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Abstract

Using a very general symbolic decomposition template for logic synthesis we show how to pre-
compute libraries for the decomposition patterns implied by the function structure. When cou-
pled with decomposition the outfitted libraries are intended to produce improved synthesis
quality. We illustrate the pre-computation process for functions that are symmetric in some
inputs. For these functions we derive a set of fan-in-bounded cell libraries that guarantee a
reduction in the width of the circuit being synthesized with each successive decomposition step.

I.  Introduction and Motivation

In this report we take a fresh look at functional decomposition, and show how it can be used to infer app

ate decomposition patterns, and their underlying libraries, from a function structure. Functional decomposit

been studied by many authors. The original concepts were due to Ashenhurst [1], Curtis [8], and Roth an

[16]. These early investigations were mostly concerned with the existence of certain types of decomposition

than the development of scalable synthesis algorithms. More recently, several authors have re-visited th

work for application in the limited domain of FPGA synthesis [13, 15, 19, 20, 23]. Practical general-purpose

thesis approaches, based on fast algebraic division algorithms, emerged in the early eighties [4, 22]. The

motivation for these approaches was efficient decomposition and realization of large random logic function

two-stage process: technology-independent restructuring followed by binding to a specified library of prim

gates. This methodology enjoyed a great deal of success and is incorporated in most commercial synthesis

use today.

The central idea of this report is based on the premise that functional specifications have globalstructural

attributes, that can be profitably used to induce a favorable structural implementation, while reducing the ru

complexity of the synthesis process. These attributes can have a profound effect on the suitability of one de

sition type over another. They can be further utilized to study requirements on the functionality of library prim
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to make a particular decomposition type effective. Thus, by judiciously coupling the decomposition type w

library using structural attributes of a function we are able to merge the traditionally separate technology-in

dent and technology-dependent synthesis stages. The effect of the integration leads to improved synthesis

reflecting the global functional properties in the final circuit structure.

We begin in Section II by presenting a very general symbolic model of functional decomposition and

how it can be “solved” to determine all feasible decompositions. In Section III, we develop a model to pre-co

libraries under a set of practical constraints that are imposed under existing semiconductor technologie

model is applied in Section IV to pre-compute symmetric libraries. Section V concludes the paper with sugge

on further extensions of this methodology.

II.  Symbolic Formulation of Decomposition

In this section we propose a symbolic model for functional decomposition that allows us to pose and a

several key questions related to scalable synthesis, including the existence of a decomposition, and the exis

universal primitives that allow the decomposition of certain classes of functions.

A. Generic decomposition template

Given ann-variable Boolean function , andk n-variable Boolean functions , we say tha

f has ann-to-k decomposition with respect to if and only if there exists ak-variable function

such that

(1)

A pictorial representation of this decomposition template is shown in Fig. 1; will be referred to as thecomposi-

tion function, whereas will be called thedecomposition functions.These functions introduce intermedi

ate variables into the network that serve as the support of the composition function. The decomp

is support-reducingif . The k decomposition functions can be viewed as a single multi-output decompos

function , and the intermediate variables can be represented by ak-vector

.

x f

Fig. 1. Generic decomposition step

…
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g1 x( ) … gk x( ), , h

f x( ) h g1 x( ) … gk x( ), ,( )=
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The decomposition template in (1) is sufficiently general to encompass all types of functional decompo

described in the literature, including simple and complex disjunctive and non-disjunctive decompositions [

we show later, support-reducing decompositions in terms of fan-in bounded decomposition functions are p

larly attractive from a practical perspective. Before such restrictions are imposed, though, we show in the r

der of this section the relations that must exist between the composition and decomposition functions for e

(1) to hold.

B. Computation of composition function

To determine if the decomposition in (1) exists, we can solve for in terms of and . The s

tion, in general, is not unique and can be expressed as a function interval [5]. The interval solution for

sponds to a partially specified function, whose flexibilities are modeled in terms of the following function:

(2)

Originally introduced by Cerny [7] as anoutput characteristic function,(2) captures the consistent input-outpu

behavior of a circuit. In recent years output characteristic functions have been used to describe the flexibil

arises in design optimization. Viewed as Boolean relations, Brayton and Somenzi [2] described how they

used to compute the flexibility in optimizing hierarchical designs. Savoj [18] has used the output charact

function to describe the maximum flexibility in the optimization of Boolean networks.

Function represents the constraints introduced by the decomposition functions which can viewe

care setwhen selecting . Indeed, for each point from this set the value of must agree wit

value of ; in all other points outside of we have a choice defining values of arbitrarily. T

flexibility in selecting can be described by the means of a partially specified function which iden

all valid selections for . We perform derivation of in two steps: first, function is defined wit

the extended domain of function , and then its domain is reduced to obtain .

In our first step of reasoning we show formally that can be modeled in terms of the function inte

Formal derivation of this result is given below:

(3)

The last assertion in the above derivation corresponds naturally to the interval:

(4)

h y( ) g x( ) f x( )

h y( )

c x y,( ) y1 g1 x( )≡( )… yk gk x( )≡( )=

c x y,( )

h y( ) x∗ y∗,( ) h y∗( )

f x∗( ) c x y,( ) h y( )

h y( ) H y( )

h y( ) H y( ) H x y,( )

c x y,( ) H y( )

H x y,( )

c x y,( ) H x y,( ) f x( )≡( )→
c x y,( ) H x y,( ) f x( )⊕( )
c x y,( ) H x y,( ) f x( ) H x y,( ) f x( )⋅+⋅( ) 0
c x y,( ) H x y,( )⋅ f x( ) c x y,( ) H x y,( ) f x( )⋅ ⋅+⋅ 0
c x y,( ) f x( ) H x y,( ) 0=⋅ ⋅ c x y,( ) f x( ) H x y,( ) 0=⋅⋅
c x y,( ) f x( )⋅ H x y,( )≤( ) H x y,( ) f x( ) c x y,( )+≤( )∧⇔

∧⇔
=⇔

=⋅⇔
⋅⇔

H x y,( ) c x y,( ) f x( )⋅ c x y,( ) f x( )+,[ ]=
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The dependence of on the variables in the above interval makes the solution unconditionally cons

implying that for a given there is always a non-empty . Note that when , equation

reduces to ; for , on the other hand, the equation becomes the interval [0, 1] denoting an ar

function.

The dependence on in is not consistent with the decomposition template in (1) however, – th

plate restricts composition function to be vacuous in the variables, while does not. To make

vacuous in the variables we must ensure that for any given assignment , values of agree

assignments . This requirement is reflected in the following relation

(5)

or equivalently

(6)

The universal quantification of can be distributed inside of the interval relying on the identity for abstra

variable from an interval [12]:

(7)

The existential and universal quantification of in the interval is consistent with the earlier result, given in [5

4.9.1], for finding redundant variables in a partially specified function.

The existential and universal quantification ofx from the lower and upper interval bounds corresponds to

removal of these variables from the support of possibleh to make it a function of just intermediate variablesy,

thereby reflecting the structure of Fig. 1. If the interval (7) is non-empty, then there is a Boolean function

is vacuous in , and which belongs to this interval. We say that decomposition exists when the interval i

empty; otherwise the decomposition does not exist. In the examples below we illustrate how choices on the

position functions can effect the existence of decomposition.

