Debugging operating systems with time-traveling virtual machines

Samuel T. King, George W. Dunlap, and Peter M. Chen

Computer Science and Engineering Division
Department of Electrical Engineering and Computer Science
University of Michigan
http://www.eecs.umich.edu/CoVirt

Abstract

Operating systems are among the most difficult of soft-
ware systems to debug with traditional cyclic debugging.
They are non-deterministic; they run for long periods of
time; their state and code is large and complex; and their
state is easily perturbed by the act of debugging. This pa-
per describes a time-traveling virtual machine that over-
comes many of the difficulties associated with debugging
operating systems. By time travel, we mean the ability
to navigate backward and forward arbitrarily through the
execution history of a particular run and to replay arbi-
trary segments of the past execution. We integrate time
travel into a general-purpose debugger to enable a pro-
grammer to debug an OS in reverse, implementing com-
mands such as reverse breakpoint, reverse watchpoint,
and reverse single step. The space and time overheads
needed to support time travel are reasonable for debug-
ging, and movements in time are fast enough to support
interactive debugging. We demonstrate the value of our
time-traveling virtual machine by using it to understand
and fix several OS bugs that are difficult to find with stan-
dard debugging tools.

1 Introduction

Computer programmers are all-too-familiar with the task
of debugging complex software through a combination
of detective work, guesswork, and systematic search.
Tracking down a bug generally starts with running a pro-
gram until an error in the program manifests as a fault.
The programmer! then seeks to start from the fault (the
manifestation of the error) and work backward to the
cause of the fault (the programming error itself). Cyclic
debugging is the classic way to work backward toward

!n this paper, the term “programmer” refers to the person debug-
ging the system. The term “debugger” refers to the programming tool
(e.g., gdb) used by the programmer to examine and control the pro-
gram.

the error. In cyclic debugging, a programmer uses a de-
bugger or output statements to examine the state of the
program at a given point in its execution. Armed with
this information, the programmer then re-runs the pro-
gram, stops it at an earlier point in its execution history,
examines the state at this point, then iterates.

Unfortunately, this classic approach to debugging is
difficult to apply when debugging operating systems.
Many aspects of operating systems make them among
the most difficult of software systems to debug. Pro-
grammers cannot stand completely outside the OS to
examine and control it without perturbing it; operating
systems are non-deterministic; operating systems run for
long periods of time; and operating systems are large and
complex.

We now describe in more detail why operating sys-
tems are difficult to debug. First, programmers cannot
stand completely outside the operating system when ex-
amining its state and controlling its execution. Because
the operating system is the lowest level of software on
a computer, programmers can only examine or control
the OS by using some functionality in the OS (or by
using specialized hardware such as an in-circuit emula-
tor). Even if the programmer runs a remote kernel de-
bugger on a second physical machine, the OS being de-
bugged must support some basic functionality, such as
reading and writing memory locations, setting and han-
dling breakpoints, and communicating with the remote
debugger (e.g., through the serial line). Using this basic
functionality may be impossible on a sick OS. It may also
perturb the state of the system being debugged. Consider
how one would examine the file system on disk: one
would need to navigate through the in-memory and on-
disk file system structures and use the OS’s device driver
to read disk blocks into memory. Each of these steps
would require some working functionality in the OS and
would probably perturb the state of the file cache, the file
system, and numerous kernel data structures.

Second, operating systems are non-deterministic.

Their execution is affected by non-deterministic effects
such as the interleaving of multiple threads, interrupts,
user input, network input, and the perturbations of state
caused by the programmer who is debugging the system.
This non-determinism makes cyclic debugging infeasi-
ble, because the programmer cannot re-run the system to
examine the state at an earlier point.

Third, operating systems run for long periods of time,
such as weeks, months, or even years. Re-running the
system in cyclic debugging is thus infeasible even if the
OS were completely deterministic.

Finally, operating systems are large and complex. This
is especially true if one takes into account that running
an OS really means running all software on the ma-
chine, since application software affects the execution of
the OS. The state of the OS is enormous because it in-
cludes the file system on disk, the virtual memory state
of all processes, and all physical memory. This large
state makes it unwieldy to roll back and re-run the sys-
tem. One can choose to re-run the system without rolling
back its state, but this introduces another source of non-
determinism between runs. Another reason operating
systems are complex to debug is they use self-modifying
code when loading a new kernel module or a new appli-
cation executable.

In this paper, we describe how to use time-traveling
virtual machines to overcome many of the difficulties as-
sociated with debugging operating systems. By virtual
machine, we mean a software-implemented abstraction
of a physical machine that is at a low-enough level to
run an operating system. Running the OS inside a virtual
machine enables the programmer to stand outside the OS
being debugged. From this vantage point, the program-
mer can use a general-purpose debugger to examine and
control the execution of the OS without perturbing its
state.

By time travel, we mean the ability to navigate back-
ward and forward arbitrarily through the execution his-
tory of a particular run and to replay arbitrary segments
of the past execution. For example, if the system crashed
due to an errant pointer variable, time travel would al-
low the programmer to go back to the point when that
pointer variable was corrupted; it would also allow the
programmer to fast-forward again to the crash point.
Time-traveling virtual machines allow a programmer to
replay a prior point in the execution exactly as it was ex-
ecuted the first time. The past is immutable in our model
of time travel; this ensures that there is only a single exe-
cution history, rather than a branching set of execution
histories. As with cyclic debugging, the goal of time
travel is to enable the programmer to examine the state
of the OS at prior points in the execution. However, un-
like cyclic debugging, time travel works in the presence
of non-determinism. Time travel is also more convenient

than classic cyclic debugging because it does not require
the entire run to be repeated.

In this paper, we describe the design and implemen-
tation of a time-traveling virtual machine (TTVM) for
debugging operating systems. We integrate time travel
into a general-purpose debugger (gdb) for our virtual
machine, implementing commands such as reverse step
(go back to the last instruction that was executed), re-
verse breakpoint (go back to the last time an instruction
was executed), and reverse watchpoint (go back to the
last time a variable was modified).

The space and time overhead needed to support time
travel is reasonable for debugging. For two workloads
that exercise the OS intensively, the logging needed to
support time travel adds 10-12% time overhead and 13-
190 KB/sec space overhead. The speed at which one can
move backward and forward in the execution history de-
pends on the frequency of checkpoints in the time re-
gion of interest. Our system is able to insert additional
checkpoints to speed up these movements or delete exist-
ing checkpoints to reduce space overhead. After adding
checkpoints to a region of interest, our system allows a
programmer to move to an arbitrary point within the re-
gion in about 12 seconds.

The following real-life example clarifies what we
mean by debugging with time-traveling virtual machines
and illustrates the value of debugging in this manner.
The error we were attempting to debug was triggered
when the guest kernel attempted to call a NULL function
pointer. The error had corrupted the stack, so standard
debugging tools were unable to traverse the call stack
and determine where the invalid function call had orig-
inated. Using the TTVM reverse single step command,
we were able easily to step back to where the function
invocation was attempted and examine the state of the
virtual machine at that point. We found the ability to de-
bug in reverse tremendously helpful in finding this bug,
as well as the other bugs described in Section 6.

