
Technical Report: Johnny Can’t Sing: a Comprehensive Trainable

Error Model for Sung Music Queries

Colin Meek and William Birmingham

November 26, 2002

Abstract

We propose a model for errors in sung queries, a variant of the hidden Markov model (HMM). This is a
solution to the problem of identifying the degree of similarity between a (typically error-laden) sung query
and a potential target in a database of musical works, an important problem in the field of music information
retrieval. Similarity metrics are a critical component of “query-by-humming” (QBH) applications which
search audio and multimedia databases for strong matches to aural queries. Our model comprehensively
expresses the types of error or variation between target and query: cumulative and non-cumulative local
errors, transposition, tempo and tempo changes, insertions, deletions and modulation. The model is not only
expressive, but automatically trainable, or able to learn and generalize from query examples. We present
results of simulations, designed to assess the discriminatory potential of the model, and tests with real sung
queries, to demonstrate relevance to real-world applications.

0.1 Introduction

Many approaches have been proposed for the identification of viable targets for a query in a music database.

We are interested here in queries posed in the most natural format for untrained users: the voice. Our goal

is to demonstrate a unifying model, expressive enough to account for the complete range of modifications

observed in the performance and transcription of sung musical queries. Given a complete model for singer

error, we can accurately determine the likelihood that, given a particular target (or song in a database),

the singer would produce some query. These likelihoods offer a useful measure of similarity, allowing a

query-by-humming (QBH) system to identify strong matches to return to the user.

Given the rate at which new musical works are recorded, and given the size of multimedia databases

currently deployed, it is generally not feasible to learn a separate model for each target in a multimedia

database. Similarly, it may not be possible to customize an error model for every individual user. As

such, a QBH matcher must perform robustly across a broad range of songs and singers. We develop a

method for training our error model that functions well across singers with a broad range of abilities, and

successfully generalizes to works for which no training examples have been given (see Section 0.10). Our

approach (described in Section 0.8) is an extension of Baum’s re-estimation algorithm [4], and a special case

of Expectation Maximization (EM) [8]. It is applicable to hidden Markov models (HMM) with the same

dependency structure, and is demonstrated to be convergent (see Appendix .1).

Our model is capable of expressing the following transformations, relative to a target:

• Transposition: the query may be sung in a different key or register than the target. Essentially, the

query might sound “higher” or “lower” than the target.

• Modulation: over the course of a query, the transposition may change.

• Tempo: the query may be slower or faster than the target.

• Tempo change: the singer may speed up or slow down during a query.

• Non-cumulative local error: the singer might sing a note off-pitch or with poor rhythm.

• Cumulative local error: the singer may introduce local errors that effect subsequent events (these are

functionally equivalent to transpositions and modulations).

• Insertions and deletions: adding or removing notes from the target, respectively. These edits are

frequently introduced by transcription tools as well.

While various representations and models can effectively represent some of these elements, to our knowledge

no existing model explicitly accounts for all of them.

An important contribution of this work is an in-depth exploration of the nature of note insertions and

deletions. We assert that traditional string-edit operations [12][13] must be extended in the musical context

and, to this end, introduce the corollary operations: elaborations and joins. Experiments have demonstrated

that näıve string-edit approaches do not provide sufficient precision for music retrieval [22].

Existing work using HMMs for query-by-humming handle a subset of the error classes. Shifrin, et al.

[21] and Pauws [18] use a compact state representation that is flexible in terms of transposition and tempo,

1

but otherwise is capable of expressing only cumulative local error. Notes are represented in terms of pitch

interval (the interval in semitones between successive notes) and the ratio of the inter-onset intervals (IOI)

of successive notes tuples (see Figure 1). Essentially, this representation establishes a local and relative

context for each note. While this approach is attractive for its robustness in the face of transposition and

tempo differences, it also means that an error on a single note in the query establishes an unusual context

for subsequent notes, thus making the implicit assumption that error is cumulative. Durey [10] does not

allow for either transposition or tempo scaling, which are pervasive in real queries.

pitch interval: +2, +2, 0, -1,-3, +3,+1,-3, -1,-3,-3

IOI: 3, 2, 3, 2, 1, 2, 1, 1, 2, 1, 1, 1

IOI ratio: 1.5, 0.66, 1.5, 2,0.5, 2, 1,0.5, 2, 1, 1

Figure 1: A possible note representation (taken with permission from [21])

The expressiveness of our model has a computational cost. Conceptually, our model considers states

for each permutation of pitch relationship, rhythm relationship and string-edit operation. We make the

assumption of conditional independence among these elements. For instance, the probability that a singer will

skip a note is assumed to be independent of how out of tune they sang the previous note. These assumptions

help control the computational cost, and also reduce the parameterization of the model, essential for tractable

training [20]. Shifrin, et al., [21] make similar assumptions about the independence of local pitch and rhythm

errors, thus considerably reducing the amount of data needed to train the model. We recommend various

approaches to parameter tying [1] throughout this paper (effectively reusing various parameters in different

models or parts of models, or both), but we stress that this is an open area of research.

2

0.2 Problem Formulation and Notation

An assumption of our work is that pitch and IOI adequately represent both the target and the query. This

limits our approach to monophonic lines, or sequences of non-overlapping note events. An event consists of

a 〈Pitch, IOI〉 duple. IOI is the time difference between the onsets of successive notes, and pitch is the

MIDI note number1.

A critical distinction with some other query-by-humming systems is that we take as input a note-level

abstraction of music. Other systems act on lower-level representations of the query. For instance, a frame-

based frequency representation is often used[10][14]. Various methods for the translation of frequency and

amplitude data into note abstraction exist [19][21]. Our group currently uses a transcriber based on the Praat

pitch-tracker [7], designed to analyze voice pitch contour. A sample Praat analysis is shown in Figure 2. In

addition to pitch extraction, the query needs to be segmented, or organized into contiguous events (notes).

The query transcription process is described in greater detail in Section 0.3. Note that these processes are

not perfect, and it is likely that error will be introduced in the transcription of the query.

42

44

46

48

50

52

Time (sec.)

Pi
tc

h
(6

0
=

M
id

dl
e

C)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0.5

0.6

0.7

0.8

0.9

1

Au
to

co
rre

la
tio

n
va

lu
e

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-0.1

-0.05

0

0.05

0.1

Am
pl

itu
de

Original (transposed) Query

join + local error

Time (sec.)

Figure 2: Portion of a query on Hey Jude, The Beatles. The Praat analysis shows two signals:

the pitch (in MIDI note numbers); and, the auto-correlation value (which we use as a measure of

confidence) for the analysis in that frame.

Restricting ourselves to this event description of target and query ignores several elements of musical
1Musical Instrument Digital Interface (MIDI) has become a standard electronic transmission and storage protocol/format

for music. MIDI note numbers essentially correspond to the keys of a piano, where ’middle C’ corresponds to the integer value

60.

3

style, including dynamics, articulation and timbre, among others. Objectively and consistently characterizing

these features is quite difficult, and as such we have little confidence they can be usefully exploited for music

retrieval at this point. We acknowledge, however, the importance of such elements in music query/retrieval

systems in general. They will likely prove essential in refining or filtering the search space[5][6].

We further simplify the representation by using IOI quantization and by representing pitch in terms of

pitch class. IOI is quantized to a logarithmic scale, using q = 29 quantization levels, within the range 30 msec.

to 3840 msec., chosen such that there are precisely four gradations between an eighth note and sixteenth

note (or quarter note and sixteenth note, and so forth.) This representation mirrors conventional notation

in Western music, in which the alphabet of rhythmic symbols (eighth, quarter, half, etc.) corresponds to

a logarithmic scale on duration (see Figure 3), and has been shown not to adversely effect discrimination

between potential targets in a database [17].

0 5 10 15 20 25 30
0

500

1000

1500

2000

2500

3000

3500

4000

IO
I (

m
se

c.
)

IOI
sym

At 125 beats per minute, the following relationships hold:

Figure 3: IOI quantization

Pitch is translated to pitch class, a representation where all notes are projected into a single octave, and

are considered in the context of the 12-tone, well-tempered scale. For instance, the frequency 453 Hz is

“binned” into MIDI note number 70. The corresponding pitch class is mod 12(70) = 10. This addresses

two issues: octave errors are quite common in some transcriber systems, and pitch class is an effective, if

imperfect, musical [16] and perceptual [3] abstraction. In addition, pitch class substantially reduces the

model’s “alphabet” size.

In our implementation, pitch bins are not fixed, but vary from query to query. We first convert fre-

4

quency (f) to what might be termed a floating-point MIDI note representation (m), using the assumption of

equal-temperament (twelve equally spaced semitones per octave) and, according to convention, translating a

frequency of 440 Hz to ‘A’ above middle ‘C’, or MIDI note value 69: m = 69+12 log2
f

440 . When we round to

the nearest note number, we introduce a rounding error. To minimize this error, we add an offset to the note

numbers, to account for any overall pitch tendency. For instance, consider a query consisting of a sequence

of note numbers {48.4, 46.6, 44.4, 43.6}. This query tends to be sharp (or flat) by roughly a quarter-tone.

