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Abstract—Network overlay construction has found many applications
in today’s Internet, such as P2P networks [1][2], end-host multicast [3][4],
and network security [5]. Many researchers have proposed solutions to
building an overlay network among a given group of end-hosts. The
usual overlay construction assumes two-way network communication—
each host can initiate connections to and accept requests from other hosts.
This is not always true on the Internet due to the use of Network Ad-
dress Translation (NAT) and firewalls. Our experiments with one P2P
file-sharing system revealed that over 34% of hosts were guarded hosts,
i.e., hosts that cannot accept connections from other Internet hosts. The
lack of two-way communication capability presents a challenge because
only a subset of hosts can act as overlay routers. Using a cluster-base ap-
proach, we design a new overlay construction mechanism called e*, which
organizes members based on reachability and intelligently select overlay
routers to reduce end-to-end latencies on the overlay. Under realistic sce-
narios involving guarded hosts, e* can reduce average end-to-end latency
on the overlay by 28-61% compared to existing protocols. Furthermore,
e* significantly improves the worst case end-to-end latency on the overlay.

I. INTRODUCTION

Network overlay has become a popular technique used for
communications in distributed network services, such as Peer-
to-Peer (P2P) file-sharing [1][2], end-host multicast [3][4] and
security overlay network [5]. Independent of the overlay con-
struction protocol, the constructed overlay networks are gen-
erally similar. The networks consist of peers, normally end
hosts on the Internet, and virtual links connecting host pairs
using either TCP or UDP. The virtual links are used to relay
both data and control messages. There is a rich literature on
the design, implementation, and evaluation of various proto-
cols for overlay construction, mostly in the context of end-host
multicast. Examples include HMTP [6], Narada [3], NICE
[7], TMesh [4], Yoid [8], and Zigzag [9]. End-host multicast,
which connects members of a multicast group via transport-
layer overlay, has gained popularity since IP Multicast [10]
is not generally available on the Internet. These efforts fo-
cus on the protocol design to construct and optimize the over-
lay with all hosts considered identical in terms of processing
power, bandwidth, and reachability. The Internet, however,
is far more heterogeneous. With a wide variety of hardware
and software configurations, constructing network overlays on
the Internet faces many challenges not generally considered in
simulations. The focus of this paper is to study the effect of
one such challenge—the existence of guarded hosts. We call
host A a guarded host if no TCP connections or UDP ses-
sions can be established to A from hosts outside A’s local area
network. This may happen if A is behind a NAT (Network
Address Translator [11]) gateway or a firewall. Similarly, we

call a host that allows incoming TCP connections as well as
outgoing connections an open host. Since guarded hosts are
not able to accept incoming connections, their existence com-
plicates the construction of efficient overlays.

The presence of guarded hosts in P2P systems not only re-
quires modifications to the implementation of a protocol, but
also poses a more fundamental challenge to the protocol de-
sign itself. The fundamental assumption of two-way com-
munication being universally available is violated. In order
to confirm that guarded hosts are indeed a tangible issue for
today’s P2P applications, we conducted empirical measure-
ments on the Internet with real P2P file-sharing services. Our
study indicates that 34% to 42% of hosts on P2P file-sharing
networks are guarded. Our experiments also show that with
such high percentages of guarded hosts, existing protocols suf-
fer up to 37% degradation in average end-to-end latency on an
overlay. These are strong evidence that guarded hosts indeed
effect overlay performance. We propose a protocol named
e*, which can accommodate a large number of guarded hosts,
while achieving very good performance with a relatively low
overhead.

Our proposed e* uses locality based clustering, which
groups nearby member hosts into a single cluster. Each clus-
ter consists of a cluster center and clients. Guarded hosts can
only be clients, while open hosts can be clients as well as clus-
ter centers. Each cluster must contain at least one open host
to act as the cluster center. A guarded host can attach to an
overlay network without introducing too much overhead by
staying connected to its cluster center. Our studies on both ar-
tificial network topologies and a snapshot of the Internet topol-
ogy show that compared to current overlay construction pro-
tocols, e* achieves lower average end-to-end latency even in
the presence of a large number of guarded hosts. For example,
with guarded hosts making up 40% of members in a group,
the average end-to-end latency with e* is 42% lower than that
of Narada. We show that e* has low overhead and is parsimo-
nious in its use of the underlying physical network resources.

The e* protocol is not simply a better overlay construction
algorithm. It is designed with realistic performance metrics
and practical concerns in mind. Accommodating a large num-
ber of guarded hosts is only one of its main objectives. Ex-
isting protocols that use clustering may need to refine their
overlay construction algorithms as they are limited to working
only with open hosts. For protocols without clustering, our ex-
periments indicate that they may experience sub-optimal per-
formance in the presence of guarded hosts because their op-
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timization techniques do not make as effective a use of the
resources of open hosts as does e*. The e* protocol is also
designed to be flexible so that it can be used in conjunction
with other overlay protocols that do not explicitly minimize
end-to-end latency.

The keys to e*’s performance are its center-election pro-
tocol and its shortcut-selection heuristic. The election pro-
tocol is based on a center rank function that takes not only
addressability, but also network capacity and latency into ac-
count. The shortcut-selection heuristic improves the quality of
constructed overlays by intelligently adding shortcuts to im-
prove end-to-end latencies of designated paths. The shortcut-
selection heuristic can also increase the connectivity of nodes
to provide reliability and better performance when necessary,
even for groups with a large population of guarded hosts.

Currently, existing P2P file-sharing applications address
this problem using an ad hoc “push” approach. A guarded host
A joins a file-sharing network by connecting to a proxy-server.
Search or download requests from other peers must be routed
by the proxy-servers to A. Host A then pushes the results
or requested files back to the actual recipients. This “push”
mechanism introduces extra overhead on the proxy server and
may create long access latency for those peers making the re-
quests. Currently we are aware of only one study on the over-
head introduced by guarded hosts [12], though no systematic
approach on how P2P network has been proposed on how P2P
network can accommodate guarded hosts with low overhead
and little performance degradation.

In IP Next Layer (IPNL), Francis and Gummadi presented
an extension to the current Internet architecture by introduc-
ing IPNL as a layer above IPv4 [13]. It defines IPNL header
that is encapsulated in the IP header and includes extra ad-
dress information (extended IP address) so that hosts behind
NAT gateways can be identified and addressed. IPNL thus ad-
dresses the reachability problem for hosts behind NAT gate-
ways by changing end hosts and NAT gateways on the Inter-
net. However, IPNL cannot eliminate the presence of guarded
hosts because of the deployment of firewalls due to security
concerns. Another approach that may reduce the use of NAT
is IPv6 due to its much larger address space. However, even
with IPv6, firewalls are again likely to be present due to secu-
rity concerns, and NAT may continue to exist because it pro-
vides the benefit of address isolation to network providers and
subscribers. Our work on guarded hosts should still be rel-
evant as the Internet evolves into a new architecture such as
the one proposed by NewArch [14] or Plutarch [15]. With the
increasing population of mobile IP devices, such as wireless
phones, networked sensors, and power-limited handheld de-
vices, more and more hosts have become guarded hosts and
are not able or willing to serve content directly. We believe
our work can be applicable in such environments similar to
the case of guarded Internet hosts.