2 Virtual machines

A virtual machine is a software abstraction of a physi-
cal machine [11]. The software layer that provides this
abstraction is called a virtual machine monitor (VMM).
An operating system can be installed and run on a vir-
tual machine as if it were running on a physical machine.
Such an OS is called a ”guest” OS to distinguish it from
an OS that may be integrated into the VMM itself (which
is called the “’host” OS).

Several features of virtual machines make them attrac-
tive for our purposes. First, because the VMM adds a
layer of software below the guest OS, it provides a conve-
nient substrate on which one can add new features. Un-
like remote kernel debugging, these new features need no

guest—kernel
gdb host process

/F—‘/r TTVM functionality

1
! (checkpointing, logging, replay)

guest—user
host process

Host Operating System

Figure 1: System structure: UML runs as two user pro-
cesses on the host Linux OS, the guest-kernel host pro-
cess and the guest-user host process. TTVM’s ability to
travel forward and back in time is implemented by mod-
ifying the host OS. We extend gdb to make use of this
time traveling functionality. gdb communicates with the
guest-kernel host process via a remote serial protocol.

support or functionality in the guest OS. We use this sub-
strate to add traditional debugging capabilities such as
setting breakpoints and reading and writing memory lo-
cations. We also add non-traditional debugging features
such as logging and replaying non-deterministic inputs
and saving and restoring the state of the virtual machine.

Second, a VMM allows us to run a general-purpose,
full-featured debugger on the same physical machine as
the OS being debugged without perturbing the debugged
OS. Compared to traditional kernel debuggers, virtual
machines enable more powerful debugging capabilities
(e.g., one can read the virtual disk) with no perturbation
of or dependency on the OS being debugged. It is also
more convenient to use than a remote debugger because
it does not require a second physical machine.

Finally, a VMM offers a narrow and well-defined in-
terface: the interface of a physical machine. This inter-
face makes it easier to implement the checkpointing and
replay features we add in this paper, especially compared
to the relatively wide and complex interface offered by an
operating system to its application processes. The state
of a virtual machine is easily identified as the virtual
machine’s memory, disk, and registers and can thus be
saved and restored easily. Replay is easier to implement
in a VMM than an operating system because the VMM
exports an abstraction of a uniprocessor virtual machine
(assuming a uniprocessor physical machine), whereas an
OS exports an abstraction of a virtual multiprocessor to
its application processes.

The VMM used in this paper is User-Mode Linux
(UML) [8]. UML is implemented as a kernel mod-
ification to a host Linux OS (Figure 1) 2. The virtual
machine runs as two user processes on the host OS: one

2We use the skas (separate kernel address space) version of UML.

host process (the guest-kernel host process) runs all guest
kernel code, and one host process (the guest-user host
process) runs all guest user code. The guest-kernel host
process uses the Linux pt race facility to intercept sys-
tem calls and signals generated by the guest-user host
process. The guest-user host process uses UML’s skas-
extension to the host Linux kernel to switch quickly be-
tween address spaces of different guest user processes.

UML’s VMM exports a virtual architecture that is sim-
ilar but not identical to the host hardware. The guest
OS in UML (also Linux) must be ported to run on top
of this virtual architecture. Each piece of virtual hard-
ware in UML is emulated with a host service. The guest
disk is emulated by a raw disk partition on the host; the
guest memory is emulated by a memory-mapped file on
the host; the guest network card is emulated by a host
TUN/TAP virtual Ethernet driver; the guest MMU is em-
ulated by calls to the host mmap and mprotect sys-
tem calls; guest timer and device interrupts are emulated
by host SIGALRM and SIGIO signals; the guest con-
sole is emulated by standard output. The guest Linux’s
architecture-dependent layer uses these host services to
interact with the virtual hardware. In addition to UML’s
standard virtual devices, we provide the ability to use un-
modified real device drivers in the guest OS to drive de-
vices on the host platform (Section 3.2).

Running an OS inside a virtual machine incurs over-
head. We measured UML’s virtualization overhead
as 76% for a build of the Linux kernel (a system-
call intensive workload which is expensive to virtualize
[13]). This overhead is acceptable for debugging (in
fact, UML is used in production web hosting environ-
ments). If lower overhead is needed, the ideas in this
paper can be applied to faster virtual machines such as
Xen [4] (3% overhead for a Linux kernel build), UM-
Linux/FAUmachine [13] (35% overhead for a Linux ker-
nel build), or a hardware-supported virtual machine such
as Intel’s upcoming Vanderpool Technology.

3 Time-traveling virtual machines

A time-traveling virtual machine should have two capa-
bilities. First, it should be able to reconstruct the com-
plete state of the virtual machine at any point in a run,
where a run is defined as the time from when the virtual
machine was powered on to the last instruction it exe-
cuted. Second, it should be able to start from any point
in a run and from that point replay the same instruction
stream that was executed during the original run from
that point. This section describes how TTVM achieves
these capabilities through a combination of logging, re-
play, and checkpointing.

3.1 Logging and replaying a virtual ma-
chine

The foundational capability in TTVM is the ability to re-
play a run from a given point in a way that matches the
original run instruction for instruction. Replay causes the
virtual machine to transition through the same states as
it went through during the original run; hence replay en-
ables one to reconstruct the complete state of the virtual
machine at any point in the run. TTVM uses the ReVirt
logging/replay system to provide this capability [9]. This
section briefly summarizes how ReVirt logs and replays
the execution of a virtual machine.

A virtual machine can be replayed by starting
from a checkpoint, then replaying all sources of non-
determinism [6, 9]. For UML, the sources of non-
determinism are external input from the network, key-
board, and real-time clock and the timing of virtual inter-
rupts. The VMM replays network and keyboard input by
logging the calls that read these devices during the origi-
nal run and regenerating the same data during the replay
run. Likewise, we configure the CPU to cause reads of
the real-time clock to trap to the VMM, where they can
be logged or regenerated.

To replay a virtual interrupt, ReVirt logs the instruc-
tion in the run at which it was delivered and re-delivers
the interrupt at this instruction during replay. This point
is identified uniquely by the number of branches since
the start of the run and the address of the interrupted in-
struction [16]. ReVirt uses a performance counter on the
Intel Pentium 4 CPU to count the number of branches
during logging, and it uses the same performance counter
and instruction breakpoints to stop at the interrupted in-
struction during replay [1]. Replaying interrupts enables
ReVirt to replay the scheduling order of multi-threaded
guest operating systems and applications, as long as the
VMM exports the abstraction of a uniprocessor virtual
machine [18]. Replaying a virtual shared-memory mul-
tiprocessor will likely incur significantly higher overhead
because events from multiple threads can be interleaved
on very fine granularity, and we defer this for future
work.

3.2 Supporting real device drivers in the
guest OS

In general, VMMs export a limited set of virtual devices.
Some VMMs export virtual devices that exist in hard-
ware (e.g., VMware Workstation exports an emulated
AMD Lance Ethernet card); others (like UML) export
virtual devices that have no hardware equivalent. Export-
ing a limited set of virtual devices to the guest OS is usu-
ally considered a benefit of virtual-machine systems, be-
cause it frees guest OSs from needing device drivers for

myriad host devices [21]. However, when using virtual
machines to debug operating systems, the limited set of
virtual devices prevents programmers from using and de-
bugging drivers for real devices; programmers can only
debug the architecture-independent portion of the guest
OS. There are two ways to address this limitation and en-
able the programmer to run and debug real device drivers
in a guest OS. With both strategies, real device drivers
can be included in the guest OS without being modified
or re-compiled.