Example 2.1 Let , , , and . The

input-output characteristic function of the decomposition functions is:

Using this function we compute the lower bound for the interval (7):

Similarly for the upper bound:

H x y,( ) x

c x y,( ) H x y,( ) c x y,( ) 1=

f x( ) c x y,( ) 0=

x H x y,( )

h x H x y,( ) H x y,( )

x y∗ H x y,( )

x∗

H y( ) xH x y,( )∀=

H y( ) x c x y,( ) f x( )⋅( ) c x y,( ) f x( )+( ),[ ]∀=

x

H y( ) x c x y,( ) f x( )⋅( )∃ x∀ c x y,( ) f x( )+( ),[ ]=

x

h

x

f x1 x2,( ) x1 x2⊕= g1 x1 x2,( ) x1= g2 x1 x2,( ) x1 x2+= g3 x1 x2,( ) x2=

c x y,( ) y1 x1≡( ) y2 x1 x2+≡( ) y3 x2≡( )⋅ ⋅=

x c x y,( ) f x( )⋅( )∃ y1y2y3 0 y1y2y3 1 y1y2y3 1 y1y2y3 0⋅+⋅+⋅+⋅=

x c x y,( ) f x( )+( )∀ y1 y2 y3 0+ + +( ) y1 y2 y3 1+ + +( ) y1 y2 y3 1+ + +( ) y1 y2 y3 0+ + +( )⋅ ⋅ ⋅=
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These bounds define an interval of sixteen composition functions which can be equally selected for the d

position of .

For instance, and are two functions from this inte

val that represent two possible decompositions off as can be readily verified by substitution in (1). ■

Example 2.2 Let , , and . TheH

interval in this case is:

which is empty since its upper bound is less than its lower bound. Thus,f cannot be decomposed in terms of th

given decomposition functions. If, however, the first decomposition function is replaced

, then (1) yields the following interval:

representing a unique composition function. ■

In general, it is always possible to find decomposition functions that make the interval in (7) non-empt

example, when the decomposition functions can be selected by assuming that at least of these fu

are trivial pass through wires corresponding to the support of . The remaining decomposition functions

selected arbitrarily since their output signals can be assumed redundant in . Similarly, when dec

sition functions always make the interval non-empty letting one of them correspond to . Such trivial sele

of decomposition functions have little practical value though, and additional constraints on decomposition

tions must be imposed to make decomposition useful in synthesis. These additional constraints, and their i

tion on synthesis quality are addressed in this work.

C. Computation of decomposition functions

Equation (7) can be used to compute sets of decomposition functions that will guarantee the existen

decomposition according to the template in (1). Computation of such decomposition functions forms the s

point for the problem of library construction which we discuss later in Section III. To solve for the decompos

functions, we begin by noting that an arbitraryn-variable Boolean function can be expressed in terms of bin

coefficients that denote the function value at each point in its variable space. Thus, we can express  

(8)

h

f

H y1y2y3 y1y2y3+ y1y2 y1y2 y2y3 y2y3+ + +,[ ]=

h1 y1 y2 y3, ,( ) y1y3 y1y2+= h2 y1 y2 y3, ,( ) y1y2 y2y3+=

f x1 x2 x3, ,( ) x1 x2 x3⊕ ⊕= g1 x1 x2 x3, ,( ) x1 x2+= g2 x1 x2 x3, ,( ) x3=

H y1 y2+ y1y2,[ ]=

g1 x1 x2 x3, ,( ) x1 x2⊕=

H y1 y2⊕ y1 y2⊕,[ ]=

k

k n≥ n

f

h y( ) k n<

f x( )

2
n

gj x( )

gj x( ) γ ij mi x( )⋅
i 0=

2n 1–

∑=
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where and is the minterm on whose bits form decimal value . Using to den

the matrix of coefficients representing thek decomposition functions, the care set can be re-writt

as:

(9)

A decomposition exists if the interval (7) is non-empty, landing the following derivation:

Substituting (9) in the last step of the above derivation, and universally quantifyingy, we have

(10)

which is a Boolean function that encodes all feasible decomposition functionsg. The universal quantification of the

variables in (10) ensures that computed decomposition functions remain valid in the decomposition for a

binations of their output values.

Example 2.3 We apply formula (10) to compute 3-to-2 decomposition solutions for the

 function. The space of two 3-input decomposition functions is encoded as:

Together with this function is then used to compute formula (10). For the part corresponding to the lower

in the formula we have:

Similarly for the upper bound part:

Dropping 0-terms in above two expansions computation of function  now has form:

γ ij 0 1,{ }∈ mi x( ) x i Γ γ ij[ ]≡

2
n

k× c x y,( )

C x y Γ, ,( ) yj γ ij mi x( )⋅
i 0=

2n 1–

∑≡
j 1=

k

∏=

x c x y,( ) f x( )⋅( )∃ x∀ c x y,( ) f x( )+( ),[ ]
x∃ c x y,( ) f x( )⋅( ) x∀ c x y,( ) f x( )+( )≤
x∃ c x y,( ) f x( )⋅( ) x∀ c x y,( ) f x( )+( )+

⇔
⇔ 1=

G Γ( ) y x∃ C x y Γ, ,( ) f x( )⋅( ) x∀ C x y Γ, ,( ) f x( )+( )+( )∀=

y

f x1 x2 x3, ,( ) =

x1 x2 x3⊕ ⊕

C x y Γ, ,( ) y1 γ01x1x2x3 γ11x1x2x3 γ21x1x2x3 γ31x1x2x3
γ41x1x2x3 γ51x1x2x3 γ61x1x2x3 γ71x1x2x3

+ + + +
+ + +

(
)

≡(
)

=

y2 γ02x1x2x3 γ12x1x2x3 γ22x1x2x3 γ32+ x1x2x3+
γ42x1x2x3 γ52x1x2x3 γ62x1x2x3 γ72x1x2x3+ + +

+ +(
)

≡(
)

×

f

x∃ C x y Γ, ,( ) f x( )⋅( ) y1 γ01≡( ) y2 γ02≡( ) 0⋅ y1 γ11≡( ) y2 γ12≡( ) 1 +⋅⋅+⋅=

y1 γ21≡( ) y2 γ22≡( ) 1⋅ y1 γ31≡( ) y2 γ32≡( ) 0⋅
y1 γ41≡( ) y2 γ42≡( ) 1⋅ y1 γ51≡( ) y2 γ52≡( ) 0⋅
y1 γ61≡( ) y2 γ62≡( ) 0⋅ y1 γ71≡( ) y2 γ72≡( ) 1⋅ ⋅+⋅

+⋅+⋅
+⋅+⋅

x∀ C x y Γ, ,( ) f x( )+( ) y1 γ01⊕( ) y2 γ02⊕( ) 0+ +( ) y1 γ11⊕( ) y2 γ12⊕( ) 1+ +( )⋅ ⋅=

y1 γ21⊕( ) y2 γ22⊕( ) 1+ +( ) y1 γ31⊕( ) y2 γ32⊕( ) 0+ +( )
y1 γ41⊕( ) y2 γ42⊕( ) 1+ +( ) y1 γ52⊕( ) y2 γ52⊕( ) 0+ +( )
y1 γ61⊕( ) y2 γ62⊕( ) 0+ +( ) y1 γ71⊕( ) y2 γ72⊕( ) 1+ +( )

⋅ ⋅
⋅ ⋅
⋅

G Γ( )
Page 6
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Quantifying out  we have:

This is a function of 1812 ON-set minterms, each corresponding to a feasible 3-to-2 decomposition. Howeve

99 of them define non-trivial (i.e. with no decomposition function, or its complement, corresponding to ) de

position solutions invariant under complementation of the decomposition functions. This number can be

reduced by discarding solutions whose decomposition functions have redundant signals. Some of the more

ing solutions are:

Example 2.4 Similarly to the previous example, application of (10) to yields also

3-to-2 non-trivial decomposition solutions invariant under output complementation. We list some of them b

