
Abstract: This paper presents two new operating sys-
tem extensions that facilitate the fast execution of host
based virtual machines: KTrace and MMA. KTrace
provides a convenient and efficient mechanism for
writing kernel modules that control the execution of
user-level processes. MMA exposes more detail of the
underlying memory management hardware, providing
applications with access to high performance intra-
address space protection and address space overloading
functionality. These extensions are applied to
UMLinux, an x86 virtual machine that implements
Linux as a user-mode process. As a result, overhead for
UMLinux is reduced from 33% for a CPU bound work-
load and 819% - 1240% for system call and I/O inten-
sive workloads, to 6% and 49% - 24% respectively.

1. Introduction
Originally developed by IBM in the 1960’s, vir-

tual machines were used to provide software backward
compatibility on time-shared mainframe computers.
This amount of portability allowed users to run com-
plete operating systems, meant for old hardware, on
new computers without modifications. Although this
level of portability is useful, virtual machines also
exhibit behavior that makes them popular today. Vir-
tual machines provide software with the illusion that it
possesses exclusive access to the computer hardware.
Therefore, multiple operating systems can run on the
same hardware in complete isolation. In addition to
isolation, virtual machines can effectively multiplex
hardware between several virtual machine instances in
a fair way. Because of these two properties, virtual
machines have seen a resurgence of research activity in
recent years. Among the current research projects in
the area are intrusion analysis [14] and prevention [22],
fault injection [8], server farms [31], and secure mobile
computing [23, 19].

My research group, CoVirt, is interested in imple-
menting services below the virtual machine [11].
Because they are implemented below a virtual

machine, secure services only need to trust the virtual
machine monitor (VMM), not an entire operating sys-
tem. This is beneficial because the VMM code size is
significantly smaller than a full-blown operating sys-
tem, making verification much easier.

Although there are many different virtual
machines available, running on various platforms,
User-Mode Linux (UMLinux) running on x86 is the
virtual machine CoVirt uses for security applications.
Researchers at the University of Erlangen-Nurnberg
developed UMLinux for fault injection experiments,
but the extremely small VMM implementation pro-
vides a strong isolation barrier, making it an excellent
choice for security applications. However, the original
UMLinux implementation suffers from poor perfor-
mance, making it unfeasible in a practical setting. The
main reason for inefficiencies is because UMLinux
sacrifices performance for VMM simplicity by using
operating system abstractions, rather than accessing the
hardware directly. Lack of efficient operating system

Operating System Extensions to Support Host Based Virtual Machines

Samuel T. King and Peter M. Chen

Department of Electrical Engineering and Computer Science
University of Michigan

[kingst,pmchen]@eecs.umich.edu

Figure 1: Direct-on-hardware virtual machine.
1

extensibility, and virtual memory abstractions that hide
the power of the underling memory management
haware are known to contribute to this performance
degradation. In an effort to improve performance, I
developed two new abstractions: KTrace and memory
management abstractions (MMA). KTrace is a mecha-
nism through which kernel modules can register call-
back functions that are triggered by exceptions
generated from a specified process. MMA unleashes
the power of the x86 memory management hardware
by providing access to page table manipulation func-
tions, and hardware protection mechanisms. Together,
KTrace and MMA can be used to implement simple
VMMs, without sacrificing performance.

The remainder of this paper is organized as fol-
lows: Section 2 presents background information on
virtual machines and discusses the design tradeoffs of
three modern virtual machines. Section 3 details the
design of KTrace and MMA, and Section 4 present
experimental results showing the improvements made
by using KTrace and MMA on UMLinux. Section 5
discusses related work and section 6 concludes.

2. Virtual machines
As with any abstraction, the VMM is responsible

for managing the hardware and other resources below
while providing an interface for virtual machine
instances above. The interface below the VMM, called
the platform-VMM interface, could include bare hard-
ware, an operating system, or any combination of the
two. Virtual machines that run on bare hardware are
called direct-on-hardware virtual machines (Figure 1),

whereas virtual machines that rely on an operating sys-
tem for services are called host-based virtual machines
(Figure 2). Although direct-on-hardware virtual
machines have more direct control of the execution
environment, host based virtual machines can be sim-
pler to implement by using well-known operating sys-
tem abstractions. In the host based approach to
virtualization, the underlying operating system is
referred to as the host OS, whereas any operating sys-
tem running on virtual hardware is called a guest OS.

Like the platform-VMM interface, the interface
above the VMM can vary widely. This interface, called
the guest-VMM interface, is what virtual machines run
on. Some virtual machines implement a guest-VMM

Figure 2: Host based virtual machine.

Figure 3: The IBM VM/370 [3] is a classic virtual
machine in that it implements a direct-on-hardware
virtual machine and exports a virtual instruction set
that is identical to the underlying hardware. Like the
IBM VM/370, Denali [31] implements a direct-on-
hardware virtual machine. However, Denali adds to
and removes instructions from the virtual instruction
set, making the existing code base written for the
underlying architecture unusable. VMware [1]
employs a hybrid approach by using a host OS for
some services and manipulating hardware directly for
others. SimOS [26] implements a complete guest-
VMM interface, without accessing hardware directly,
running above the host OS. UMLinux [8] runs on top
of the host OS, but deprecates certain instructions.
These instructions are usually found in operating
systems, so operating systems require a UMLinux port,
but user-mode applications remain binary compatible.
2

interface that is identical to the underlying hardware
thus, allowing any code written for that particular hard-
ware to be run in the virtual machine. Other virtual
machines add and subtract aspects of the underlying
hardware. This modification of the instruction set
architecture (ISA) is done for various reasons ranging
from performance, to simplicity of VMM implementa-
tion. To show how different virtual machines define
these interfaces, several examples are given in Figure 3.

Virtual machine design is a tradeoff between gen-
erality, complexity, and performance. To illustrate this
tradeoff, three modern virtual machines are discussed
in detail: VMware, Denali, and UMLinux.

