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Abstract

In this report we introduce a new SAT solver that integrates logic-based reasoning and integer programming meth-

ods to systems of CNF and PB constraints. Its novel features include an efficient PB literal watching strategy that

takes advantage of the preponderance of unit-coefficient literals in most PB constraints. Additionally, the solver

incorporates several PB learning methods that take advantage of the pruning power of PB constraints while mini-

mizing their overhead. Empirical evidence suggests that such judicious injection of IP techniques can be quite effec-

tive in practice.
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1 INTRODUCTION

Modern backtrack search SAT solvers augment the basic DPLL procedure of Davis, Putnam, Logemann, and Love-

land [6, 7] with powerful conflict-based learning [13] and efficient watched-literal schemes [14] for Boolean con-

straint propagation (BCP). These advances have increased the scope and applicability of SAT solvers to problem

instances with millions of CNF clauses and tens of thousands of variables. Many large design and analysis problems

from the field of Electronic Design Automation (EDA) are now routinely cast as SAT instances and solved using

these powerful solvers.

The closely-related 0-1 integer programming (IP) problem has also been studied extensively. In particular, the

extension of SAT techniques to systems of CNF and so-called pseudo Boolean (PB) constraints was addressed in [3,

1]. Algorithms that combine the logic-based reasoning techniques of CNF SAT and the constraint relaxation and

polyhedral analysis (“cutting planes”) methods of IP were also explored with some success [11, 4].

In this report we introduce Pueblo, a new CNF/PB SAT solver that integrates logic-based reasoning and integer

programming methods to handle systems of CNF and PB constraints. Pueblo provides a platform for exploring the

trade-offs between these complementary approaches to constraint solving. In particular, Pueblo incorporates a

novel watched literal strategy that takes advantage of the fact that many literals in PB constraints have unit coef-

ficients in order to reduce the overhead of Boolean constraint propagation. In addition, Pueblo features several

learning strategies including two that combine conflict-based CNF learning and cutting plane PB learning.

The report is structured as follows. In Section 2, we cover some preliminaries. Section 3 describes our PB propaga-

tion method. Section 4 details Pueblo’s various PB learning strategies. Experimental results are reported in

Section 5. Conclusions and suggestions for further work are presented in Section 6.

2 PRELIMINARIES

A linear pseudo-Boolean (PB) constraint is said to be in normal form when expressed as1: 

(1)

where  denotes  or . A PB constraint in which some coefficients are negative can be transformed to normal

form by noting that . An example PB constraint in normal form is:

(2)

In general, a PB constraint is equivalent to a large, potentially exponential, number of CNF clauses [1]. When the

right-hand side and all left-hand side coefficients are equal to 1, however, a PB constraint is equivalent to a single

CNF clause:

1 Less-than-or-equal and equality constraints can be easily transformed to equivalent greater-than-or-equal forms.
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(3)

3 PSEUDO-BOOLEAN PROPAGATION

It was noted in [14] that modern conflict-based backtracking SAT solvers spend most of their run time in Boolean

constraint propagation (BCP). Conventionally, BCP entails “watching” all the literals in a clause until the clause

becomes unit, whereupon the remaining free literal is implied to true. In [14, 16] it was shown that watching just

two literals per clause, regardless of clause size, is sufficient to detect when the clause becomes unit. This optimiza-

tion drastically reduces the overhead of BCP during search and is one of the most significant recent enhancements

to SAT algorithms. In this so-called two-watched-literal scheme, two non-false (initially unassigned) literals are

chosen to be watched in each clause. A clause is processed only when either of its two watched literals is set to false;

such an assignment triggers the search for another unassigned literal to replace the one that just became false. The

clause becomes unit if the only unassigned literal found is the other watched literal which must now be implied to

true to satisfy the clause.

The watched literal concept was extended in [3] to handle PB constraints. The basic idea is to watch the fewest

number of non-false literals such that when the unassigned watched literal with the largest coefficient is set to false

a) the constraint is still guaranteed to be satisfied and b) the constraint can identify the literals that must now be

implied to true. Specifically, let T and U denote the sets of true and unassigned literals in the constraint, and let

 denote the set of watched literals. We will refer to W as the watch list and to the sum of coefficients of

the watched literals as the watched sum, i.e.,

(4)

We also introduce  defined as:

(5)

The invariant that must be maintained to detect when the PB constraint becomes unit can now be succinctly

expressed as:

(6)

When a watched literal is set to false, it must be removed from the watch list and replaced by one or more non-false

literals to maintain the above invariant. When that is no longer possible, the constraint becomes unit and the unas-

signed watched literals with the largest coefficients must be set to true to insure that the constraint is not violated.