Equation (10) encompasses all the decomposition solutions for a given functionf. To find the decomposition

solutions for an arbitraryn-variable functionf, we introduce a vector of encoding coefficients t

express the universe ofn-variable functions as:

(11)

Note that a complete assignment to represents a particular completely specified function ; partial assig

to  denote families of functions. Re-writing (10) in terms of  we obtain:

(12)

Solution A: Solution B: Solution C:

Solution A: Solution B: Solution C:

■

G Γ( ) y[ y1 γ11⊕( ) y2 γ12⊕( )+( ) y1 γ21⊕( ) y2 γ22⊕( )+( )
y1 γ41⊕( ) y2 γ42⊕( )+( ) y1 γ71⊕( ) y2 γ72⊕( )+( )

⋅ ⋅
⋅

∀=

y1 γ01⊕( ) y2 γ02⊕( )+( )+ y1 γ31⊕( ) y2 γ32⊕( )+( )
y1 γ52⊕( ) y2 γ52⊕( )+( ) y1 γ61⊕( ) y2 γ62⊕( )+( ) ]

⋅ ⋅
⋅

y

G Γ( ) γ11 γ12+( ) γ21 γ22+( ) γ41 γ42+( ) γ71 γ72+( )⋅ ⋅ ⋅
γ01 γ02+( ) γ31 γ32+( ) γ52 γ52+( ) γ61 γ62+( )⋅ ⋅ ⋅

+(
)

=

γ11 γ12+( ) γ21 γ22+( ) γ41 γ42+( ) γ71 γ72+( )⋅ ⋅ ⋅
γ01 γ02+( ) γ31 γ32+( ) γ52 γ52+( ) γ61 γ62+( )⋅ ⋅ ⋅

+(
)

×

γ11 γ12+( ) γ21 γ22+( ) γ41 γ42+( ) γ71 γ72+( )⋅ ⋅ ⋅
γ01 γ02+( ) γ31 γ32+( ) γ52 γ52+( ) γ61 γ62+( )⋅ ⋅ ⋅

+(
)

×

γ11 γ12+( ) γ21 γ22+( ) γ41 γ42+( ) γ71 γ72+( )⋅ ⋅ ⋅
γ01 γ02+( ) γ31 γ32+( ) γ52 γ52+( ) γ61 γ62+( )⋅ ⋅ ⋅

+(
)

×

f

g1 x1 x2⊕= g1 x1x2 x1x3+= g1 x1x2=

g2 x3= g2 x1x3 x1x2+= g2 x1x3 x2x3 x1x2x3+ +=

f x1 x2 x3, ,( ) x1x2 x1x
3

+=

g1 x1 x2+= g1 x1x2= g1 x1x2=

g2 x1x
3

= g2 x1x3 x2x3+= g2 x1x3=

2
n Φ ϕi[ ]≡

F x Φ,( ) ϕi mi x( )⋅
i 0=

2n 1–

∑=

Φ f

Φ F x Φ,( )

G Φ Γ,( ) y x∃ C x y Γ, ,( ) F x Φ,( )⋅( ) x∀ C x y Γ, ,( ) F x Φ,( )+( )+( )∀=
Page 7
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which is a Boolean function that encodes all feasible decomposition functionsg for any given functionf. We show

next how this encoding function can be used to derive libraries of primitive decomposition functions suitab

large-scale synthesis.

Example 2.5 We can use equation (12) to compute 3-to-2 decompositions for all 3-variable functions. The un

of these functions can be encoded as:

Using this encoding in (12) we can identify all 3-to-2 decompositions for every assignment to the var

Indeed, computation of shows that there are non-trivial decompositions for every function in

induced by the assignments to variable. In particular, assignments and to

variables induce Example 2.3 decomposition solutions computed for

and , respectively. Note that assignments to that assignments to the variables for the two fun

have the same number of ’s and ’s, implying their equivalent structures. This structural equivalence pr

explanation for the equal number of decompositions generated in Example 2.3 for these two functions.■

III. Enforcing Practical Decomposition Constraints

Although decomposition template in (1) is very general, the associated computational complexity and l

qualitative constraints makes its use difficult in scalable synthesis. In this section we address the complexit

lems by imposing practical fan-in constraints on the decomposition functions. These constraints are reflecte

modified decomposition template, which is used to define appropriate decomposition patterns deduced

function structure.

A. Fan-in constraint

Equation (10) requires, in the worst case, the construction of a Boolean characteristic function of e

ing variables. Our first decomposition constraint for the equations (10) has therefore an objective of reducing

nential in number of encoding variables . We satisfy this objective by requiring the support of the

functions to be bounded by , where is the maximum allowable fan-in of the underlying implementation

nology; in current CMOS processes, is typically four. When the support of each function in is known

is bounded by , we are effectively eliminating encoding variables in (11), thereby reducing expo

tially its computational effort. In general, the fan-in bound restriction on the decomposition functions introd

additional algorithmic component whose goal is to identify suited support for the functions of .

F x Φ,( ) ϕ0 x1x2x3 ϕ1 x1x2x3 ϕ2 x1x2x3 ϕ3 x1x2x3
ϕ4 x1x2x3 ϕ5 x1x2x3 ϕ6 x1x2x3 ϕ7 x1x2x3⋅+⋅+⋅+⋅+

⋅+⋅+⋅+⋅=

Φ

G Φ Γ,( ) F x Φ,( )

Φ 011010001[ ] 00110101[ ]

Φ ϕ0ϕ1ϕ2ϕ3ϕ4ϕ5ϕ6ϕ7[ ]≡ x1 x2 x3⊕ ⊕

x1x2 x1x
3

+ Φ

0 1

2
n

k⋅

n Γ g x( )

s s

s g x( )

s k 2⋅ n s–

g x( )
Page 8
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Although for the fan-in of at least 2 it is always possible to find decomposition functions (e.g. trivial wire f

tions) which make computation (10) non-empty, the number of such decomposition functions can vary g

depending on a functional structure of a given . In general, the number of decomposition functions requ

make (10) non-empty increases significantly as the fan-in constrain becomes stricter. The example below ill

the effect of fan-in constraint on the existence of decomposition.

Example 3.1 Suppose that we would like to decompose function of a second sum bit in an -bit adder with

decomposition functions. This function is given in terms of the following factored form:

Let encode the space of two decomposition functions (as in Example 2.3). We can then compute

of all decomposition solutions for using (10). Indeed, function , computed in (10), cont

non-trivial pairs of decomposition functions assuming invariance under complementation of

outputs. Restricting the fan-in of these solutions to four, we find that there is total of 795 solutions. Further r

tion of three on the fan-in shows only four such solutions. Their decomposition functions are listed in the

below:

The general decomposition template in the presence of a fan-in bound  has the form:

(13)

where ’s are composed from the -subsets of . When the decomposition variables for each are g

us we can now use computational form in (10) to find all feasible sets of decomposition functions. Solvin

simultaneously for all decomposition functions however, still requires a large number of encoding variable

in the worst case . This makes computation of  a formidable task even for a small problem.

B. Modified decomposition template

We reflect the fan-in bound restriction on the decomposition functions by defining a new decomposition

plate which partitions the input variables into two sets,  and , with  (see Fig. 2-a):

(14)

The functions, or collectively , can be assumed to be library primitives, possibly p

through wires.