By introducing an offset of +0.5 (a quarter-tone), we minimize the rounding error, and can thus more closely

preserve the contour: without the offset, we round to {48, 47, 44, 44}; with the offset, we round to {49,

47, 45, 44}. Since transpositional invariance is a central feature of our model, the direction of the offset is

irrelevant in this example. Similar to Pollastri [19], we consider several offsets (O = {0.0, 0.1, . . . , 0.9}).
Given a sequence of note numbers (M = {m1, m2, . . . , mn}), we choose the offset (o ∈ O) such that the

mean error squared (e =
Pn

i=1[m+o−round(m+o)]2

n) is minimized, and set Pitch[i] equal to round(mi + o).

We choose discrete sets of symbols to represent pitch and duration since, as will be seen, a continuous rep-

resentation would necessitate an unbounded number of states in our model. This second event representation

is notated:

ot = 〈P [t], R[t]〉 (1)

for queries (using the mnemonic shorthand observation = 〈Pitch,Rhythm〉). Target events are similarly

notated:

di = 〈P [i], R[i]〉 (2)

For clarity, we will return to the earlier representation 〈Pitch[i], IOI[i]〉 where appropriate. The second

representation is derived from the first as follows, where 30 and 3840 are the IOI values associated with the

centers of the shortest and longest bins, and q is the number of IOI quantization bins:

P [i] = mod 12(Pitch[i]) (3)

R[i] = round
(

log IOI[i] − log 30
log 3840− log 30

· (q − 1)
)

(4)

The goal of this paper is to present a model for query errors within the scope of this simple event repre-

sentation. We will first outline the relevant error classes, and then present an extended Hidden Markov

Model accounting for these errors. Taking advantage of certain assumptions about the data, we can then

efficiently calculate the likelihood of a target model generating a query. This provides a means of ranking

potential targets in a database (denoted {D1, D2, . . .}, where Di = {d1, d2, . . .}) given a query (denoted

O = {o1, o2, . . .}) based on the likelihood the models derived from those targets generated a given query. A

summary of the notation used in this paper is provided in Appendix .2.

0.3 Query Transcription

Translating from an audio query to a sequence of note events is a non-trivial problem. We now outline the

two primary steps in this translation: frequency analysis and segmentation.

5

0.3.1 Frequency Analysis

We use the Praat pitch-tracker [7], an enhanced auto-correlation algorithm developed for speech analysis, for

this stage. This algorithm identifies multiple auto-correlation peaks for each analysis frame, and chooses a

path through these peaks that avoids pitch jumps and favors high correlation peaks. For a particular frame,

no peak need be chosen, resulting in gaps in the frequency analysis. In addition, the algorithm returns the

auto-correlation value at the chosen peak (which we use as a measure of pitch-tracker confidence), and the

RMS amplitude by frame (see Figure 2 for instance.)

0.3.2 Segmentation

A binary classifier is used to decide whether or not each analysis frame contains the beginning of a new

note. The features considered by the classifier are derived from the pitch-tracker output. This component is

currently in development at the University of Michigan. In its present implementation, a five-input, single-

layer neural network performs the classification. We assign a single pitch to each note segment, based on the

weighted average pitch by confidence of the frames contained in the segment. An alternative implementation

is currently being explored, which treats the query analysis as a signal (ideal query) with noise, and attempts

to uncover the underlying signal using Kalman-filter techniques.

0.4 Error Classes

0.4.1 Edit Errors

Insertions and deletions in music tend to influence surrounding events. For instance, when an insertion is

made, the inserted event and its neighbor tend to occupy the temporal space of the original note: if an

insertion is made and the duration of the neighbors is not modified, the underlying rhythmic structure (the

beat) is changed. We denote this type of insertion a “warping” insertion. For instance, notice the alignment

of notes after the warping insertion in Figure 4, indicated by the dotted arrows. The inserted notes are

circled. For the non-warping insertion, the length of the second note is shortened to accommodate the new

note.

Target:

Query, warping
insertion:

Query, non-warping
insertion:

Figure 4: Warping and non-warping insertions.

6

With respect to pitch, insertions and deletions do not generally influence the surrounding events. How-

ever, previous work assumes this kind of effect: noting that intervallic contour tends to be the strongest

component in our memory of pitch; one researcher has proposed that insertions and deletions could in some

cases have a “modulating” effect [13], where the edit introduces a pitch offset, so that pitch intervals rather

than the pitches themselves are maintained. We argue that relative pitch, with respect to the query as a

whole, should be preserved. Consider the examples in Figure 5. The first row of numbers below the staff

indicates MIDI note numbers, the second row indicates the intervals in semitones (‘u’ = up, ‘d’ = down.)

Notice that the intervallic representation is preserved in the modulating insertion, while the overall “profile”

(and key) of the line is maintained in the non-modulating insertion.

Target:

Query, modulating
insertion:

Query,
non-modulating
insertion:

Figure 5: Modulating and non-modulating insertions

The effects of these various kinds of insertions and deletions are now formalized, with respect to a target

consisting of two events {〈Pitcha, IOIa〉, 〈Pitchb, IOIb〉}, and a query {〈Pitchc, IOIc〉, 〈PitchinsertIOIinsert〉
〈Pitchd, IOId〉}, where 〈PitchinsertIOIinsert〉 is the inserted event (see Figure 6). Note that deletion is sim-

ply the symmetric operation, so we show examples of insertions only:

• Effects of a warping insertion on IOI: IOIc = IOIa, IOId = IOIb

• Effects of a non-warping insertion on IOI: IOIc = IOIa − IOIinsert , IOId = IOIb

• Effects of a modulating insertion on pitch: Pitchc = Pitcha, Pitchd = Pitchinsert + Pitchb − Pitcha︸ ︷︷ ︸
pitch contour

• Effects of a non-modulating insertion on pitch: Pitchc = Pitcha, Pitchd = Pitchb

In our model, we deal only with non-modulating and non-warping insertions and deletions explicitly, based

on the straightforward musical intuition that insertions and deletions tend to operate within a rhythmic and

modal context. The other types of edit are represented in combination with other error classes. For instance,

a modulating insertion is simply an insertion combined with a modulation.

Another motivation for our “musical” definition of edit is transcriber error. In this context, we clearly

would not expect the onset times or pitches of surrounding events to be influenced by a “false hit” insertion

7

time

p
it
c
h

time

p
it
c
h

INSERTION

IOIa

IOIb

IOIc

IOId
IOIinsert

Pitcha

Pitchb

Pitchd

Pitchc

Pitchinsert

Figure 6: Insertion of a note event in a query

or a missed note. The relationships amongst successive events must therefore be modified to avoid warping

and modulation. Reflecting this bias, we use the terms “join” and “elaboration” to refer to deletions and

insertions, respectively. Mongeau and Sankoff [15] use a similar notion of insertion and deletion, described

as “fragmentation” and “consolidation” respectively.

0.4.2 Transposition and Tempo

We account for the phenomenon of persons reproducing the same “tune” at different speeds and in different

registers or keys. Few people have the ability to remember and reproduce exact pitches [23], an ability

known as “absolute” or “perfect” pitch. As such, transpositional invariance is a desirable feature of any

query/retrieval model. The effect of transposition is simply to add a certain value to all pitches. Consider

for example the transposition illustrated in Figure 7, Section a, of Trans = +4.

Tempo in this context is simply the translation of rhythm, which describes duration relationships, into

actual time durations. Again, it is difficult to remember and reproduce an exact tempo. Moreover, it is very

unlikely that two persons would choose the same metronome marking, much less unconstrained beat timing,

for any piece of music. This is a natural “musical” interpretation. The effect of a tempo scaling is simply to

multiply all IOI values by some amount. Thus, if the query is 50% slower than the target, we have a scaling

value of Tempo = 1.5, as shown in Figure 7, Section a.

In practice, we use quantized tempo scaling and duration values. Note that addition in the logarithmic

scale is equivalent to multiplication, yielding a substantial computational advantage: with quantized IOI

values, we replace floating point multiplication with integer addition. For instance, given our quantization

bins, a doubling of tempo always corresponds to an addition of four: Tempo = 2.0 ↔ Tempoquantized = +4.

0.4.3 Modulation and tempo change

Throughout a query, the degree of transposition or tempo scaling can change, referred to as modulation

and tempo change, respectively. Consider a query beginning with the identity transposition Trans = 0

and identity tempo scaling Tempo = 1, as in Figure 7, Section b. When a modulation or tempo change is

introduced, it is always with respect to the previous transposition and tempo. For instance, on the third

note of the example, a modulation of Modu = +2 occurs. For the remainder of the query, the transposition

8

time

pi
tc

h

Tempo=1.5

Trans=+4

query

target

overlap

time

pi
tc

h

Change=1.5

Modu=+ 2

time

pi
tc

h

RError=1.5

PError=-1

a)

b) c)

Figure 7: Error class examples, opening notes of Brahms’ Cello Sonata in e-minor

is equal to 0 + 2 = +2, from the starting reference transposition of 0. Similarly, the tempo change of

Change = 1.5 on the second note means that all subsequent events occur at a tempo scaling of 1 · 1.5 = 1.5.

Consider Figure 8, which plots the apparent tempo scaling in a rendition of “Row, Row, Row Your Boat”

on a note-by-note basis. While our model considers several interpretations of such a rendition, one approach

would be to consider a constantly increasing tempo, represented by the least-square deviation regression line,

with local rhythmic errors (see Section 0.4.4), represented by the note-wise deviations from that line.