The first way to run a real device driver in the guest
OS is for the VMM to provide a software emulator for
that device. The device driver issues the normal set of
I/O instructions: IN/OUT instructions, memory-mapped
I/O, DMA commands, and interrupts. The VMM traps
these privileged instructions and forwards them to/from
the software device emulator. With this strategy, ReVirt
can log and replay device driver code in the same way it
logs and replays the rest of the guest OS. If one runs the
VMM'’s software device emulator above ReVirt’s log-
ging system (and above the checkpoint system described
in Section 3.3), ReVirt will guide the emulator and device
driver code through the same instruction sequence during
replay as they executed during logging. While this first
strategy fits in well with the existing ReVirt system, it
only works if one has an accurate software emulator for
the device whose driver one wishes to debug.

We modified UML to provide a second way to run
real device drivers in the guest OS, which works even
when no software emulator exists for the device of inter-
est. With this strategy, the VMM traps and forwards the
privileged I/O instructions issued by the guest OS device
driver to the actual hardware device. The programmer
specifies the I/O port space and the range of memory-
mapped I/O space for the device; the VMM uses this
knowledge to allow or disallow accesses to privileged
ports/memory. The programmer also specifies the DMA
command set for the device, so the VMM knows when
the guest OS initiates a DMA transfer and when the de-
vice finishes a DMA transfer.’

This second strategy requires extensions to enable Re-
Virt to log and replay the execution of the device driver.
Whereas the first strategy placed the device emulator
above the ReVirt logging layer, the second strategy for-
wards driver actions to the actual hardware device. Be-
cause this device may not be deterministic, ReVirt must
log any information sent from the device to the driver.
Specifically, ReVirt must log and replay the data re-
turned by IN instructions, memory-mapped I/O instruc-
tions, and completed DMA reads. To avoid confusing
the device, ReVirt suppresses output to the device during
replay.

3 A programmer trying to write/debug a device driver already needs
this information.

TTVM is able to trap and forward all types of I/O in-
structions (IN/OUT instructions, memory-mapped 1/O,
DMA commands, interrupts), and ReVirt logs and re-
plays all device interactions that return data to the
driver. Our prototype supports logging and replay for
device drivers for a subset of our test platform’s devices
(16550A serial port and Intel ICH4 soundcard); one can
add a new device by informing the VMM of the device’s
I/O port space, range of memory-mapped I/O space, and
DMA commands. Trapping, forwarding, and logging
I/0 instructions slows I/O bound workloads by a mod-
erate amount. For the serial port, each I/O instruction is
slowed by 50% (0.6 us). For the soundcard, the guest
OS device driver can play an MP3 music clip and record
audio in real-time.

3.3 Checkpointing for faster time travel

Logging and replaying a virtual machine from a single
checkpoint at the beginning of the run is sufficient to
recreate the state at any point in the run from any other
point in the run. However, one cannot recreate this state
quickly by using logging and replay alone because the
virtual machine must re-execute each instruction from
the beginning to the desired point, and this period may
span many days. To accelerate time travel over long pe-
riods, TTVM takes periodic checkpoints while the virtual
machine is running [19] (ReVirt started only from a disk
checkpoint of a powered-off virtual machine).

The simplest way to checkpoint the virtual machine is
to save a complete copy of the state of the virtual ma-
chine. This state is comprised of the CPU registers, the
virtual machine’s physical memory, the virtual disk, and
any state in the VMM or host kernel that affects the exe-
cution of the virtual machine. For UML, this host kernel
state includes the address space mappings for the guest-
user host process and the guest-kernel host process, the
state of open host file descriptors, and the registration
of various signal handlers (analogous to the interrupt de-
scriptor table on real hardware).

The state of the virtual machine may also be contained
in other host kernel state, such as the data in the host ker-
nel’s stack while the virtual machine is blocked in a host
system call. We simplify the checkpointing and restora-
tion of host kernel state by taking a checkpoint only when
the guest-user host process initiates a system call to the
guest OS. At this point, the host kernel stacks for the
guest-user and guest-kernel host processes are small and
well-defined. We simplify the act of restoring the system
to a checkpoint by restoring the virtual machine’s state
only from a similar state, i.e. when the guest-user host
process initiates a system call. At this point, the host
kernel stacks for the guest-user and guest-kernel host
processes already match the values they had at the time

checkpoint checkpoint ,
\ |

[write write write | write write write |

A B C A D E
5 |D)

redo undo
log log

checkpoint 5

Figure 2: Checkpoints of the disk are represented as undo
and redo logs. The figure shows the redo and undo logs
that would results for checkpoint, for the given sequence
of disk writes.

of the checkpoint, so TTVM does not need to explicitly
save or restore this portion of the host kernel state.

Saving a complete copy of the virtual-machine state
is simple but inefficient. In particular, saving the en-
tire state of the virtual disk adds enormous space and
time overhead. Several methods have been used in the
past to reduce this overhead. One way is to structure the
virtual disk as a log [20]; this method can keep all ver-
sions of disk blocks that are needed to restore to specific
checkpoints without extra disk I/O. To keep our proto-
type simple, we currently maintain the in-place structure
of the virtual disk and supplement it with undo and redo
logs. The undo and redo logs use copy-on-write to store
only those disk blocks that have been modified since the
last checkpoint. Starting with the disk contents at a cur-
rent point, the complete state of the disk can be restored
back to a prior checkpoint by starting from the current
disk contents and restoring the disk blocks in the undo
log. The undo log at checkpoint,, contains the set of disk
blocks that have been modified between checkpoint,, and
checkpoint,, 1, with the values of the blocks in the undo
log being those at checkpoint,, (Figure 2).

Analogously, TTVM enables a programmer to move
forward in time to a future checkpoint by using the disk
blocks in the redo log. The redo log at checkpoint,, con-
tains the set of disk blocks that have been modified be-
tween checkpoint,,—; and checkpoint,,, with the values
of these disk blocks again being those at checkpoint,,
(Figure 2).

If a disk block is modified during two successive
checkpoint intervals, the undo and redo logs for the
checkpoint between these two intervals will contain the
same values for that disk block. TTVM detects this
case and shares such data between the undo and redo
logs. E.g., in Figure 2, block A’s data is shared between
checkpointy’s undo and redo logs.

Similar copy-on-write techniques could be applied to

the virtual machine’s physical memory, but this is more
difficult. Intercepting memory store instructions adds
more overhead and complexity than intercepting writes
to disk because writes to disk are performed in larger
units and are done through explicit calls to VMM service
routines. In addition, a significant fraction of the vir-
tual machine’s physical memory may be modified over a
checkpoint interval of minutes or hours, and this fraction
limits the degree to which copy-on-write can reduce the
number of memory pages that must be saved in a check-
point.

3.4 Time traveling between points of a run

TTVM enables a programmer to travel arbitrarily back-
ward and forward in time through a run. Time travel-
ing between points in a run requires a combination of
restoring to a checkpoint and replay. To travel from
point A to point B, TTVM first restores to the checkpoint
that is prior to point B (call this checkpoint,,). TTVM
then replays the execution of the virtual machine from
checkpoint,, to point B. The more frequently checkpoints
are taken, the smaller the expected duration of the replay
phase of time travel.