Solution A: Solution B: Solution C: Solution D:

■

f x( )

n

s1 a1 b1 a0b0 c0 a0 b0⊕( )+( )⊕ ⊕=

C x y Γ, ,( )

s1 G Γ( )

1,116,591,939

g1 a1 b1⊕= g1 c0 a1 b1⊕ ⊕= g1 c0 a1 b1⊕ ⊕= g1 c0 a1 b1⊕ ⊕=

g2 c0a0 c0b0 a0b0+ += g2 c0a0b
0

c0a0b0+= g2 c0a0b0 c0a0b0+= g2 c0a0b0 c0a0b0+=

s

f x( ) h g1 x1( ) … gk xk( ), ,( )=

xi s x xi gi

k

k Γ

k 2⋅ s
G Γ( )

xg xh xg s=

f xg xh,( ) h g1 xg( ) … gt xg( ) xh, , ,( )=

g1 xg( ) … gt xg( ), , g xg( )
Page 9
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Within this template the generality of decomposition in (13) still can be preserved if we change the algori

flow in which the equation is been solved. Instead of finding simultaneously all decomposition function

which (13) holds we find them iteratively for the subsets of . These subsets are required to have size of at

which is the fan-in bound on the decomposition functions. A particular solution for each of the subsets pres

with a collection of decomposition functions, which can be viewed as a multi-output module. Encoding of a

plete set of such solutions uses at most  variables .

Letting some of the decomposition functions to be trivial wire functions we are able to accommodate no

joint decomposition, allowing supports of the distinct subsets to overlap during decomposition flow. T

illustrated in Fig. 2-b, where signal is used not only in the non-trivial functions of but also beco

available to as a wire. This wire can be reused in the subsequent decomposition steps. The effect of such

a preserved generality of the decomposition template (13).

Example 3.2 Using template (14) let us decompose function

using three non-trivial decomposition functions at the first level of logic, and the fan-in bound . The firs

of decomposition finds a subset of decomposition functions whose support is . Letting decompo

functions to be

we have . The function can be further decomposed using another subs

decomposition functions whose support is . The set of decomposition functions for this support is

These two decomposition functions are now used to complete decomposition of  at the first level:

k

x s

t

t 2
s⋅ Γ

xg

x
f

…

yk

Fig. 2. Illustration of the decomposition templatef x( ) h g xg( ) xh,( )( )=

y1

h
g xg( )

xh

…

yk

y1

…

x1x2
xs

…
…
…

b) accommodation of non-disjoint de-
composition withing xg( )

a) partition of the support into
and

f x( ) xg
xh

xs g xg( )

h

f a b c d, , ,( ) ac ad bd bd+ + +=

s 3=

xg a b c, ,{ }

g1 a b c, ,( ) ab ac
g2 a b c, ,( )

+
b

g3 a b c, ,( ) c

=
=
=

f a b c d, , ,( ) h ab ac b c d, , ,+( )= f

b c d, ,{ }

g1 b c d, ,( ) b d⊕
g2 b c d, ,( ) cd

=
=

f

f a b c d, , ,( ) h ab ac b d cd,⊕,+( )=
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Observe that all of the decomposition functions have overlapping variables in their supports. This is achie

letting some of the decomposition functions at the first step of decomposition to be trivial wires. These wir

then used as support to the decomposition functions introduced at the next step. ■

When variables are given, we find their sets of feasible decomposition functions by modifying compu

of in (13). The modification is based on the observation that variables in can be viewed as trivia

functions, which we use to relabel their corresponding output signals in . The new variant on the computa

 now has form:

where variables correspond to the output signals of decomposition functions

 subscript in  is superfluous however, and we therefore re-write the above formula as:

(15)

The computational effort in (15) can be reduced significantly taking into account decomposition proper

template (14). Its partition of the function support into and can be used to write in the expanded

as [8]:

(16)

where ’s are the cofactors [3] of with respect to . The cofactors can be arbitrarily com

functions of the variables. However, their significance in the decomposition lies in the relation to each

rather than their individual dependence on . The dependence on can, therefore, be abstracted away

us to replace cofactors by a set of variables such that the same variable is associated with the id

cofactors. Thus, for any value ofn, we encoden-variable functions in terms of theirs decomposition variables :

(17)

Each of the ’s in the above equation denotes a largest subset of minterms whose cofactors are id

thereby defining a factor. The factors are often referred to asequivalence classesof minterms [16], which are

induced by the equality relation of their cofactors.

Example 3.3 Given function

xg

G Γ( ) xh

y

G Γ( )

G Γ( ) yg xh xg∃ C xg yg Γ, ,( ) f x( )⋅( ) xg∀ C xg yg Γ, ,( ) f x( )+( )+( ),∀=

yg g xg( ) g1 xg( ) … gt xg( ), ,( )≡

g yg

G Γ( ) y xh xg∃ C xg y Γ, ,( ) f x( )⋅( ) xg∀ C xg y Γ, ,( ) f x( )+( )+( ),∀=

xg xh f x( )

f xg xh,( ) mi xg( ) f i xh( )⋅
i 0=

2s 1–

∑=

f i xh( ) f x( ) xg f i xh( )

xh

xh xh

Ζ ζi[ ]≡

xg

F xg Ζ,( ) Mi xg( ) ζi⋅
i 0=

r 1–

∑=

Mi xg( )

f a b c d e, , , ,( ) abd ae adc bed bce+ + + +=
Page 11
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we can write it in the form of (17) letting to be a set of three variables . The minterm space of

variables induces a set four distinct cofactors, which are listed below together with their factors :

Each of the distinct cofactors from the above table can be replaced by a single variable , yielding

for the function :

■

Substituting for in (15) we finally obtain a computational form for all feasible decompositi

of  (and subsequently of ):

(18)

Together with the substitution of this formula replaces abstraction of the variables in (15) wit

abstraction of  variables. This transformation of (15) is made possible due to the following relation:

This relation signifies importance of therelative values that the cofactors assume in the decomposition, and

their individual dependence on . The universal quantification of the variables in (18) ensures validity

computed decomposition functions for all output values of the  cofactors.

Example 3.4 We illustrate the application of (18) continuing with the decomposition of function

from Example 3.3. The space of two decomposition functions for its  variables  can be encoded

Using this function , and function described in the earlier example, the computation fo

lower bound part of (18) has the form:

Factor, Cofactor,

0

1

2

3

xg a b c, ,{ }

Mi xg( )

i Mi a b c, ,( ) f i d e,( )

abc{ } 0

abc abc abc,,{ } d e+

abc abc,{ } de

abc abc,{ } e

f i ζi F xg Ζ,( )

f

F a b c ζ1 ζ2 ζ3 ζ4, , , , , ,( ) abc ζ0 abc abc abc++( ) ζ1 abc abc+( ) ζ2 abc abc+( ) ζ3⋅+⋅+⋅+⋅=

F xg Ζ,( ) f x( )

F xg Ζ,( ) f x( )

G Γ( ) Ζ y xg∃ C xg y Γ, ,( ) F xg Ζ,( )⋅( ) xg∀ C xg y Γ, ,( ) F xg Ζ,( )+( )+( )∀∀=

F xg Ζ,( ) xh

Z

xh f xg xh,( ) Mi xg( ) f i xh( )⋅
i 0=

2s 1–

∑=
 
 
 

Z F xg Z,( ) Mi xg( ) ζi⋅
i 0=

r 1–

∑=
 
 
 

∀⇔∀

xh Z

f i xh( )

f a b c d e, , , ,( )

xg a b c, ,{ }

C xg y Γ, ,( ) y1 γ01abc γ11abc γ21abc γ31abc γ41abc γ51abc γ61abc γ71abc+ + + + + + +( )≡( ) ×=

y2 γ02abc γ12abc γ22abc γ32+ abc+ γ42abc γ52abc γ62abc γ72abc+ + ++ +( )≡( )