2.1. VMware

VMware is the most prevalent x86 virtual machine
today. By providing a complete implementation of the
x86 ISA at the guest-VMM interface, VMware is a use-
ful tool with many different applications. Although
this complete guest-VMM interface is extremely gen-
eral, it leads to a more complicated VMM. Because
there are multiple operating systems running on the
same hardware, the VMM must emulate certain
instructions to correctly represent a virtual processor to
each virtual machine; instructions that must be emu-
lated are called sensitive instructions. For performance
reasons, virtual machines typically rely on the proces-
sor trap mechanism to run the VMM when a sensitive
instruction is executed. However, x86 processors do
not trap on all sensitive instructions [25] so additional
work must be done. To handle sensitive instructions
that do not cause a trap, VMware uses a technique
called binary rewriting. In binary rewriting, all instruc-
tions are examined before being executed, and the
VMM inserts a breakpoint in place of sensitive instruc-
tions. The breakpoint causes a trap to the VMM when
executed, where the instruction is emulated. Binary
rewriting adds to VMM complexity in VMware, but
provides a complete x86 virtual instruction set at the
guest-VMM interface.

As with the guest-VMM interface, VMware bal-
ances many different factors in the design of the plat-
form-VMM interface. For performance reasons, the
VMware VMM uses a hybrid approach to implement
the platform-VMM interface. Exception handling and
memory management are accomplished by manipulat-
ing hardware directly, but in an effort to simplify the
VMM, I/O is supported through a host OS. By using
well-known abstractions to support I/O, the VMM
avoids maintaining device drivers, something existing

operating systems already do well. This simplicity
caused poor performance in old versions of VMware,
but optimizations are used to mitigate the effects and
speed up I/O [28].

In addition to VMM optimizations to improve I/O
performance, several guest device drivers specific to
VMware are used. By using VMware device drivers
that know about running on virtual hardware, I/O per-
formance approaches that of an operating system run-
ning on bare hardware. VMware specific guest device
drivers can be viewed as a modification to the guest
OS, and although VMware will work without it, the
performance is greatly enhanced using these modifica-
tions.

Memory management in VMware is carried out
by the guest OS directly on the hardware. To insure
that there are no conflicts between host and guest mem-
ory, VMware allocates and pins host RAM for use in
the guest context. The guest then uses the allocated
RAM. One aspect that complicates this is the VMM
must reside in all guest contexts so it can gain control
when needed, causing a small section of the guest lin-
ear address space to be emulated on each guest read
and write.

To gain control of the guest, VMware implements
interrupt service routines for all interrupts. Whenever
guest code causes an exception, it is first examined by
the VMM. Interrupts that correspond to I/O devices
are forwarded to the host so that they can be handled
properly, while exceptions generated by guest applica-
tions (like system calls) are forwarded back to the
guest.

Overall, VMware has attained an excellent bal-
ance between all virtual machine design factors. The
guest-VMM interface is true to x86 hardware, and
using the host OS for I/O simplifies the VMM design.
Optimizations to alleviate overhead have been imple-
mented, but the VMM does still carry significant com-
plexity because binary rewriting is used, and many
aspects of x86 hardware must be emulated. For
VMware, trading VMM complexity for guest-VMM
generality and performance is a necessary compromise.

2.2. Denali
The main design goals for Denali are to reduce

virtualization overhead (overhead due to running in a
virtual machine), provide strong isolation between dif-
ferent virtual machine instances, and simplify the
VMM. These goals are accomplished using a tech-
nique called para-virtualization. Para-virtualization
3

involves modifying the guest-VMM interface; instruc-
tions are added to and subtracted from the virtual archi-
tecture. By deprecating certain x86 instructions, binary
rewriting is no longer needed. Because x86 hardware
is complicated and requires a great deal of emulation
for backward compatibility, removing instructions sig-
nificantly simplifies the VMM. As part of the Denali
virtual architecture, virtual I/O is supported at the ISA
level. For example, an entire Ethernet frame can be
sent to the VMM using a single instruction. This sig-
nificantly reduces the number of guest to VMM traps,
and simplifies the design of guest OSs.

Denali runs directly on top of the hardware, there
is no host operating system. As a consequence, the
Denali VMM must provide device drivers for all hard-
ware running on the specific platform. By implement-
ing drivers in the VMM, Denali can enforce policies
for fair hardware multiplexing. This insures isolation
between different virtual machine instances, but com-
plicates the VMM.

There is no concept of virtual memory hardware
in Denali virtual machines; all guest code runs in a sin-
gle, private, address space. Although this simplifies the
guest OS, the lack of intra-virtual machine protection
limits the capability of the guest OS. It requires a com-
plete change of design in the way applications are built.
Essentially, any standard "process" would have to be
run in a new virtual machine if protection is needed.

Interrupt handling is also different in Denali.
Rather than handling interrupts when they occur, they
are queued until the specific virtual machine is run.
Because this reduces the number of virtual machine to

VMM switches needed to operate, the virtualization
overhead is less.

To support a high performance and simplified
guest OS and VMM design, Denali sacrifices guest-
VMM generality to the point of loosing x86 compati-
bility, even with user-mode applications. The virtual-
ization overhead is significantly low such that many
different virtual machines can run concurrently, which
makes Denali interesting and a possible glimpse into
the future of computing. However, the total loss of
generality makes Denali limited in a practical setting
because of the extensive amount of software already in
use for the x86 platform.

2.3. UMLinux

UMLinux makes extensive use of host OS abstrac-
tions to implement guest services. The UMLinux guest
OS is implemented by modifying the architecture spe-
cific sections of the Linux operating system. Because
the guest OS is modified, the need for binary rewriting
is removed. This simplifies the VMM significantly, but
results in a loss of generality. Fortunately, user-mode
applications are still binary compatible, insuring that
the diverse, extensive set of applications already writ-
ten for Linux can still be used.

The VMM is a single host process that controls all
virtual machines. There is one host process for each
virtual machine instance, and a single host process for
the UMLinux VMM. Using ptrace, the VMM gains
control of virtual machines at the entrance and exit of
any guest system call, and before any signals are deliv-
ered (Figure 4). Ptrace is also used to manipulate the
guest context.

Figure 4: UMLinux architecture.

Linux UMLinux

Figure 5: Address space of Linux and UMLinux.