In other words, any unassigned watched literal whose coefficient a satisfies the unit constraint condition
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must now be implied to true2. The major computational steps of this Watch Fewest Literals procedure are high-

lighted in Algorithm 1 and a trace of its execution on the example PB constraint in (2) is shown in Figure 1.

Empirical evaluation of this procedure suggests that about two thirds of its run time is spent in updating  (see

Table 1) and corroborates the conclusion in [3] that the “watching scheme is beneficial for clauses and cardinality

constraints, but not for LPB constraints; therefore we use counters to implement Boolean constraint propagation on

LPB constraints.” In other words, PB constraints are processed using a Watch All Literals strategy similar to

that of PBS [1].

Further analysis of the data, however, suggests a potentially more efficient hybrid watching strategy that differenti-

ates between the literals with unit- and non-unit coefficients in the same PB constraint. Specifically, let L denote

the set of literals whose coefficients are greater than 1 (the large literals) and let C denote those literals whose coef-

ficients are equal to 1 (the cheap literals). As indicated in columns B and C of Table 1, the majority of the literals

belong to the C set and their processing accounts for a correspondingly large fraction of the time spent in

Algorithm 1. Much of this time can be eliminated by applying the procedure of Algorithm 1 only to the literals in

the (relatively small) L set. To achieve this, the computation of  in (5) is modified to become:

(7)

2 Note that conditions (6) and  reduce to the 2-lit strategy when the PB constraint is just a CNF clause ( )a
i

b 1= =

Algorithm 1 Watch Fewest Literals [3]

// Execute when watched literal  is set to false

1. UPDATE  using (5)

2. UPDATE watch list

a. Remove  from W and update  using (4)

b. Fill W and update  until invariant (6) is

restored

3. IMPLY watched literals whose coefficients satisfy

the unit constraint condition 
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Figure 1: Execution trace of Algorithm 1 on (2)
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Furthermore, the watch list W is modified to include all of the literals in C:

(8)

This modification, in turn, requires a slight change to the manner in which the watched sum is calculated since the

watched literals are no longer guaranteed to be true or unassigned. Specifically, the watched sum must now be dec-

remented by 1 when a C literal is set to false, and incremented by 1 when a C literal is unassigned from false.

In addition to the efficiencies that accrue from processing the shorter list of non-unit coefficients in the UPDATE

steps of Algorithm 1, a further gain is possible in the IMPLY step by noting that all unassigned C literals can be

simultaneously implied to true when there are no unassigned L literals. We will refer to this procedure as the

Watch Cheap Literals algorithm (see Algorithm 2.) As the data in columns D and E of Table 1 show, this algo-

rithm watches many more literals than Algorithm 1 but manages to achieve a net gain in performance because

watching the C literals is “cheap.”

Table 1: Analysis of PB Propagation

Benchmark |PB|a

a Total number of original and learned PB constraint

A
b

b Fraction of PB propagation time spent in step 1 of Algorithm 1

B
c

c Fraction of cheap (unit-coefficient) literals

C
d

d Fraction of time spent in steps 1 and 2 of Algorithm 1 to process 

the cheap literals

D
e

e Number of propagations processed by Algorithm 2 relative to those 
processed by Algorithm 1

E
f

f Gain in PB propagation run time of Algorithm 2 over Algorithm 1

fpga10-8-sat-pb 842 62% 92% 94% 464% 60%

fpga10-9-sat-pb 1907 61% 91% 92% 552% 53%

fpga11-10-sat-pb 278 66% 99% 100% 710% 50%

fpga15-14-sat-pb 596 69% 100% 100% 903% 40%

( )W L T U

W W C

′ ⊆ ∩ ∪
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Algorithm 2 Watch Cheap Literals

// Execute when watched literal  is set to false

1. UPDATE  using (7) 

2. UPDATE watch list

a. Remove  from W and update 

b. Fill W and update  until invariant (6) is

restored

3. IMPLY watched literals

a. If , imply large watched literals in

decreasing order of their coefficients until

(6) is restored or the constraint is satisfied

b. If , imply all remaining unassigned

cheap literals
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4 PSEUDO-BOOLEAN LEARNING

As described earlier, one of the major improvements in SAT solvers was the deployment of conflict learning into the