C xg y Γ, ,( ) F xg Ζ,( )

xg∃ C xg y Γ, ,( ) F xg y,( )⋅( ) y1 γ01≡( ) y2 γ02≡( ) z0⋅ y1 γ11≡( ) y2 γ12≡( ) z1⋅⋅+⋅=
Page 12



Its upper bound part is computed analogously:

Applying lower and upper bound computations in (18) we have:

Abstraction of four  variables gives 16 product terms, each of which is listed on a separate line below:

y1 γ21≡( )+ y2 γ22≡( ) z2⋅ y1 γ31≡( ) y2 γ32≡( ) z3⋅
y1 γ41≡( ) y2 γ42≡( ) z3⋅ y1 γ51≡( ) y2 γ52≡( ) z1⋅
y1 γ61≡( ) y2 γ62≡( ) z2⋅ y1 γ71≡( ) y2 γ72≡( ) z1⋅ ⋅+⋅+

⋅+⋅+
⋅+⋅

xg∀ C xg y Γ, ,( ) F xg y,( )+( ) y1 γ01⊕( ) y2 γ02⊕( ) z0+ +( ) y1 γ11⊕( ) y2 γ12⊕( ) z1+ +( )⋅=

y1 γ21⊕( ) y2 γ22⊕( ) z2+ +( )× y1 γ31⊕( ) y2 γ32⊕( ) z3+ +( )
y1 γ41≡( ) y2 γ42≡( ) z3+ +( )× y1 γ52⊕( ) y2 γ52⊕( ) z1+ +( )
y1 γ61⊕( ) y2 γ62⊕( ) z2+ +( )× y1 γ71⊕( ) y2 γ72⊕( ) z1+ +( )

⋅
⋅
⋅

G Γ( ) Z( γ01 γ02 z0+ +( ) γ11 γ12 z1+ +( ) γ21 γ22 z2+ +( ) γ31 γ32 z3+ +( )
γ41 γ42 z3+ +( ) γ52 γ52 z1+ +( ) γ61 γ62 z2+ +( ) γ71 γ72 z1+ +( )
γ01 γ02 z0+ +( ) γ11 γ12 z1+ +( ) γ21 γ22 z2+ +( ) γ31 γ32 z3+ +( )
γ41 γ42 z3+ +( ) γ52 γ52 z1+ +( ) γ61 γ62 z2+ +( ) γ71 γ72 z1+ +( )

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅

+
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅

(

)

∀=

γ01 γ02 z0+ +( ) γ11 γ12 z1+ +( ) γ21 γ22 z2+ +( ) γ31 γ32 z3+ +( )
γ41 γ42 z3+ +( ) γ52 γ52 z1+ +( ) γ61 γ62 z2+ +( ) γ71 γ72 z1+ +( )
γ01 γ02 z0+ +( ) γ11 γ12 z1+ +( ) γ21 γ22 z2+ +( ) γ31 γ32 z3+ +( )
γ41 γ42 z3+ +( ) γ52 γ52 z1+ +( ) γ61 γ62 z2+ +( ) γ71 γ72 z1+ +( )

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅

+
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅

(

)

×

γ01 γ02 z0+ +( ) γ11 γ12 z1+ +( ) γ21 γ22 z2+ +( ) γ31 γ32 z3+ +( )
γ41 γ42 z3+ +( ) γ52 γ52 z1+ +( ) γ61 γ62 z2+ +( ) γ71 γ72 z1+ +( )
γ01 γ02 z0+ +( ) γ11 γ12 z1+ +( ) γ21 γ22 z2+ +( ) γ31 γ32 z3+ +( )
γ41 γ42 z3+ +( ) γ52 γ52 z1+ +( ) γ61 γ62 z2+ +( ) γ71 γ72 z1+ +( )

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅

+
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅

(

)

×

γ01 γ02 z0+ +( ) γ11 γ12 z1+ +( ) γ21 γ22 z2+ +( ) γ31 γ32 z3+ +( )
γ41 γ42 z3+ +( ) γ52 γ52 z1+ +( ) γ61 γ62 z2+ +( ) γ71 γ72 z1+ +( )
γ01 γ02 z0+ +( ) γ11 γ12 z1+ +( ) γ21 γ22 z2+ +( ) γ31 γ32 z3+ +( )
γ41 γ42 z3+ +( ) γ52 γ52 z1+ +( ) γ61 γ62 z2+ +( ) γ71 γ72 z1+ +( )

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅

+
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅

(

)

×

)

Z

G Γ( ) 1=
γ01 γ02+( ) γ11 γ12+( ) γ21 γ22+( ) γ31 γ32+( ) γ41 γ42+( ) γ52 γ52+( ) γ61 γ62+( ) γ71 γ72+( )⋅ ⋅ ⋅ ⋅ ⋅ ⋅+( )×
γ11 γ12+( ) γ01 γ02+( ) γ21 γ22+( ) γ31 γ32+( ) γ41 γ42+( ) γ52 γ52+( ) γ61 γ62+( ) γ71 γ72+( )⋅ ⋅ ⋅ ⋅ ⋅ ⋅+( )×
γ01 γ02+( ) γ11 γ12+( ) γ52 γ52+( ) γ71 γ72+( ) γ21 γ22+( ) γ31 γ32+( ) γ41 γ42+( ) γ71 γ72+( )⋅ ⋅ ⋅+⋅ ⋅ ⋅( )×
γ21 γ22+( ) γ61 γ62+( )⋅ γ01 γ02+( ) γ11 γ12+( ) γ31 γ32+( ) γ41 γ42+( ) γ52 γ52+( ) γ71 γ72+( )⋅ ⋅ ⋅ ⋅ ⋅+( )×
γ01 γ02+( ) γ21 γ22+( ) γ61 γ62+( ) γ11 γ12+( ) γ31 γ32+( ) γ41 γ42+( ) γ52 γ52+( ) γ71 γ72+( )⋅ ⋅ ⋅ ⋅+⋅ ⋅( )×
γ11 γ12+( ) γ21 γ22+( ) γ52 γ52+( ) γ61 γ62+( ) γ71 γ72+( ) γ01 γ02+( ) γ31 γ32+( ) γ41 γ42+( )⋅ ⋅+⋅ ⋅ ⋅ ⋅( )×
γ01 γ02+( ) γ11 γ12+( ) γ21 γ22+( ) γ52 γ52+( ) γ61 γ62+( ) γ71 γ72+( ) γ31 γ32+( ) γ41 γ42+( )⋅+⋅ ⋅ ⋅ ⋅ ⋅( )×
γ31 γ32+( ) γ41 γ42+( ) γ01 γ02+( ) γ11 γ12+( ) γ21 γ22+( ) γ52 γ52+( ) γ61 γ62+( ) γ71 γ72+( )⋅ ⋅ ⋅ ⋅ ⋅+⋅( )×
γ01 γ02+( ) γ31 γ32+( ) γ41 γ42+( ) γ11 γ12+( ) γ21 γ22+( ) γ52 γ52+( ) γ61 γ62+( ) γ71 γ72+( )⋅ ⋅ ⋅ ⋅+⋅ ⋅( )×
γ11 γ12+( ) γ31 γ32+( ) γ41 γ42+( ) γ52 γ52+( ) γ71 γ72+( ) γ01 γ02+( ) γ21 γ22+( ) γ61 γ62+( )⋅ ⋅+⋅ ⋅ ⋅ ⋅( )×
γ01 γ02+( ) γ11 γ12+( ) γ31 γ32+( ) γ41 γ42+( ) γ52 γ52+( ) γ71 γ72+( ) γ21 γ22+( ) γ61 γ62+( )⋅+⋅ ⋅ ⋅ ⋅ ⋅( )×
γ21 γ22+( ) γ31 γ32+( ) γ41 γ42+( ) γ61 γ62+( ) γ01 γ02+( ) γ11 γ12+( ) γ52 γ52+( ) γ71 γ72+( )⋅ ⋅ ⋅+⋅ ⋅ ⋅( )×
Page 13
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This function has total of 24 ON-set minterms, each corresponding to a pair of decomposition functions. Ass

order-invariance of the decomposition functions, and invariance of their complements the number of so

reduces to three:

It is possible to simplify the process of instantiating computation in (18) observing that terms correspond

the lower and upper bounds in the formula can be simplified, and that they also have virtually identical stru

The first step of simplification multiplies out two functions corresponding to the interval’s lower bound. Let v

denote the th row of variables in the matrix, and let function identify the index of a variabl

 corresponding to a cofactor . We then have:

(19)

We similarly rewrite the upper bound part of (18):

(20)

Substituting results of (19) and (20) into (18) we have:

(21)

The two summands in the above formula are identical with the exception of complemented variables, sug

that during computation of one summand can be constructed from the other by simple complementa

 variables.