The rest of this paper is organized as follows. We first show
the prevalence of guarded hosts in P2P systems and its effect

on existing end-host multicast protocols in Section II. We pro-
pose our solution in Section III, evaluate its performance in
Section IV, and conclude in Section VI.

II. EFFECT OF GUARDED HOSTS ON NETWORK OVERLAY
CONSTRUCTION

In this section, we would like to answer the question: what
percentage of hosts in a typical P2P file-sharing service are
guarded hosts? This study differs from existing work where
the total number of hosts behind a NAT gateway is counted.
Bellovin presented a technique to estimate the number of hosts
behind a NAT gateway by examining the IP headers of packets
from the given NAT gateway [16]. He found that when pro-
cessed correctly, packets emanating from individual machines
could be isolated so that the number of hosts behind a NAT
gateway could be counted. What we ask here is not how many
hosts there are behind any given NAT gateway but overall how
many hosts in a P2P network are behind NAT gateways (and
firewalls).

A. Prevalence of Guarded Hosts on the Internet

We study the prevalence of guarded hosts on the Internet
by conducting empirical measurements on existing P2P net-
works. There are several widely used P2P file-sharing appli-
cations on the Internet, e.g., eDonkey, Gnutella, Kazaa, and
Napster. We selected eDonkey and Gnutella networks because
of their popularity and availability of source code.

In the eDonkey file-sharing system, a set of dedicated
servers allow users to search for files. Upon startup, the new
peer connects to one of the servers, which then assigns a
unique ID to that peer. The server assigns two types of ID:
HighID and LowID. A peer that is an open host is assigned
a HighID, which is the host’s IP address in decimal. A peer
that is a guarded host is assigned a LowID, which is a 32-bit
random number unique to that server. Each server determines
whether a host should be assigned a HighID or LowID based
on the result of a proprietary probing mechanism. Each eDon-
key client can identify whether an assigned ID is a HighID or
LowID using the threshold value of 1e6. Thus, we may use
the number of HighID peers and the number of LowID peers
in the eDonkey network to estimate the percentage of guarded
hosts.

Since we do not have control over any eDonkey server for
administrative reasons, we had to modify a popular eDonkey
client [17]. Our modified client issues queries and collect lists
of peers from various eDonkey servers. Specifically, our mod-
ified eDonkey client connects to a server, and asks for popu-
lar file suffixes (avi, mp3, jpg, and mpg) once every 90 sec-
onds. From the list of files returned for each suffix, we request
the top ten files with the highest availability.1 Each request

1A file’s availability denotes the number of peers sharing that file, as known
to the connected server. Thus, selecting files with high availability yields a
large number of peers.
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TABLE I

NUMBER OF GUARDED HOSTS FOUND IN P2P FILE-SHARING

APPLICATION

Day 1 2 3
Total Servers 52 52 52

Responsive Servers 37 32 29
HighID hosts 20200 19602 29799
LowID hosts 9832 11099 15029
% of LowID 32.7% 36.2% 33.5%

prompts the server to return a list of peers storing the requested
file. The list returned by the server for the same requested file
could potentially be different across requests. From these lists,
it is straightforward to separate HighID and LowID peers. Our
eDonkey client stays connected to each server to collect the
lists of peers for 20 minutes, and then randomly tries another
server.

We ran our experiments for six days with each experiment
lasting about one day. Table I shows the results from the
first three days. Of the 52 servers we probed, about 63% of
them responded to our modified client, shown as “Responsive
Servers” in the table. Some servers denied our client’s con-
nection either because the server was off-line, the server has
reached its capacity, or the server was dedicated to a particu-
lar flavor of clients. Some servers noticed our unusual search
activities and blacklisted our client’s IP, which resulted in a
smaller set of responsive servers for successive runs. In all of
our experiments, we observed similar percentages of LowID
(guarded) hosts, about 34% on average.

Fig. 1 shows the total number of hosts discovered on each
server on Day 1 and the number of guarded hosts on that day.
We sort the servers in non-decreasing order based on the per-
centages of LowID hosts, and assign each server a numeric
rank value. As shown in Fig. 1, there are seven servers with
no LowID hosts even though hundreds of hosts were found
on these servers. The probability that our client has sim-
ply missed LowID hosts on these seven servers is quite low.
We suspect that these servers are configured to deny guarded
hosts, which is quite common for eDonkey servers. Guarded
hosts impose more workload on the server than open hosts.
A guarded host can only search via its TCP connection to
the connected server; it also requires assistance from the con-
nected server to upload files.

Unlike the client-server architecture on eDonkey networks,
Gnutella organizes its participants into a pure peer-to-peer
overlay network with no centralized servers. A peer sends or
receives control messages, such as neighbor request or file re-
quest, through existing neighbors. Our study of 134,252 hosts
on Gnutella network shows that 42% are guarded hosts, higher
than the percentage on the eDonkey network. This difference
is due to the different ways the two protocols treat guarded
hosts. On the eDonkey network, in addition to the server ac-
cess limitation discussed earlier, there are other evident disad-
vantages for guarded hosts. While an open host can request an
eDonkey server to relay connection request to be initiated by

Fig. 1. Numbers of guarded hosts at different eDonkey servers.

a guarded host to the open host, a guarded host cannot make
such a request because it cannot accept connections from the
other guarded host. While an open host can be connected to
both open and guarded hosts, a guarded host can only be con-
nected to open hosts. Since guarded hosts can only access re-
sources on open hosts and have limited search capability, they
perceive lower quality of service (QoS) in terms of download
speed compared to open hosts. There is thus strong incentives
for a guarded hosts to configure its network to allow incom-
ing connections so that it may be reachable from outside and
receive the same QoS as open hosts. For P2P protocols that
do not impose a difference in perceived QoS between guarded
hosts and open hosts such as Gnutella, we expect a higher per-
centage of guarded hosts since there is no strong incentive for
a host to become “open.”

Our experiments indicate that on average 34% of hosts on
P2P networks are guarded hosts. Due to space limitation, we
only present details on the eDonkey network. The data on
eDonkey network provides a lower bound on the percentage of
guarded hosts one can expect to see on a general purpose P2P
network because hosts on the eDonkey network have incen-
tives to become open hosts in order to download files faster.
We expect our study to be even more relevant for networks
with higher percentage of guarded hosts, e.g., the Gnutella
network or end-host multicast overlay networks.

