoretical best performance. Other ap-
plication require a low sender-to-node latency when
a single sender dominates, such as in live video
broadcasts. In these applications, a tree formed by
a shortest-path-first algorithm based at the sender
would provide the theoretical best performance.
2. Tree Costis the sum of the link costs a packet

travel across. Edges on the graph that a packet does
not cross are not counted. Theoretically, the graph
with the lowest possible cost is a minimum span-
ning tree (MST) built over the complete graph of
nodes (or, an MST with extra, unused edges). Al-
though cost does not easily translate into an easily-
measurable, real-world metric, such as latency, it
does indicate how efficiently a graph uses network
resources. Note that a graph with a low cost may
have a high latency and vice versa.
3. Degreeis the number of nodes a node is con-

nected to in the graph (virtual network). In contrast
to physical network where the maximum degree of
a node is determined by the number of network in-
terfaces it has, the maximum degree of a node on
the virtual network may determined by the band-
width available to the node. There is a trade off
between low latency and a smaller node degree, up
to the capacity of its links. If all nodes have a high
degree, the average number of hops between two
nodes is low and node-to-node latency is low; but
a high-degree node increases the stress on nearby
links and thus increases the chance of congestion.
If all nodes have a low degree, the average num-
ber of hops between two nodes is high. This means
node-to-node latency is high, but a low-degree node
reduces the stress on nearby links and thus lowers
the chance of congestion.
Partitions. A graph that is not connected is said to
have one or morepartitions. An EM protocol is

said to perform partition avoidance if it ensures that
graph transformations preserve the connectedness
of the graph. The protocol performs partition detec-
tion and repair when the protocol identifies a parti-
tion and then adds edges to repair the partition. The
protocol must perform partition detection-repair be-
cause a node may leave or fail and create a partition.
Partition avoidance is not necessary, but may reduce
the need for detection-repair, which may be slow or
costly.

The greatest practical constraint in building an
end-host multicast delivery network is the node de-
gree. A node cannot have hundreds of connections
due to bandwidth limit and the stress placed on
nearby links. Ten connections is a more realistic
number. This then excludes star topologies, com-
plete graphs, and graphs with high degree require-
ment on some or all nodes. In addition, the graph
should not have extremely poor latency. A graph
will have poor latency if it includes long chains.
This means the graph must have some nodes of a
degree greater than two. This then excludes chains
and rings.

B.2 Trees and meshes

We now discuss trees and meshes in relation to
the topology design issues—routing, optimization,
and partitions. A tree is a natural choice for end-
host multicast delivery network because it has the
optimal cost and latency. Nodes in a tree do not
need a large degree. Theoretically, the average de-
gree of a node in a tree is just less than two. We will
also consider a mesh. A mesh is a graph, possibly
with loops, with nodes of low degree.

Routing is simple on a tree because a tree is, by
definition, loop-free. To route a packet, a node only
needs to know who its neighbors are. When the
node receives a packet from a neighbor it forwards
the packet to its other neighbors. The packet cannot
loop and will eventually reach all nodes.

Routing is more difficult on a mesh because a
mesh may have loops. Nodes must ensure that
packets do not loop and must avoid sending pack-
ets that would be duplicates. That is, routing should
be such that each packet is received by each node
once and only once. Nodes could run a conven-
tional routing protocol, such as distance-vector or
link-state. With the resulting routing information,



4

they could then use reverse path broadcast or other
broadcast routing algorithms. Nodes could also
flood the mesh, but allow a neighbor who receives a
duplicate packet to quench future packets. Any so-
lution requires the node to store and maintain some
state for routing.

Optimization can be difficult when using a tree.
A node cannot simply add a link to a new neighbor
because it will form a loop. A node cannot remove
a link because it will create a partition. Instead, a
node must add a link and remove a link simulta-
neously and ensure that this action does not create
a loop or partition. This may require coordination
with several other nodes or knowledge of the topol-
ogy.