Solution A: Solution B: Solution C:

■

γ01 γ02+( ) γ21 γ22+( ) γ31 γ32+( ) γ41 γ42+( ) γ61 γ62+( ) γ11 γ12+( ) γ52 γ52+( ) γ71 γ72+( )⋅ ⋅+⋅ ⋅ ⋅ ⋅( )×
γ11 γ12+( ) γ21 γ22+( ) γ31 γ32+( ) γ41 γ42+( ) γ52 γ52+( ) γ61 γ62+( ) γ71 γ72+( ) γ01 γ02+( )+⋅ ⋅ ⋅ ⋅ ⋅ ⋅( )×

1×

g1 ab ab bc+ += g1 ab ab bc+ += g1 a bc+=

g2 ab bc ac+ += g2 a bc+= g2 ab bc ac+ +=

γ i i Γ γ ij[ ]≡ σ i( )

Z f i xh( )

C xg y Γ, ,( ) F xg Ζ,( )⋅ yj γ ij mi x( )⋅
i 0=

2n 1–

∑≡
j 1=

k

∏
 
 
 

Mi xg( ) ζi⋅
i 0=

r 1–

∑
 
 
 

⋅=

mi xg( ) y γ i≡( )⋅
i 0=

2s 1–

∑
 
 
 

mi xg( ) ζσ i( )⋅
i 0=

2s 1–

∑
 
 
 

⋅=

mi xg( ) y γ i≡( ) ζσ i( )⋅ ⋅
i 0=

2s 1–

∑=

C xg y Γ, ,( ) F xg Ζ,( )+ C xg y Γ, ,( ) F xg Ζ,( )⋅ mi xg( ) y γ i≡( ) ζσ i( )⋅ ⋅
i 0=

2s 1–

∑= =

G Γ( ) Ζ y xg∃ mi xg( ) y γ i≡( ) ζσ i( )⋅ ⋅
i 0=

2s 1–

∑
 
 
 

xg∃ mi xg( ) y γ i≡( ) ζσ i( )⋅ ⋅
i 0=

2s 1–

∑
 
 
 

+
 
 
 

∀∀=

Z

G Γ( )

Z
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C. Support constraints in composition function

Introducing a fan-in constraint on the decomposition functions enabled us to define decomposition in te

the computationally efficient, yet very general, template (14). The generality of this template however, also o

great variety of the decomposition patterns which become available during the synthesis process. In additio

fan-in bound we can classify these decomposition patterns according to the number of decomposition fu

used during a decomposition step. Such -to- classification of the decomposition patterns provides us

simple estimation of a decomposition quality, and links it to the structure of function.

The decomposition template (14) establishes a strong relation between the number of decomposition v

and the number of decomposition functions , as their relative values significantly determine flexibility in s

ing the composition function . Indeed, letting to be smaller than may imply non-existence of , and the

non-existence decomposition. On the other hand, letting to be larger than may present us with a vast nu

choices for , making it difficult to find a good composition function which improves synthesis quality.

According to the decomposition template (14) the -to- decomposition pattern determines the differe

the support sizes between functions and the composition function . Whenever , the decomposition

port-reducing as it implies that the number of variables in is less than the number of variables . Similar

decomposition is support-maintaining or support-increasing whenever, respectively, or . In this

we are primarily interested in the support-reducing decomposition, and in the enabling it conditions. This t

decomposition defines a particularly attractive class of circuits whose width for each of its outputs decrease

successive levels of logic.

Although the support-reducing decomposition under a fan-in constraint produces very attractive circuits,

places a restriction on the function classes for which such decomposition pattern is feasible. Depending on

tion structure, and the -to- parameters of the decomposition pattern, template (14) may have no feasible

position. In general the existence of the -to- decomposition requires that the number of distinct cof

induced by the minterm space of the decomposition variables is . Otherwise, it is impossible to find d

position functions whose products 1 do not contain minterms from two distinct factor

, making these minterms indistinguishable in the decomposition. The cofactor count argument ha

used extensively in the classical theory for disjoint decomposition relying on the notion of column multiplic

partition tables [8].

The support-reducing decomposition implied by the -to- pattern translates into a requirement on

support reduction of one, i.e. , the number off’s distinct cofactors must be . The following two

examples illustrate how the relation between cofactors of  impacts existence of decomposition.

1. The dot above functions denotes their fixed phase, either complemented or not complemented.

s

t s t

s t

h t s h

t s

h

s t

f h s t>

h f

s t= s t<

s t

s t

2t≤ t

2
t

ġ1 xg( ) … ġt xg( )⋅ ⋅

Mi xg( )

s t f x( )

t s 1–= 2
s 1–≤

f
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Example 3.5 We use function from Example 3.3 to illustrate how

existence of decomposition depends on the choice of decomposition variables. The three decomposition v

in the earlier example induce four distinct cofactors , , , and , implying existence of 3-to-2 reduc

This fact re-confirmed in Example 3.4 applying our symbolic computation of decomposition.

On the other hand, selecting as decomposition variables for the function we can quickly dete

the non-existence of 3-to-2 reduction based on the distinct cofactor counts for these variables. Indeed, fun

has total of distinct cofactors with respect to these variables – , , , , and , prohibiting support-red

decomposition. ■

In general the number of distinct cofactors induced by the decomposition variables can vary greatly dep

on the structure of a given function. For a set of non-vacuous in decomposition variables the number of d

cofactors is at least 2. There is also an upper bound on the maximum number of distinct cofactors for any g

of decomposition variables. For an arbitrary function of variables the count of its distinct cofactors induced

decomposition variables must satisfy the following two conditions:

• it is bounded by , the total number of [need not be distinct] cofactors that can be possibly induced

decomposition variables

• it is bounded by , the total number of distinct cofactor functions that can be possibly created from

non-decomposition variables

f a b c d e, , , ,( ) abd ae adc bed bce+ + + +=

0 d e+ de e

a b e, , xg f

f

5 0 1 d e de

Fig. 3. Dependence of the distinct cofactor counts on the number of decompositions variables

b) the  output function of an adders5a) the  output function of a 6-bit multiplierp7
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As follows from the above two constraints, the potential number of distinct cofactors increases exponentiall

while being bounded by . This relation is used below as a starting point to derive a simpler form relatin

:

Whenever and satisfy we can find a function whose decomposition variables induce

tinct cofactors. Thus, the number of distinct cofactors for the decomposition variables can theoretica

between 2 and , even for the large  approaching .

