
Plato: A Platform For Virtual Machine Services

Samuel T. King, George W. Dunlap, and Peter M. Chen

Computer Science and Engineering Division
Department of Electrical Engineering and Computer Science

University of Michigan
http://www.eecs.umich.edu/CoVirt

Abstract

Virtual machines are being used to add new services to
system level software. One challenge these virtual ma-
chine services face is the semantic gap between VM ser-
vices and the machine-level interface exposed by the vir-
tual machine monitor. Using the virtual machine moni-
tor interface, VM services have access to hardware-level
events like Ethernet packets or disk I/O. However, vir-
tual machine services also benefit from guest software
(software running inside the virtual machine) semantic
information, like sockets and files. These abstractions
are specific to the guest software context and are not
exposed directly by the machine-level virtual machine
monitor interface.

Existing ways to bridge this semantic gap are either ad-
hoc or use debuggers. Ad-hoc methods often lead to
cutting-and-pasting large sections of the guest operating
system to reconstruct its interpretation of the hardware
level events. Debuggers add too much overhead for pro-
duction environments. Both ad-hoc methods and debug-
gers could cause unwanted perturbations to the virtual
system.

To address these shortcomings, we developed a new plat-
form for implementing virtual machine services: Plato.
The goal of Plato is to make it easy and fast to develop
and run new virtual machine service. Plato allows VM
services to call guest kernel functions and access guest
local variables, eliminating the need to cut-and-paste
sections of the virtual machine source code. Plato pro-
vides a checkpoint/rollback facility that allows VM ser-
vices to correct for undesired perturbations to the virtual
state. Plato adds less than 5% overhead for a variety of
macrobenchmarks.

1 Introduction

Virtual machines are experiencing a resurgence of re-
search activity. Many recent projects use the vir-
tual machine monitor (VMM) as a platform for intro-
ducing new functionality that benefits the software run-
ning inside the virtual machine (”guest” operating sys-
tem and ”guest” applications). Examples of such new
functionality are the ability to tolerate faults [5], encrypt
disk and network data [21], replay and analyze intru-
sions [6] [18], prevent or detect intrusions [10], and mi-
grate to a new location [22]. We use the term ”virtual-
machine service” to describe this type of new function-
ality. A virtual-machine service may be implemented
in the VMM, or it may be implemented in another pro-
cess (or even another virtual machine) running above the
VMM (Figure 1).

Some virtual-machine services operate entirely in terms
of events and state at the hardware-level interface. Ex-
amples of this type of service include encrypting writes
to the hard disk and sends across the network [21], re-
playing the virtual machine’s instructions [6], and mi-
grating the register, memory, and disk state of a running
virtual machine [22]. These services are independent of
the guest operating system and treat the guest software
as a black box. The simplicity and small size of a virtual
machine monitor make it an attractive location for these
services because it is likely to be more trustworthy and
easier to modify than a guest operating system.

Other virtual-machine services operate in terms of
events and state that are constructed or interpreted by
the guest software. Examples of this type of service
are detecting an intrusion by comparing the results of
system utilities against kernel state [10], protecting im-
portant kernel data structures [10], and monitoring the
flow of information during an intrusion [18]. Garfinkel
and Rosenblum use the term ”virtual machine introspec-
tion” to describe how this type of service examines the

1

�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�

Virtual Machine
Service

Virtual Machine Interface

Host Operating System

Virtual Machine

VMM

Virtual Resources

Figure 1: Virtual machine service structure. VM ser-
vices gain access to virtual machine resources and events
through an interface provided by the VMM. This inter-
face is called the virtual machine interface.

state and events inside the running virtual machine [10].
Services that perform virtual machine introspection in
addition to monitoring hardware-level events and state
can be more powerful than services that only monitor
hardware-level events and state.