Guest

OS

Host OS
4

Like VMware, UMLinux uses the host OS for I/O.
Because a UMLinux virtual machine is a normal host
process, switching between different virtual machine
instances is as fast as switching between normal host
processes. Also, modifications to guest device drivers
reduce the need for context switches, an optimization
also used by VMware.

Because each virtual machine is a host process,
the address space must be modified slightly (Figure 5).
In a standard Linux application, the host OS occupies
addresses [0xc0000000, 0xffffffff] while the applica-
tion is given [0x00000000, 0xc0000000). Because a
UMLinux virtual machine must hold the host OS, a
guest OS, and guest applications, the address space for
the host OS remains in the same place, but the guest
OS occupies [0x70000000, 0xc0000000) leaving
[0x00000000, 0x70000000) for guest applications.
The guest kernel memory is protected by the VMM
using host mmap and munmap system calls. To facili-
tate this protection, the VMM maintains a virtual cur-
rent privilege level (VCPL), which is analogous to the
x86 current privilege level (CPL). This is used to dif-
ferentiate between user and kernel modes, and the
VMM will map or un-map kernel memory depending
on the VCPL.

In addition to using mmap and munmap for kernel
address space protection, UMLinux also uses them for
overloading the guest application address space and
performing guest context switches. To allocate mem-
ory for a process, the guest kernel uses host mmap sys-

tem calls on a RAM file. This RAM file is created by
writing a file large enough to hold the guest RAM into
a temporary directory, mapping it, and pinning it.
When a context switch is called for, the entire guest
application address space is un-mapped and the new
process is demand paged back in. For example, if
process_a is running and occupying virtual address
0x08000000, that address would correspond to a spe-
cific offset into the RAM file (Figure 6). To switch to
process_b, also running at virtual address 0x08000000,
the guest kernel first makes a host munmap system
call, removing all data in the address space between
virtual addresses [0x00000000, 0x70000000). When
process_b runs, it generates a host segmentation fault
because there is no data in the guest application address
range. The resulting host segmentation fault is treated
as a page fault by the guest kernel. Using the host
mmap system call, the guest kernel associates virtual
address 0x08000000 with a different offset into the
RAM file, thus changing the address space of the guest
application and allowing process_b to run.

Guest exception handling is implemented using
UNIX signals. The guest OS registers handlers for all
signals, and treats them similarly to their hardware
equivalents. Because signals are used, the VMM does
not have to implement hardware interrupt service rou-
tines, simplifying the VMM.

Although UMLinux does sacrifice some degree of
generality by requiring guest OS modifications, guest
applications are still binary compatible. Changing the

Figure 6: UMLinux guest context switching.
5

guest OS is a technique also used by VMware, and
results in better performance. Implementing the mem-
ory management and interrupt handling using host OS
abstractions results in a simple VMM, but suffers per-
formance degradation when compared with hardware
equivalents.

3. Design
There are advantages and disadvantages to each of

the different virtual machines discussed above. Imple-
mentation of a virtual machine on top of the host, with-
out direct access to the underlying hardware, leads to a
simple VMM implementation, but suffers performance
degradation. Specifically, there is not an efficient way
to trace processes without paying the high performance
penalty of using ptrace. Also, current memory man-
agement abstractions hide the true power of the under-
lying x86 hardware, creating a significant amount of
extra work for protection and address space overload-
ing. To mitigate these effects, and still offer the sim-
plicity of implementing a virtual machine completely
above the host OS, KTrace and MMA are used.

3.1. KTrace
Ptrace is a versatile tool with applications rang-

ing from binary instrumentation to debugging.
Although it does provide a convenient mechanism for
implementing operating system extensibility, applica-
tions suffer a significant performance penalty when
using ptrace. One major cause for overhead is the
number of cross process context switches that are
needed to implement services. In Linux running on
x86 processors, traps are different than context
switches. Because the Linux kernel is mapped into
each process, traps are used only to change protection

domains. As a result, traps to the Linux kernel are
inexpensive. On the other hand, context switches
require flushing the translation lookaside buffer (TLB),
making them less efficient than a trap. Because context
switches are more expensive than traps, applications
using ptrace to implement services will suffer from
poor performance. For example, UMLinux uses
ptrace to redirect system calls from guest applica-
tions to the guest kernel.

When a guest application makes a system call, the
UMLinux VMM intercepts this system call, using
ptrace, before it gets executed by the host OS (Fig-
ure 7). Once the system call has been intercepted, it is
redirected back up to the guest so that the guest kernel
can handle it. Because the host OS thinks that a user
mode process made a system call, the VMM must still
send a system call down. Rather than sending the sys-
tem call that was meant for the guest kernel (it would
not make any sense to the host since it does not even
know there is a guest OS), it sends a getpid system
call, which has no effect on either kernel. After the
host kernel finishes the getpid call, the VMM gains
control again and restores the context to reflect the
guest system call and invokes the guest kernel system
call handler. This invocation is implemented via the
host kernel signal mechanism; the UMLinux VMM
sends a signal (SIGUSER1) to the guest kernel, using
ptrace, signifying the arrival of a guest system call.

Implementing a guest system call requires many
traps and context switches, whereas a normal host sys-
tem call only requires a trap to the host kernel. Moving
the VMM logic to the host kernel reduces the number
of context switches needed to carry out a guest system
call significantly. Porting code to run in the kernel is a

Figure 7: Call trace of a guest application system call in UMLinux.
6

well-known optimization, but using KTrace makes the
processes easy for applications that require ptrace
functionality. KTrace allows loadable kernel modules
(LKMs) and other kernel code the convenience of
ptrace, without the overhead, by facilitating event
notification through callback functions.

Event notification is implemented using callback
functions. The callback functions are passed a pointer
to a pt_regs struct that represents the context of
calling processes. Any changes made to this structure
are reflected in the process when execution resumes.
System calls, signals, and breakpoints each generate
events that kernel code can register for notification on.
System call events are fired at the entrance and exit of
all system calls, signal events are triggered before a
signal is delivered to the process, and breakpoint call-
back functions are invoked after the breakpoint has
occurred.