The theoretical bound on the maximum number of distinct cofactors implies that for some large sets of d

position variables we may not be able to achieve support-reducing threshold requiring the number of distinct

tors to be . Among functions for which no small set of support-reducing decomposition variables exis

functions of a multiplier circuit. To illustrate this fact Fig. 3-a plots minimum and maximum numbers of dis

cofactors among all possible sets of ( ) of decomposition variables for an 8-th bit product functio

6-bit multiplier. In this figure the smallest set of decomposition variables for which support-reducing decom

tion exists has 8 variables inducing 75 distinct cofactors. (Indeed the relation enables support

tion.)

Despite the exponential bound on the number of distinct cofactors, our analysis of the MCNC benchmar

shows that the vast majority of the functions do enable support-reducing decomposition for small values of

ally less than 5. Existence of a support-reducing decomposition in a typical function from this suit of bench

is very sensitive to a given set of decomposition variables, necessitating their careful selection during deco

tion process. In Fig. 3-b we illustrate this fact for a sixth sum bit function of an adder. Analogous to Fig. 3-

two sets of data points plotted in the figure are for the minimum and the maximum numbers of distinct cof

induced by the sets of ( ) decomposition variables. The gap between these data points is much

though than in the case of a multiplier function. In fact, as Fig. 3-b for the adder function suggests for any

is a set of decomposition variables of this size inducing at most cofactors. These small numbers of the c

counts enable support-reducing decomposition for any .

IV.  Symmetric Libraries Construction

Functions that satisfy requirement of support-reducing decomposition under a practical fan-in con

include the class of symmetric functions [9, 10], namely functions that remain invariant under certain permu

of their inputs. In this section we focus on the library computation required to achieve decomposition fun

classes of this type.

s

2
2n s–

s

n

2
s

2
2n s–

≤( ) s 2
s⋅ 2

n≤( ) s 2
s⋅( )log n≤( ) s( ) s+log n≤( )⇔ ⇔ ⇔

s n s( ) s+log n≤ s 2
s

s

2
s

s n

2
s 1–

s 1 s≤ 12≤

75 2
8 1–≤

s

s 1 s≤ 12≤

s

3

s 2≥
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A. Class-universal decomposition primitives

Functions that are symmetric in the decomposition variables can have at most distinct cofactors

ing the existence of the decomposition in (14) whenever is a solution to the relation , namely

Denoting such functions by , we can express them by the following -term sum:

(22)

where represents a class of equivalent minterms induced by the symmetry relation between variables in

a totally symmetric function which is equal to 1 for those minterms on whose weight (number of positive

als) is equal to . The  functions in (22) represent cofactors of  with respect to .

Example 4.1 Suppose we would like to decompose function

with respect to mutually symmetric decomposition variables . The equivalent minterms of the decom

tion variables induced by symmetry relation along with their cofactors are given in the table below:

According to the table we can write  in the factored form as

There is total of four distinct cofactors, and therefore there is a 3-to-2 support-reducing decomposition.■

Abstracting away the dependence on we replace cofactors in (22) by a set of independent variables

that, for any value ofn, encoden-variable functions in terms of their symmetric core with respect to thes vari-

ables, yielding:

(23)

Instantiating (18) with we obtain a computational form for all feasible support-reducing decom

tions ofn-variable functions that are symmetric ins or fewer variables:

Factor, Cofactor,

0

1

2

3

s s 1+

s s 1+ 2
s 1–≤ s 3≥

f s s 1+( )

f s xg xh,( ) Si xg( ) ζi xh( )⋅
i 0=

s

∑=

Si xg

xg

i ζi xh( ) f s xg

f abcde abcd abcd abcde abcd abcde abcde abcd+ + + + + + +=

a b c, ,

i Si a b c, ,( ) ξi d e,( )

abc{ } de

abc abc, abc,{ } d

abc abc, abc,{ } de

abc{ } d

f

f abc( )de abc abc abc+ +( )d abc abc abc+ +( )de abc( )d+ + +=

xh Ζ ζi[ ]≡

xg

Fs xg Ζ,( ) Si xg( ) ζi⋅
i 0=

s

∑=

Fs xg Ζ,( )
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(24)

The above computational form provides us with the decomposition solutions which hold universally for any

tion represented in (23). Each of these solutions provide us with a set of decomposition primitives which ser

pre-computed symmetric library.

As stated, equation (24) yields a non-empty set of solutions, , for the function classes whe

number of decomposition functions encoded by is . This effectively implies that

universal support-reducing decomposition primitives exist only when  in (23).

B. Subclass-universal decomposition primitives

To perform computation of the sets of decomposition primitives for the class of functions when support-r

ing decomposition in (24) yields we compute decomposition primitives for the subclasse

. These subclasses of functions are defined according to the weakest relations between va

which make decomposition feasible. A symmetric library for the decomposable functions is then constructe

union of representative libraries taken from each subclass.

To derive libraries for the case when (24) yields the empty set, we first encode the universe of possible e

relations between  variables in terms of the following function:

(25)

An assignment to the variables in this function induces an equality relation between variables . The non

equality relation between variables in corresponds to a reduction of distinct cofactors in (22), and the

reduced decomposition constraints. By restricting computation of (24) to the conditions which satisfy su

induced relation we can relax computational form (24), and provide decomposition solutions for subcl

. Such decomposition solutions can be computed simultaneously for all assignment to the variab

means of the following extension to (24):

(26)

For each of the assignments to function now gives sets of feasible decomposition functions. No

a 0 assignment to all of the variables in the above formula induces a set completely independent varia

reducing it to (24).

G Γ( ) Ζ y xg∃ C xg y Γ, ,( ) Fs xg Ζ,( )⋅( ) x∀ C xg y Γ, ,( ) Fs xg Ζ,( )+( )+( )∀∀=

G Γ( ) 0≠

t C xg y Γ, ,( ) s 1+( )log≥

s 3≥

G Γ( ) 0=

Fs xg Ζ,( ) ζi

Z

UF Z A,( ) ζi ζ j αij+≡( )
i j<

s

∏=

A Z

Z

Fs xg Ζ,( ) A

G Γ A,( ) Ζ yg xg∃ C xg yg Γ, ,( ) Fs xg Ζ,( )⋅( ) x∀ C xg yg Γ, ,( ) Fs xg Ζ,( )+( ) UF Z A,( )+ +( )∀∀=

A G Γ A,( )

A Z
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3
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Table 1: Characteristics of cell libraries necessary for support-reducing symmetric

Symmetry type
Possible

s-to-t
reduction

Cell library characteristics

s Max #distinct
cofactors #Libraries Size Example library (composed ofs-input s

2 2 2-to-1 1 3

3 2 3-to-1 1 7

3 4 3-to-2 3 2

4 2 4-to-1 1 15

4 4 4-to-2 15 8

4 5 4-to-3 140 3

5 2 5-to-1 1 31

5 4 5-to-2 105 22

5 6 5-to-3 420 3

5 6 5-to-4 14385 4

S1 S2 S0 3,

MAJ

S0 … S4, , S1 2, … S1,, ,S0 1, … S0 4,, ,

S1 2, … S1,, ,S0 1, S0 3, S0 4,

S0 … S5, , S1 2, … S1 5,, , S2S0 1, … S0 5,, ,

S0 1 2, , … S0 1 5, ,, , S0 2 3, , … S0 2, ,, ,S4 5,

S0 5, S1 2, … S1 4,, , S2 3, …,S0 1, … S0 3,, ,

S0 1 2, , … S0 1 5, ,, , S0 2 3, , S0 2 5, ,

S0 3,

MAJS0 3,
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We must observe however, that some of the assignments to the variables are superfluous in the e

– they are subsumed by other assignments due to the transitive property of the equality relation. W

card such solutions defining a universe of assignments for which the transitive property of the equality is sa

(27)

The above equation provides us with a characteristic function for all assignments valid under the transitive r

between  variables. We can therefore restrict our analysis to .