A major challenge faced by virtual-machine services
that perform introspection is the semantic gap between
the events and state within the guest software and the
events and state at the hardware-level interface of the
VMM. In order for the VM service to understand and
act on guest-level state and events, it must reconstruct
the guest software’s interpretation of the hardware-level
state and events. For example, consider a service that
needs to understand file system activity inside a virtual
machine. In order to understand file system activity, the
service must map the hardware-level events that cross
the VMM interface (disk block reads and writes) into
file system events (file and directory reads and writes).
This mapping requires knowledge of the on-disk struc-
ture used by the guest file system. Furthermore, file sys-
tem reads and writes that are satisfied by the file cache
are not observed by the virtual machine service since
they do not generate disk activity.

Prior approaches bridged this semantic gap either by (1)
reimplementing or copying the parts of the guest operat-
ing system or (2) using debugging tools like gdb. Un-
fortunately, both approaches have inherent weaknesses.
Reimplementing or copying parts of the guest operating
system quickly becomes too complicated to implement
general introspections (e.g., consider how much guest
OS code is needed to resolve a pathname). Debugging
tools are more general, but they can incur high overhead.
A weakness of both approaches is that the act of intro-
specting may perturb the state of the system (e.g., it may
cause the guest kernel to crash).

Virtual Machine Interface

Virtual Machine

Virtual Machine
Service

Host Operating System

VMM

Plato

Figure 2: Plato structure. Plato uses the virtual machine
interface provided by the VMM to implement the primi-
tives available to VM services. Because the Plato primi-
tives are a superset of the virtual machine interface, VM
services only need to use Plato.

This paper presents a platform named Plato that uses a
new approach for bridging this semantic gap (Figure 2).
The goal of Plato is to make it easy and fast to develop
and run virtual-machine services. Plato leverages the
code that already exists in the guest OS by making it
easy for virtual machine services to call guest kernel
functions. To maximize the expressive power of this
approach, guest kernel functions that are called by the
VM service may read and write the guest state in arbi-
trary ways. These arbitrary manipulations may perturb
the guest state significantly, so Plato provides a check-
point/rollback mechanism that VM services can use to
correct undesired perturbations. Like a debugger, Plato
provides a callback mechanism so VM services can in-
terpose at arbitrary locations within the guest kernel, and
Plato makes it easy for VM services to refer to guest
kernel local and global variables. Unlike an external de-
bugger process, Plato is designed to be fast enough to
use in production, even for VM services that interpose
frequently.

The rest of this paper is structured as follows. Section 2
describes the problems with existing approaches in more
detail. Sections 3 and 4 presents the design and imple-
mentation of Plato. Section 5 demonstrates how Plato
can simplify the development of VM services by pre-
senting three example VM services. Section 6 evaluates
the performance impact of Plato. Section 7 describes
work related to Plato, and Section 8 concludes.

2 Motivation

In this section, we describe in more detail the limitations
of existing approaches to bridging the semantic gap be-
tween hardware-level and guest-level events and state.

2

One common approach to introspecting on guest-level
states and events is to examine the hardware-level state
and manually reconstruct the needed guest-level infor-
mation. This approach can work well for simple tasks.
For example, consider a VM service that wants to restrict
which users can make certain system calls and so must
determine the user ID of the guest process that is making
the system call. The VM service can find the user ID of
the calling guest process by reading the VM’s physical
memory image (often stored in a host file) and following
the guest OS’s data structures. To help understand these
guest OS data structures, the author of the VM service
can leverage debugging information such as the symbol
table, or he can browse or copy guest OS source files.

Unfortunately, there are limits to how much can be done
via manual reconstruction of guest information. From a
purely practical standpoint, it quickly becomes unwieldy
to incorporate or re-implement large sections of guest
OS code. Importing unmodified guest OS code tends
to have a snowball effect, where importing one function
leads to the inclusion of all its sub-functions and so forth.
Consider a VM service that needs to read the contents of
a guest file, perhaps to help detect malicious modifica-
tions to system files. Reading the contents of a guest file
is relatively straightforward if the file data resides in an
in-memory file cache. However, it is much more com-
plex to read the file if its data is not in memory. Reading
such a file would require the VM service to traverse the
file system structure on disk, or even to request the file
data from a remote file server. The VM service would
also need to account for boundary cases, such as other
pending writes to that file, expired authentication tokens
to the remote file server, and so on.