In addition to event notification, using KTrace
allows for efficient access to the guest address space.
Using ptrace, a system call is required for each four
byte read or write of the processes address space.
Because KTrace code resides in the host kernel, the
processes address space can be accessed directly.

As an example of how KTrace can improve effi-
ciency, a UMLinux system call can be implemented
with KTrace, instead of ptrace (Figure 8). When a
guest application system call traps to the host kernel,
the UMLinux VMM kernel module is invoked through
the event notification mechanism. Essentially, this
notification is a procedure call rather than a full context

switch between two processes. Like in the original
VMM, the registers are manipulated so that the host
kernel believes a getpid system call was made. Once
the getpid is executed, the VMM is sent a system
call return event notification. Then, the VMM manipu-
lates the guest context to reflect the original system
call, and a signal is sent to the guest kernel. As a result
of the context switch reduction, implementing a
UMLinux guest system call using KTrace significantly
reduces overhead.

Using KTrace is much simpler than implementing
equivalent functionality in a kernel module. To accom-
plish the system call and breakpoint notification, the
appropriate entries in the interrupt vector would be
overwritten, and the new service routines would call
the originals after doing some processing. Although
this is straight forward, it involves detailed low-level
knowledge of x86 processors. However, implementing
notification before signals are delivered is more
involved. To implement the signal notification, kernel
functions would have to be overwritten in memory.
Overwriting code in a running kernel would work, but
is not a good solution.

3.2. MMA

Memory management hardware for x86 proces-
sors is diverse and flexible. Support for both segmenta-
tion and paging is provided and used in different
degrees by various operating systems. For example,
Linux uses only the necessary segmentation hardware,
relying mostly on paging hardware for virtual memory
implementation and protection. Although this makes
sense because Linux supports several different archi-
tectures, some of which do not have segmentation,
applications may have use for the segmentation hard-
ware. Furthermore, Linux only utilizes two of the pos-
sible four protection rings in x86 processors.
Protection rings are used as a way to protect the kernel
section of the address space, and privileged instruc-
tions, from applications. Most modern operating sys-
tems only use rings 0 (kernel mode) and 3 (user mode),
but the intermediate rings are useful, especially to vir-
tual machines.

The cause of poor address space performance in
UMLinux is due to the available abstractions. For
example to protect the guest kernel, the UMLinux
VMM must munmap the guest kernel memory region
when the virtual machine is running in user-mode.
Mmap and munmap are expensive operations when
used on the guest kernel memory, and often result in

Guest
application
make sys-
tem call

Host kernel
traps system call,
invokes VMM
using KTrace call-
back functions

VMM forwards
getpid to host and
redirects syscall to
guest kernel using
SIGUSR1

Guest kernel
handles system call

Figure 8: UMLinux guest system call implemented
using KTrace
7

writes to disk. Unfortunately, using mmap and mun-
map is necessary; otherwise applications could access
guest kernel memory and easily break into the system.
In addition to guest kernel protection, guest context
switching is slow because the guest application address
space is overloaded using mmap and munmap. In con-
trast, a host kernel only needs to change the page table
directory register to switch the entire address space. To
combat these inefficiencies, several new memory man-
agement functions are added to the kernel, called
MMA.

3.2.1. Segmentation Limits and Intermediate
Privilege Rings
Linux makes minimal use of x86 segmentation

hardware, utilizing it as a necessary mechanism for
switching between privilege levels. There are four dif-
ferent segments used in Linux: a kernel code segment,
a kernel data segment, a user code segment, and a user
data segment. For all segments, the base is equal to 0
and the bound spans the entire address space. All host
processes share the two user segments and the kernel
has exclusive access to the two kernel segments.
Because kernel-mode and user-mode code use different
segments, changes to the user-mode segment base and
bounds do not affect the kernel. Therefore changing
the user-mode segment bounds can be used as a mecha-
nism for implementing hardware protection in user-
mode applications. To facilitate this, MMA imple-
ments a dynamic, per process, segmentation bound
parameter. The mmaSetBound function sets the
bound for the given process. Adding the segmentation
bound to the process context allows each process to
maintain different segmentation bounds. Because the
primary use for this is memory protection, only host
kernel code can set the bound for a process. For exam-
ple, MMA segmentation bounds are used to protect the
guest kernel in UMLinux. By setting the bound to
0x70000000 when the virtual machine is in virtual user
mode, any attempted access of the guest kernel mem-
ory by a guest application correctly results in a fault.
Before the guest kernel runs, the segmentation bound is
set to span the entire address space once again. How-
ever for this protection mechanism to be secure, the
code that performs the bounds modification cannot be
available to guest code. The guest kernel cannot make
the change because the segmentation hardware pre-
vents it from running, so the change is made by the
VMM. Using KTrace, the VMM running in the host
kernel tracks all transitions between virtual user and

kernel-modes. At these transitions, the segmentation
limit is changed for a UMLinux virtual machine by the
VMM.

In addition to modifying segmentation bounds,
MMA implements the ability for user-mode applica-
tions to run in ring 1. Running in ring 1 is an additional
way to use hardware for user-mode address space pro-
tection. Code running in ring 1 can access protected
memory, but cannot execute privileged instructions.
Because of this freedom, the segmentation hardware
must also be used to protect the host kernel from code
running in ring 1. And like mmaSetBound, the ring 1
transition code must be executed outside of the applica-
tion. Changing execution rings is done using the
mmaChangeRing function. Since mmaChangeR-
ing is called from the host kernel, the process runs in
ring 1 once execution is resumed. To facilitate protec-
tion, the mmaSetPageProtections function is
used. A page that is protected cannot be accessed by
code running in ring 3, and the segmentation hardware
protects the host kernel from the ring 1 code.

Like setting segmentation limits, parts of the user-
mode address space can be protected by running cer-
tain code in ring 1. Setting segmentation bounds can
only be used to protect a contiguous range of the upper
part of the user-mode address space, while setting page
protections can be used for any page in the user-mode
address range. Both are efficient, but the segmentation
bound solution is simpler than allowing code to run in
ring 1, while changing rings provides greater flexibility.