0.4.4 Local Pitch and IOI Errors

In addition to the “gross” errors we have discussed thus far, there are frequently local errors in pitch and

rhythm. These errors are relative to the modifications described above. A local pitch error of ∆(P) simply

adds some value to the “ideal” pitch, where the ideal is determined by the relevant target note and the

current transposition. A local IOI error of ∆(R) has a scalar effect (or again, additive in the quantized

domain) on the ideal IOI, derived from the relevant target note and the current tempo. Figure 7, Section

c, shows examples of each error. Note that these errors do not propagate to subsequent events, and as such

are termed non-cumulative or local rrors. Transposition and tempo change are examples of cumulative error.

In some cases, there are multiple interpretations for the source of error in a query. Consider for instance

Figure 9, which shows a specific interpretation of three disagreements between a target and query. The

second note in the query is treated as a local pitch error of -1. The final two notes, which are a semi-tone

sharper than expected (+1), are explained as a modulation. The error model, described in the next section,

considers all possible interpretations, for instance considering the possibility that the error in the second

9

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (sec.)

R
at

io
 o

f C
ur

re
nt

 L
oc

al
 T

em
po

 to
 M

ax
im

um

Figure 8: Tempo increase

10

note is accounted for by two modulations (before and after), and the final two notes by a pair of local errors.

Depending on our expectation that such things might occur, one or the other interpretation might appear

more likely. In general, we would prefer to find the most direct possible explanations for queries, since an

increased likelihood of error in the model can be shown to reduce discrimination (see Section 0.9).

Original (transposed)

Query

modulation

local pitch error

Figure 9: Portion of a query on the American National Anthem, including examples of modulation

and local pitch error

0.5 Hidden Markov Models

Hidden Markov Models (HMM) are the basis for our approach. We will begin by describing a simple HMM,

and then describe the extensions to the model necessary for the current task. As suggested by the name,

HMMs contain hidden, or unobserved, states. As a simple example, consider a dishonest gambler, who

is known to occasionally swap a fair dice for a loaded dice (with thanks to Durbin [9] for the example).

Unfortunately, it is impossible to observe (directly) which of the dice is being used, since they are visually

indistinguishable. For this reason, we define two hidden states, a and b, representing the conjectures that

the gambler is using fair and loaded dice, respectively. Further, we represent our expectation that the

gambler will switch dice or stay with a dice using a transition diagram, where the transitions have associated

probabilities (see Figure 10). For instance, the arc from a → b is labeled 0.1, indicating that the probability of

the gambler switching from the fair dice to the loaded dice after a roll is 0.1, or formally P (qt+1 = b|qt = a, λ)

where qt is the current state at time interval t, and λ is the model. What we can directly observe in this

example is the result of each roll. While we do not know which dice is being used, we know some distribution

over the roll values for each dice (shown at the bottom of Figure 10). These are refered to as observation or

emission probability functions, since they describe the probability of emitting a particular observation in a

state.

In the music information-retrieval (MIR) context, we have a series of models, each representing a possible

database target, and wish to determine which is most likely given a query, represented by a sequence of pitch

and rhythm observations. To draw a parallel to our gambler example, we might want to determine whether

we are dealing with the dishonest gambler described above, or an honest gambler (see Figure 11) who uses

only fair dice. Given some sequence of observations, or dice rolls, we can determine the likelihood that each

of the models generated that sequence.

11

a b

0.1

0.1 0.90.9

1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

Roll Result

P
ro

ba
bi

lit
y

1 2 3 4 5 60

0.1

0.2

0.3

0.4

0.5

Roll Result

P
ro

ba
bi

lit
y

Figure 10: Simple HMM, the dishonest gambler

a

1.0

1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

Roll Result

Pr
ob

ab
ilit

y

Figure 11: Simple HMM, the honest gambler

12

0.5.1 Honest or Dishonest? An example

The strength of the HMM approach is that it is straightforward to determine the likelihood of any observation

sequence if the transition probabilities and emission probabilities are known. Conceptually, the idea is to

consider all possible paths through the model consistent with the observation sequence (e.g., the observed

dice rolls), and take the sum of the probabilities of each path given those observations. For instance, the roll

sequence {1, 5, 4} could be generated by one of four paths in the dishonest gambler model, assuming that the

dishonest gambler always begins with the fair dice: {{a, a, a}, {a, a, b}, {a, b, a}, {a, b, b}}. The probability of

the second path, for instance, is equal to the probability of the transitions (P (a → a) ·P (a → b)=0.9 · 0.1 =

0.09) multiplied by the probabilities of the observations given the states in the path (the probability of rolling

1 then 5 with the fair dice, by the probability of rolling 4 with the loaded dice: 0.167 · 0.167 · 0.5 = 0.0139),

which is equal to 1.25e-3. To determine the likelihood of the observation sequence given the model, we

simply take the sum of the probabilities of each path (3.75e-3 + 1.25e-3 + 2.78e-5 + 7.50e-4 = 5.78e-3.)

The honest gambler is in effect a fully observable model, since there is only a single hidden state. Only one

path through this model is possible, and its likelihood is therefore a function of the observation probabilities

only since the path is deterministic (1.0 transition probabilities): (0.167)3 = 4.63e − 3. From this, we can

conclude that the sequence of rolls 1, 5, 4 is more likely to have been generated by a dishonest gambler,

though we should note that three rolls do not provide much evidence one way or the other!

0.6 Extended HMM

In the context of our query error model, we account for edit errors (insertions and deletions) in the “hidden”

portion of the model. Using the notion of state “clusters,” we account for transposition, modulation, tempo

and tempo changes. Fine pitch and rhythm errors are accounted for in the observation distribution function.

0.6.1 State definition

The state definition incorporates three elements: edit-type (Edit), transposition (Key) and tempo (Speed).

States are notated as follows:

sx = 〈E[x], K[x], S[x]〉, 1 ≤ x ≤ n (5)

If E is the set of all edit types, K is the set of all transpositions, and S is the set of all tempi, then the set

of all states S is equal to:

E× K × S (6)

We now define each of these sets individually:

Edit type

For the sake of notational clarity, we do not enumerate the edit-types in E, but define them in terms of

symbols that indirectly refer to events in the target sequence, encoding position information. There are three

types of symbol:

13

• Samei: refers to the correspondence between the ith note in the target and an event in the query.

• Joinl
i: refers to a “join” of l notes, starting from the ith note in the target. In other words, a single

note in the query replaces l notes in the target.

• Elabm
i,j: refers to the jth query note elaborating the ith target note. In other words, a single note in

the target is replaced by m notes in the query.

Notice that Samei = Join1
i = Elab1

i,1, each referring to a one-to-one correspondence between target and

query notes. In our implementation, Join1
i plays all three roles. We generate a set of states for a given

target consisting of, for each event in the target di:

• A Samei state.

• Join states Joinl
i, for 2 ≤ l ≤ L where L is some arbitrary limit on the number of events that can be

joined.

• Elaboration states Elabm
i,j for 2 ≤ m ≤ M and 1 ≤ j ≤ m, where M is some arbitrary limit on the

length of elaborations.

Why do we have so many states to describe each event in the target? We wish to establish a one-to-one

correspondence between hidden states and query events, to simplify the implementation, which is why we

introduce multiple states for each elaboration. We choose not to implement joins by “skips” through a

reduced set of states, or elaborations as null states, since as discussed, edits influence our interpretation of

the underlying target events. Figure 12 illustrates a model with skips and null states. Given our definition

of insertion and deletion, state s1 would need separate emission probability tables for each outward arc (and

thus would be functionally and computationally equivalent to the model we propose).

s1 s2 s3

null null

Figure 12: A model with skips and null states

As mentioned, we explicitly handle only non-modulating and non-warping insertions and deletions (see

Section 0.4.1). As such, when comparing target and query events with respect to a join, we generate a longer

target note, with the sum duration of the relevant target events, and the pitch of the first. Similarly, for an

elaboration, we treat a sequence of query notes as a single, longer event. Figure 13 shows a portion of the

hidden state graph relating a target and query through a sequence of hidden states, where the dotted notes

are examples of each generated note.

Where 〈Pitch[i], IOI[i]〉 is the ith query note, and 〈Pitch[t], IOI[t]〉 the tth target note, we have the fol-

lowing expected relationships between target and query based on the hidden state at time t, qt = 〈E[t], 0, 0〉,

14

Same4
State:

Target:

Query:

Elab3,1
2Join1

2 Elab3,2
2

Figure 13: Relationship between states and events

ignoring transposition, tempo and local error for the moment:

〈Pitch[i], IOI[i]〉 = 〈Pitch[t], IOI[t]〉, if E[t] = Samei

〈Pitch[i],
∑i+l−1

j=i IOI[j]〉 = 〈Pitch[t], IOI[t]〉, if E[t] = Joinl
i

〈Pitch[i], IOI[i]〉 = 〈Pitch[t − j + 1],
t+m−j∑

k=t

IOI[k]〉
︸ ︷︷ ︸

Notice that all events in the elaboration point to a single larger event

if E[t] = Elabm
i,j

(7)

Transposition and tempo

In order to account for the various ways in which target and query could be related, we must further refine

our state definition to include transposition and tempo cluster. The intuition here is that the edit-type

determines the alignment of events between the query with the target (see Figure 13 for instance) and the

cluster determines the exact relationship between those events.