While a node on a mesh can easily add links be-
cause loops are allowed, it cannot easily remove
them without the risk of creating a partition. A node
may need to coordinate with several nodes or have
knowledge of the topology. Another strategy would
be to only remove links that are unlikely to create a
partition and perform partition detection and repair
when this fails.

Partition detection is easy on a tree. If a node
leaves or fails, there must be a partition. Repair is
more difficult because a node must add a connec-
tion, but if it adds one to a node in its own partition,
it will only create a loop and not fix the partition. If
more than one node attempts to repair the partition
concurrently, they may create a loop.

Partition detection is more difficult on a mesh.
A node may leave or fail and the graph may still
be connected. A node could act conservatively and
add additional links when a neighbor leaves or fails.
Nodes could also rely on heartbeats to determine
if there is still a path to an arbitrary set of other
nodes. If it does not receive a heartbeat from any
node in the set it attempts to add a link to the node
or replaces the node with another one.

Each topologies has some difficult issues. We ul-
timately choose a tree because routing and partition
detection in a tree are simple. In the next section we
describe our protocol and how we address the most
difficult issue, optimization.

C. Other issues

There are some other issues that must also be
considered in end-host multicast protocol design

whose detailed treatments are outside the scope of
this paper.
Denial of service.We define adenial-of-service at-
tack (DSA)against a multicast group to be a ac-
tion made by a malicious host intended to disrupt
the correct functioning of the multicast group or
any of its participants. Some DSA apply to mul-
ticast in general. Examples of attacks against mul-
ticast groups in general include flooding the group
with packets, forging the sender address of packets,
eavesdropping on a group, sending invalid data.
Because end-host multicast group members also act
as routers, EM is prone to additional attacks. Exam-
ples of these attacks include modifying data, delib-
erately creating loops or partitions, and selectively
forwarding data. Some of these attacks can be pre-
vented using encryption or signatures.
Bootstrap.To join an EM group, the node must
connect to the graph. To connect to the graph, the
host must learn of some nodes in the graph that
it can connect to. In the remainder of this paper,
we assume this functionality is provided by another
protocol.

III. T HE BANANA TREE PROTOCOL

Our end-host multicast protocol, Banana Tree
Protocol (BTP), is based on a tree topology. Each
host in the group is a node in the tree. The node may
be a parent or a child. The host that created the tree
is the root node and has no parent. All other nodes
have a parent. Theparent is the next node on the
path to the root. A node may have multiple children.
A child is the next node on a path away from the
root. A node may be a parent, a child, or both. By
definition, each parent is also another node’s child.
A node’s parent and children are also itsneighbors.
When present, other children of a node’s parent are
its siblings. Nodes can change parent in some situ-
ations. If nodeA changes its parent from nodeB to
nodeC, we say that nodeA switchesto nodeC. By
switching to siblings that are nearby, the tree mini-
mizes the network resources used.

A host joins a group by becoming the child of a
node currently in the tree, e.g. the root node. We
assume the existence of a bootstrapping protocol
by which a host can learn of a node in a multicast
group. A node that joins a multicast group with no
member becomes the root node.



5

To send a multicast packet, a node sends the
packet to its neighbors. When a node receives a
multicast packet from its neighbor it forwards the
packet to its other neighbors.

If a node’s parent leaves or fails, a partition is
formed. The node then reconnects to the root. Note
that this cannot create a loop because the root can-
not be the node’s descendant. If a node’s child fails,
the node does nothing. If the child had children,
they will reconnect to the root themselves. While
there may be a more efficient way to repair a par-
tition, nodes should not leave or fail frequently so
this is adequate.

Optimization is performed through parent switch-
ing, discussed in the next subsection.

A. BTP and optimization

Nodes can switch parents to optimize the tree.
Since the tree must remain loop-free at all times,
we do not allow a node to switch to an arbitrary
node. Otherwise, the node could switch to one of
its descendants and create a loop and partition. In
the previous section, we said that a node can switch
to the root without creating a loop. A node can also
switch to a sibling without creating a loop because
a sibling cannot be a descendant of the node.