Restoring to checkpoint,, requires several steps.
TTVM first restores the copy saved at checkpoint,, of the
virtual machine’s registers, physical memory, and any
state in the VMM or host kernel that affects the execu-
tion of the virtual machine. Restoring the disk to the
values it had at checkpoint,, makes use of the data stored
in the undo logs (if moving backward in time) or redo
logs (if moving forward in time). Consider an example
of moving from a point after checkpoint,, s backward to
checkpoint,, (restoring to a checkpoint in the future uses
the redo log in an analogous manner). TTVM first re-
stores the disk blocks from the undo log at checkpoint,,.
It then examines the undo log at checkpoint,,; and re-
stores any disk blocks that were not restored by the undo
log at checkpoint,,. Finally, TTVM examines the undo
log at checkpoint,, ;2 and restores any disk blocks that
were not restored by the undo logs at checkpoint,, or
checkpoint,, 1. Applying the logs in this order ensures
that each disk block is written at most once.

3.5 Adding and deleting checkpoints

An initial set of checkpoints are taken during the orig-
inal, logged run. TTVM supports the ability to add or
delete checkpoints from this original set. At any time, the
user may choose to delete existing checkpoints to free up
space. While replaying a portion of a run, a programmer
may choose to supplement the initial set of checkpoints
to speed up anticipated time-travel operations. The non-
disk portions of a checkpoint (e.g., memory and regis-

ters) are stored as a complete copy, so adding or delet-
ing those portions of a checkpoint is straightforward—
adding a new checkpoint does not affect this portion of
existing checkpoints, and deleting a checkpoint can sim-
ply throw away this portion of the deleted checkpoint.
Adding or deleting the undo and redo log portions of a
checkpoint is less straightforward, and we next describe
how to manipulate these data structures in these cases.

Adding a new checkpoint can be done when the pro-
grammer is replaying a portion of a run from a check-
point (say, checkpoint;). TTVM goes through four
steps to add a new checkpoint, at the current point of
replay (between existing checkpoint; and checkpoints).
First, TTVM removes any disk block from checkpoint;’s
undo log that was not written between checkpoint; and
checkpointy. TTVM identifies these disk blocks by
maintaining a list of the disk blocks that are modified
since the system started replaying at checkpointy, just
as it does during logging to support the copy-on-write
undo log. This removal is optional, since extra blocks
in the undo log are inefficient but not incorrect. Sec-
ond, TTVM creates the redo log for checkpointa, which
consists of the same set of disk blocks in checkpoint;’s
new undo log, but with the values at the current point
of replay. Third, TTVM removes from checkpoints’s
redo log any disk block that was not written between
checkpointy and checkpoints. To identify these disk
blocks, TTVM stores a timestamp for each block in a
checkpoint’s redo log, which is the latest time that block
was written before the checkpoint. TTVM compares the
current timestamp at checkpoint, with the timestamp at
checkpoints to identify which blocks to remove from
checkpoints’s redo log. Fourth, TTVM creates the undo
log for checkpointp, which consists of the same set of
disk blocks in checkpoints’s new redo log, but with the
values at the current point of replay.

Deleting an existing checkpoint (presumably to free
up space for a new checkpoint) can be done during
the original logging run or when the programmer is
replaying a portion of a run. TTVM goes through
two steps to delete checkpointy (between checkpointy
and checkpointg). TTVM first moves the blocks in
checkpointy’s undo log to checkpoint;’s undo log. A
block that already exists in checkpoint;’s undo log takes
precedence over a block from checkpoints’s undo log.
Similarly, TTVM moves the blocks in checkpointy’s redo
log to checkpoints’s redo log. A block that already exists
in checkpoints’s redo log takes precedence over a block
from checkpointy’s redo log.

3.6 Expected usage model

We expect programmers to use TTVM in three phases.
In phase 1, the programmer runs a test to trigger an er-

ror. This phase may last a long time (hours or days),
so TTVM should minimize the time and space overhead
during this phase. Programmers should therefore spec-
ify a long checkpoint interval during this phase (e.g., 10
minutes). For long runs, the system may not be able to
save all of the checkpoints taken, so TTVM may need
to delete some prior checkpoints. TTVM’s default pol-
icy keeps more frequent checkpoints for periods near the
current time than for periods farther in the past; this pol-
icy assumes that periods in the near past are likely to be
the ones of interest during debugging. TTVM chooses
checkpoints to delete by fitting them to a distribution
where the distance between checkpoints increases expo-
nentially as one goes farther back in time [5].

In phase 2, the programmer attaches the debugger,
switches the system from logging to replay, and pre-
pares to debug the error. To speed up time-travel oper-
ations, programmers should start usually by adding more
frequent checkpoints to the portion of the run they ex-
pect to debug. This can be accomplished by replaying
the interesting portion of the run (say, a 10 minute in-
terval) while taking frequent checkpoints (say, every 10
seconds). Section 5 will show that these frequent check-
points add moderate overhead, but this overhead is added
only to the portion of the run that is about to be debugged
rather than to the entire run.

In phase 3, the programmer uses TTVM to time-travel
forward and backward through the run and debug the er-
ror. We next describe new debugging commands that al-
low a programmer to navigate conveniently through the
run.

4 TTVM-aware gdb

In this section, we discuss how to integrate the time trav-
eling capability of TTVM into a debugger (gdb). We
first introduce the new reverse debugging commands and
discuss how they are implemented. We then describe
how to manage the interaction of time traveling with the
state changes generated by gdb. Finally, we describe
how our prototype implements communication between
gdb and TTVM.

4.1 Time travel within gdb

In addition to the standard set of commands available
to debuggers, TTVM allows gdb to restore prior check-
points, replay portions of the execution, and examine ar-
bitrary past states. A promising application of these tech-
nique is providing the illusion of virtual-machine reverse
execution.

Reverse execution, when applied to debugging, pro-
vides the functionality standard debuggers are often try-
ing to approximate. For example, a kernel may follow

checkpoint time x

BPI BPZ BP3
Pe Pe o »
R M
2) ¢
@ ° ° o »

Figure 3: Reverse continue uses two execution passes.
The programmer calls reverse continue at time Xx.
In the first pass, (1) TTVM restores checkpoint;, then (2)
replays execution until time x. Along the way, TTVM
makes note of breakpoints BP;, BPy, and BP3. When
time x is reached, programmer sees a list of these break-
points and selects one to go back to. In the example show
here, the programmer selects BP2. In the second pass,
TTVM again (3) restores checkpoint; and (4) replays ex-
ecution, but this time TTVM stops at breakpoint BP5 and
returns control to the programmer (5).

an errant pointer, read an unintended data structure, and
crash. Using a standard debugger, the programmer can
gain control when the crash occurs. A common approach
at this point is to traverse up the call stack. This approx-
imates reverse execution because it allows the program-
mer to see the partial state of function invocations that
occurred before the crash. However, it only allows the
programmer to see variables stored on the stack, and it
only shows the values for those variables at the time of
each function invocation. Another approach is to re-run
the system with a watchpoint set on the pointer variable.
However, this approach works only if the bug is deter-
ministic. Also, the programmer may have to step through
many watchpoints to get to the modification of interest.
Ideally, the programmer would like to go to the /ast time
the pointer was modified. However, current debugging
commands only allow the programmer to go to the next
modification of the pointer.