Using pitch class, there are only twelve possible distinct transpositions, because of the modulus-12 rela-

tionship to pitch. While any offset will do, we set K = {−5,−4, . . . , +6}. We establish limits on how far

off target a query can be with respect to tempo, allowing the query to be between half- and double- speed.

This corresponds to values in the range S = {−4,−3, . . . , +4} in terms of quantized tempo units (based on

the logarithmic quantization scale described in Section .2).

15

0.6.2 Transition matrix

We now describe the transition matrix A, which maps from S × S → �. Where qt is the state at time t

(as defined by the position in the query, or observation sequence), axy is equal to the probability P (qt =

sx|qt+1 = sy, λ), or in other words, the probability of a transition from state sx to state sy.

The transition probability is composed of three values, an edit-type, modulation and tempo-change

probability:

axy = aE
xy · aK

xy · aS
xy (8)

We describe each of these values individually.

Edit-type transition

Most of the edit-type transitions have zero probability, as suggested by the state descriptions. For instance,

Samei states can only precede states pointing to index i + 1 in the target. Elaboration states are even more

restrictive, as they form deterministic chains of the form: Elabm
i,1 → Elabm

i,2, → . . . → Elabm
i,m. This last

state can then proceed like Samei, to the i+1 states. Similarly, Joinl
i states can only proceed to i+ l states.

A sample model topology is shown in Figure 14, for M = L = 2. Note that this is a left-right model, in

which transitions impose a partial ordering on states.

States referencing the 1st target event.

elaboration =

junction (shorthand): =

Same1 Same2 Same3 Same4

Join1
2 Join2

2 Join3
2 Join4

2

Elab1,1
2 Elab2,1

2 Elab3,1
2 Elab4,1

2

Elab1,2
2

...

Figure 14: Edit-type topology

Based on properties of the target, we can generate these transition probabilities. We define PJoin(i, l)

as the probability of that the ith note in the target will be modified by an order l join. PElab(i, m) is the

16

probability that the ith note in the target will be modified by an order m elaboration. PSame(i) has the

expected meaning. Since every state has non-zero transitions to all states with a particular position in the

target, we must insure that:

∀i, PSame(i) +
L∑

l=2

PJoin(i, l) +
M∑

m=2

PElab(i, m) = 1 (9)

This also implies that along non-zero transitions, the probability is entirely determined by the second

state. For example, the probability of the transition Join2
3 → Elab2

5,1 is the same as for Same4 → Elab2
5,1.

Establishing separate distributions for every index in the target would be problematic. For this reason,

we need to tie distributions by establishing equivalence classes for edit-type transitions. Each equivalence

class is a context for transitions, where the kth edit context is denoted CE
k . A state that is a member of the

kth edit context (sx ∈ CE
k) shares its transition probability function with all other members of that context.

Each state sy has an associated ∆(E)value, which is a classification according to the type (e.g. “Join”) and

degree (e.g. l = 2) of edit-type. We define the function PE
k (∆(E)) as the probability of a transition to edit

classification ∆(E) in edit context k, so that for a transition sx → sy:

aE
Xy = PE

k (∆(E)) ↔ sx ∈ CE
k and sy has edit classification ∆(E). (10)

We intentionally leave the definition of context somewhat open. With reference to broadly observed

trends in queries and their transcription, we suggest these alternatives:

• The simplest and easiest to train solution is simply to build up tables indicating the chances that, in

general, a note will be elaborated or joined. Thus, the probabilities are independent of the particular

event in the target. For instance, our current test implementation uses this approach with M = 2 and

L = 2, with PSame = 0.95, PJoin = {0.03} and PElab = {0.02}.

• Transcribers, in our experience, are more likely to “miss” shorter notes, as are singers (consider for

instance Figure 2, in which the second and third note are joined.) As such, we believe it will be

possible to take advantage of contextual information (durations of surrounding events) to determine

the likelihood of joins and elaborations at each point in the target sequence.

Modulation and tempo change

Modulation and tempo changes are modelled as transitions between clusters. We denote the probability

of modulating by ∆(K) semitones on the ith target event as PModu(i, ∆(K)) (again defined over the range

−5 ≤ ∆(K) ≤ +6). The probability of a tempo change of ∆(S) quantization units is denoted PChange(i, ∆(S)),

allowing for a halving to doubling of tempo at each step (−4 ≤ ∆(S) ≤ +4).

Again, we need to tie parameters by establishing contexts for transposition (denoted CK
i with associated

probability function PK
i) and tempo-change (denoted CS

i with associated probability function PS
i). Without

restricting the definition of these contexts, we suggest the following alternatives, for modulation:

• In our current implementation, we simply a apply a normal distribution over modulation centred at

∆(K) = 0, assuming that it is most likely a singer will not modulate on every note. The distribution

is fixed across all events, so there is only one context.

17

• We may wish to take advantage of some additional musical context. For instance, we have noted that

singers are more likely to modulate during a large pitch interval.

We have observed no clear trend in tempo changes. Again, we simply define a normal distribution centred

at ∆(S) = 0.

Anatomy of a transition

In a transition sx → sy (where sx = 〈E[x], K[x], S[x]〉), sx belongs to three contexts: CE
i , CK

j and CS
k . The

second state is an example of some edit classification ∆(E), so aE
xy = PE

i (∆(E)). The transition corresponds

to a modulation of ∆(K) = K[y]−K[x], so aK
xy = PK

j (∆(K)). Finally, the transition contains a tempo-change

of ∆(S) = S[y] − S[x], so aS
xy = PS

k (∆(S)).

0.6.3 Initial state distribution

We associate the initial state distribution in the hidden model with a single target event. As such, a separate

model for each possible starting point must be built. Note, however, that we can actually reference a

single larger model, and generate different initial state distributions for each separate starting-point model,

addressing any concerns about the memory and time costs of building the models. Essentially, these various

“derived” models correspond to various alignments of the start of the target with the query.

The probability of beginning in state sx is denoted πx. As with transition probabilities, this function is

composed of parts for edit-type (πE
x), transposition (πK

x) and tempo (πS
x).

Our initial edit distribution (πE
x), for an alignment starting with the ith event in the target, is over only

those edit-types associate with i: Samei, {Joinl
i}L

l=2 and {Elabm
i,1}M

m=2. We tie initial edit probabilities to

the edit transition probabilities, such that if sz directly precedes sx in the hidden-state topology, πE
x = aE

zx.

This means that, for instance, the probability of a two-note join on the ith target event is the same whether

or not i happens to be the current starting alignment.

The initial distributions over transposition and tempo are as follows:

• πK(χ): the probability of beginning a query in transposition χ. Since the overwhelming majority of

people do not have absolute pitch, we can make no assumption about initial transposition, and set

πK(χ) = 1
12 , −5 ≤ χ ≤ +6. This distribution could however be tailored to individual users’ abilities,

thus the distributions might be quite different between a musician with absolute pitch and a typical

user.

• πS(χ): the probability of beginning a query at tempo χ. Since we are able to remember roughly how

fast a song “goes”, we currently apply a normal distribution2 over initial tempo, with mean 0 and

deviation σ = 1.5, again in the quantized tempo representation.
2In our experiments, we frequently approximate normal distributions over a discrete domain, using the normal density

function: y = e
−(µ−x)2

2σ2

σ
√

π
, and then normalize to sum 1 over the function range.

18

0.6.4 Emission function

Conventionally, a hidden state is said to emit an observation, from some discrete or continuous domain. A

matrix B maps from S×O → �, where S is the set of all states, and O is the set of all observations. bx(ot)

is the probability of emitting an observation ot in state sx (P (ot|qt = sx, λ)). In our model, it is simpler to

view a hidden state as emitting observation errors, relative to our expectation about what the pitch class

and IOI should be based on the edit-type, transposition and tempo.

Equation 7 defines our expectation about the relationship between target and query events given edit-

type. For the hidden state sx = 〈E[x], K[x], S[x]〉, we will represent this relationship using the shorthand

〈P [i], R[i]〉 → 〈P [t], R[t]〉, mindful of the modifications suggested by the edit-type. The pitch error is relative

to the current transposition:

∆(P) = P [t] − (P [i] + K[x]) (11)

Similary, we define an IOI error relative to tempo:

∆(R) = R[t] − (R[i] + S[x]) (12)

To simplify the parameterization of our model, we assume that pitch and IOI error are conditionally

independent given state. For this reason, we define two emission probability functions, for pitch (bP
sx

(ot))

and rhythm (bR
x (ot)), where bx(ot) = bP

x (ot) · bR
x (ot). To avoid the need for individual functions for each

state, we again establish equivalence classes, such that if sx ∈ CP
i , then bP

x (ot) = PP
i (∆(P)), using the above

definition of ∆(P). Similarly, sx ∈ CR
i implies that bR

x (ot) = PR
i (∆(R)). This means that as a fundamental

feature, we tie emission probabilities based on the error, reflecting the “meaning” of our states.

0.6.5 Alternative view

For expository purposes, we define state as a tuple incorporating edit, transposition and tempo information.