B. Performance of Overlay Construction Algorithms with
Guarded Hosts

We show in the previous section the prevalence of guarded
hosts in P2P systems. In this section, we study how guarded
hosts affect the performance of end-host multicast protocols.
Before delving into the details of our evaluation setup, we
briefly describe the protocols we investigate and the perfor-
mance metric we use. We study four end-host multicast proto-
cols: HMTP [6], Narada [3], TMesh [4], and Yoid [8]. HMTP
and Yoid build tree overlays where there is a single path be-
tween any node pair,2 while Narada and TMesh build mesh

2In our discussion, when referring to overlays, we use node in place of host,
and distance in place of latency to be consistent with standard graph theory
vocabulary.
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overlays where multiple paths may exist between any node
pair. Studying both tree-based and mesh-based overlays pro-
vides a more comprehensive picture of the effect of guarded
hosts. Most of these existing protocols rely on overlay op-
timization algorithms to gradually improve the quality of the
constructed overlays in terms of end-to-end latency. There-
fore, the main performance metric we adopt in this paper is
the Average Relative Delay Penalty (ARDP) as defined in [4].
Relative Delay Penalty (RDP) is the ratio of the latency D′

i,j

between a node pair i and j on the overlay to the latency be-
tween them on the physical network Di,j [3]. ARDP is then
the average RDP between all node pairs:

ARDP =
1

N(N − 1)

N∑

i=0

N∑

j=0,j 6=i

D′
i,j

Di,j

, (1)

where N is the number of nodes in the overlay. Smaller ARDP
is an indication that most node-pair latencies on the overlay are
close to latencies on the physical network. If the overlay were
a full mesh, and all members were directly connected to each
other, the ARDP would be 1.

We found that these existing protocols suffer about 12-32%
ARDP degradation in the presence of guarded hosts, which
could limit their usefulness to applications that require low
end-to-end latencies. We introduce the e* overlay construction
protocol in Section III after presenting the results of our study
on existing protocols in this section.

Chu et al. discovered that, in the real Internet, the RDP
between a node pair i and j may be less than 1, that is, the
distance between i and j in the overlay may be less than their
distance in the network [18]. This is because the data path
between two hosts is not necessarily the shortest path between
them on the Internet due to various routing policies enforced
by ISPs [19]. In our study, we assume that all traffic are routed
through the shortest paths so the RDP between any node pair is
never less than 1. The result of ignoring such effect is that our
experiments likely overestimate the RDPs of various overlay
protocols. On the Internet, these protocols including e* could
perform better and achieve lower RDP than reported here.

In addition to ARDP, we also use 90%-tile RDP and CDF
(Cumulative Distribution Function) of RDP to give a more
complete picture of the quality of end-to-end overlay latency
under different construction algorithms.

B.1 Experimental Setup

To ensure that our experiments are not topology dependent,
we conduct our simulations on topologies with and without
power-law node degree distribution, with various sizes and
configurations. For power-law based topology, we use a topol-
ogy of 4,000 nodes generated by the Inet-3.0 topology gener-
ator [20]; for non-powerlaw topology, we use a transit-stub
topology of 4,400 nodes generated by the GT-ITM topology

TABLE II
HOSTS WITH DIFFERENT CONNECTION SPEED

Connection Maximum Number
speed degree of hosts

below 100Kbps 2 10%
100Kbps - 2Mbps 4 30%
2Mbps - 10Mbps 6 40%
above 10Mbps 10 20%

generator [21].3 We have also conducted our experiments on
topologies with 6,000 and 8,000 nodes. We further evaluate
our protocol on a snapshot of the Internet topology in Section
IV-F. All experiments show results similar to the ones pre-
sented.

For each type of topology, we test each overlay protocol
with different number of randomly picked overlay nodes. Dif-
ferent percentage of guarded hosts are then evenly distributed
among these nodes. Following the empirical measurements
presented in the previous section, we experimented with over-
lay networks consisting of 30% and 40% guarded hosts. In
addition, to evaluate the sensitivity of our results, we further
experimented with overlay networks consisting of 20% and
50% guarded hosts.

To accommodate guarded hosts, existing overlay construc-
tion protocols must be retrofitted with the constraint that a di-
rected link from node A to another node B can be established
only if B is an open host. In our discussion, we name the un-
modified overlay construction protocols that run on topologies
without guarded hosts the original protocols. For instance, in
Fig. 2a, original-Yoid stands for the unmodified Yoid that runs
on a topology without guarded hosts.

Besides network reachability, other factors, such as net-
work capacity, make hosts on the Internet unequal. For in-
stance, a host with a 56Kbps modem connection should not
be treated the same as a host with a 10Mbps connection. A
host’s network capacity normally depends on the type of In-
ternet connection it has. Saroiu et al. studied the speed of
Internet connections of hosts in several P2P file-sharing net-
works, and found that in the Gnutella network, about 10%
of hosts had connection speed less than 100Kbps, 30% had
connection speed between 100Kbps and 2Mbps, 40% between
2Mbps and 10Mbps, and the remaining 20% had speed higher
than 10Mbps [22]. In our experiments, we assume a similar
network capacity distribution among hosts in our overlays. We
also assume guarded hosts are uniformly distributed among
hosts with different types of capacity.

We simulate the network capacity of a host by limiting its
maximum node degree. For instance, a host with connec-
tion speed less than 100Kbps has a maximum node degree of
two. A more detailed distribution of maximum node degree is
shown in Table II. In addition to the distribution shown in Ta-

3On the Inet topology, the distance between two directly connected nodes
is the Euclidean distance between the two nodes on the simulated plane. The
distance between two nodes on the transit-stub topology is set automatically
by the GT-ITM generator.
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ble II, we also experimented with other distributions. The dis-
tribution used may change the performance of different over-
lay protocols in terms of ARDP value, but it does not alter
the qualitative conclusions. We only present the results for the
configuration shown in Table II.

B.2 Effect of Guarded Hosts

Figs. 2a and 2b show the results for Yoid and HMTP on the
GT-ITM topology respectively. The x-axis shows the multi-
cast group size, ranging from 50 to 1,000 members. For each
group size, we run the simulation ten times, selecting a dif-
ferent set of nodes as members and different nodes among the
members as guarded hosts each time. We report the ARDP
averaged over the 10 runs on the y-axis. With 30% (40%)
guarded hosts, ARDP under Yoid is 12% (17%) higher than in
original-Yoid. With 50% guarded hosts, the ARDP increases
as much as 24%. As for HMTP, the increases in ARDP are
17%, 26%, and 32% for groups with 30%, 40%, and 50%
guarded hosts, respectively.

In addition to the larger increase in ARDP, the ARDP of
HMTP also fluctuates more than that of Yoid. HMTP explic-
itly optimizes its overlay construction, which makes it sensi-
tive to the placement of guarded hosts. Different placements
of guarded hosts may result in totally different overlay con-
struction scenarios. Fig. 3 shows a simple example. In case 1,
B and E are guarded, while in case 2, C and D are guarded.
In case 2, we cannot construct a tree that performs as well
as in case 1 in terms of end-to-end distance because in case
2 we have to use the longer links AB and BE. The same
problem does not exist for Yoid because Yoid generally builds
sub-optimal trees. Thus in terms of absolute ARDP, HMTP
with 50% guarded hosts still performs better than original-
Yoid. For group size of 1,000 members, HMTP with 50%
guarded hosts achieves ARDP of 5.6, lower than the ARDP of
6.5 achieved by original-Yoid with no guarded host present.