Another limit to manual reconstruction is the difficulty
of porting guest OS code to run in the VM service pro-
cess. Running guest OS code in the VM service pro-
cess requires the VM service to mimic the context of
the virtual machine process, including the guest OS ad-
dress space and device state. Mimicking the guest con-
text leads to a host of other problems, such as address
space collisions with the address space of the VM ser-
vice process, the need to mimic the virtual MMU, and
the need to mimic privileged instructions.

The following scenario illustrates the complications that
might arise for a VM service, even for a relatively sim-
ple task such as reading a guest file that resides in the
guest file cache. Consider what the VM service could
do if it another guest process were holding a lock on
the guest file cache. The VM service could ignore the
lock and risk reading inconsistent data, or it could call
the guest OS’s process scheduler to allow the other pro-
cess to run and release the lock. Calling the guest OS’s

Virtual Machine

Virtual Machine
Service

Host Operating System

VMM
GDB Remote Serial Protocol

Virtual Serial Line

GDB

Figure 3: VM service using GDB. GDB can be used to
implement virtual machine services. The GDB remote
protocol is implemented in the guest operating system
and GDB communicates with the VM via a virtual serial
line. The VM service communicates with GDB using
standard commands and does not have to utilize a virtual
machine interface or understand the GDB remote serial
protocol.

process scheduler would cause the VM service to run
guest user code, which would require it to duplicate the
VMM’s functionality.

An alternative approach to manual reconstruction is for
the VM service to use debugging tools, such as gdb,
that can call guest OS functions directly (Figure 3). By
calling guest OS functions directly, virtual machine ser-
vices avoid the duplication of guest OS code that is re-
quired by the manual reconstruction approach. In ad-
dition, a debugger calls guest OS functions from inside
the guest context, which avoids the need to duplicate the
guest context in the virtual service process. Running in
guest OS code in the guest context allows locks to be
handled in their customary manner, i.e. by scheduling
other processes.

While debugging tools are much more general than man-
ual reconstruction, they too suffer from some limita-
tions. First, they can be quite slow. For example, using
gdb to intercept guest file reads adds 500% overhead
to a kernel compile benchmark. In addition, running
guest OS code in the guest context will usually change
the state inside the guest, and the VM service may want
to be carry out its tasks unobtrusively. In the worst case,
calling a guest OS function may crash the guest kernel
or irretrievably lose guest information.

Like a debugger, Plato eliminates the need to use manual
reconstruction by allowing VM services to call guest OS
functions and access guest data structures in the guest
context. While Plato provides similar functionality as
debugging tools, it does so at a fraction of the overhead;
using Plato to intercept guest file writes slows a kernel
compile by only 5%. Finally, Plato enables a VM ser-
vice to easily rollback the virtual machine’s state to an

3

earlier checkpoint, thereby allowing it to carry out arbi-
trary introspection without perturbing the guest state.

3 Plato Capabilities

In this section, we present the design of Plato, a plat-
form for implementing virtual machine services. Plato
provides four capabilities to assist in the development
of new virtual machine services. First, Plato provides
the ability to interpose on various events or on arbitrary
instructions within the guest kernel. Second, Plato pro-
vides access to local and global guest variables. Third,
Plato gives virtual machine services the ability to call ex-
isting guest kernel functions from the context of the VM.
Finally, Plato leverages the abstractions provided by the
VMM to implement a checkpoint and rollback mecha-
nism, thus enabling virtual machine services to correct
for any undesired actions performed on the virtual sys-
tem.