3.2.2. Address Space Overloading
MMA provides address space overloading func-

tions, allowing a process to maintain several different
copies of an address space range. Rather than using
mmap and munmap to maintain a range of address
space, MMA modifies the first level hardware page
table and associated kernel data structures. Applica-
tions can then maintain several different copies of the
same range of address space, and switch them using a
system call. Because the page table is manipulated
directly, and there is no backing file to deal with,
changing an address space range is fast.

Unlike MMA protection mechanisms, the address
space overloading functionality is available to user-
mode applications; care must be taken to guard against
attacks. First, because the actual data is stored in the
host kernel, each process is limited to 1024 different
address spaces, thus preventing malicious code from
allocating all free kernel memory. Also, each process
8

has separate storage (i.e. one process cannot swap in
the address space of another process). Finally, the
address range is referenced by the application using an
index, so out of range or invalid entries can easily be
handled.

One example of using address space overloading
is for UMLinux context switching. The guest kernel
maintains different copies of the address range
[0x00000000, 0x70000000) for each guest application.
When a new process is scheduled, rather than calling
munmap and demand paging in the new address space,
an invokation of the switchguest system call
updates the host process address space and the new
guest process is run.

4. Evaluation
To illustrate the capability of KTrace and MMA,

they are implemented in a 2.4.18 Linux kernel, and
UMLinux is modified to utilize them. The UMLinux
VMM is implemented as a loadable kernel module on
the host, which uses KTrace to trace each virtual
machine instance. Also, MMA is used by the VMM to
implement guest kernel protection. Finally, the guest
kernel is updated to use the MMA system calls for con-
text switching. Applying these optimizations results in
a significant performance enhancement for UMLinux.
To quantify the performance boost, several macro and
micro benchmarks are used.

All test are run on several different configurations
to illustrate the affect of various performance enhance-
ments. The systems are an unmodified version of
UMLinux, UMLinux using KTrace, UMLinux using
KTrace and MMA for guest kernel memory protection,

UMLinux using KTrace and MMA for guest kernel
memory protection and fast guest context switching,
VMware, and stand-alone Linux.

The experiments are run on a PC compatible com-
puter with a 1.5 GHz AMD Athlon processor, 512 MB
of memory, and a Samsung SV4084 IDE disk. All tests
are run three times and the resulting variance is less
than 3% in all cases.

For UMLinux and VMware, the guest OS is Linux
2.2.20 with a Linux 2.4.18 host; the stand-alone kernel
is Linux 2.2.20. Virtual machines are allocated only
164 MB of RAM because of limitations in UMLinux,
but this should have minimal affect on performance
testing. Also, raw disk partitions are used for the two
virtual machines to avoid both file cache double buffer-
ing and excessive speedup due to host file caching.

4.1. Macro Benchmarks
Several macro benchmarks are used to test how

well the UMLinux system performs compared to stand-
alone Linux and VMware (Table 1). Stand-alone
Linux is considered the upper limit for how well a vir-
tual machine could perform, and VMware is an exam-
ple of a virtual machine that attains excellent
performance. Three different macro benchmarks are
used to test the system: a kernel build, SPECweb99,
and POV-Ray. The kernel build is a compilation of the
2.4.18 Linux kernel, using default configuration values.
SPECweb99 is run with 15 simultaneous connections
made from two different client computers. The server
is given 300 seconds of warm up time before the test
commenced; each test runs for 300 seconds. The vir-
tual machine is using the 2.0.36 apache web server and
all computers are connected using a 100 Mb Ethernet

Table 1: Virtualization overhead for the macro benchmarks. Results shown are relative to stand-alone Linux and
calculated by dividing the different between the virtual machine time divided by the time for stand alone Linux.

Workload
Original

UMLinux
UMLinux +

KTrace

UMLinux +
KTrace + MMA
segment bounds

protection

UMLinux +
KTrace + MMA
segment bounds
protection + fast
context switching

VMware

POV-Ray 33.9% 16.7% 5.5% 5.6% 3.7%

kernel
build

1240% 627.3% 102.5% 48.9% 20.3%

SPECweb
99

819.2% 392.8% 26.8% 23.8% 3.0%
9

switch. POV-Ray is a ray tracing application and the
benchmark image is rendered using a quality factor of
eight. Each benchmark tests many different aspects of
the system, and are similar to those used to evaluate
Cellular Disco [20].

After applying all optimizations, UMLinux attains
excellent performance compared to stand-alone Linux
and VMware. This is due to the significant speedups
gained from implementing UMLinux using KTrace and
MMA. Before these were used, UMLinux had 1240%
overhead for a kernel compile compared to stand-alone
Linux and anly 48.9% overhead when all optimizations
are applied. Clearly, these optimizations make
UMLinux feasible as an everyday system. Further-
more, there is no noticeable performance degradation
on less demanding tasks like web surfing or editing a
text file.

4.2. Micro Benchmarks
To understand the effects of the different optimi-

zations, and to help recognize areas in need of
improvement, two micro benchmarks are used: a null
system call latency test, and a context switching
latency test (Table 2). The null system call test mea-
sures the amount of time a null (getpid) system call
takes to execute, and the context switching latency test
measures the overhead of a context switch. Both tests
are from the LMbench toolkit [7].

Modifying the UMLinux VMM to use KTrace,
instead of running as a separate process, results in a
1155 second reduction in the amount of time needed to
compile a 2.4.18 Linux kernel. The majority of this
speedup is due to faster guest context switching.
Because the Linux kernel compilation configuration
uses the pipe option by default, and pipe buffers are
only 4096 bytes, there are a number of context switches
needed to compile a kernel. Although there are many
context switches, it is difficult to quantify the overhead

of a UMLinux guest context switch. UMLinux context
switch overhead is dependant on the working set of the
new process. When a new process is run, each page
used is demand paged in because of the mmap and
munmap mechanisms used to overload the guest appli-
cation address space. Therefore, processes with large
working sets will take longer to context switch in.
Because of this variability, one cannot simply measure
the overhead reduction of a context switch and multiply
that by the number of context switches needed in a ker-
nel compile. Rather, the UMLinux system must be
examined in more detail before the micro benchmark
results can be used.