In Figs. 2c and 2d, we show the performance under Narada
and TMesh when guarded hosts are present. Narada and
TMesh are mesh-based protocols, which generally utilize
more network resources than tree-based protocols and con-
sequently achieve better ARDP. For example, the ARDP of
original-Narada is about on average 16% lower than that of
original-HMTP. However, this ARDP improvement comes at
a cost. Narada uses about twice as many links as HMTP to
achieve the 16% latency improvement (see Fig. 4). The num-
ber of links used in an overlay is a good indication of the over-
lay’s protocol overhead and network resource usage.

When the percentage of guarded hosts increases from 30%
to 50%, Narada experiences 22% to 31% increase in ARDP
compared with original-Narada (Fig. 2c). Although these per-
centages are comparable to that of HMTP (Fig. 2b), the nomi-
nal ARDP values are better in the Narada case because Narada
uses a larger number of links than HMTP, as shown in Fig. 4.
By constructing a better connected overlay, Narada increases
the chance of finding a shorter path between two members. A
better connected overlay is also less sensitive to the placement
of guarded hosts. Hence we see that the ARDP of Narada does
not fluctuate as much as that of HMTP.

Similarly, an increase in the percentage of guarded hosts
on a network adversely effects TMesh (Fig. 2d). However,
TMesh clearly delivers the lowest absolute ARDP values
among all the protocols studied. Even with 40% guarded
hosts, TMesh still out-performs original-Narada, especially
for large groups. Furthermore, TMesh achieves this better per-
formance with smaller number of links than Narada, as shown
in Fig. 5. Compared to original-TMesh, the 33% increase
in ARDP when 50% of the network is guarded hosts results
from TMesh being restrained to using 17% fewer links than
original-TMesh. Even so, these numbers compare favorably
against those of the other protocols.

From Fig. 2, it is clear that TMesh provides the lowest
ARDP in the presence of guarded hosts. Even with TMesh,
however, when 40% of nodes on the overlay are guarded hosts,
the ARDP achieved is over 3. This means that for a cross-
continent node-pair with 80-100ms round-trip time (RTT), the
latency between them in TMesh could be over 300ms. Studies
have indicated that some applications on the Internet requires
RTT of less than 300ms to be usable. Voice-over-IP and multi-
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player gaming are such applications [23][24]. In the remainder
of this paper, we introduce and evaluate e*, an overlay con-
struction protocol that can achieve lower ARDP than existing
protocols.

III. GUARDED-AWARE OVERLAY CONSTRUCTION

Our basic approach in integrating guarded hosts into an
overlay is to group members into clusters based on locality,
measured in latency. A center is elected in each cluster. To
qualify as a cluster center, a member must meet a list of crite-
ria, such as the speed of its network connection and its laten-
cies to other members. By assigning an open host as the center
in each cluster, the constructed overlay may accommodate a
large portion of guarded hosts. In this section, we address the
following two key questions: the selection of cluster centers
and the connections between clusters.

Several graph-theoretic algorithms, such as k-HST [25],
min K-center [26], and l-greedy [27], may be used to perform
center placement. While these algorithms offer either abso-
lute or probabilistic bounds on the latencies between nodes in
a cluster and its center, there is no performance guarantee on
end-to-end latencies, which is more important in an overlay.
There are also algorithms that generates spanner subgraphs,
such as t-spanner [28][29], which offers a geometric bound on
end-to-end latency distortion, or ε-stretcher [30], which offers
an arithmetic bound on end-to-end latency distortion.

While a geometric bound should yield spanners with fewer
edges compared to those with an arithmetic bound, the multi-
plicative constant offers a bound that is unnecessarily restric-
tive for paths with very small latencies, and excessively loose
for paths with long latencies. For example, in a 2-spanner, a
path with real latency of 2 ms must have an overlay latency
no worse than 4 ms, while a path with latency of 100 ms may
be have an overlay latency as poor as 200 ms. With an addi-
tive constant of 10 ms, the same paths would be no worse than
12 and 90 ms, respectively. An additive bound is thus a more
meaningful criterion to be used for overlay construction. We
thus adopt the spanner algorithm of ε-stretcher in our design
of e*.

Algorithm 1 (e*)

1. Let G∗ = (V ∗ = ∅, E∗ = ∅)
2. Let U = ∅
3. While (V ∗ 6= V )
4. Randomly select u ∈ V
5. V ∗ ← V ∗ ∪ {u}
6. ∀v ∈ {v′ : dG(u, v′) < ε/2}
7. If (v /∈ V ∗)
8. V ∗ ← V ∗ ∪ {v}, E∗ ← E∗ ∪ {(u, v)}
9. U ← U ∪ {u}
10. Form a connected backbone among nodes in U
11. Compute the ε-stretcher Gε of G∗

Fig. 6. The e* algorithm.

A. Centralized e*

The e* algorithm consists of three phases. In the first phase,
it partitions the set of hosts into clusters and selects cluster
centers. This is shown in Fig. 6, lines 1-9. A node is ran-
domly selected, and all other nodes within ε/2 of the selected
node are grouped into one cluster. Each such cluster is a
star topology (Fig. 7a). In the second phase, cluster centers
inter-connect among themselves to form a connected back-
bone (Fig. 7b). In the current implementation, each center
connects to two closest centers already on the backbone. In
the final phase, the ε-stretcher spanner algorithm is applied to
add extra links or shortcuts to improve the end-to-end laten-
cies of the constructed overlay (instead of the ε-stretcher algo-
rithm, another algorithm may be used for shortcut selection to
optimize for different performance metric).

Fig. 7 illustrates the construction process of an e* overlay.
In the figure, each circle represents a host, and a line connect-
ing two hosts represents a connection, i.e., a virtual link in the
overlay network. The shaded circles in bold are the cluster
centers. In Fig. 7, we only show the overlay network, with
the underlying physical network concealed. We introduce the
definition of latency bias δ, which is defined on a node pair.
For example, for node pair AB shown in Fig. 7b, the distance
between node A and B in the overlay, D′

AB , is the sum of dis-
tances between node pairs AC, CD, and DB. If the distance
between A and B in the concealed physical network is DAB ,
the difference between D′

AB and DAB is the latency bias δAB .
For a node pair that is directly connected in the overlay, its δ
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value is zero. A virtual link between a node pair in the group
that is not directly connected in the overlay is a potential short-
cut. For example, node pair AB is not directly connected in
Fig. 7b, so the virtual link AB is a potential shortcut. If la-
tency bias δAB is above a pre-defined boundary ε, the potential
shortcut AB will be added and δAB becomes zero, as shown
in Fig. 7c. All potential shortcuts are evaluated in the order of
their link latencies.

To study e* capability to minimize end-to-end latencies
with a large percentage of guarded hosts, we first show how it
can be applied to establish overlay in a centralized manner, as-
suming global knowledge and coordination. We then present
a distributed version of the e* protocol.