The purpose of being able to switch to a sibling
is to optimize the tree for low cost. The node does
this by switching to a sibling closer than its parent
if such a sibling exists. Figure 1 shows an exam-
ple. Part (a) shows three nodes and the distances
between them. NodeR is the root and nodesA and
B are initially its children. The cost of the tree is
6. Part (b) shows nodeA switching to nodeB. The
cost of the new tree is 4. Note that nodeB could
have switched to nodeA instead. To measure the
effectiveness of various switching mechanisms pre-
sented in Section IV-B, we define aclosenessmet-
ric: C = ds=dc, whereds is the distance from a
node to the closest node found by switching, anddc
is the distance from the node to the closest possible
node in the tree. Distance is the estimated round
trip time between two hosts.

Alternatively, nodes could optimize for low la-
tency by not switching frequently in order remain
close to the root. Because the application we had in
mind when we designed BTP does not require low
latency multicast groups, we choose to optimize the

A B

R

A B

R

A B

R

3 3

1

(a)

(b)

Fig. 1. Sibling switching in order to lower tree cost

tree for cost.

When switching to a sibling, care must be taken
to ensure that when the switch occurs that 1) the sib-
ling is still the sibling and that 2) the sibling is not
trying to switch to another node at the same time.
We now discuss these two cases in detail.

Assume the node has received a list of its siblings
from its parent and has found a sibling closer than
its parent. For example, it may find this sibling by
pinging each sibling or use an Internet distance ser-
vice like IDMaps [4]. We will call this sibling the
potential parent. When a node wants to switch to a
potential parent, it must first send a switch request
to the potential parent and wait for an acceptance
or rejection message. To ensure that siblings do not
try to switch to each other at the same time, a node
trying to switch to a potential parent will always re-
ject a request from the potential parent to switch to
it. Note, however, this policy is not sufficient to en-
sure loop freedom. Consider the case when node
A tries to switch to its siblingB. There could be a
third siblingC to whichB is switching at the same
timeA is switching toB andC is switching toA
(see Figure 2). To prevent such loops from happen-
ing, we adopted the policy that a node will rejectall
attempts at switching if it is itself in the process of
switching parents. This is a conservative policy in
that there are cases where simultaneous switching
can take place without forming a loop.



6

A B C

P

A B C

P

Fig. 2. Simultaneous switching creates loop

A B C

P

A

B

C

P

A

B

C

P

A

B

C

P

Fig. 3. Switching with outdated information cre-
ates loop

In addition, when a node attempts to switch to
a potential parent, it must ensure that the potential
parent is still its siblings. For example, suppose that
nodesA, B, andC are siblings in the tree. Subse-
quentlyB switches toC andA switches toB. If
C then switches toA, a loop is formed (see Fig-
ure 3). The cause is thatA andC acted on out-of-
date information. Hence when a node requests to
switch to another, it must include its current parent
information in the switch request. Before accept-
ing the switch, the potential parent checks that the
node and itself are actually sharing the same parent,
and therefore siblings. This is again a conservative
policy. For example, in the above scenario, afterB
switched toC, A will be prevented from switching
to B even though no loop would be formed by the
switch.

B. BTFTP and BTSMP

Banana Tree Simple Multicast Protocol (BTSMP)
and Banana Tree File Transfer Protocol (BTFTP)
are built on top of BTP.

BTSMP provides many-to-many group commu-
nication for sending and receiving packets. BTSMP
is mostly a wrapper around BTP provided to make
BTP easier to use for the programmer. The only fea-
ture BTSMP adds to BTP is caching. Each node can
keep a cache of the last few packets sent or received.
When a new node joins the tree, it can request the
contents of the cache from its parent. Caching im-
proves a host’s perceived join latency which is use-
ful for some applications.

BTFTP provides reliable, one-to-many file trans-
fer. It is assumed that the root has the file. A host
that wants the file joins the tree and switches par-
ents to find a nearby host. It then downloads the file
from its parent.