For a kernel compile, there are 22 million host
segmentation fault signals sent to the guest kernel.
These signals are used as notification of a guest page
fault and the mechanism for demand paging in the
address space of guest applications. To estimate the
overhead reduction per segmentation fault, the results
from the context switching tests are used. The context
switching tests use two processes, both with 1 MB of
data, which are connected by pipes. These pipes are
used to force context switches. Before one process
relinquishes control to the other, each of the 256 pages
of data are read. Each read results in a segmentation
fault, therefore most of the context switching speedup
between the original UMLinux and UMLinux using
KTrace can be attributed to optimizing the demand
paging process.

A single guest context switch is 10725 µs faster
when the UMLinux VMM is implemented using
KTrace compared to the original UMLinux. For each
segmentation fault, there is a 10725 µs/ 256, or 42 µs,
speedup. As a result, a kernel compile takes approxi-
mately 42 µs * 22,000,000, or 924 s, less to complete.
Although this is not account for the entire 1155 s
speedup, it certainly makes up the majority. In addi-

Workload
Original

UMLinux
UMLinux +

KTrace

UMLinux +
KTrace + MMA
segment bounds

protection

UMLinux +
KTrace + MMA
segment bounds
protection + fast
context switching

Null system call 71.0 µs 37.3 µs 3.3 µs 3.3 µs

Context Switching 23137 µs 12412 µs 3764 µs 1745 µs

Table 2: Micro-benchmark result. The times listed are the times to complete a single system call, or a single
context switch.
10

tion, there are 1.4 million guest system calls. Each exe-
cutes 34 µs faster, accounting for an additional 48
seconds.

Using MMA hardware protection mechanisms to
protect the guest kernel further reduced kernel compi-
lation time. This optimization results in a 1160 second
speedup and can be accounted for by faster demand
paging and guest system calls. Using the same calcula-
tions as above, about 790 seconds can be attributed to
faster demand paging and guest system calls.

The final optimization reduces the kernel compila-
tion time by another 110 seconds. However, the
speedup is a result of removing several signals rather
than speeding them up. By using MMA address space
overloading functions, the number of segmentation
faults generated during a kernel compile is reduced
from 22 million to about 4.9 million. It is reasonable to
assume that the speedup can be attributed to reducing
the number of segmentation faults generated.

Based on the micro benchmarks, improving guest
system call and context switch performance further
will have little affect on the overall performance of
UMLinux. A fully optimized guest system call incurs
only 3 µs of additional overhead, and the guest context
switching time is within 23 % of stand-alone Linux.
One possible area for additional performance improve-
ments may be the disk I/O subsystem. Currently, all
reads and writes to the virtual disk block the entire vir-
tual machine. Implementing asynchronous I/O could
help reduce the virtualization overhead even further.
However, the overall performance of UMLinux is rea-
sonable, making it a viable option.

5. Related Work
In this section, I compare KTrace and MMA with

similar projects: virtual machines, virtualization tech-
niques, tracing mechanisms, intra-address space pro-
tection, and fast context switching.

5.1. Virtual Machines
In addition to the virtual machines already dis-

cussed in this paper, there is another project that is sim-
ilar to UMLinux: User Mode Linux (unfortunately the
same name). Like UMLinux, User Mode Linux [13]
uses Linux user mode processes to implement a virtual
machine. Modifications to the guest kernel are
required and a host OS is used to implement guest OS
services. However, User Mode Linux uses one host
process for each guest process, while UMLinux encap-
sulates the entire virtual machine within a single host

process. By using a host process for each guest pro-
cess, User mode linux context switches between guest
processes are as fast as non-virtual Linux. Fortunately,
KTrace and MMA allow UMLinux context switching
times to approach non-virtual Linux while still main-
taining the simplicity of using only a single host pro-
cess per virtual machine instance.

5.2. Additional Virtualization Techniques
There are several different approaches to virtual-

ization that could be used in addition to virtual
machines. Exokernel [15] uses a small kernel that is
only responsible for maintaining protection. The inter-
faces exported expose details of the underlying hard-
ware, and library operating systems are responsible for
managing allocated hardware resources. Although
there are library operating systems implemented,
Exokernel applications in need of low-level hardware
access can have it without modifying the kernel.

Mach [18, 17] is a microkernel operating system
that typically implements a user mode BSD library OS.
Mach separates different operating system components
into servers and clients, each with a clearly defined
API. This level of modularity allows modification of
operating system components without unknowingly
affecting other aspects of the kernel, so long as the
defined interface is still followed. Although this makes
for easier software engineering, the modular design
may result in poor performance.

Flux OSKit [24] is a way to construct different
operating system components without having to re-
implement them from scratch. Among the providied
components are basic kernel support, memory manage-
ment, PThreads, networking, file system support, and a
generic device driver framework that supports Linux
and BSD drivers. In additions to OS layers, there are
also X Display, a C run-time library, and a math library
included. These components are pieced together so
users can pick and choose the services needed for the
specific application.

5.3. Tracing / Extensibility
There are a number of projects related to control-

ling the execution of applications. Ptrace is avail-
able on many different operating systems and is used in
a wide range of applications. It can intercept system
calls and signals, as well as modify the address space
of the process that is being traced. Although ptrace
does offer a great deal of flexibility, applications may
not want to intercept every system call. To accommo-
date this type of application, the /proc file system on
11

many different operating systems (Solaris, OSF/1) is
used in a similar manner. Tracing applications can reg-
ister for notification only on specific system calls and
manipulate the traced processes address space directly.

In addition to using operating system tracing
mechanisms, applications can be extended by modify-
ing the binary code. These modifications allow for
existing programs to be enhanced without access to the
original source code. Three different binary instrumen-
tation schemes are ATOM [16], Dyninst [9], and
Dynamo [4]. There are many more such systems, but
these represent three classes of binary rewriting tool-
kits. ATOM statically rewrites the binary by modifying
executable files before they are run. Dyninst uses a
slightly different approach by modifying the C run-
time libraries to facilitate code insertion when C run-
time functions are invoked. Dyanmo controls the
application execution path as it is running and rewrites
the binary code in memory, rather than modifying the
executable file. Each different scheme has advantages,
and all are used to extend existing applications.