DPLL algorithm. Generating and recording a so-called conflict-induced clause [13], enables the solver to prune

away a portion of the search space thus avoiding a recurrence of the same conflict. Additionally, conflict-induced

clauses enable the solver to backtrack non-chronologically in the search tree without compromising completeness

[13]. We will refer to this style of learning as CNF learning. An alternative approach, based on cutting plane meth-

ods [5], can be used to create a conflict-induced PB constraint instead. Since PB constraints are generally more

expressive than CNF clauses, a learned PB constraint has the potential of pruning more of the search space than a

learned CNF clause. This style of learning is employed in the PB solver galena [4] and will be referred as PB learn-

ing. As we observed earlier in connection with PB propagation, however, the steep overhead of manipulating PB

constraints can more than offset their pruning benefits. Thus, an adaptive approach that combines CNF and PB

learning, and introduces PB constraints selectively, might be superior to either approach alone. We describe next

two variations on this theme. In both variations, CNF and PB learning is done in parallel by backward traversal of

the implication graph; the two variations, however, differ in the way the learned PB constraint is processed. 

Scheme 1: Learn Strong PB Constraints. In this scheme a PB constraint is learned and recorded if and only if

1. it is unit, i.e., it rejects the current conflicting assignment, and

2. it corresponds to more than just a single CNF clause, and

3. the number of its large literals (those in the L set) is less than a given threshold;

Otherwise, the learned PB constraint is discarded and the CNF clause learned in parallel is retained.

Scheme 2: Convert Learned PB Constraint to CNF. In this scheme, the learned PB constraint is recorded but not

used in BCP. Rather, it is viewed as a compact representation of a set of CNF clauses, subsets of which can be

extracted as needed during the search. Extraction of suitable CNF clauses from the PB constraint is carried out

using a simple knapsack algorithm. The rationale for this scheme is to capitalize on the pruning power of the

learned PB constraint without incurring its high propagation overhead.

The data in Figure 2 drive home the high cost of unlimited PB learning and propagation. The pruning ability of

learned PB constraints is evident from the decrease in the number of decisions as more PB constraints are added.

However, the run time increases initially and does not drop significantly until enough PB constraints have been col-

blected to effectively prune out most of the non-solution part of the search space.

5 EXPERIMENTAL RESULTS

We conducted several experiments to evaluate the learning and propagation strategies described above using our

new CNF/PB SAT Pueblo. Pueblo is built on top of MiniSAT [8] and inherits its strategy for random restarts. It
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additionally extends MiniSAT’s VSIDS decision heuristic and its clause removal mechanism to PB constraints. All

experiments were conducted on a Pentium-IV 2800MHz machine with 1 GB of RAM running Linux 2.4.20.

Table 2 shows the effect of the four learning strategies described in Section 4 on a set of large CNF/PB benchmarks

arising from microprocessor verification [15]. The data provide clear evidence that PB learning is too costly and is,

in many cases, even inferior to CNF learning. Of the integrated approaches, scheme 1 has a clear edge over scheme

2. The last two columns in the table give the number of learned CNF and PB constraints in scheme 1. A further

breakdown of these data is shown in Table 3 which indicates the reason for learning a CNF clause instead of a PB

constraint.

Table 4 depicts a comparison of Pueblo and galena PB learning strategies on a set of representative benchmarks

including the FPGA Routing and Global Routing instances of [1]. Overall, scheme 1 performs robustly and com-

pares favorably to the cardinality strategy of galena.

6 CONCLUSIONS

The integration of logic-based reasoning and integer programming methods promises to be a vibrant area of

research for the next several years. As we learn more about the trade-offs involved, we will be able to develop effec-

tive integration strategies that outperform individual techniques. Our contribution in this paper should be viewed

as one additional milestone along this road.

The concepts described in this paper do not exhaust all the possibilities for taking advantage of the pruning power

of PB constraints while minimizing their computational overhead. Other ways of generating cutting planes, for

example, that are provably superior to current approaches should be investigated. One promising direction of future

research involves extending the techniques described above to small-domain integer programs. Such problems arise
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naturally in many application areas. Specifically, the use of uninterpreted functions to abstract away datapath com-

ponents in the verifications of digital systems leads to a small-domain decision problem that can benefit form the

application of these techniques.
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Table 2: Run time comparison of different learning strategies