IV. EVALUATION

In this section we evaluate the performance
of BTP through simulations. BTP provides two
functions using two higher-level protocols: many-
to-many multicast packet communication from
BTSMP and one-to-many file transfer from BTFTP.
We evaluate how well BTP provides each function
separately.

The metrics we use to evaluate BTP for many-to-
many packet communication are cost, latency, and
degree. These metrics were defined and discussed
in section II-B. Because the application we had in
mind when we designed BTP does not require low
latency multicast groups, we choose to optimize for
cost over latency.

The metric we use to evaluate BTP for one-to-
many file transfer is closeness,C as defined in Sec-
tion III-A. If C is close to one, the host will be trans-
ferring the file from a close enough host.

We developed a multicast tree simulator called
TREESIM. In our simulations, we assume there is
a dominant sender. The simulator randomly selects
this sender and a number of group members.

TREESIM uses networks generated by Inet. The
Inet topology generator generates AS (Autonomous
System) level random topologies following the ob-
served characteristics of the Internet reported in [5].
A description of the Inet topology generator is pre-
sented in [4]. When group members are selected, a
short edge is added to the topology to simulate the
last few hops to the host within the AS.

In each experiment, we simulated groups of be-
tween 10 and 200 members (stepping by 10). We
assume each group has a dominant sender, which
we will call the source. For each group size, we
ran 100 rounds with a different source and group in
each round. For each statistic, we took the average



7

over all runs for a given group size.

A. BTP as many-to-many packet communication

In our simulations of BTP used for many-to-
many packet communication, we simulated other
types of trees for comparison.

End-host minimal spanning tree (endhost-MST).An
endhost-MST is the minimal spanning tree built
over a connected graph of all the nodes in the group.
The cost of an edge is the distance between the two
nodes through the network. An endhost-MST will
have the lowest cost of all EM trees.
Net shortest path first (net-SPF).A net-SPF tree is
formed by running the shortest-path-first algorithm
on the group using all the edges in the physical (as
opposed to virtual) network. This is the type of tree
that is formed by Internet routers building source-
based multicast trees.
BTP-simultaneous.A BTP-simultaneous tree is a
BTP tree where all members join at once. At the
start of the tree building process, all nodes start
by connecting to the source. Subsequently, nodes
switch parents until a fix-point is reached.
BTP-incremental.A BTP-incremental tree is a
BTP tree where members join one at a time. For
each node, we connect it to the source separately
and then let nodes switch. When a fix-point is
reached, the next node is connected to the source
and the process is repeated.
Switch-any.A switch-any tree is like a BTP tree,
except that a node can switch to any node as long
as it does not form a loop. Yoid, discussed in Sec-
tion V, uses switch-any. We allow nodes to switch
until a fix-point is reached.

For each tree, we measures its tree cost, average
latency, and maximum number of children. Tree
cost is the sum of the link costs of each link in the
tree. The cost of a link on the tree is the distance
between the two end nodes on the physical network
(i.e. the unicast latency). Average latency is the av-
erage latency between the source and a member.
Maximum number of children is the degree of the
node with the most children. Note that, in a tree,
the degree of a non-root node is one more than the
number of children it has.

1

1.2

1.4

1.6

1.8

2

2.2

0 20 40 60 80 100 120 140 160 180 200

C
os

t r
at

io
 (

ov
er

 e
nd

ho
st

-M
S

T
)

Number of group members

Tree cost ratio

BTP incremental
BTP simultaneous

net-SPF
switch-any

Fig. 4. Ratio of cost of various trees to the cost of
endhost-MST

A.1 Cost

The best case for cost occurs when the BTP tree
is a minimal spanning tree. We expect BTP to ap-
proximate a MST because it tries to use low cost
links.

In our simulations, we measure the ratio of the
cost of various trees to the cost of a minimal span-
ning tree. Figure 4 shows the results.