5.4. Intra-address space protection

The palladium project [12] uses techniques similar
to MMA for implementing intra-address space protec-
tion. By using the x86 memory management hardware,
palladium offers distinct protection domains within a
single address space for both kernel extensions and
applications. However, palladium protection for user-
level applications is different than MMA because in
palladium, there is a central user mode application that
loads different extension modules into its address
space. These extension modules then switch domains
by using palladium specific system calls. In MMA,
rather than having the extension module switch protec-
tion domains, a kernel module makes the change on
behalf of the application. The advantage of this
approach is that the user-mode applications benefit
from protection without requiring modification. Imple-
menting UMLinux using palladium is possible but
requires modifying run-time libraries and certain appli-
cations, whereas MMA allows these programs to run
unmodified.

Like palladium, Lava [21] uses hardware to imple-
ment intra-address space protection. Support for
switching protection domains is implemented in the
operating system and communication between protec-
tion domains is facilitated through fast IPC. However,
using Lava requires modifications to existing user-
mode applications.

In addition to hardware protection, there are a
number of software tools that offer intra-address space
protection. Software based fault isolation [30] breaks
address spaces into distinct protection segments.
Rewriting binaries before they are run enforces protec-
tion. Type-safe [6, 10, 32] and interpreted [2] lan-
guages also protect memory by disallowing arbitrary
pointers. The main drawback of this approach is that
all software that requires protection must be imple-
mented using the specific language. This restriction is
not feasible for virtual machines that run existing appli-
cations.

5.5. Fast Context Switching
In [27], fast context switching is achieved through

compiler and kernel support. Speedups are due to
encouraging preemptive context switches at so-called
fast context switching points. These fast context
switching points are instructions that have no live
scratch (caller-saved) registers. Therefore when a con-
text switch occurs, there are less registers that must me
written to memory. However, larger tagged L1 and L2
cache found in x86 processors mitigate these effects,
eliminating the need for this type of optimization.

The L4 microkernel [29] uses the segmentation
hardware found in x86 and Power PC processors to
break up linear address spaces into different segments.
Switching between processes is just a matter of chang-
ing segments, the linear address remains the same.
This scheme eliminates the need for expensive TLB
flushes when switching between processes. However
for this scheme to be effective, the working set of the
processes must be small.

Lightweight RPC (LRPC) [5] optimizes the com-
mon case for RPC of calling functions on a server that
resides on the same machine. In this approach, optimi-
zations are made to improve the networking and
parameter passing speed. Essentially, the server and
client share a stack, which eliminates the need for mar-
shaling arguments and return values between the two.
Although the performance for micro benchmarks is
improved, it is not clear that the optimization signifi-
cantly improves the performance of any current appli-
cations that would benefit from fast RPC.

Each of these projects are complementary to the
address space overloading capabilities of MMA.
MMA is used to enhance the performance of context
switching within a guest OS, but does so by providing a
fast way to switch in and out sections of address space,
something none of the existing projects do.
12

6. Conclusions
Using KTrace and MMA enables UMLinux to

achive excellent performance. By reducing the number
of context switches needed to carry out common ser-
vices and leveraging the flexibility of x86 memory
management hardware, UMLinux performs almost as
well as VMware in several Macro benchmark tests. As
a result, UMLinux is a viable option for implementing
secure services below the VMM while still maintaining
reasonable performance.

7. Acknowledgments
I am gratefull to Pete Chen for all of the useful

discussions we had regarding the material presented in
this paper. I would also like to thank Landon Cox,
Howard Tsai, and Samantha King for taking the time to
review this paper.

8. References

[1] Technical White Paper. Technical report, VM-
ware, Inc., February 1999.

[2] The java programming language, 2002. http://ja-
va.sun.com.

[3] C. P. Attanasio, P. W. Markstein, and R. J. Phil-
lips. Penetrating an operating system: a study of
VM/370 integrity. IBM Systems Journal,
15(1):102–116, 1976.

[4] Vasanth Bala, Evelyn Duesterwald, and Sanjeev
Banerjia. Dynamo: a transparent dynamic optimi-
zation system. Proceedings of the ACM SIGPLAN,
35(5):1–12, 2000.

[5] Brian N. Bershad, Thomas E. Anderson,
Edward D. Lazowska, and Henry M. Levy. Light-
weight Remote Procedure Call. ACM Transactions
on Computer Systems, 8(1):37–55, February 1990.

[6] Brian N. Bershad, Stefan Savage, Przemyslaw
Pardyak, Emin Gun Sirer, Marc E. Fiuczynski,
David Becker, Craig Chambers, and Susan Eggers.
Extensibility, Safety and Performance in the SPIN
Operating System. In Proceedings of the 1995
Symposium on Operating Systems Principles, pag-
es 267–283, December 1995.

[7] Bitmover. LMbench - Tools for Performance
Analysis, 2002. http://www.bitmover.com/lm-
bench/.

[8] Kerstin Buchacker and Volkmar Sieh. Framework
for testing the fault-tolerance of systems including
OS and network aspects. In Proceedings of the

2001 IEEE Symposium on High Assurance System
Engineering (HASE), pages 95–105, October
2001.

[9] Bryan Buck and Jeffrey K. Hollingsworth. An API
for Runtime Code Patching. The International
Journal of High Performance Computing Applica-
tions, 14(4):317–329, Winter 2000.

[10] Jeffrey S. Chase, Henry M. Levy, Michael J. Fee-
ley, and Edward D. Lazowska. Sharing and Protec-
tion in a Single-Address-Space Operating System.
ACM Transactions on Computer Systems,
12(4):271–307, November 1994.

[11] Peter M. Chen and Brian D. Noble. When virtual is
better than real. In Proceedings of the 2001 Work-
shop on Hot Topics in Operating Systems (HotOS),
May 2001.

[12] Tzi cker Chiueh, Ganesh Venkitachalam, and Pras-
hant Pradhan. Integrating segmentation and paging
protection for safe, efficient and transparent soft-
ware extensions. In Symposium on Operating Sys-
tems Principles (SOSP), pages 140–153, 1999.

[13] Jeff Dike. A user-mode port of the Linux kernel. In
Proceedings of the 2000 Linux Showcase and Con-
ference, October 2000.