Benchmark Time, sec. Learned Constraints

Name |Vars| |CNF| |PB| CNF Learning PB Learning Scheme 1 Scheme 2 |CNF| |PB|

elf.rf8.ucl (UNS) 6059 15940 744 0.11 0.12 0.1 0.11 81 1

elf.rf9.ucl (UNS) 20445 56420 2024 0.98 1.18 1.14 0.98 368 3

elf.rf10.ucl (UNS) 55066 156587 4032 13.26 23.16 13.27 13.11 2753 2

ooo.rf6.ucl (UNS) 1804 4707 224 0.04 0.05 0.04 0.04 134 6

ooo.rf7.ucl (UNS) 3736 10089 368 0.52 0.43 0.29 0.28 409 36

ooo.rf8.ucl (UNS) 6832 18953 524 1.73 7.06 1.42 2.21 1180 183



CSE-TR-492-04: Pueblo: A Modern Pseudo-Boolean SAT Solver 9
ooo.rf10.ucl (UNS) 18069 51555 920 88.6 * 96.87 63.71 18835 12298

ooo.tag8.ucl (UNS) 3249 8599 384 2.1 5.3 2.07 * 3686 622

ooo.tag10.ucl (UNS) 9071 25190 724 32.34 111.82 11.52 * 7323 1341

ooo.tag12.ucl (UNS) 20605 58675 1176 170.39 672.5 95.09 * 26957 8754

ooo.tag14.ucl (UNS) 40605 117190 1740 334.54 * 99.83 * 18665 2095

Table 3: Reason for learning a CNF clause rather than a PB constraint in scheme 1

Benchmark Over satisfaction No PB involved in conflict level CNF equiv Large PB

elf.rf8.ucl (UNS) 1 74 6 0

elf.rf9.ucl (UNS) 0 368 11 0

elf.rf10.ucl (UNS) 1 2724 28 0

ooo.rf6.ucl (UNS) 0 100 34 0

ooo.rf7.ucl (UNS) 20 227 112 0

ooo.rf8.ucl (UNS) 51 644 485 0

ooo.rf10.ucl (UNS) 1136 6783 10855 61

ooo.tag8.ucl (UNS) 1881 940 778 87

ooo.tag10.ucl (UNS) 2625 2857 1771 70

ooo.tag12.ucl (UNS) 7801 6059 12514 583

ooo.tag14.ucl (UNS) 3312 10910 3936 507

Table 4:  Run time comparison between different PB learning strategies 

Benchmark Time (sec)

Name
|Var|/|CNF|/|PB|

CNF
Pueblo

Card.
Galena

LPB
Galena

Scheme1
Pueblo

s4-3-1pb (SAT)
672/2004/24

0.2 0.90 0.78 0.09

s4-3-2pb (SAT)
648/1928/24

4.92 0.40 0.7 0.58

s4-3-3pb (SAT)
648/1930/24

3.37 0.40 0.6 0.84

s4-3-4pb (SAT)
696/2072/24

2.61 0.60 1.12 0.05

s4-3-5pb (SAT)
720/2144/24

3.25 0.80 0.15 1.74

fpga10_12 (UNS)
240/24/20

* 0 0 0.01

fpga10_8 (SAT)
120/88/18

0.17 1.31 29.60 0.03

Table 2: Run time comparison of different learning strategies

Benchmark Time, sec. Learned Constraints

Name |Vars| |CNF| |PB| CNF Learning PB Learning Scheme 1 Scheme 2 |CNF| |PB|
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fpga10_9 (SAT)
135/99/19

4.42 0.20 0.70 0.08

fpga11_10 (SAT)
165/120/21

* 0.50 0.12 0.01

fpga11_9 (SAT)
149/108/20

41.19 43.39 * 0.09

fpga12_14 (UNS)
336/28/24

* 0.10 0 0

fpga15_10 (SAT)
225/160/25

* * 85.40 7.45

fpga15_14 (SAT)
315/224/29

* 0.37 1.14 0.02

cache-ibm-q-full.all.ucl
81558/235865/4604

* 356.53 * 567.98

cache.inv12.ucl.cnf
25800/76319/380

36.01 18.91 254.25 57.48

dlx1c.rwmem1.ucl
7578/20501/900

1.14 1.43 2.24 1.05

ooo.burch_dill.3.accl.ucl
4622/11753/816

10.03 10.29 641.84 8.72

Table 4:  Run time comparison between different PB learning strategies  (Continued)

Benchmark Time (sec)

Name
|Var|/|CNF|/|PB|

CNF
Pueblo

Card.
Galena

LPB
Galena

Scheme1
Pueblo