A.1 e* Parameter Settings

There are four parameters in the e* algorithm that affect the
overlay performance:
• Accuracy parameter ε: ε determines the trade-off between
end-to-end latency distortion and the number of links in an
overlay. With highly dynamic membership in an overlay, it
may be difficult to use a static ε value. A small ε on a sparse
group may require a large number of links in the overlay, in
the extreme case, creating a full mesh. On the other hand,
a large ε on a dense group may result in a poorly connected
overlay. An alternative is to dynamically adjust ε based on
latency information of current overlay participants.
• Cluster radius (r): Cluster radius effects both the size of
clusters and the number of clusters. Currently, we set r = ε/2.
• Cluster center inter-connection: We need to construct a con-
nected and efficient overlay among the cluster centers. An effi-
cient initial overlay is important to achieve good performance

[4]. Since e* algorithm does not specify the protocol to con-
nect cluster centers, any existing overlay construction protocol
may be used.
• Node degree allocation: In e*, each cluster center C has
two types of neighbors: nodes in its own cluster and other
cluster centers. Since C has limited available bandwidth in
practice, it should carefully set its node degree to maintain a
balance between connecting to other cluster centers for better
performance and serving as many nodes as possible in its own
cluster.

A.2 Performance of Centralized e*

To compare our results on e* with the results we have on
existing overlay protocols, we use the same experiment setup
described in Section II-B.1. The e* algorithm for this imple-
mentation assumes end-to-end latency information is known.
The ε value is set to 30%-tile of end-to-end latency distribu-
tion for the group. Only open hosts are qualified as cluster
centers. Each cluster center reserves at least two of its node
degree for inter-connections to other cluster centers. Each
cluster center connects to its closest cluster centers that have
not reached their node degree limits. After cluster centers are
inter-connected, as in ε-stretcher, each end-to-end path is eval-
uated in non-decreasing order of latency. If the path latency in
the e* overlay is longer than the actual latency by more than
ε, a shortcut is added.

Fig. 8 shows the ARDP of the resulting e* overlay with
varying number of guarded hosts. The results of Narada
and TMesh with 40% guarded host are included for compar-
isons. In Fig. 8, we see very small degradation in ARDP with
20% and 40% guarded hosts. Even with 50% guarded hosts,
e* only experiences about 7% worst-case ARDP degradation
compared to the standard e* algorithm with no guarded hosts.
In terms of absolute ARDP, e* achieves lower ARDP than ex-
isting end-host multicast protocols we have studied. Where
TMesh achieves an ARDP of 3, e* is able to deliver an ARDP
of 2. A node-pair with 80 ms RTT experiences only around
160 ms RTT on the e* overlay.

However, e* uses nearly 50% more links than Narada,
nearly twice as many as TMesh. A detailed study of our
simulation results shows that the final one-third of the links
added by e* to the overlay contributes only 7% improvement
to ARDP. Adding more shortcuts to an e* overlay clearly has
a diminishing return in ARDP improvement. To reduce the
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Fig. 9. Flow chart of e* protocol. Center election, shortcut selection, and
cluster improvement may be done in parallel.

number of links with small contributions, we modify e* to
stop adding links when e* uses the same number of links as
Narada for a given multicast scenario. The resulting algo-
rithm achieves practically identical results as the unmodified
e*. This observation that shortcuts improve the ARDP of e*
overlay with diminishing return leads us to the shortcut se-
lection heuristic used in the distributed version of the e* al-
gorithm. Obviously, the distributed version of e* requires a
stopping condition independent of Narada, as described later.

B. Distributed e* Protocol

We demonstrated centralized e*’s potential to accommodate
a large number of guarded hosts and its ability to achieve low
end-to-end latencies. In this section, we present a three-phase
distributed e* protocol with each phase corresponding to the
e* algorithm shown in the previous section. First, a center-
election protocol is applied based on a center rank vector. Af-
ter centers are elected, they are inter-connected by an over-
lay protocol. Any existing overlay protocol such as HMTP,
Narada, or TMesh will do. The links that inter-connects clus-
ter centers form an overlay called center overlay. In the third
and final phase, links are evaluated and added to the overlay by
each individual node, based on a shortcut selection heuristic,
to improve the quality of the final overlay.

The e* protocol requires only limited local coordination and
no global knowledge. The center-election protocol involves
coordination among a limited number of members in the same
cluster, the overlay optimization heuristic only utilizes locally
measurable metrics as described later.

The e* protocol consists of the following components: ren-
dezvous service, joining procedure, distributed center-election
protocol, cluster improvement, and shortcut selection. Fig. 9
shows a flow chart of the e* protocol by illustrating the pro-
cedures that a new member A goes through in joining an e*
overlay. Host A first contacts the rendezvous service and then
follows the joining procedure to join a cluster. A cluster cen-
ter is elected by the center-election protocol described later.
A also adds several shortcuts to other members in the group.
Since members in the group comes and goes, clusters may be
split to accommodate more members or be merged to reduce
the number of clusters. The center election, shortcut selection,

and cluster improvement tasks may be done in parallel. To
detect member failure, cluster centers exchange “heartbeat”
messages. Members of the same cluster also exchange “heart-
beat” messages with each other.

Rendezvous Service and ε Value
We assume the presence of a well known rendezvous host

(Rhost) [8], whose main purpose is to bootstrap newly joining
members into the multicast group. The Rhost usually serves
as a directory server that replies to members’ queries with a
list of members already in the multicast group. In our case,
the Rhost returns a list of cluster centers so that the querying
member can start the join process.

The e* protocol uses only one layer of clusters. This simple
structure reduces the protocol complexity, but for large groups,
the number of cluster could be O(N) in the worst case, too
large for efficient and fast joining. To speed up the joining
process, cluster centers can be connected by existing protocols
with hierarchical properties, for example, HMTP or TMesh,
whose joining complexity is O(log N).

The ε value plays an important role in the e* algorithm. As
we will show in Section IV-A, the performance of e* is ro-
bust to varying ε values, so the ε value can be set either by
the Rhost or by a nominated cluster center based on mea-
surements from previous runs of the algorithm or from current
members.

New Member Joins and Guarded Host Detection
When a member A joins a multicast group, it first obtains a

list of cluster centers from Rhost. The list includes the root of
the center tree if HMTP or TMesh is used. Member A finds the
closest cluster that has not reached full capacity and is within
the distance of cluster radius r, and joins it. If no such cluster
exists, A either randomly finds a cluster to join or forms a
cluster of its own.

Another important task of member A is to figure out its ad-
dressability, i.e., whether it is a guarded host. In the query
message A sends to other centers during the joining process, a
“callback” bit is set so that the queried centers will attempt to
connect back to A to check whether A is addressable. If any of
these “callback” succeeds, the “callback” bit will be canceled
in latter queries and member A considers itself an open host.
If a certain number of “callback” fails, A will consider itself a
guarded host.4

Center Election Protocol
Center election in each cluster is based on a center rank

vector (CRV). CRV is defined by each multicast group. Each
element in the CRV is a criteria for center election. A typi-
cal CRV looks like this: CRV =< open, capacity, lifetime,
cluster dist >, with its schema explained in Table III.