3.1 Interposition

Plato exports a callback mechanism for notification on
the arrival of VMM events in a fashion similar to [25].
Specifically, virtual machine services can receive notifi-
cation on virtual device I/O, including virtual disk reads,
virtual disk writes, and virtual Ethernet traffic. Also,
callback functions can be registered for CPU exceptions,
including device interrupts, timer interrupts, software
faults, memory exceptions, and software interrupts. On
the arrival of these callback functions, the virtual ma-
chine service can monitor the actions, cancel the event,
or modify the state of the virtual machine. As a result,
hardware devices can be extended, making services like
copy-on-write or encrypted virtual disks easy to imple-
ment.

In addition to trapping on operating system indepen-
dent events, Plato provides the ability to trap execution
of the guest kernel at arbitrary places; these execution
traps are referred to as interposition points. Interpo-
sition points are specified in a manner similar to gdb
break points (Figure 4). A virtual machine service can
register callbacks using either function names or source
code line numbers. For example, a virtual machine ser-
vice can register a callback at the Linux kernel func-
tion do fork, and the callback function will be invoked
each time before do fork is executed. By trapping on
this function call, the virtual machine service is notified
every time a new process is about to be created.

}

doForkCallback() {
 pid_t pid = plato.readVar("pid");
 cout << "the pid is " << pid << endl;

registerInterposition("do_fork",

registerInterposition("fork.c:1183",
 doForkCallback);

 doForkCallback);

Figure 4: How a VM service registers an interposition
point callback function. Two interposition points are
registered in the do fork guest kernel function. When
the callback is invoked, the guest local variable pid is
read.

Virtual machine services can also set interposition points
based on source code line numbers using Plato. For ex-
ample, if a virtual machine service needs to set an inter-
position point after a process had been created, but be-
fore it is first scheduled, it would set interposition point
in the file fork.c, inside the do fork function, at the
source code line before the new process is added to the
run queue.

Interposition points are implemented in Plato using x86
breakpoint instructions. A breakpoint is set at the in-
struction in the guest where the interposition point be-
gins. When the virtual machine executes the breakpoint
instruction, it causes a trap to the VMM. The VMM then
passes control to Plato using the virtual machine inter-
face, and Plato calls the appropriate virtual machine ser-
vice callback function. While the callback is being ex-
ecuted, the virtual machine is suspended to avoid race
conditions. After the callback returns, Plato replaces the
breakpoint with the original instruction to allow it to ex-
ecute. Also, a second breakpoint is set at the next in-
struction to give Plato the opportunity to reset the origi-
nal breakpoint. As a result, trapping on an interposition
point requires four context switches between the virtual
machine and the virtual machine service.

3.2 Access to Variables

When Plato invokes a callback function for notification
of an interposition point, the virtual machine service has
access to the local and global variables for the context
that the guest OS is currently in. Virtual machine ser-
vices can read local variables, by name, to determine
what is currently happening at the specified break point.
Also, virtual machine services can modify the execution

4

of the guest OS by changing the value of local variables.
This flexibility simplifies the development of new virtual
machine services and provides a convenient framework
for extending existing guest operating system function-
ality.

3.3 Calling Guest Kernel Functions

Plato gives virtual machine services the ability to call
guest kernel functions, thus simplifying the develop-
ment process and enabling tasks that would otherwise be
too difficult to implement in a virtual machine service.
By calling existing guest kernel functions, virtual ma-
chine services leverage the significant code base already
present in operating system kernels. For example, in
Section 2 we show why reading a guest file from a virtual
machine service is difficult. With Plato, this can be done
using a single guest kernel function: kernel read.
By using kernel read, virtual machine services can
read file data without worrying about guest kernel locks
or file system specific implementation details.

To enable guest kernel function calls, Plato understands
guest kernel calling conventions. Plato places arguments
either on the stack or in registers, depending on the call-
ing convention used for the particular function. As a re-
sult, Plato works for both exported and local functions.
The actual function call is invoked by manipulating the
instruction pointer and registers of the virtual machine
and allowing execution to resume. Plato then traps the
return from the function call and restores the register val-
ues before returning the result to the virtual machine ser-
vice. Although Plato resets the registers after a guest
kernel function call is made, perturbations of the virtual
RAM and disk remain. So, if undesired effects result
from a function call, checkpointing and rollback must
be used.