Before proceeding, we will introduce an alternate view of state, which is useful in explaining the dependency

structure of our model. In Figure 15.A, the first interpretation is shown. In the hidden states (S), each state

is defined by si = 〈E[i], K[i], S[i]〉, and according to the first-order Markov assumption, the current state

depends only on the previous state. Observations (O) are assumed to depend only on the hidden state, and

are defined by ot = 〈P [t], R[t]〉.
The second view provides more detail (Figure 15.B). Dependencies among the individual components are

shown. The E, K and S′ hidden chains denote the respective components of a hidden state. The edit-type

(E) depends only on the previous edit-type (for a detailed illustration of this component, see Figure 14). The

transposition (K) depends on both the previous transposition and the current edit type, since the degree of

modulation and the current position in the target influence the probability of arriving at some transposition

level. A pitch observation (P) depends only on the current edit-type and the current transposition, which

tell us which pitch we expect to observe: the “emission” probability is then simply the probability of the

resulting error, or discrepancy between what we expect and what we see. There is a similar relationship

between the edit-type (E), tempo (S′), and rhythm observation (R).

19

S:

O:

...

E:

K:

S':

P:

R:

...

A.

B.

Figure 15: The dependencies in two views of the error model, where shaded circles are hidden states

(corresponding to the target) and white circles are fully observed (corresponding to the query).

20

0.7 Probability of a query

In the context of music retrieval, a critical task is the calculation of the likelihood that a certain target would

generate a query given the model. Using these likelihood values, we can rank a series of potential database

targets in terms of their relevance to the query.

Conceptually, the idea is to consider every possible path through the hidden model. Each path is

represented by a sequence of hidden states Q = {q1, q2, . . . , qT }. This path has a probability equal to

the product of the transition probabilities of each successive pair of states. In addition, there is a certain

probability that each path will generate the observation sequence O = {o1, o2, . . . , oT } (or, the query.)

Thus, the probability of a query given the model (denoted λ) is:

P (O|λ) =
∑
∀Q

P (O|Q, λ)P (Q|λ) (13)

=
∑
∀Q

[
T∏

t=1

bqt(ot)

] [
πq1

T∏
t=2

aqt−1qt

]
(14)

Fortunately, there is considerable redundancy in the näıve computation of this value. The “standard”

forward-variable algorithm [20] provides a significant reduction in complexity. This is a dynamic program-

ming approach, where we inductively calculate the likelihood of successively longer suffixes of the query with

respect to the model. We define a forward variable as follows:

αt(x) = P ({o1, o2, . . . , ot}, qt = sx|λ) (15)

This is the probability of being in state sx at time t given all prior observations. We initialize the forward

variable using the initial state probabilities, and the observation probabilities over the initial observation:

α1(x) = P ({o1}, qt = sx|λ) = πxbx(o1) (16)

By induction, we can then calculate successive values, based on the probabilities of the states in the previous

time step:

αt+1(y) =
n∑

x=1

αt(x)axyby(ot+1) (17)

Finally, the total probability of the model generating the query is the sum of the probabilities of ending in

each state (where T is the total sequence length):

P (O|λ) =
n∑

x=1

αT (x) (18)

0.7.1 Complexity analysis

Based on the topology of the hidden model, we can calculate the complexity of the forward-variable algorithm

for this implementation. Since each edit-type has non-zero transition probabilities for at most L + M − 1

other edit-types, this defines a branching factor (b) for the forward algorithm. In addition, any model can

have at most b|D| states, where |D| is the length of the target.

21

Updating the transposition and tempo probabilities between two edit-types (including all cluster per-

mutations) requires k = (9 · 12)2 multiplications given the current tempo quantization, and the limits on

tempo change. Notice that increasing either the allowable range for tempo fluctuation, or the resolution of

the quantization, results in a super-linear increase in time requirements!

So, at each induction step (for t=1, 2, . . .), we require at most k|D|b2 multiplications. As such, for query

length T , the cost is O(k|D|b2T). Clearly, controlling the branching factor (by limiting the degree of join

and elaboration) is critical. k is a non-trivial scaling factor, so we recommend minimizing the number of

quantization levels as far as possible without overly sacrificing retrieval performance.

0.7.2 Optimizations

While asymptotic improvements in complexity are not possible, certain optimizations have proven quite

effective, providing over a ten-fold improvement in running times. An alternate approach to calculating the

probability of a query given the model is to find the probability of the most likely (single) path through

the model, using the Viterbi algorithm. This is a classical dynamic programming approach, which relies on

the observation that the optimal path must consist of optimal sub-paths. It works by finding the highest

probability path to every state at time t + 1 based on the highest probability path to every state at time

t. The algorithm is therefore a simple modification of the forward-variable algorithm. Instead of taking the

sum probability of all paths leading into a state, we simply take the maximum probability:

αt+1(y) =
n

max
x=1

[αt(x)axyby(ot+1)] (19)

A side-effect of this change is that all arithmetic operations are multiplications for Viterbi (no summa-

tions.) As a result, we can affect a large speed-up by switching to a log-space, and adding log probabilities

rather than multiplying.

Some other implementation details:

• The edit topology is quite sparse (see Figure 14), so it is advantageous to identify successors for each

edit state rather than exhaustively try transitions.

• There is considerable redundancy in the feed-forward step (for both Viterbi and the forward-algorithm)

since many state transitions share work. For instance, all transitions of the form 〈E[x], K[x],∪〉 →
〈E[y], K[y],∪〉 share several components: the same edit transition probability, the same modulation

probability and the same pitch observation probability. By caching the product of those probabilities,

we avoid both repeated look-ups and repeated multiplications or additions, a non-trivial effect when

the depth of the nesting is considered over edit type, transposition and tempo.

Branch and bound

Using Viterbi, it is possible to use branch and bound to preemptively prune paths when it can be shown that

no possible completion can result in a high enough probability. First, we should explain what we mean by

“high enough”: if only a fixed number (k) of results are required, we reject paths not capable of generating

a probability greater or equal to the kth highest probability observed thus far in the database. How can

22

we determine an upper-bound on the probability of a path? We note that each event (or observation) in

an optimal Viterbi path introduces a factor, which is the product of the observation probability, the edit

transition probability, and the inter-cluster transition probabilities. Knowing the maximum possible value of

this factor (f) allows us to predict the minimum “cost” of completing the algorithm along a given path. For

instance, given a query of length T , and an interim probability of αt(x), we can guarantee that no possible

sequence of observations along this path can result in a probability greater than αt(x)fT−t We use this last

value as a heuristic estimate of the eventual probability.

We can determine f in several ways. Clearly, there is an advantage to minimizing this factor, though

setting f = 1 is feasible (since no parameter of the model can be greater than 1). A simple and preferable

alternative is to choose f as the product of the maximum transition and maximum emission probabilities:

f =
n

max
x,y=1

axy · n
max
y=1

(
max
∀o

by(o)
)

(20)

In effect, we are defining the behavior of the ideal query, which ignoring the possibility of an extremely

odd model parameterization is one in which there is no error, modulation or tempo change.

0.8 Training

We need to learn the following parameters for our HMM:

• the probabilities of observing all pitch and rhythm errors (the functions PP
c and PR

c for all contexts

c);

• the probabilities of modulating and changing tempo by all relevant amounts (PK
c and PS

c); and,

• the probabilities of transitioning to each of the edit types (PE
c).

We fix some parameters in our model. For instance, the initial edit-type distributions are not explicitly

trained, since as described, these are tied to the edit-type transition function. In addition, we assume a

uniform distribution over initial transposition and a normal distribution over initial tempo. This is because

we see no way of generalizing initial distribution data to songs for which we have no training examples.

Consider that, for instance, the tendency for users to sing “Hey Jude” sharp and fast should not be seen to

influence their choice of transposition or tempo in “Moon River”.

We will describe the training procedure in terms of a simple HMM, and then describe the extensions

required for our model.

0.8.1 Training a simple HMM

With a fully-observable Markov Model, it is fairly straightforward to learn transition probabilities: we simply

count the number of transitions between each pair of states. While we cannot directly count transitions in an

HMM, we can use the forward variable and a backward variable (defined below) to calculate our expectation

that each hidden transition occurred, and thus “count” the number of transitions between each pair of

states indirectly. Until we have parameters for the HMM, we cannot calculate the forward- and backward-

23

variables. Thus we pick starting parameters either randomly or based on prior expectations, and iteratively

re-estimate model parameters. This procedure is known as the Baum-Welch, or expectation-maximization

algorithm [4].