4In such a scenario, false-positive is possible, but it does not compromise
the e* protocol. A guarded host is also allowed to convert to an open host if
port-mapping [11] is configured or firewall is disabled after the host joins the
group.
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TABLE III

SCHEMA OF A TYPICAL CENTER RANK VECTOR

Element Description
open 0 if the host is guarded, 1 otherwise

capacity maximum node degree
lifetime how long the host has stayed in the group

cluster dist sum of distances to other members in the cluster

Each member in a multicast group is responsible for main-
taining the value of each element in its CRV. A member peri-
odically updates its CRV by active and passive probing. For
cluster dist, since members in the same cluster periodically
exchange “heartbeat” messages with their CRV included, the
distance to other members can be measured and summed up
without too much overhead. The most challenging part in
computing the CRV is to determine capacity because capac-
ity depends on the members’ available bandwidth. We should
be careful in selecting cluster centers to avoid those with
very low bandwidth. As discussed in Section II-B.1, Inter-
net hosts today have a known spectrum of network connec-
tions, from dial-up modem to dedicated multi-Mbps connec-
tions. Thus, instead of measuring bandwidth, which normally
involves high overhead [31][32][33], each e* client tries to
estimate its connection type. To accomplish this it relies on
system specification5 and user specification. Additionally, it
maintains a history of the maximum throughput of the most
recent downloads and use this as an indication of its effective
connection speed. In addition to connection type, the compu-
tation of capacity can also take other factors, such as estimated
data rate in the group, CPU power, system load, etc, into ac-
count.

Since CRVs are part of the “heartbeat” messages exchanged
among hosts in the same cluster, hosts in the same cluster can
be sorted by comparing each element in their CRV vectors
in order. When sorting, some elements can tolerate certain
deviation. For example, two hosts with lifetimes differed only
by minutes are considered equal. Hosts’ IPs are used to break
ties. The host with the highest ranked CRV is elected as the
cluster center.

To qualify as a center, a host must meet some minimal re-
quirements. Clearly, only open hosts can be centers. To be
a cluster center, a host must at least have capacity above a
threshold value.6 We call a host that qualifies as a center but
is not currently serving in that role a backup center. A cluster
may refuse a join or split message if it does not have enough
backup centers. We next discuss cluster splitting.

Cluster Improvement
Once a host A is attached to a cluster C, it begins to receive

updates from members in cluster C. These updates include
the information on cluster C’s connectivity to other clusters

5Sometimes a host’s full DNS name indicates its connection type, which
may contain keywords such as “dialup” or “dsl”.

6Under extreme circumstances where there are no sufficient high-capacity
nodes, low-capacity nodes become centers in order of their CRV ranks.

(foreign clusters). It also includes a list of the foreign cluster
centers. Using this list, host A searches for a closer cluster by
randomly probing the foreign cluster centers. To avoid oscil-
lation, host A switches to a new cluster C ′ only if C ′ is closer
than the current cluster C by a threshold value.

Cluster centers can be re-elected due to dynamics of clus-
ter membership or changes in CRV. If a backup center with
higher ranked CRV appears, it will become the new center.
The new center takes over the old center’s connections in the
center overlay.

Dynamic membership of a multicast group and the cluster
switching mechanism can change the size of an existing clus-
ter. Clusters can be split to accommodate newly joined mem-
bers or switching members. A cluster center allows the size
of its cluster to exceed the maximum number of clients it can
serve only if it can potentially be split, i.e., the cluster has
more than one backup centers. Cluster merge is possible if a
cluster center finds a close-by cluster that is small enough such
that clients from both clusters can be hosted by a center and
the center still has enough free-capacity remaining to prevent
immediate splitting of the merged clusters.

To split a cluster, the cluster center C notifies all its cluster
members of the upcoming split. It also notifies them of the
new center D. D will be selected to be the farthest backup
center from C. Upon receiving the notification, cluster clients
that are closer to the new center switch to D. D, on the other
hand, marks its connection to C as a link in center overlay, and
starts to join the center overlay according to the protocol used
(Narada, TMesh, etc.). Cluster merge operation is a reverse
of the split operation. The center (D, for example) with the
relatively lower ranked CRV marks its connection to C as a
client-center link and detaches itself from center overlay. Its
also tells its clients to switch to C.

Shortcut Selection Heuristic
The final phase of the e* protocol is to add shortcuts to re-

duce end-to-end latencies. To add shortcuts in order of link
length will incur too high an overhead as all possible links
must be evaluated. Instead, we use a shortcut selection heuris-
tic to select shortcuts shorter than a latency bound Λ but with
latency bias higher than the accuracy parameter ε. Selecting
links with latency shorter than Λ complies with e* algorithm’s
shortest-link first policy. For instance, for a node pair AB, if
A is the node that initiates the link selection, A calculates the
latency bias δAB . Only if δAB > ε and DAB < Λ will the
shortcut AB be added. DAB is the latency between AB in the
underlying physical network.

Calculating δAB only requires locally measurable metrics.
The calculation requires both DAB and D′

AB, where D′
AB is

the latency between AB on the overlay. Since A is the initiat-
ing node, B must be an open host, otherwise the link addition
should not be considered in the first place. With B being an
open host, latency on the physical network from A to B can
be obtained using any standard measurement tool. D′

AB can
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be obtained from the A routing table if distance vector or path
vector routing is used on the overlay. Otherwise, D′

AB can
be estimated by the latency between the cluster centers of A
and B since the latency between A (B) to its cluster center is
bounded by cluster radius r.

The shortcut selection heuristic also allows node with low
node degree to increase the Λ value if it has extra capacity. If
a node can not find any qualified links after a period of time,
it can double the Λ value to increase its chances of finding
shortcuts.

IV. PERFORMANCE EVALUATION

Accuracy parameter ε effects the e* protocol in that it con-
trols both the cluster radius r and the shortcut selection heuris-
tic. We first study the sensitivity of e* on the choice of ε.
Then we investigate the quality of e* overlay with guarded
hosts constituting different percentages of the overlay popula-
tion. We use HMTP, Narada, and TMesh protocols to connect
the center overlays. In addition to ARDP, we also evaluate e*
along the following metrics: 90%-tile RDP, node degree dis-
tribution, protocol overhead, and network resource usage. We
use the same simulation scenarios used throughout this paper.
Due to space limit, we only present here the results from GT-
ITM topology and from a snapshot of the Internet topology.

A. Effect of ε Value

The accuracy parameter ε serves two purposes in the e* pro-
tocol: to determine the radius r of clusters (r = ε/2) and the
lower bound for latency bias during link selection. In the cen-
tralized e* algorithm, ε is set to the 30%-tile of end-to-end
latency distribution. It is also desirable to calculate ε based on
end-to-end latencies in our distributed protocol because intu-
itively it should adapt according to the group dynamics. How-
ever, as end-to-end latencies fluctuate with dynamic group
membership, it is infeasible to obtain this information on the
Internet in real time. An alternative is to estimate ε based on
partial or historic knowledge of end-to-end latencies. Since we
are likely to use inaccurate ε values for overlay construction,
we need to evaluate how robust the e* protocol is to the inac-
curacy in the ε value. For this purpose, we define three types
of ε values: accurate-ε, partial-ε, and historical-ε. Accurate-ε
is calculated assuming complete knowledge of end-to-end la-
tencies, partial-ε is based on the latency information collected
from a subset of current overlay members, and historical-ε is
ε value measured in previous runs of the e* algorithm.