To overcome this deficiency, we add a new com-
mand to gdb called reverse continue. reverse
continue takes the virtual machine back to a previous
point, where the point is identified by the reverse equiv-
alents of forward breakpoints, watchpoints, and steps. In
the example above, the programmer could set a watch-
point on the pointer variable and issue the reverse
continue command. After executing this command,
the debugger would return control to the programmer
at the last time the variable was modified. This jump
backward in time restores all virtual-machine state, so
the programmer could then use standard gdb commands
to gather further information.

The reverse continue command is imple-

mented using two execution passes (Figure 3). In the
first pass, TTVM restores a checkpoint that is earlier
in the execution and replays the virtual machine until
the current location is reached again. During the re-
play of the first pass, gdb receives control on each trap
caused by gdb commands issued by the programmer
(e.g., breakpoints, watchpoints, steps). gdb keeps a list
of these traps and, when the first pass is over, allows the
programmer to choose a trap to time travel back to. Dur-
ing the second pass, gdb again restores the same check-
point and replays. When the selected trap is encountered
during the second pass, gdb returns control to the pro-
grammer.

This approach is general enough that it provides re-
verse versions to all gdb commands. For example, the
programmer can set instruction breakpoints, conditional
breakpoints, data watchpoints, or single steps (or com-
binations thereof), and the reverse continue com-
mand keeps track of all resulting traps and allows the
programmer to go back to any of them. We have found
each of these reverse commands useful in our kernel de-
bugging (Section 6).

We found reverse step to be a particularly useful
command (reverse step goes back a specified num-
ber of instructions). This command is particularly use-
ful because it tracks instructions executed in guest kernel
mode regardless of the kernel entry point. For example,
if gdb has control inside a guest interrupt handler, and
the interrupt occurred while the guest kernel was run-
ning, reverse step can go backward to determine
which guest kernel instruction was preempted. We im-
plemented an optimized version of the reverse step
command because it is used so frequently and because
the unoptimized version generates an inordinate number
of traps. On x86, gdb uses the CPU’s trap flag to sin-
gle step forward. reverse step also uses the trap
flag, but doing so naively would generate a trap to gdb
on each instruction replayed from the checkpoint. To re-
duce the number of traps caused by reverse step,
we wait to set the trap flag during each pass’s replay
until the system is near the current point. Our current im-
plementation defines “near” to be within one system call
of the current point, but one could easily define “near” to
be within a certain number of branches.

Finally, we implemented a got o command that a pro-
grammer can use to jump to an arbitrary time in the ex-
ecution, either behind or ahead of the current point. Our
current prototype defines time in a coarse-grained man-
ner by counting guest system calls, but it is possible to
define time by logging the real-time clock, or by count-
ing branches. goto is most useful when the program-
mer is trying to find a time (possibly far from the current
point) when an error condition is present.

4.2 TTVM/debugger interactions

Time traveling must affect debugging state (e.g., break-
points that are set) differently from how it affects other
virtual-machine state. Time-travel operations change the
virtual-machine state, but they should preserve debug-
ging state. For example, if the programmer sets a break-
point and executes reverse continue, the break-
point must be unperturbed by the checkpoint restoration
so that it can trap to gdb during the first and second pass
of replay. Unfortunately, gdb mingles debugging state
and virtual-machine state. For example, gdb implements
software breakpoints by inserting x86 breakpoint in-
structions directly into the code page of the process being
debugged.

To enable special treatment of debugging state, TTVM
tracks all modifications gdb makes to the virtual state.
This allows TTVM to make debugging state persistent
across checkpoint restores by manually restoring the de-
bugging state after the checkpoint is restored. In addi-
tion, TTVM removes any modifications caused by the
debugger before taking a checkpoint, so that the check-
point includes only the original virtual-machine state.

4.3 Reverse gdb implementation

gdb and TTVM communicate via the gdb remote serial
protocol (Figure 1). The remote serial protocol between
gdb and TTVM is implemented in a host kernel device
driver. gdb already understands the remote serial proto-
col and so does not need to be modified. The host ker-
nel device driver receives the low-level remote protocol
commands and reads/writes the state of the virtual ma-
chine on behalf of the debugger. These reads and writes
are transparent to the virtual machine: neither the execu-
tion or replay of the virtual machine is affected (unless
the guest kernel reads state that has been modified by
gdb).

Although gdb did not have to be modified to under-
stand the remote serial protocol, it did have to be ex-
tended to implement the new reverse commands. This
provided complete integration of the new reverse com-
mands inside the familiar gdb environment.

5 Performance

In this section, we measure the time and space overhead
of TTVM and the time to execute time-travel operations.
Since debugging is dominated by human think time, our
main goal in this section is only to verify that the over-
head of TTVM is reasonable.

All measurements are carried out on a uniprocessor 3
GHz Pentium 4 with 1 GB of memory and two disks, a 40
GB Samsung SP4004H and a 120 GB Hitachi Deskstar

1600

»— kernel build
1400 -0 SPECweb

1200

1000}
800

Runtime (sec)

600
400
200

0200 _ 400 600 800 1000
Checkpoint interval (sec)

Figure 4: The effect of checkpointing on running time.
For long runs, we expect programmers to use long check-
point intervals (e.g., 10 minutes) to minimize overhead.
For short, intensive debugging sessions, we expect pro-
grammers to accept higher overhead to enable faster
time-travel operations during debugging.

GXP. The host file system is on the Hitachi disk, and
the guest file system is on the Samsung disk. The host
OS is Linux 2.4.18 with the skas extensions for UML
and TTVM modifications. The guest OS is the UML
port of Linux 2.4.20. We configure the guest to have 256
MB of memory and a 5 GB disk, which is stored on a
host raw disk partition. Both host and guest file systems
are initialized from a RedHat 9 distribution. All results
represent the average of at least 5 trials.

We measure two workloads running on the guest OS:
SPECweb99 using the Apache web server and three suc-
cessive builds of the Linux 2.4 kernel (each of the three
builds executes make clean; make dep; make
bzImage),

We first measure the time and space overhead of the
logging needed to support replay. Running these work-
loads on TTVM with logging (with a single checkpoint
at the beginning of the run) adds 10% time overhead for
kernel build and 12% overhead for SPECweb99, relative
to running the same workload in UML on standard Linux
(with skas). The space overhead of TTVM needed to
support logging is 13 KB/sec for kernel build and 190
KB/sec for SPECweb99. These time and space over-
heads are very acceptable, especially for debugging.

Replay on TTVM occurs at approximately the same
speed as the logged run. For the kernel-build workload,
TTVM takes 2% longer to replay than it did to log; for
SPECweb99, TTVM takes 1% longer to replay than it
did to log. Replay is sometimes much faster than logging
because TTVM skips over idle periods during replay.