BTP-simultaneous is close to the cost of a MST,
but BTP-incremental performs poorly. In BTP-
simultaneous, nodes join the tree simultaneously so
are initially all siblings. Since all nodes are sib-
lings, nodes are more likely to initially find a very
close parent. In contrast, in BTP-incremental a join-
ing node has only a few siblings and so is limited
in its initial choice of potential parents. Even if it
switches several times, the node will have had fewer
sibling in total than a node in the BTP-simultaneous
simulation.

Unfortunately in practice BTP will be used more
like BTP-incremental than BTP-simultaneous be-
cause most applications allow members to join over
a period of time (this was even one of our goals).
The lesson learned is that to effectively optimize
for cost, a node needs to be able to examine a wide
variety of nodes. A node should not be limited to
switching to nodes at the same level of the tree only.

A.2 Latency

A net-SPF tree provides the theoretical best av-
erage latency. Although we optimize for cost, we



8

0

2

4

6

8

10

12

14

16

18

0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 la
te

nc
y 

(o
ve

r 
S

P
F

)

Number of group members

Tree average latency ratio

BTP incremental
switch-any

BTP simultaneous
endhost-MST

Fig. 5. Ratio of average latency of various trees to aver-
age latency of net-SPF

expect BTP to have a reasonable average latency.
In our simulations, we measure the ratio of the

average latency of various types of trees to the av-
erage latency of an net-SPF tree. Figure 5 shows
the results.

Switch-any trees have greater latencies than
BTP-simultaneous trees because nodes in the tree
are more likely to find a closer parent, switch, and
thus create a taller tree. Because a BTP tree consid-
ers fewer potential parents, it is less likely to find a
better parent and switch, so a BTP tree is shorter.

However, BTP-incremental trees have consider-
ably more latency than both switch-any and BTP-
simultaneous trees. We suspect this is not because
it switches more, but because the links used have a
higher cost. This explanation is also supported by
the cost experiment above.

A.3 Number of children

The best case for maximum degree occurs when
the tree is a chain of nodes. The worst case for max-
imum degree occurs when the root has all nodes as
its children. We want to avoid both these extreme
cases. A chain of nodes has poor latency and a star
topology puts considerable strain on the root. Simu-
lations show that these cases does not occur in prac-
tice.

Figure 6 shows the maximum number of children
of various types of trees observed in our simula-
tions. In all cases, the maximum degree is accept-
ably low. Note that theoretically, the average degree
of any tree will be just less than two.

3

4

5

6

7

8

9

10

0 20 40 60 80 100 120 140 160 180 200

M
ax

im
um

 n
um

be
r 

of
 c

hi
ld

re
n

Number of group members

Tree maximum number of children

BTP-simultaneous
endhost-MST

switch-any
BTP incremental

Fig. 6. Maximum number of children for various trees

B. BTP as one-to-many file transfer

In this section, we simulate BTP used for one-
to-many file transfer. When used in this way, a
node joins a tree where all members have the file.
It quickly switches parents until it cannot switch to
a closer parent. It then downloads the file from its
parent.

We look a three different types of BTP trees. In
the first two types, parents have a target minimum
number of children of 4 and 8. If a node’s parent
does not have the target minimum number of chil-
dren, it switches. We set a target minimum num-
ber of children so that switching nodes will examine
more nodes before switching. This will increase the
chance that it finds a close node. In the third type,
there is no minimum. For comparison, we also con-
sider the case when a node does not switch at all
and downloads the file from the root.

In evaluating the different types of BTP trees, we
use the closenessC metric defined in Section III-A.
Figure 7 shows the results of our simulations. Hosts
that use BTP to find a close host will find a consid-
erably closer host than the root. Setting a minimum
number of children improves the closeness. This is
because nodes have more children. When a node
examines siblings when trying to switch, it exam-
ines more nodes, so is more likely to find a very
close node.

V. RELATED WORK

In this section we describe several end-host mul-
ticast protocols we are aware of.