To reduce further the number of assignments needed to be considered another observation analogo

transitive relation between variables can be made. It is based on the fact that some of the assignment

“weaker” equality relation constraints than the other. Formally, an assignment to variables isweakerthan an

assignment if and only if relation holds componentwise between values of these assignmen

there exists at least one pair of components such that . Symbolically we define such relation as:

(28)

The above equation encodes theless-thanrelation between two domains and , which can be used to extrac

subset of weakest assignments from a given set :

(29)

encodes in terms of variables all weakest functional structures for which decomposition exists. It c

easily brought to the form which depends on the variables, . Constraining with

have all feasible decompositions. For each of the assignments to , such that , we now have a

decompositions. These sets provide decomposition primitives which can be used to construct libraries cove

function subclasses.

C. Computed libraries

Table 1 summarizes the results of solving (24) for alls-to-t support-reducing decompositions where . Th

first two columns in the table characterize the symmetry of the function being decomposed in terms of the n

of symmetric decomposition variables and the maximum number of distinct cofactors with respect to thos

ables. Column 3 indicates the corresponding achievable support reduction. The remaining columns charact

cell libraries required to realize these decompositions: column 4 is the number of possible minimal-size lib

column 5 is the number of requireds-input cells in each library, and column 6 shows a sample library. The cou

in column 4 include only libraries of symmetric cells and assume that libraries consisting of the same cells

complementation of their functions are indistinguishable. Some of the library cells listed in column 6 are exp

A

UF Z A,( )

T A( ) αikαkj αij→( )
i k j< <

∏=

Z G Γ A,( ) T A( )⋅

ζi

A∗

B∗ αij βij≤

αij βij≠

LT A B,( ) αij βij≤( ) αij βij≡( )
i j<
∏⋅

i j<
∏=

A B

EF A( ) Γ G Γ A,( )( )∃=

EW B( ) A EF A( ) EF B( ) LT A B,( )⋅→( )( )∀=

EW B( ) B

A EW A( ) G Γ A,( ) EW A( )

A EW A( ) 1=

s 5≤

s
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using the notation, where is a set of integers identifying the weights of the minterms for which the fun

evaluates to 1.

We can make the following observations about the results in Table 1:

• The libraries in this table represent pre-computed decomposition primitives that map a structural prop

the functions being decomposed (symmetry) into a structural property of the circuit implementation (

reduction). Indeed, the complexity of the function being synthesized is reflected directly in

implementation: the support of the most complex symmetric functions (withs+1 distinct cofactors) can only

be reduced by one, whereas the support of the least complex symmetric functions (with 2 distinct cof

can be maximally reduced to 1.

• Whenever and , the libraries fors-to-t reduction are universal in the sense that they w

yield the desired decomposition for all functions that are symmetric ins or more variables; they are

“functionally complete” for the class of symmetric functions. For instance, there are exactly three univ

libraries that enable 3-to-2 decomposition, one of which is shown in the table. The other two

and , where . Some of the

decomposition functions in the -to- pattern may become redundant however. The 5-to-4 pattern

example of such redundancy, where the fourth function (denoted by ANY5 in the library) can be de

arbitrarily.

• For a givens the number of libraries decreases and their size (number of cells) increases with stronger s

reduction (smallert.) For t = 1, the libraries become unique, up to complementation, and contain c

• The libraries in this table can be extended to handle the class of functions that are invariant with respect

the permutation and complementation of their inputs [12] by placing corresponding inversions o

respective primitive inputs.

When simple symmetries do not exist other structural attributes of a function might be present. In partic

multiplexer-like symmetry of the form

(30)

often arises in datapath circuits. The invariance described by this relation swaps two ordered groups of varia

size  while complementing one variable outside these groups:

(31)

In benchmark circuits the most common functions of this type can be described as a sum:

Sa a

s 3≥ t s 1+( )log≥

XOR3 SAME3,{ } MAJ3 SAME3,{ } SAME3 x1 x2 x3, ,( ) x1x2x3 x1x2x3+=

s t

2
s

1–

f x1 x2 x3 … x2m x2m 1+ … xn 1– x,
n

, , , , , , ,( ) f x1 x3 x2 … x2m 1+ x2m … xn 1– x,
n

, , , , , , ,( )=

m

x1 x2 x4 … x2m, , , ,〈 〉 x1 x3 x5 … x2m 1+, , , ,〈 〉,{ }
Page 22



proce-

admit-

osition

ss of

osi-

d

ns of

t a 2-

vari-

ify ,

signal

ecom-

them in

osition

ese

posi-
(32)

where  is composed of ,  and .

Using the decomposition template (32) we can now pre-compute corresponding 3-to-2 libraries using a

dure similar to the one we used in the case of simple symmetries. Specifically, we first express all functions

ting template (32) using a suitable encoding function in which the dependence on the non-decomp

variables is eliminated through the introduction of a set of binary encoding coefficients :

Next, noting that this decomposition template is independent of the “datapath width”m, we reduce it to a width of

one by choosing a single representative from each group of “left” and “right” variables and . Without lo

generality, choosing  to represent  and  to represent  we obtain:

which can be rewritten as . Substituting

in (12) we obtain a computational form similar to (24). The solution for this 3-to-2 decomp

tion yields three possible 2-output modules: , an

. As follows from the last module, we can accommodate this type of decomposition by mea

a 2-to-1 multiplexer and a wire. (Note that whenever template (32) admits 3-to-1 reduction using jus

to-1 multiplexer.) It is interesting to note that restricting our decomposition pattern to three decomposition

ables as we did above allows us to avoid computing an exact symmetry structure of the form (31) to ident

and . These three decomposition variables can be identified with the help of quantifying out control

 from  which gives a function symmetric in  and .

V.  Conclusions and Future Work

For the functions that are symmetric in some inputs we have pre-computed libraries required for their d

position patterns. These decomposition patterns capture the structural properties of a function and reflect

the implementation structure. We are currently studying other forms of structure-aware functional decomp

which might yield “natural” decomposition patterns for the efficient synthesis of control logic. Among th

decomposition patterns we are studying implications of functional structure on a library required by the com

tion functions to improve synthesis quality.

f M xg xh,( ) x1 m⋅
i

xg
L( ) x1 m⋅

i
xg

R( )+[ ] ζi xh( )⋅
i 0=

2m 1–

∑=

xg x1 xg
L

x2 x4 … x2m, , ,〈 〉= xg
R

x3 x5 … x2m 1+, , ,〈 〉=

FM

Z ζi[ ]≡

FM x1 x2 … x2m 1+ Z, , , ,( ) x1 mi x2 x4 … x2m, , ,( )⋅ x1 m⋅
i

x3 x5 … x2m 1+, , ,( )+[ ] ζi⋅
i 0=

2m 1–

∑=

xg
L

xg
R

x2 xg
L

x3 xg
R

FM x1 x2 x3 Z, , ,( ) x1 m⋅
i

x2( ) ζi⋅ x1 mi x3( )⋅
i 0=

1

∑+ ζi 2+⋅
i 0=

1

∑=

FM x1 x2 x3 Z, , ,( ) x1x2 ζ⋅
0

x1x2 ζ⋅
1

x1x3 ζ⋅
2

x1x3 ζ3⋅+ + +=

FM x1 x2 x3 Z, , ,( )

x1x2 x1x3 x1,+{ } x1x2 x1x3 x1x2 x1x3+,+{ }

x1x2 x1x3 x1,+{ }

m 1=

x1

x2 x3

x1 f M x( ) x2 x3
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