We next measure the cost of checkpointing. Figures 4
and 5 show how the time and space overheads of check-

N
o

»—x kernel build
&-© SPECweb

-
a1

a1

Checkpoint space overhead (MB/sec)
=)

o

L | L | L | ! T
0 200 400 600 800 1000
Checkpoint interval (sec)
Figure 5: Space overhead of checkpoints. For long runs,
programmers will use long checkpoint intervals to mini-

mize overhead and will cap the maximum space used by
checkpoints by deleting selected checkpoints.

pointing vary with the interval between checkpoints. We
expect checkpoints to be taken at different frequencies
for phase 1 and phase 2 of the usage model described in
Section 3.6. In phase 1, we expect the programmer to
minimize overhead over long runs by using a relatively
long checkpoint interval. Taking checkpoints every 10
minutes adds less than 4% time overhead and less than
1 MB/sec of space overhead. Space overhead for long
runs can also be capped at a maximum size, which causes
TTVM to delete selected checkpoints.

In phase 2, we expect programmers to optimize for the
speed of time-travel operations by taking frequent check-
points (e.g., every 10 seconds) over a short period of in-
terest (e.g., 10 minutes). For this short period, we expect
programmers to tolerate much higher overhead than they
would for the entire run. Time and space overheads re-
main quite moderate for checkpoint intervals as short as
25 seconds (less than 25% time overhead and less than 10
MB/sec space overhead), and they are tolerable even for
intervals as short as 10 seconds (less than 60% time over-
head and less than 17 MB/sec space overhead). For short
checkpoint intervals, time and space overhead are dom-
inated by the cost of saving the contents of the guest’s
physical memory.

Next we consider the speed of moving forward and
backward through the execution of a run. As described
in Section 3.4, time travel takes two steps: (1) restor-
ing to the checkpoint prior to the target point and (2) re-
playing the execution from this checkpoint to the target
point. Figure 6 shows the time to restore a checkpoint
as a function of the distance from the current point to a
prior or future checkpoint. We used a checkpoint in-
terval of 45 seconds and spanned the run with 20 check-
points. Moving to a checkpoint farther away takes more

[6)]
o

r »—x kernel build
&-© SPECweb

w P
o o
T T

N
o
T

Time to restore (sec)

10~

1 1 1
0 200 400 600
Distance to restore point (sec)

Figure 6: Time to restore to a checkpoint.

time because TTVM must restore more disk blocks. Re-
call that each unique disk block is written at most once,
even when restoring to a point that is many checkpoints
away. Hence the maximum time of a restore operation
approaches the time to restore all unique disk blocks
changed in the workload. The time for the second step
depends on the distance from the checkpoint reached in
step one to the target point. Since replay on TTVM oc-
curs at approximately the same speed as the logged run,
the average time of this step for a random point is half
the checkpoint interval.

6 Experience and lessons learned

In this section, we describe our experience using TTVM
to track down three kernel bugs and show how using re-
verse gdb commands simplified the process. Next, we
talk about our experiences using TTVM, how the reverse
commands helped, and why standard gdb fell short. Fi-
nally, we discuss the interactivity of our reverse debug-
ging commands.

6.1 System call bug

While developing TTVM, we encountered a guest kernel
panic. We first tried to debug this error using traditional
cyclic debugging techniques and standard gdb, i.e. not
using time travel. First, we set a breakpoint in the guest
kernel panic function that is invoked when the kernel
encounters an unrecoverable error. We then re-ran the
virtual machine, hoping for the guest kernel panic to re-
occur. Fortunately, the bug re-occurred and gdb gained
control when a memory exception caused by guest ker-
nel code triggered a panic. The fault occurred after the
guest kernel attempted to execute an instruction at ad-
dress 0. We tried to understand how the kernel reached

10

address 0 by traversing up the call stack of the guest ker-
nel. However, gdb was unable to traverse up the call
stack because the most recent call frame had been cor-
rupted when the kernel called the “function” at address
0. Since gdb was unable to find the prior function, we
next looked at the data on the stack manually to try to
find a valid return address. We found a few candidate
addresses, but we eventually gave up after disassembling
the guest kernel and searching through various assembly
code segments.

We next used reverse commands to debug the guest
kernel. We started by attaching gdb to the guest-kernel
host process at the time of the panic. We then performed
several reverse single steps which took us to the point
at which address 0 had been executed. We performed
another reverse single step and found that this address
had been reached from the system call handler. At this
point we used a number of standard gdb commands to
inspect the state of the virtual machine and determine the
cause of the error. The bug was an incorrect entry in the
system call table, which caused a function call to address
0.

6.2 Kernel race condition bug

We next tried debugging a guest kernel bug that had been
posted on the UML kernel mailing list. The error we
found was triggered by executing the user-mode com-
mand ltrace strace ls, which caused the guest
kernel to panic.

First, we tried to debug the error using traditional
cyclic debugging techniques and standard gdb, i.e. not
using time travel. We set a breakpoint in the kernel
panic function and waited for the error. After the
panic function was called, we traversed up the call
stack to learn more about how the error occurred. Ac-
cording to our initial detective work, the guest kernel
received a debug exception while in guest kernel mode.
However, debug exceptions generated during guest ker-
nel execution get trapped by the debugger prior to deliv-
ery. Since gdb had not received notification of an extra-
neous debugging exception, we deemed a guest kernel-
mode debugging exception unlikely.

By performing additional call stack traversals, we de-
termined that the current execution path originated from
a function responsible for redirecting debugging excep-
tions to guest user-mode processes. This indicated that
the debugging exception occurred in guest user mode,
rather than in guest kernel mode as indicated by the vir-
tual CPU mode variable. Based on that information, we
concluded that either the call stack was corrupted, or the
virtual mode variable was corrupted.

We sought to track changes to the virtual mode vari-
able in two ways, both of which failed. First, we set a

forward watchpoint on the mode variable and re-ran the
test. This failed because the mode variable was modified
legitimately too often to examine each change. Second,
we set a number of conditional breakpoints to try to nar-
row down the time of the corruption. With the condi-
tional breakpoints in place, we re-ran the test case but it
executed without any errors. We then gave up our vain
attempt to track down this non-deterministic bug with
cyclic debugging and switched to using our reverse de-
bugging tools.

Our first step when using the reverse debugging tools
was to set a reverse watchpoint on the virtual CPU mode
variable. After trapping on the guest kernel panic, we
were taken back to an exception handler where the vari-
able was being changed intentionally. The new value
indicated that the virtual machine was in virtual ker-
nel mode when this exception was delivered. We re-
verse stepped to confirm that this was in fact the case,
and then went forward to examine the subsequent exe-
cution. Since the virtual CPU mode variable is global,
and the nested exception handler did not reset the value
when it returned, the original exception handler (the user
mode debugging exception) incorrectly determined that
the debugging exception occurred while in virtual ker-
nel mode. At this point it was clear that the exception
handler should have included this variable as part of the
context that is restored upon return.

6.3 mremap bug

Next, we debugged a bug in the mremap system
call (CVE CAN-2003-0985), which occurs in the
architecture-independent portion of Linux. This bug cor-
rupts a process’s address map when the process calls
mremap with invalid arguments; it manifests later as a
kernel panic when that process exits.