9

1

1.5

2

2.5

3

3.5

4

4.5

0 20 40 60 80 100 120 140 160 180 200

A
vg

 fo
un

d 
di

st
an

ce
 / 

A
vg

 b
es

t d
is

ta
nc

e

Number of group members

search found-to-best ratio

Download from root
BTP incremental

BTP incremental 4
BTP incremental 8

Fig. 7. Ratio of distance to BTP found host to distance
to closest host

A. Yoid

Yoid[6] is a feature-rich end-host multicast pro-
tocol and intends to support a wide range of appli-
cations that require multicast. Yoid builds both a
tree and a mesh. The tree is used for normal content
transfer and the mesh is used for control data, fault
tolerance, and partition detection. The root is not
fixed—members of the tree can elect a new root if
the root fails or if the network is partitioned. BTP is
much simpler than Yoid, but BTP may not support
as wide a range of applications as Yoid is intended
for.

In Yoid, a node can switch to any other node,
but much more work is required to do this than
a simple switch in BTP. In the common case, a
node will send an intent-to-join (ITJ) message to
the prospective parent, who will then forward the
message through the tree back to the root. The
purpose of this message is to detect loops. If the
message reaches the node before it reaches the root,
then there must be a loop. Also, intermediate nodes
must maintain a graph of pending ITJ’s in order to
detect a potential loop formation caused by multi-
ple, concurrent switches. A node can also make an
emergency switch if its parent goes down. In this
case, it immediately switches to another node and
then sends a trace message to the root. If the node
receives this message, it knows that it is its own an-
cestor, so there must be a loop.

B. Narada

Narada [7] creates a mesh and then builds a de-
livery tree from the mesh using an SPF algorithm.
Members add and remove edges to optimize the
mesh for node-to-node latency, while BTP does this
to optimize for cost. Partition detection in Narada
relies on timeouts. In BTP, partitions are detected
and repaired immediately. Narada uses heuristics
to maintain high connectivity, which lowers the
chance of a partition when a node fails. Simula-
tions show that Narada creates a tree with reason-
able bandwidth, delay, and network stress.

C. AMRoute

AMRoute [8] is intended for ad-hoc wireless net-
works. Like Narada, it creates a mesh and then
uses an SPF algorithm to build the tree. How-
ever, it requires the ability to broadcast packets with
a bounded TTL (time-to-live) to create the initial
mesh, so it would not directly translate to an In-
ternet end-host multicast protocol. AMRoute trees
have “logical cores,” where new members can ren-
dezvous, and these cores can migrate. Nodes cannot
switch parents in AMRoute, instead, the tree will
occasionally be reformed from the mesh.

VI. CONCLUSION

We have designed BTP, an end-host multicast
protocol. Our simulations show that while it per-
forms well in ideal situation, it does not perform
that well in more realistic scenarios. Further in-
vestigation shows that a self-optimizing end-host
multicast protocol needs to be able to perform a
wide range of graph transformations in order to ef-
fectively optimize the graph. We hope to redesign
BTP to allow nodes larger degree of freedom in op-
timization.

REFERENCES

[1] “Napster homepage,” 2000, http://www.napster.com.
[2] “Jungle Monkey homepage,” 2000,

http://www.junglemonkey.net.
[3] L. Wei and D. Estrin, “The trade-offs of multicast trees

and algorithms,” 1994.
[4] Sugih Jamin, Cheng Jin, Yixin Jin, Dan Raz, Yuval

Shavitt, and Lixia Zhang, ““on the placement of internet
instrumentation”,”Proc. of IEEE INFOCOM, Mar. 2000.



10

[5] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On Power-
Law Relationships of the Internet Topology,”Proc. of
ACM SIGCOMM ’99, pp. 251–262, Aug. 1999.

[6] Paul Francis, “Yoid: extending the internet multicast ar-
chitecture,” Tech. Rep., NTT, Apr. 2000.

[7] Yang-hua Chu, Sanjay Rao, and Hui Zhang, “A case
for endsystem-only multicast,”Proc. of ACM SIGMET-
RICS’00, June 2000.

[8] Mingyan Liu, Rajesh R. Talpade, and Anothony McAuley,
“Amroute: adhoc multicast routing protocol,” Tech. Rep.,
ISR, 1999.