To evaluate the use of partial-ε and historical-ε in the e*
algorithm, we conducted the following experiments. We mea-
sure the accurate-ε from a group of 50 randomly chosen nodes.
Let us call this group G1 and the measured ε value ε̂. To eval-
uate the feasibility of using partial-ε, we grow the group from
50 to 1,000 members, and measure the performance of e* for
various group sizes, as reported in Fig. 10, using the same ε̂
as the ε value in all cases. To evaluate the feasibility of us-
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ing historical-ε, we randomly choose another group G2 of 50
nodes distinct from those in G1. We then measure the per-
formance of e* on this group, as the group grows from 50 to
1,000 members, again using the same ε̂ as the ε value in all
cases. Fig. 10 shows the resulting ARDP. For comparison pur-
poses, we also show the ARDP of e* when accurate-ε values
are used in all cases. The use of partial-ε and historical-ε do
not give rise to a significant variation in ARDP.

We next study the robustness of e* with a range of ε values
by specifying that each member determines its ε value as a
fixed percentile of end-to-end latency distribution measured to
all other members. Fig. 11 shows the performance of e* for ε
determined based on various percentiles of the measured end-
to-end latency distribution.

Our investigation shows that e*’s robustness to changes in
ε value rests on the shortcut selection heuristic. Changes in ε
can result in changes in cluster radius and number of clusters.
However, the shortcut selection heuristic can still effectively
select most of the short links as desired in the e* algorithm.
These shortcuts help to achieve the consistently good end-to-
end latency in the e* overlay.

B. ARDP and 90%-tile RDP

In this section, we show the performance of e* overlays in
terms of end-to-end latency when the center overlays are con-
nected using HMTP, Narada, or TMesh protocol. Our results
show that e* can significantly improve end-to-end latencies of
overlay networks. Even with 50% guarded hosts, it can still
achieve lower ARDP than the original-TMesh, where there
were no guarded hosts.

Figs. 12 to 14 show the ARDP of e* overlay with center
overlay constructed using HMTP, Narada, and TMesh respec-
tively. We name the e* overlay with centers connected by
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HMTP e*-HMTP overlay, similarly, e*-Narada and e*-TMesh
are for center overlays connected using Narada and TMesh.
Compared to the ARDP degradation of all the protocols shown
in Section II-B.2, it is clear that the use of the e* protocol re-
sults in lower ARDP degradation. With 20% guarded hosts,
we hardly see any change in ARDP in all three e* cases. Even
with 50% guarded hosts, e*-HMTP and e*-TMesh experience
only about 12% and 6% degradation in ARDP. The distributed
e* protocol proves its ability to accommodate a large popula-
tion of guarded hosts.

Use of e* also improves ARDP in absolute terms. For
groups with 40% guarded hosts, the ARDP of e*-HMTP is
61%, 42%, and 28% lower than that of Yoid, Narada, and
TMesh without e* respectively. The significant advantage of
the e* protocol in the performance can also be observed from
the 90%-tile RDP (Fig. 15). For example, with 40% of mem-
bers being guarded hosts, the 90%-tile RDP of e*-HMTP is
46.6% lower than that of Narada, and 33.2% lower than that
of TMesh.

We notice that e* in general uses more links than origi-
nal Narada and TMesh. For example, e*-HMTP with 40%
guarded host uses about 6.3% more links than Narada. How-
ever, considering that it achieves 41.6% lower ARDP, the ex-
tra number of links is reasonable. Another observation is that
despite the performance difference between original HMTP
and TMesh, they perform equally well in conjunction with
the e* protocol. The shortcuts selected by e*’s shortcut se-
lection heuristic equalize the differences between e*-HMTP
and e*-TMesh since TMesh and e* use similar heuristics to
pick shortcuts.

To provide a more complete picture of the performance ad-
vantages afforded by e* in the presence of guarded hosts, we
also study the CDF of RDP of various overlays. In Fig. 16 we
show the results for 600-node groups with 40% of members
being guarded hosts.

In the above experiments, Rhost sets the ε value to 30%-
tile end-to-end latency based on latency information obtained
from each node. Our CRV consists of <open, capacity, clus-
ter dist> only. The maximum node degree distribution is the
same as in Table II. Nodes with maximum degree above or

equal to four are qualified as cluster centers. When a node be-
comes a cluster center, half of its node degree is allocated for
cluster clients, and the other half is reserved for inter-cluster
connections and shortcuts. For shortcut selection, we set a la-
tency bound Λ to be half of ε. A node with node degree lower
than four doubles its Λ if it fails to find a qualified shortcut
after five tries.

C. Node Degree and Center Distribution

Node degree distribution indicates the workload distribution
of a group. Nodes with higher node degrees generally con-
tribute resources to the group. Fig. 17 shows the node degree
distribution of 600-node groups for different overlays when
40% of members are guarded hosts. In all cases, the maximum
node degree is ten. Apparently, e* produces more nodes with
high degrees. Our investigation shows that most of the high
degree nodes are centers in the e* overlay. This is because the
e* protocol deliberately increases cluster centers’ connectivi-
ties. This property can be beneficial to content providers, who
can place well-provisioned, high-capacity nodes on the net-
work. These nodes can serve as cluster centers and facilitate a
more efficient overlay.

There are several plateaus in the CDF that only happen
in e* overlays, such as the one from degree seven to degree
nine. The plateau between degree seven and nine means that
there are very few nodes with these degrees. The edges of the
plateaus match the maximum node degrees in our experimen-
tal setup. For example, as shown in Table II, we have max-
imum node degrees of six and ten, which happens to be the
edges of the plateau between seven and nine. Since e* prefers
to place centers on high-capacity nodes, most nodes with the
maximum node degree (ten) are elected as centers and reach
their maximum capacities, which explains why we hardly see
nodes with degree from seven to nine.

The plateaus in node degree distribution can also be ex-
plained by studying the cluster size. In Table IV, we show
the distribution of cluster size for e*-HMTP on a 600-node
group. We count the number of cluster of different sizes, and
report the ratio over the total number of cluster in Table IV.
With increased number of guarded hosts, the ratio of large-
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TABLE IV
PERCENTAGE OF CLUSTER WITH DIFFERENT SIZES

Percentage of Cluster Size
guarded host 1 2 3 4 5

0% 53.2% 20.1% 18.2% 3.5% 5.0%
20% 42.8% 19.7% 26.5% 3.0% 8.0%
40% 27.5% 15.6% 40.3% 3.0% 13.5%
50% 16.1% 11.8% 52.1% 2.4% 17.6%

size clusters increases. This is because the increasing number
of guarded hosts have to be served by some cluster centers,
and correspondingly result in more large clusters. One excep-
tion is cluster size four, whose share keeps decreasing. The
reason is similar to what causes the plateau areas in node de-
gree distribution. For nodes with maximum degrees of six and
ten, their maximum cluster capacities are set to three and five
respectively in our experiments. Decreased number of clus-
ters of size four means that most of degree-ten nodes reach
their full cluster capacity of five, as indicated in Fig. 17.