3.4 Checkpoint And Rollback

Plato implements a checkpoint and rollback facility that
allows virtual machine services to revert back to a previ-
ous state. After the checkpoint is taken, the virtual ma-
chine continues to execute; this period of time is referred
to as the checkpoint interval. At the end of a checkpoint
interval, the changes to the virtual state can either be
committed or rolled back to the checkpoint state.

The checkpoint state consists of virtual registers, RAM,
and hard disks. Since there are only a handful of regis-
ters, they are simply copied when the checkpoint is taken
and restored at rollback. Memory and hard disks are too

large to simply copy, so we use copy-on-write to mini-
mize the amount of stored data.

3.4.1 Copy-on-Write Memory

Copy-on-write memory is implemented in the VMM by
write-protecting the entire guest RAM when the check-
point is taken. As a result, any subsequent modifica-
tions are trapped before they occur, and a copy of the
page is saved before the modification is allowed to pro-
ceed. The current state of the virtual machine is in the
guest RAM, and the checkpoint state is stored in a VMM
buffer. Committing changes to the virtual state only re-
quires freeing any VMM buffers used to store check-
point state and allowing the virtual machine to continue
execution on the modified guest RAM. However, rolling
back to the checkpoint state requires all of the check-
point state to be copied from the VMM buffers back to
the guest RAM.

3.4.2 Copy-on-Write Disks

Modified disk blocks are also tracked using copy-on-
write semantics. The VMM already has access to all
disk I/O through the emulation required for virtualiza-
tion. Copy-on-write disks are implemented using a
sparse host files to store any speculative writes. During
a checkpoint interval, any writes to virtual hard disks are
redirected to a sparse host and subsequent reads use the
data in that file. As a result, the virtual partition holds
the checkpointed disk state and the modified blocks are
stored in the sparse host copy-on-write file. This is op-
posite of the memory copy-on-write system that stores
speculative memory state in the virtual RAM and the
checkpoint state is maintained in a VMM buffer. Com-
mitting changes to the checkpoint state requires copying
all speculative writes from the sparse host copy-on-write
file to the virtual partition. In contrast, rolling back only
requires truncating the host copy-on-write file and redi-
recting all subsequent disk activity back to the virtual
partition where the checkpoint state is stored.

Because a host file is used to store copy-on-write data
for the virtual hard disk, speculative writes are stored
in the host file cache. This will appear to speed up the
guest hard disk during the checkpoint period, but once
the state is committed, all of the data is written to the vir-
tual partition. Virtual partitions use Linux raw devices,
so writes to the virtual partition are persistent and result
in immediate disk activity.

5

3.4.3 Network During Checkpoint Period

Checkpoint and rollback for registers, memory, and hard
disks is straightforward, but other aspects of the virtual
computer are not so simple. For example, a virtual net-
work card may output data during a checkpoint, and that
data cannot be revoked on a rollback. Also, TCP net-
work connections have state, and rolling back the virtual
machine memory could make the connection inconsis-
tent and cause it to fail.

To accommodate this, Plato provides virtual machine
services with the option of turning off the network dur-
ing a checkpoint interval. By leaving the network on,
virtual applications that use the network can continue to
execute. However, data sent over the network during
that period cannot be taken back, and network connec-
tions are likely to be dropped after a rollback. If the net-
work is left off, the connection will not be dropped, even
if there is a rollback (network protocols already handle
dropped packets). But, applications that use the network
may not be able to execute. In general, short checkpoints
would probably benefit from turning off network traffic,
but longer checkpoints would likely leave it turned on.

4 Implementation

The Plato prototype was implemented as a C++ library
which is linked into virtual machine services. The vir-
tual machine used is a modified version of the FAU Ma-
chine virtual machine [13] [18]. The FAU Machine vir-
tual machine is a user-mode Linux virtual machine, im-
plemented above a full-blown Linux operating system.
This configuration is referred to as a Type II virtual ma-
chine, where the underlying OS is called the host oper-
ating system. For the Plato prototype, both the guest and
the host operating systems are Linux 2.4.18, running on
an x86 compatible processor.