[14] George W. Dunlap, Samuel T. King, Sukru Cinar,
Murtaza A. Basrai, and Peter M. Chen. ReVirt:
Enabling Intrusion Analysis through Virtual-Ma-
chine Logging and Replay. In Proceedings of the
2002 Symposium on Operating Systems Design
and Implementation (OSDI), December 2002.

[15] Dawson R. Engler, M. Frans Kaashoek, and
James O’Toole Jr. Exokernel: an operating system
architecture for application-level resource man-
agement. In Proceedings of the 1995 Symposium
on Operating Systems Principles, pages 251–266,
December 1995.

[16] Alan Eustace and Amitabh Srivastava. ATOM: A
Flexible Interface for Building High Performance
Program Analysis Tools. Technical Report DEC
WRL Technical Note TN-44, Digital Equipment
Corporation, July 1994.

[17] Trent Fisher. HURD: Towards a New Strategy of
OS Design, 1996. http://www.gnu.org/soft-
ware/hurd/hurd-paper.html.

[18] David Golub, Randall Dean, Allessandro Forin,
and Richard Rashid. Unix as an Application Pro-
gram. In Proceedings of the 1990 USENIX Sum-
mer Conference, 1990.
13

[19] Rop Gonggrijp. NAH6 Secure Notebook, 2002. ht-
tp://www.nah6.com/.

[20] Kinshuk Govil, Dan Teodosiu, Yongqiang Huang,
and Mendel Rosenblum. Cellular disco: resource
management using virtual clusters on shared-
memory multiprocessors. ACM Transactions on
Computer Systems, 18(3):226–262, August 2000.

[21] Trent Jaeger, Jochen Liedtke, and Nayeem Islam.
Operating System Protection for Fine-Grained
Programs. In Proceedings of USENIX Security
Symposium, pages 143–157, January 1998.

[22] Samuel King, Adam Everspagh, Tun-Han Lee, Pe-
ter Chen, and Atul Prakash. VM-Guard: A Virtual
Machine-Based Intrusion Detection and Preven-
tion System. In rejected from ACM Conference on
Computer Security (ACMCCS), December 2002.

[23] Robert Meushaw and Donald Simard. NetTop:
Commercial Technology in High Assurance Ap-
plications. Tech Trend Notes: Preview of Tomor-
row’s Information Technologies, 9(4), September
2000.

[24] Flux OSKit. The OSKit Project, 2002. ht-
tp://www.cs.utah.edu/flux/oskit.

[25] John Scott Robin and Cynthia E. Irvine. Analysis
of the Intel Pentium’s Ability to Support a Secure
Virtual Machine Monitor. In Proceedings of the
2000 USENIX Security Conference, August 2000.

[26] Mendel Rosenblum, Stephen A. Herrod, Emmett
Witchel, and Anoop Gupta. Complete computer
system simulation: the SimOS approach. IEEE
Parallel & Distributed Technology: Systems & Ap-
plications, 3(4):34–43, January 1995.

[27] Jeffrey S. Snyder, David B. Whalley, and
Theodore P. Baker. Fast context switches: Com-
piler and architectural support for preemptive
scheduling. Microprocessors and Microsystems,
pages 35–42, 1995.

[28] Jeremy Sugerman, Ganesh Venkitachalam, and
Beng-Hong Lim. Virtualizing I/O Devices on VM-
ware Workstation’s Hosted Virtual Machine Mon-
itor. In Proceedings of the 2001 USENIX
Technical Conference, June 2001.

[29] V. Uhlig, U. Dannowski, E. Skoglund,
A. Haeberlen, and G. Heiser. Performance of Ad-
dress-Space Multiplexing on the Pentium. In In-
terner Bericht 2002-1, Fakultat fur Informatik,
May 2002.

[30] Robert Wahbe, Steven Lucco, Thomas E. Ander-
son, and Susan L. Graham. Efficient Software-
Based Fault Isolation. In Proceedings of the 14th
ACM Symposium on Operating Systems Princi-
ples, pages 203–216, December 1993.

[31] Andrew Whitaker, Marianne Shaw, and Steven D.
Gribble. Denali: Lightweight Virtual Machines for
Distributed and Networked Applications. In sub-
mitted to Proceedings of the 2002 USENIX Tech-
nical Conference, 2002.

[32] Steve Zdancewic, Lantian Zheng, Nathaniel
Nystrom, and Andrew C. Myers. Untrusted Hosts
and Confidentiality: Secure Program Partitioning.
In Symposium on Operating Systems Principles,
pages 1–14, 2001.
14

	1Heading - 1. Introduction
	Figure - Figure 1: Direct-on-hardware virtual machine.
	Figure - Figure 2: Host based virtual machine.

	1Heading - 2. Virtual machines
	Figure - Figure 3: The IBM VM/370 [3] is a classic virtual machine in that it implements a direct...
	2Heading - 2.1. VMware
	2Heading - 2.2. Denali
	Figure - Figure 4: UMLinux architecture.
	Figure - Figure 5: Address space of Linux and UMLinux.

	2Heading - 2.3. UMLinux
	Figure - Figure 6: UMLinux guest context switching.

	1Heading - 3. Design
	Figure - Figure 7: Call trace of a guest application system call in UMLinux.
	2Heading - 3.1. KTrace
	Figure - Figure 8: UMLinux guest system call implemented using KTrace

	2Heading - 3.2. MMA
	3Heading - 3.2.1. Segmentation Limits and Intermediate Privilege Rings
	3Heading - 3.2.2. Address Space Overloading

	1Heading - 4. Evaluation
	2Heading - 4.1. Macro Benchmarks
	2Heading - 4.2. Micro Benchmarks

	1Heading - 5. Related Work
	2Heading - 5.1. Virtual Machines
	2Heading - 5.2. Additional Virtualization Techniques
	2Heading - 5.3. Tracing / Extensibility
	2Heading - 5.4. Intra-address space protection
	2Heading - 5.5. Fast Context Switching

	1Heading - 6. Conclusions
	1Heading - 7. Acknowledgments
	1Heading - 8. References