D. Link Stress

In overlay networks, a physical link may have to carry mul-
tiple copies of the same data sent by a member. This nor-
mally happens if a node has a higher degree on the overlay
than its number of physical connections. The number of du-
plicate copies of the same packet carried by a link L is usually
called its link stress. For example, if L carries only one copy
of data, it has a link stress of one. Fig. 18 shows the distribu-
tion of link stress of various overlay from ten simulations of
600-node group with 40% of members being guarded hosts. In
each simulation, we pick one random node to serve as a data
source and count the copies of data carried by each physical
link used in the overlay. A routing algorithm is implemented
on the overlay so that data is forwarded through source-rooted
shortest paths on the overlay. Fig. 18 shows that e* has smaller
physical number of links with link stress above ten than does
TMesh. Narada shows more physical links of high link stress
than the other protocols.
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E. Protocol Overhead

In the e* protocol, only one layer of cluster centers are
maintained. In contrast, NICE and Zigzag use a hierarchy of
clusters. Except for worst-case node degree, Zigzag has sim-
ilar overhead to NICE, including a worst-case join overhead
of O(log N)) and a worst-case control overhead of O(log N)
[9]. N is the size of the multicast group. Zigzag has a worst-
case node degree of O(d2), where d is a constant (Zigzag
sets d = 3), whereas NICE has a worst-case node degree of
O(log N). In e*, the worst-case node degree is m, where m
is a constant. In our experiments we set m = 10, however, e*
has no special requirement on maximum node degree. Each
node can specify its degree based on its own connection con-
dition. In Zigzag all nodes are considered equal. The join
overhead of e* is the join overhead of the center overlay pro-
tocol used. Particularly, for e*-HMTP and e*-TMesh, the av-
erage join overhead is O(log N). For control overhead, since
each node has a constant number of node degree, and period-
ically exchanges neighborhood status with its neighbors, the
control overhead of e* is O(m2). The cluster merge and split
overhead of e* is O(m). How to build NICE and Zigzag over-
lay in the presence of guarded hosts and with the constraint of
limited node degree, while still preserving their original prop-
erties and integrities, is currently unspecified.

We now compare e*’s overhead against those of Narada and
TMesh. We only consider two types of protocol overhead:
routing overhead and overlay maintenance overhead. We as-
sume all the protocols adopt a path vector algorithm similar
to the one used in TMesh [4]. In e*, only cluster centers
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TABLE V

PROTOCOL OVERHEAD (KBPS)

Group size 50 100 150 200 400 600 800 1000
Narada 0.251 0.577 0.976 1.379 3.155 5.026 7.064 9.194
TMesh 0.208 0.489 0.780 1.111 2.659 4.336 6.114 7.985
e*-HMTP 0.204 0.425 0.684 0.938 2.139 3.459 4.818 6.283
e*-TMesh 0.220 0.486 0.755 1.012 2.299 3.637 4.994 6.490

exchange routing updates among themselves. Cluster clients
only receive updates from their centers. We also take all the
“heartbeat” messages into account. In Table V, we report the
protocol overhead of various overlays on groups where 40%
of members are guarded hosts. The e* protocols show lower
overhead than Narada or TMesh alone. Even though e* incurs
extra overhead to maintain its cluster structure, this is offset
by the reduction in routing overhead due to relegating routing
responsibility to cluster centers.

F. Experiments with Internet Topology

In addition to artificial topologies generated by Inet and
GT-ITM generators, we also run our experiments on a router-
level topology of a large ISP constructed from traceroute data.
The traceroutes were initiated from 50 sites on the Internet to
200,000 IP addresses. The resulting topology contains 1,426
nodes. We conduct ten experiments for each overlay scheme
investigated in this paper, with the same settings for guarded
hosts and maximum node degree distribution as used through-
out this paper. We randomly choose 200 nodes to be members
of a multicast group. For groups with no guarded hosts, the
ARDPs are: 1.83 (Narada), 1.75 (HMTP), 1.49 (e*-TMesh),
1.48 (TMesh), and 1.43 (e*-HMTP). For groups with 40%
guarded hosts, the ARDPs are: 2.08 (Narada), 1.80 (HMTP),
1.72 (TMesh), 1.56 (e*-TMesh), and 1.50 (e*-HMTP). In
terms of 90%-tile RDP, for groups without guarded hosts,
the results are: 3.20(Narada), 3.11 (HMTP), 2.27 (TMesh),
2.15 (e*-TMesh), and 2.05 (e*-HMTP); for groups with 40%
guarded hosts, 3.88 (Narada), 3.20 (HMTP), 2.84 (TMesh),
2.34 (e*-TMesh), and 2.24 (e*-HMTP). The e* protocol per-
forms consistently well.

V. RELATED WORK

Several existing overlay construction protocols also employ
clustering technique, e.g., NICE and Zigzag. NICE organizes
members of a multicast group into a hierarchy of clusters with
size [k, 3k − 1], where k is a constant. Each member must
belong to a level 0 cluster. Each cluster nominates a cluster
leader that will become a member in layer 1. Members in
layer 1 are grouped into bounded-size layer-1 clusters in the
same way as in layer 0. This procedure repeats recursively
until it reaches the top layer where there is only one member.
The overlay is formed by connecting all members in the same
cluster into a full mesh. For a member that appear from layer
0 to layer l, its maximum node degree may reach l ∗ (3k −

1). With worst-case node degree O(log N), NICE may not

scale well for applications with high date rate. Furthermore,
since NICE only considers latency for cluster leader selection,
it may experience sub-optimal performance if selected cluster
leaders are hosts with inadequate bandwidth.

Zigzag organizes its cluster hierarchy in a similar manner to
NICE, but adopts a different overlay construction mechanism.
Zigzag forms the overlay by two kinds of links: links from
server S to other members in the top layer, and links from
a node in layer l to its foreign subordinates. Foreign subordi-
nates of a layer-l node (A) are layer-(l−1) nodes that are not in
A’s cluster in layer l−1. Zigzag assumes a single server S that
is the data source for the group; server S is the cluster leader
for all the clusters of which it is resident. Zigzag shares the
same cluster leader selection problem as NICE. Since Zigzag
assumes a predefined single data source S, and consequently
builds a tree overlay rooted at S, it may suffer high average
end-to-end latency, especially for nodes that appears only in
layer 0, which make it not suitable for groups with multiple
data sources.

VI. CONCLUSION

In this paper we present a systematic study of network
overlay construction under limited end-to-end addressability.
We first show the prevalence of guarded host in popular P2P
file-sharing applications. Our study indicates that as high as
42% of the participants in P2P file-sharing applications can
be guarded hosts. The large population of guarded hosts not
only imposes a challenge on overlay protocol deployment but
also on the overlay protocol design itself. We propose a dis-
tributed overlay construction protocol named e* than can ac-
commodate a large population of guarded hosts. Our eval-
uations prove that e* can accommodate a large number of
guarded hosts, and achieve low end-to-end latency with low
overhead. At the same time, e* has the flexibility to work
with any overlay construction protocols, which leaves space
for further performance improvement if used with more ad-
vanced protocols. Since we design e* with practical issues in
mind, such as guarded host detection and realistic node degree
limit, it can provide a realistic and effective overlay construc-
tion protocol for the Internet.
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