First, we tried to debug the error using traditional
cyclic debugging and standard gdb, i.e. not using time
travel. We attached gdb when the kernel called panic.
We traversed up the call stack and discovered that the
cause of the panic was a corrupted (zero-length) address
map. Unfortunately, the kernel panic occurred long af-
ter the process’s address map was corrupted, and we
were unable to discern the point of the initial corruption.
We thought to re-run the workload with watchpoints set
on the memory locations of the variables denoting the
start and end of the address map. However, these mem-
ory locations changed each run because they were allo-
cated dynamically. Thus, while the bug crashed the sys-
tem each time the program was run, the details of how
the bug manifested were non-deterministic, and this pre-
vented us from using traditional watchpoints. Even if the
bug were completely deterministic, using forward watch-
points would require the programmer to step laboriously

11

through each resulting trap during the entire run to see if
the values at that trap were correct.

Reverse debugging provided a way to go easily from
the kernel panic to the point at which the corruption ini-
tially occurred. After attaching gdb at the kernel panic,
we set a reverse watchpoint on the memory locations of
the variables denoting the start and end of the address
map. This watchpoint took us to when the guest OS was
executing the mremap that had been passed invalid ar-
guments, and at this point it was obvious that mremap
had failed to validate its arguments properly.

6.4 Soundcard device driver

Finally, we used TTVM to do reverse debugging for the
Intel ICH4 soundcard driver. This driver uses IN/OUT
instructions, interrupts, DMA reads and writes, and
memory mapped I/O. We knew of no way to trigger a
bug in this driver, so instead we used TTVM with reverse
breakpoints and reverse single steps to navigate through
the execution of the driver as though we were debugging.

Device drivers pose special problems for traditional
debuggers. Traditional debuggers pause the execution of
the device driver. However, since the device itself con-
tinues to run, it may generate interrupts whose timings
are different enough to change the nature of the bug. The
device may also require real-time responses that cannot
be met by a paused driver.

TTVM avoids these difficulties during debugging be-
cause it does not need to use the device in order to replay
and debug the driver. TTVM logs all interactions with
the device, including I/O, interrupts, and DMA. During
replay, the driver transitions through the same sequence
of states as it went through during logging (i.e. while it
was driving the device), regardless of timing or the state
of the device. As a result, debugging can pause the driver
during replay without altering its execution.

6.5 Lessons learned

We learned three main lessons from our experience de-
bugging kernel bugs with standard gdb and TTVM.
First, we learned that many bugs are too fragile to find
with cyclic debugging. Classic Heisenbugs [12] such
as race conditions (Section 6.2) thwart cyclic debugging
because they manifest only occasionally, depending on
transient conditions such as timing. However, cyclic de-
bugging often fails even for bugs that manifest each time
a program runs, because the details of how they manifest
change from run to run. Details like the internal state of
an OS depend on numerous, hard-to-control variables,
such as the sequence and scheduling order of all pro-
cesses that have been run since boot. In the case of the
mremap bug, minor changes to the internal OS state (the

address of dynamically allocated kernel memory) pre-
vented us from using watchpoints during cyclic debug-
ging.

In contrast, TTVM’s reverse debugging makes even
the most fragile of bugs perfectly repeatable. TTVM’s
deterministic replay ensures that the details of the inter-
nal OS state will remain consistent from run to run and
thus enables the use of debugging commands that depend
on fragile information.

Second, we experienced the poor match between stan-
dard debugging commands and most debugging scenar-
ios. Standard watchpoints and breakpoints are best suited
to go to a future point of possible interest. In con-
trast, programmers usually want to go to a prior point
of possible interest, because they are following in re-
verse the chain of events between the execution of the
buggy code and the ensuing detection of that error. Try-
ing to go backward by re-running the workload with for-
ward watchpoints and breakpoints is very clumsy with-
out TTVM. If the bug is fragile, the bug may not manifest
(or may not manifest in the same way) during each run.
Even if the bug manifests in exactly the same way dur-
ing each run, cyclic debugging forces a programmer to
step manually through all spurious traps since the begin-
ning of the run, or to run the program numerous times
searching manually for the period of interest.

In contrast, TTVM’s reverse debugging commands
provided exactly the semantics we needed to find each
of the bugs we encountered. For the kernel race bug and
the mremap bug, the point of interest was the last time a
variable changed before the error was detected. For the
system call bug, the point of interest was a few instruc-
tions before the error was detected.

Third, we learned that, while standard debuggers seek
to approximate time travel by traversing up the call stack,
this form of time travel is neither complete nor reliable.
Stack traversal is incomplete because it shows only the
values of variables on the stack and because it shows
those variables only at the time of their function’s last
invocation. For the mremap bug, the code that contained
the error was executed during a prior system call and
was not on the stack when the error was detected. Stack
traversal is unreliable because it works only if the stack
is intact. For the system call bug, the stack had been cor-
rupted by an erroneous function call. Similarly, common
buffer overflow attacks corrupt the stack and render stack
traversal difficult. It is ironic that one of the most pow-
erful techniques of standard debuggers depends on the
partial correctness of the program being debugged.

In contrast, TTVM provides complete and reliable
time travel. It is complete in that it can show the state
of any variable at any time in the past. It is reliable in
that it works without depending on the correctness of the
program being debugged.

12

6.6 Interactivity of reverse debugging

To debug the bugs described in this section we triggered
the error while logging, then replayed the virtual ma-
chine to diagnose the error. When replaying, we set
the checkpoint interval to ten seconds. This checkpoint
interval added reasonable runtime overhead for debug-
ging (in fact, it added less overhead than some forward
debugging commands, such as conditional breakpoints)
and was short enough to support interactive performance
for reverse commands.

We found the reverse commands to be quite interac-
tive. Usually we used the reverse commands to step back
a couple instructions or to go back to a recent break-
point within the current checkpoint interval. This caused
most of our checkpoint state to remain in the host file
cache, which further sped up subsequent reverse com-
mands. Restoring to the nearest checkpoint took under
1 second; replaying to the point of interest took five sec-
onds on average (given the ten second checkpoint inter-
val). Taking a reverse single step took about 12 seconds
on average; this includes the time for both passes (Figure
3), i.e. restoring the checkpoint twice and replaying the
remainder of the checkpoint interval twice. Overall, we
found the speed of our reverse debugging commands fast
enough to support interactive usage comfortably.

7 Related work

Our work draws on techniques from several areas, in-
cluding replay of non-deterministic programs, virtual-
machine replay, and reverse debugging. Our unique con-
tribution is combining these techniques in a way that en-
ables powerful debugging capabilities that have not been
available previously for operating systems.

Researchers have worked to replay non-deterministic
programs through various approaches. The events of
different threads can be replayed at different levels, in-
cluding logging accesses to shared objects [14], logging
the scheduling order of multi-threaded programs on a
uniprocessor [18], or logging physical memory accesses
in hardware [3]. Other researchers have worked to opti-
mize the amount of data logged [17].

Virtual-machine replay has been used for non-
debugging purposes. Hypervisor used virtual-machine
replay to synchronize the state of a backup machine to
provide fault tolerance [6]. ReVirt used virtual-machine
replay to enable detailed intrusion analysis [9]. Our
work applies virtual-machine replay to achieve a new
capability, which is reverse debugging of operating sys-
tems. TTVM also supports additional features over prior
virtual-machine replay systems. TTVM supports the
ability to run, log, and replay real device drivers in the
guest OS, and TTVM can travel quickly forward and

backward in time through its use of checkpoints and
undo and redo logs. In contrast, ReVirt supported only a
single checkpoint of a powered-off virtual machine, and
Hypervisor did not need to support time travel at all (it
only supported replay within an epoch).