Consider a simple HMM (denoted λ) with a transition matrix A, where axy is the probability of the

transition from state sx to state sy, an observation matrix B where by(ot) is the probability of state sy

emitting observation ot, and an initial state distribution Π where πx is the probability of beginning in state

sx. Given an observation sequence O = {o1, o2, . . . ,, oT }, we again define a forward variable, calculated

according to the procedure defined in Section 0.7:

αt(x) = P ({o1, o2, . . . , ot}, qt = sx|λ) (21)

In addition, we define a backward variable, the probability of being in a state given all subsequent

observations:

βt(x) = P ({ot+1, ot+2, . . . , oT }, qt = sx|λ) (22)

We calculate values for the backward-variable inductively, as with the forward-variable, except working back

from the final time step T :

βT (x) = 1, arbitrarily (23)

βt−1(x) =
n∑

y=1

axyby(ot)βt(y) (24)

We define an interim variable ξt(x, y), the probability of being in state sx at time t and state sy at time

t + 1, given all observations:

ξt(x, y) = P (qt = sx, qt+1 = sy|O, λ) (25)

=
P (qt = sx, qt+1 = sy, O|λ)

P (O|λ)
(26)

=
αt(x)axyby(ot+1)βt+1(y)∑n

x=1

∑n
y=1 αt(x)axyby(ot+1)βt+1(y)

(27)

Finally, we introduce the variable γt(x), the probability of being in state sx at time t. This can be derived

from ξt(x, y):

γt(x) =
n∑

y=1

ξt(x, y) (28)

These values can be used to determine the expected probability of transitions and the expected probability of

observations in each state, and thus can be used to re-estimate model parameters. Where the new parameters

24

are denoted Π̂, Â and B̂, we have:

π̂x = γ1(x) (29)

âxy =

expected number of transitions from sx → sy︷ ︸︸ ︷
T−1∑
t=1

ξt(x, y)

T−1∑
t=1

γt(x)

︸ ︷︷ ︸
expected number of transitions from sx

(30)

b̂y(o) =

expected number of times in state sy observing o︷ ︸︸ ︷
T∑

t=1

γt(y), if ot = o

0 otherwise
T∑

t=1

γt(y)

︸ ︷︷ ︸
expected number of times in state sy

(31)

By iteratively re-estimating the parameter values, we converge to a local maximum (with respect to the

expectation of a training example) in the parameter space. In practice, the procedure stops when the

parameter values change by less than some arbitrary amount between iterations.

0.8.2 Training the query error model

Our query model has a few key differences to the model outlined above: heavy parameter tying, and multiple

components for both transitions and observations. The procedure is fundamentally the same, however.

Instead of asking “How likely is a transition from sx → sy (or what is âxy)?”, we ask, for instance “How

likely is a modulation of ∆(K)in modulation context c (or what is P̂K
c (∆(K)))?” To answer this question, we

define an interim variable,

ξK
t (∆(K), c) =

∑
sx∈CK

c

ξt(x, y), if K[y]− K[x] = ∆(K)

0 otherwise
, (32)

the probability of a modulation of ∆(K)in modulation context c between time steps t and t+1. We can now

answer the question as follows:

P̂K
c (∆(K)) =

∑T−1
t=1 ξK

t (∆(K), c)∑T−1
t=1

∑6
χ=−5 ξK

t (χ, c)
(33)

We use a similar derivation for the other two components of a transition. For the edit-type function, we

have:

ξE
t (∆(E), c) =

∑
sx∈CE

c

ξt(xy), if E[y] is an instance of ∆(E)

0 otherwise
(34)

P̂E
c (∆(E)) =

∑T−1
t=1 ξE

t (∆(E), c)∑T−1
t=1

∑
∀∆(E)′ ξE

t (∆(E)′, c)
; (35)

25

and, for the tempo-change function, we have:

ξS
t (∆(S), c) =

∑
sx∈CS

c

ξt(x, y), if S[y] − S[x] = ∆(S)

0 otherwise
(36)

P̂S
c (∆(S)) =

∑T−1
t=1 ξS

t (∆(S), c)∑T−1
t=1

∑4
χ=−4 ξS

t (χ, c)
(37)

The emission function re-estimation is more straightforward. For pitch error, we have:

P̂P
c (∆(P)) =

∑T
t=1

∑
sy∈CP

c

γt(y), if observing ∆(P)in this state

0 otherwise∑T
t=1

∑
sy∈CP

c
γt(y)

; (38)

and, for rhythm error we have:

P̂R
c (∆(R)) =

∑T
t=1

∑
sy∈CR

c

γt(y), if observing ∆(R)in this state

0 otherwise∑T
t=1

∑
sy∈CR

c
γt(y)

. (39)

Again, we are simply “counting” the number of occurrences of each transition type and observation error,

with the additional feature that many transitions are considered evidence for a particular context, and

every transition is in turn considered evidence for several contexts. A formal derivation of the reestimation

formulae is given in Appendix .1.

0.8.3 Starting parameters

The components of our model have clear musical meanings, which provide guidance for the selection of

starting parameters in the training process. We apply normal distributions over the error and cluster change

parameters, centered about “no error” and “no change”, respectively. This is based solely on the conjecture

(without which the entire MIR exercise would be a lost cause) that singers are in general more likely to

introduce small errors than large ones. Initial edit probabilities can be determined by the hand-labeling of a

few automatically transcribed queries. It is important to make a good guess at initial parameters, because

the re-estimation approach only converges to a local maximum.

0.9 Simulation results

This error model is intended to serve in the context of a music information-retrieval system. It is compre-

hensive in the sense that it expresses the full range of transformations observed in the pitch and IOI domains

for queries. Its usefulness, however, lies in the ability to discriminate between among various hypotheses

about the source of a query. It has been shown that even a small number of errors can lead to (fatally) low

discrimination between targets [22]. We contend that our subtler, probabilistic model of query errors can

lead to greater precision in music searches, even when significant error is introduced. We used synthetically

26

generated queries to demonstrate this principal claim, over a database of 100 classical and romantic themes

taken from a musical thematic catalogue [2]. We set the model parameters as follows:

• We allow joins and elaborations up to order two, with fixed probabilities as described in Section 0.4.1.

• We apply normal distributions over each of the remaining parameters discussed in the paper, examining

the effect of error variance for modulation, tempo change, local pitch error, and local IOI error.

Each parameter setting corresponds, roughly, to a level of singer ability. As we increase the σ-values, the

distribution flattens, so that our synthetic singers become increasingly likely to introduce increasingly large

error to the query. For each of these “singers,” we randomly generated 30 queries according to the current

model settings, based on randomly chosen database targets. The queries are limited to a length of 12 notes,

to prevent “default” matches for longer queries: such queries might be feasible only against models with

longer underlying targets. We then posed these queries against the model database, evaluating performance

based on the likelihood rank of the correct model using the forward-variable algorithm.

Each synthetic singer is associated with a particular cumulative-error profile, and a particular local-

error profile. The error distributions associated with these profiles are shown in Figure 16 and Figure 17,

respectively. The probability of changing tempo is with respect to a “tempo-change factor” where, for

instance, 2.0 is a doubling of tempo between two note events. Similarly, rhythmic error is shown as a factor

of the original IOI value.

0.5 1 1.5 2
10-10

10-8

10-6

10-4

10-2

100

Tempo Change Factor

P
ro

b
a

b
ili

ty
 (

lo
g

 s
c
a

le
)

-6 -4 -2 0 2 4 6
10-25

10-20

10-15

10-10

10-5

100

Modulation Amount

P
ro

b
a

b
ili

ty
 (

lo
g

 s
c
a

le
)

Profile 2 Profile 2

Figure 16: Cumulative error profiles (profile 1 allows no cumulative error)

Notice that the first cumulative-error profile allows for no error of this type, thus singers with this profile

are assumed not to modulate or change tempo. For each singer profile, we indicate the number of queries

for which the correct target is ranked first, ranked at least fifth, and ranked at least tenth (see Table 1. In

addition, we indicate the Mean Reciprocal Rank (MRR), a standard measure used in the Text REtrieval

Conference (TREC) benchmarks [24]. The “rank” in question is that of the highest rated relevant result. In

these experiments, only one target is considered relevant to each query - the target generating the synthetic

query - and, as a result, we simply take the reciprocal of that target’s rank. Even when substantial error is

27

-6 -4 -2 0 2 4 6
10-25

10-20

10-15

10-10

10-5

100

Error (pitch-class)

P
ro

b
a
b
ili

ty
 (

lo
g
 s

c
a
le

)

0.5 1 1.5 2
10-10

10-8

10-6

10-4

10-2

100

Error (IOI factor)

P
ro

b
a
b
ili

ty
 (

lo
g
 s

c
a
le

)

Profile 2

P
rofile 1

Profile 3Profile 2

P
rofile 1

Profile 3

Figure 17: Local error profiles

Cumulative Local # # # MRR

Error Error Ranked Ranked Ranked

Profile Profile first ≤ 5th ≤ 10th

1 1 30 30 30 1.0

1 2 30 30 30 1.0

1 3 29 30 30 0.983

1 1 29 30 30 0.983

1 1 29 30 30 0.975

1 1 27 28 30 0.920

Table 1: Results of simulation tests

28

introduced, discrimination remains robust. For instance, our final synthetic singer is more likely than not

to introduce some local and cumulative error on every event of the query, but nonetheless the error model

favours the correct target in 27 of 30 queries.

We define a database entry as “problematic” if it is either a false positive (ranked higher than the correct

target) or a false negative (ranked lower than an incorrect target). In our experiments, we identified 20

such entries. In order to study the interactions between these entries in greater depth, we ran another

experiment including only these problematic cases in our database. Using the most error-prone singer model

(cumulative profile 2 and non-cumulative profile 3), we generated ten queries for each of these entries, and

calculated the likelihood that each of the 20 problem models generated the query. The mean likelihoods of

these query/target comparisons are shown in a confusion matrix (Figure 18). Probabilities are shown on

a logarithmic scale, since there are orders of magnitude difference between values (an ‘X’ indicates that a

particular comparison had the highest mean probability.) In addition, the probabilities for each query are

normalized such that the highest ranked target has a probability of one. For all simulations, we calculated

the probabilities using the Forward-Variable algorithm.

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

Query Number

T
ar

ge
t N

um
be

r

Mean Log Likelihood

Figure 18: Confusion matrix for problematic entries

The confusion matrix shows that, on average, the correct model is the most likely candidate for all

queries, shown by the strong diagonal. This suggests that we need not expect uniformly poor discrimination

for any particular target. More significantly, the model tends to favor correct targets over spurious matches

by orders of magnitude (a factor of over 104 between probabilities on average). The MRR value for this set

of queries was 0.938, though we must emphasize that this is across a smaller database than in the previous

tests.

29

0.10 Experimental results

In order to gauge the relevance of the model to real-life queries, we ran a series of experiments on a collection

of 160 queries representing eight targets, which will be referred to as Targets A-H (see Figure 19). The

experiments were designed to test the relative importance of various features of the model, and to test the

ability of the model to generalize to targets and queries not seen in training. For our experimental studies,

we calculated probabilities using the Viterbi algorithm, and limited the number of results returned to ten.

The reciprocal rank in tests where the correct target was not among the top ten is set, by convention, to

zero.

0.10.1 Collecting Queries

Five people participated in this study, and will be referred to as Subjects A-E. None are trained singers,

though Subject A is a trained musician. The order in which subjects sang the targets was randomly chosen

on a per subject basis to prevent any misleading trends due to fatigue. Each subject was asked to sing each

target four times, twice after reading the lyrics, and twice after hearing a pre-recorded piano rendition of

the target in a comfortable register (which of course varied by subject.)

0.10.2 Model features

Is it necessary to explicitly model all of the error classes described in this paper? In some cases, two error

classifications are simply competing explanations for an observation. For instance, for a query that grows

progressively faster, modeling the situation as a gradual change in tempo might be intuitively appealing,

but we could also choose a fixed tempo and handle the resulting discrepancies as IOI errors. We ran a series

of tests, turning off various features to see whether their omission would result in a serious degradation

of performance. For each test, we trained across the full collection of queries, and evaluated performance

using that same set. We use this approach to provide upper-bounds on performance, since we are interested

primarily in relative performance here. For the purposes of training, we establish a single context for each

parameter (for instance, we determine the probability of an error of +1 regardless of musical context.) With

this size training set, we begin to see degradation due to overtraining when we attempt to specialize further.

We present MRR scores for each model configuration by subject, by target and overall. As a baseline,

we provide results for the full model. We also considered a version with no edits, forcing a one-to-one

correspondence between target and query events. Returning to the scenario suggested earlier, we disabled

tempo changes and modulations for the third test. For the final test, we allowed no local error, only

cumulative error (tempo changes and modulations.) The results of these tests are presented in Figure 20.

Overall, we get the best performance when cumulative error is ignored, by a small margin over the full

model. We discuss more extensive training tests over these two variants in the following section. Performance

is clearly inadequate when edits are disallowed, owing largely to the prevalence of transcriber errors in

our test set. Ignoring local error has surprisingly little effect, and actually provides the best performance

for Subject D, as well as the targets “Over the Rainbow” and the “American National Anthem”. These

two targets contain many large intervals, which may explain this trend. This would seem to recommend

30

A "Hey Jude" by John Lennon and Paul McCartney

Hey Jude ,don't make it bad, take a sad song, and make it bet ter.-

B "Lullaby", trad.6

Rock a- by- ba by,- in the tree top. When the wind blows, the cra dle- will rock.

C "Do-Re-Mi", by Rogers and Hammerstein10

Do, a deer, a fe male- deer. Re, a drop of gold en- sun.

D "The Sound of Music", by Rogers and Hammerstein14

The hills are a live- ,- with the sound of mu sic.-

E "Bridge Over Troubled Water", by Simon and Garfunkel18

Like a bridge o ver- trou bled- wa ters- ,- I will lay me down.

F "Over the Rainbow", by George Bassman23

Some where,- o ver- the rain bow,- way up high.

G "American National Anthem"27

Oh say- can you see, By thedawn's ear ly- light.

H "Happy Birthday"32

Hap py- birth day- to you, Hap py- birth dat- to you, Hap py-

37

birth day,- hap py- birth day,- hap py- birth day- to you.

Figure 19: Music and lyrics for queries

31

A B C D E
0

0.2

0.4

0.6

0.8

1

Subject

M
R

R

Performance Comparison by Subject

Full model
No edit
No cumu.
No local

A B C D E F G H
0

0.2

0.4

0.6

0.8

1

Target

M
R

R

Performance Comparison by Target

Full model
No edit
No cumu.
No local

Figure 20: Evaluation of model feature relevance

32

establishing multiple contexts based on interval size, allowing (perhaps) for higher modulation probabilities

on larger leaps, though again, we have insufficient training data to fully determine this. We speculate that

the “Lullaby”, which also contains many large leaps, does not follow this trend because it contains two

clear (and relatively simple) ear-lines, stabilizing the transposition center. Such features are exploited for

pedagogical purposes in musical ear-training [11], but in practice will likely prove onerous to recognize and

gauge automatically in the MIR context.

0.10.3 Training tests

Through heavy parameter tying, the model can generalize about queries it has not seen, and even targets

for which it has seen no exemplar queries. We divided our query collection in two ways to test this ability

to generalize. We first divided the collection into an eighty query test set and eighty query training set as

follows: for each subject and target, two queries are taken for the test set, two for the training set. Remember

that the subject was asked to sing each target twice before hearing it played for them, and twice after. When

dividing the queries, we picked one from each category for each set.

There is very little change in performance when the test queries are not used for training (see Figure 21).

There is a slight improvement, owing to the omission of a few extremely problematic attempts by Subjects

C and E in the test set. Again, the slight edge goes to the version that does not consider cumulative error.

This is counter-intuitive, since we attribute much of the human ability to recognize tunes to the malleability

of our transposition and tempo centers.

We then separated our query database into a test group containing the queries based on the targets

“Lullaby”, “The Sound of Music”, “Bridge Over Troubled Water” and the “American National Anthem.”

All other queries were used for training. In this case, performance between the two models is lock-step (see

Figure 22). Under full training, the MRR value for this same test set was 0.9247. In this training test, the

MRR value is 0.9035, suggesting that we can not generalize perfectly across queries. We believe that with a

greater variety of training targets this gap may well be smaller, since it will be possible to observe situations

relevant to many targets.

0.11 Future work

Even with the generalizations described in this model, a large number of parameters remain. We are currently

gathering query data to train the model, as more in-depth evaluations of performance on non-synthetic queries

will be essential. Various important questions remain to be answered, such as the following:

• What is the effect of query representation, for instance using a conventional note representation rather

than pitch-class?

• How can we best tie parameters for training? For efficient training, how many contexts can (or should)

be established?

• HMMs are amenable to “frame-based” representations, which would allow us to bypass the problematic

note-segmentation stage of query transcription. Instead of modeling the query as a sequence of discrete

33

A B C D E F G H
0

0.2

0.4

0.6

0.8

1

Target

M
R

R

Generalizing Across Queries (By Target)

Full model
No cumu.

A B C D E
0

0.2

0.4

0.6

0.8

1

Subject

M
R

R

Generalizing Across Queries (By Subject)

Full model
No cumu.

Figure 21: Generalizing across queries

34

A B C D E F G H
0

0.2

0.4

0.6

0.8

1

Target

M
R

R

Generalizing Across Targets (By Target)

Full model
No cumu.

A B C D E
0

0.2

0.4

0.6

0.8

1

Subject

M
R

R

Generalizing Across Targets (By Subject)

Full model
No cumu.

Figure 22: Generalizing across targets

35

note events, it is represented as a sequence of fixed-width time-frame analyses. Each state in the target

model then has an associated distribution over duration - the probability of remaining in the state for

some number of time-frames. We would like to explore the effectiveness of this approach, particularly

with regards to the tradeoffs between time and retrieval performance.

Finally, tests on much larger databases will be necessary. While we believe that meta-data in the query

process (genre, era, instrumentation) will allow us to restrict searches to a subset of a database or library, it

is reasonable to assume that a large number of targets will be relevant to many searches.

0.12 Conclusion

We have demonstrated a comprehensive model for error in sung queries allowing for robust retrieval perfor-

mance, even with poorly sung and poorly transcribed queries. It has been shown that a natural “musical” in-

terpretation of insertion and deletion helps alleviate the problem of target similarity when edits are observed,

noted by Sorsa [22]. Furthermore, we have shown the value of careful model framing and parameterization

based on established musical interpretations.

0.13 Acknowledgements

We gratefully acknowledge the support of the National Science Foundation under grant IIS-0085945, and

The University of Michigan College of Engineering seed grant to the MusEn project. The opinions in this

paper are solely those of the authors and do not necessarily reflect the opinions of the funding agencies.

36

Bibliography

[1] L.R. Bahl, F. Jelinek, and R.L. Mercer. A maximum likelihood approach to continuous speech recogni-

tion. IEEE Journal of Pattern Analysis and Machine Intelligence, 1983.

[2] H. Barlow and S. Morgenstern. A Dictionary of Musical Themes. Crown Publishers, 1948.

[3] M. Bartsch and G. Wakefield. To catch a chorus: Using chroma-based representations for audio thumb-

nailing. In Proceedings of WASPAA01.

[4] L.E. Baum. An equality and associated maximization technique in statistical estimation for probabilistic

functions of markov processes. Inequalities, 1972.