Reverse execution has been discussed in the program-
ming community for many years [22, 10, 2], and some
have integrated this capability into a debugger [5, 7].
However, no prior system has attempted to support re-
verse debugging for operating systems. Most prior sys-
tems focused on reversing deterministic programs rather
than replaying non-deterministic effects such as inter-
rupts and thread scheduling [10, 5, 2, 7]. Some systems
logged and replayed data by instrumenting programs at
the source code or assembly language level [2, 5, 7]. Un-
fortunately, this approach is difficult to apply for operat-
ing systems, which use self-modifying code when load-
ing new application programs or kernel modules. Op-
erating systems are perhaps the most difficult type of
software system to reverse and replay because of their
many sources of non-determinism, their large and com-
plex state, their need to work for code that is loaded on
the fly, and their long running time.

The system that is closest in capability to ours is Sim-
ics [15]. Simics is a machine simulator on which one
can run operating systems and applications. Simics sup-
ports replay of non-deterministic inputs and has an inter-
face to a debugger, although it is unclear whether Simics
supports higher-level commands such as reverse break-
point. One feature of Simics is that it can run unmodified
operating systems, whereas current open-source VMMs
such as UML require modifications to the hardware-
dependent layer of their guest OSs. However, while
Simics has similar capabilities to TTVM, it is drastically
slower, and this makes debugging long runs impractical.
On a 750 MHz Ultrasparc III, Simics executes 2-6 mil-
lion x86 instructions per second (several hundred times
slower) [15], whereas virtual machines typically incur a
slowdown of less than 2x.

8 Conclusions

We have described the design and implementation of a
time-traveling virtual machine and shown how to use
TTVM to add powerful capabilities for debugging op-
erating systems. We integrated TTVM with a general-
purpose debugger, implementing commands such as re-
verse breakpoint, reverse watchpoint, and reverse step.
TTVM added reasonable overhead in the context of
debugging. The logging needed to support time travel
for two OS-intensive workloads added 10-12% in run-
ning time and 13-190 KB/sec in log space. Taking check-
points at a rate appropriate for long runs added less than
4% overhead. Taking frequent checkpoints to prepare

13

for debugging a portion of a run added less than 60%
overhead and enabled reverse debugging commands to
complete in about 12 seconds.

We used TTVM and our new reverse debugging com-
mands to fix three OS bugs that were difficult to find with
standard debugging tools. We found the reverse debug-
ging commands to be intuitive to understand, fast and
easy to use, and extremely helpful in finding and fixing
real OS bugs.

References

[1] The IA-32 Intel Architecture Software Developer’s
Manual, Volume 3: System Programming Guide.
Technical report, Intel Corporation, 2004.

[2] H. Agrawal, R. A. DeMillo, and E. H. Spafford. An
Execution-Backtracking Approach to Debugging.

IEEE Software, 8(3), May 1991.

D. E Bacon and S. C. Goldstein. Hardware-
Assisted Replay of Multiprocessor Programs. In
Proceedings of the ACM/ONR Workshop on Paral-
lel and Distributed Debugging, May 1991.

(3]

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Har-
ris, A. Ho, R. Neugebauer, I. Pratt, and A. Warfield.
Xen and the Art of Virtualization. In Proceedings
of the 2003 Symposium on Operating Systems Prin-

ciples, October 2003.

[5] B. Boothe. Efficient algorithms for bidirectional
debugging. In Proceedings of the 2000 Conference
on Programming Language Design and Implemen-

tation (PLDI), pages 299-310, June 2000.

[6] T. C. Bressoud and F. B. Schneider. Hypervisor-
Based Fault-Tolerance. In Proceedings of the 1995
Symposium on Operating Systems Principles, pages

1-11, December 1995.

[7] S.-K. Chen, W. K. Fuchs, and J.-Y. Chung. Re-
versible Debugging Using Program Instrumenta-
tion. IEEE Transactions on Software Engineering,

27(8):715-727, August 2001.

[8] J. Dike. A user-mode port of the Linux kernel. In
Proceedings of the 2000 Linux Showcase and Con-

ference, October 2000.

[9] G. W. Dunlap, S. T. King, S. Cinar, M. Basrai, and
P. M. Chen. ReVirt: Enabling Intrusion Analysis
through Virtual-Machine Logging and Replay. In
Proceedings of the 2002 Symposium on Operating
Systems Design and Implementation, pages 211—

224, December 2002.

[10]

[14]

[17]

[18]

[19]

S. I. Feldman and C. B. Brown. IGOR: a system
for program debugging via reversible execution. In
Proceedings of the 1988 ACM SIGPLAN/SIGOPS
Workshop on Parallel and Distributed Debugging,
pages 112-123, November 1988.

R. P. Goldberg. Survey of Virtual Machine Re-
search. IEEE Computer, pages 34—45, June 1974.

J. Gray. Why do computers stop and what can be
done about it? In Proceedings of the 1986 Sym-
posium on Reliability in Distributed Software and
Database Systems, pages 3—12, January 1986.

S. T. King, G. W. Dunlap, and P. M. Chen. Op-
erating System Support for Virtual Machines. In
Proceedings of the 2003 USENIX Technical Con-
ference, pages 71-84, June 2003.

T. J. LeBlanc and J. M. Mellor-Crummey. Debug-
ging Parallel Programs with Instant Replay. IEEE
Transactions on Computers, pages 471-482, April
1987.

P. S. Magnusson, M. Christensson, J. Eskilson,
D. Forsgren, G. Hallberg, J. Hogberg, F. Larsson,
A. Moestedt, and B. Werner. Simics: A Full System
Simulation Platform. IEEE Computer, 35(2):50-
58, February 2002.

J. M. Mellor-Crummey and T. J. LeBlanc. A
Software Instruction Counter. In Proceedings of
the 1989 International Conference on Architectural
Support for Programming Languages and Operat-
ing Systems, pages 78—86, April 1989.

R. H. B. Netzer and M. H. Weaver. Optimal Tracing
and Incremental Reexecution for Debugging Long-
Running Programs. In Proceedings of the 1994
Conference on Programming Language Design and
Implementation (PLDI), June 1994.

M. Russinovich and B. Cogswell. Replay for con-
current non-deterministic shared-memory applica-
tions. In Proceedings of the 1996 Conference on
Programming Language Design and Implementa-
tion, pages 258-266, May 1996.

C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow,
M. S. Lam, and M. Rosenblum. Optimizing the
Migration of Virtual Computers. In Proceedings of
the 2002 Symposium on Operating Systems Design
and Implementation (OSDI), December 2002.

J. D. Strunk, G. R. Goodson, M. L. Scheinholtz,
C. A. Soules, and G. R. Ganger. Self-securing stor-
age: Protecting data in compromised systems. In
Proceedings of the 2000 Symposium on Operating

14

(21]

(22]

Systems Design and Implementation (OSDI), Octo-
ber 2000.

J. Sugerman, G. Venkitachalam, and B.-H. Lim.
Virtualizing I/0 Devices on VMware Workstation’s
Hosted Virtual Machine Monitor. In Proceedings
of the 2001 USENIX Technical Conference, June
2001.

M. V. Zelkowitz. Reversible execution. Communi-
cations of the ACM, 16(9):566, September 1973.