[5] W. Birmingham, B. Pardo, C. Meek, and J. Shifrin. The musart query-retrieval system. D-Lib Magazine,

2002.

[6] W. Birmingham et al. Musart: Music retrieval via aural queries. In Proceedings of ISMIR2001.

[7] P. Boersma. Accurate short-term analysis of the fundamental frequency and the harmonics-to-noise

ratio of a sampled sound. In Proceedings of the Institute of Phonetic Sciences.

[8] M.M. Dempster, N.M. Laird, and D.B. Jain. Maximum likelihood from incomplete data via the em

algorithm. J. Royal Stat. Soc., Series B, vol. 39, pp. 1–38, 1977.

[9] R. Durbin et al. Biological Sequence Analysis. Cambridge University Press, 1998.

[10] A. Durey. Melody spotting using hidden markov models. In Proceedings of ISMIR2001.

[11] L. Edlund. Modus Novus. Nordiska Afrikainstitut, 1964.

[12] S. Kurtz. Foundations of sequence analysis. http://citeseer.nj.nec.com/kurtz01foundations.html, 2001.

[13] K. Lemstrom. String matching techniques for music retrieval. Technical report, University of Helsinki,

2000.

[14] D. Mazzoni. Melody matching directly from audio. In Proceedings of ISMIR2001.

[15] M. Mongeau and D. Sankoff. Comparison of musical sequences. Computers and the Humanities 24.

[16] B. Pardo. Automated partitioning of tonal music. In Proceedings of FLAIRS 2000.

37

[17] B. Pardo and W. Birmingham. Timing information for musical query matching. In Proceedings of

ISMIR2002.

[18] S. Pauws. Cubyhum: a fully functional, “query by humming” system. In Proceedings of ISMIR2002.

[19] E. Pollastri. An audio front end for query-by-humming systems. In Proceedings of ISMIR2001.

[20] L.R. Rabiner. A tutorial on hidden markov models and selected applications in speech recognition. In

Proceedings of IEEE 1992.

[21] J. Shifrin, B. Pardo, C. Meek, and W. Birmingham. Hmm-based musical query retrieval. In Proceedings

of JCDL 2002.

[22] T. Sorsa. Melodic resolution in music retrieval. In Proceedings of ISMIR2001.

[23] E. Terhardt and W.D. Ward. Recognition of musical key: Exploratory study. Journal of the Acoustical

Society of America, 1982.

[24] E.M. Voorhees and D. Harman. Overview of the fifth text retrieval conference. In The Fifth Text

REtrieval Conference, 1996.

.1 Deriving re-estimation formulae

The reestimation procedure converges to a critical point in the parameter space with respect to likelihood.

Baum defines an auxiliary function q, where λ′ represents the “current” model parameter values, and we are

attempting to iteratively reestimate λ:

q(λ′, λ) =
∑
Q

P (O, Q|λ′) log P (O, Q|λ) (40)

By maximizing this function, we maximize P (O|λ) because:

q(λ′, λ) ≥ q(λ′, λ′) ⇒ P (O|λ) ≥ P (O|λ′) (41)

We will now derive this implication. Notice that P (O|λ) =
∑

Q P (O, Q|λ), or the sum of the probabilities

of all possible paths through the model. There are a finite number N of paths. Where Qi is the ith path, pi

= P (O, Qi|λ′),
∑

is shorthand for
∑N

i=1 and qi = P (O, Qi|λ), we can rewrite the implication:∑
pi log qi ≥

∑
pi log pi ⇒

∑
qi ≥

∑
pi (42)

The derivation is as follows: ∑
pi log qi ≥

∑
pi log pi (43)∑

pi log
qi

pi
≥ 0 (44)

38

Since x − 1 ≥ log x, we can deduce from Equation 44 the following inequality:∑
pi(

qi

pi
− 1) ≥

∑
pi log

qi

pi
≥ 0 (45)∑

qi −
∑

pi ≥
∑

pi log qi −
∑

pi log pi (46)

We know from the original implicant that
∑

pi log qi ≥
∑

pi log pi, so the right-hand side of Equation 46 is

known to be non-negative. Therefore, the left-hand side of the inequality must also be non-negative. Since

P (O|λ) =
∑

qi and P (O|λ′) =
∑

pi, it is clear that P (O|λ)−P (O|λ′) ≥ 0 and therefore P (O|λ) ≥ P (O|λ′).

To derive our reestimation formulae, we first decompose q(λ′|λ) into a sum of auxiliary functions of the

form:

f(y) =
N∑

j=1

wj log yj , (47)

Where we are constrained by yi ≥ 0 and g(y) =
∑N

i yi = 1 (a discrete probability function), the auxiliary

functions can then be individually maximized using Lagrange multipliers. In general, where ∇g(y) is the

gradient of the function g(y), we know that extremes values of the function f(y) subject to constraint g(y)

are solutions to the equation: ∇g(y) = k∇f(y) where k is some constant:
∇g(y) =

∂g
∂y1

= 1
∂g
∂y2

= 1
...

∂g
∂yN

= 1

 =

k∇f(y) =

kw1
y1

kw2
y2
...

kwN

yN

 (48)

1 =
kwi

yi
(49)

yj =
wj∑N
1=1 wi

from the constraint
N∑

i=1

wi = 1 (50)

To reduce q to this form, we rewrite:

P (O, Q|λ) = πq1

T∏
t=2

aqt−1qtbqt(ot) (51)

Incorporating the various components of transition and emission probabilities, we have:

P (O, Q|λ) = πq1

T∏
t=2

aE
qt−1qt

aK
qt−1qt

aS
qt−1qt

bP
qt

(ot)bR
qt

(ot) (52)

Finally, we incorporate the notion of context (i, j, k, l, m) and amount/error/symbol (∆), determined ac-

cording to the procedure defined in Section 0.6:

P (O, Q|λ) = PE
i (∆(E))

T∏
t=2

PE
i (∆(E))PK

j (∆(K))PS
k (∆(S))PP

l (∆(P))PR
m(∆(R)) (53)

39

Converting to a log-scale, we have:
T∑

t=1

log PE
i (∆(E)) +

T∑
t=2

log PK
j (∆(K)) + (54)

T∑
t=2

log PS
k (∆(S)) +

T∑
t=2

log PP
l (∆(P)) +

T∑
t=2

log PR
m(∆(R))

Using this derivation, we rewrite q:

q(λ′, λ) =
∑
∀i

qE
i (λ′, aE

x) +
∑
∀j

qK
j (λ′, aK

x) + (55)

∑
∀k

qS
k (λ′,aS

x) +
∑
∀l

qP
l (λ′, aP

x) +
∑
∀m

qR
m(λ′, aR

x)

where

qE
i (λ′,aE

i) =
T∑

t=1

∑
∀∆(E)

P (O, qt ∈ CE
i , qt instance of ∆(E)|λ′) log PE

i (∆(E)) (56)

qK
j (λ′,aK

j) =
T∑

t=2

∑
∀∆(K)

P (O, qt−1 → qt instance of ∆(K), qt ∈ CK
j |λ′) log PK

j (∆(K)) (57)

qS
k (λ′,aS

k) =
T∑

t=2

∑
∀∆(S)

P (O, qt−1 → qt instance of ∆(S), qt ∈ CS
k |λ′) log PS

k (∆(S)) (58)

qP
l (λ′,bP

l) =
T∑

t=1

P (O, qt → ot instance of ∆(P), qt ∈ CP
l |λ′) log PP

l (∆(P)) (59)

qR
m(λ′,bR

m) =
T∑

t=1

P (O, qt → ot instance of ∆(R), qt ∈ CR
m|λ′) log PR

m(∆(R)) (60)

Using the result in Equation 50, it is then trivial to derive the reestimation equations described in Section

0.8.

.2 Notation

We will now outline the notation used in describing the error model:
Notation Description

〈Pitch[x], IOI[x]〉 xth note event

〈P [x], R[x]〉 xth note event, quantized

ot and di tth observation (query note) and

ith target event (database note) respectively

∆(P) = −1 a pitch error, one semi-tone flat

∆(R) = +1 a rhythm error, one quantization unit too long

sx = 〈E[x], K[x], S[x]〉 xth HMM hidden state

= 〈Same1, +2, −3〉 E[x] = Same1: Edit type, replacement of first target note

K[x] = +2: transposition (Key), 2 semi-tones sharp

S[x] = −3: tempo (Speed), 3 units faster

axy = aE
xy · aK

xy · aS
xy probability of a transition from hidden state sx → sy

aE
xy = P E

i (∆(E)) edit transition probability, with edit symbol ∆(E) in context CE
i

aK
xy = P K

j (∆(K)) probability of a modulation ∆(K) in context CK
j

aS
xy = PS

k (∆(S)) probability of a tempo change ∆(S) in context CS
k

∆(E) ∈ {Samei} ∪ {Joinl
i}L

l=2 set of all possible edit symbols,

∪{Elabi, jm}M,m
m=2,j=1 where L and M are the “order” of the edit topology

αt(x) = P({o1, o2, . . . , ot}, qt = sx|λ) forward-variable, the probability of ending in state t at time t

given model λ

βt(x) = P ({ot+1, ot+2, . . . , oT }, qt = sx|λ) backward-variable, the probability of beginning in state x at time t

40