The guest kernel is compiled with dwarf2 [15] debug-
ging information included. This debugging information
is used to determine information about breakpoints, lo-
cal variable locations, symbol locations, and guest ker-
nel function calling conventions. All breakpoints, func-
tions, and guest kernel structs are specified statically and
exported to Plato via the debugging information.

Plato works both with and without kernel compilation
optimizations. Based on several micro and macro bench-
marks, compiling the guest kernel without optimizations
turned on led to at most a 1.5% performance penalty.
Debugging information is still available on optimized

kernels but may not be complete because source code
lines are sometimes moved in compiled code, and the
compiler overloads registers to store some local vari-
ables. This requires verifying Plato information by hand
for proper execution. This problem is not unique to
Plato; kernel debuggers are faced with the same issues.

The entire guest kernel memory region is mapped into
the Plato address space with write access. This allows
Plato to modify the guest kernel memory without per-
forming a context switch. Although this does speed up
many tasks, it makes checkpointing more complicated.
The VMM only provides support for checkpointing the
virtual machine, so Plato must notify the VMM when
a virtual machine service modifies a guest kernel page
during a checkpoint interval. To provide this functional-
ity, Plato write-protects the guest memory mapping after
taking a checkpoint, and traps any attempted writes be-
fore they happen. When Plato traps a write to the guest
memory, it notifies the VMM of the modification to the
particular page. The VMM resolves all aliasing issues to
ensure guest memory is properly restored at rollback.

5 Example Virtual Machine Services

This section highlights the various capabilities of Plato
and shows how it simplifies the development of virtual
machine services.

We implemented three example services: Secure Smbfs,
FileGuard, and SandMail. Secure Smbfs encrypts file
traffic from Linux SMB clients. FileGuard adds file pro-
tections beyond normal Linux file systems. SandMail
provides intrusion detection via sandboxing email helper
applications, and rolls back upon detection of malicious
actions.

While Plato is suitable for a number of different do-
mains, all of our example virtual machine services are
security related. One problem with security related vir-
tual machine services is that the guest OS may be com-
promised. There is a recent trend of loadable kernel
module backdoors and inserting malicious code using
/dev/kmem. Despite this trend, there are a number of
things that can be done using virtual machines to help in-
crease the security of the guest OS; the specifics of guest
kernel hardening can be found in [10].

Although the guest OS can be made more secure than
its non-virtual counterpart, it can still be attacked. There
are a number of data structures that cannot be protected
by the VMM, and are subject to modification attacks. In
general it is a good idea to have security services that

6

both rely on guest kernel data, and machine level data.
All services presented in this section rely on guest kernel
data and our basic threat model assumes that the guest
kernel is not compromised.

The overall experience using Plato to implement virtual
machine services was favorable. The services required
minimal implementation effort to and the most complex
service took less than 300 lines of code.

5.1 Secure Smbfs

Securing file data in a distributed computing environ-
ment is difficult. File servers often trust nodes on the
local network, so file traffic is sent unencrypted. How-
ever, if a single computer is compromised, the integrity
of the entire organization is at risk. To overcome this de-
ficiency, we developed a virtual machine service, called
Secure Smbfs, that encrypts all smbfs file data traffic
sent over the network (smbfs is the SMB file system
driver found in Linux). This is similar to the Crypto-
graphic File System [4] originally developed by Matt
Blaze.

Our threat model assumes the attacker has access to the
local network and can read data from the file server. The
goal is to obfuscate file data; Secure Smbfs does not ad-
dress file data integrity or encrypt file meta-data. The
service must work with existing client software and not
require any modifications to the file server.

To implement Secure Smbfs, we used Plato to inter-
pose execution of the guest operating system in two
places. First, we set an interposition point in the
smb proc write function which sends cached local
file data over the network to the file server. We en-
crypt the data before it is actually sent, so file blocks
sent over the network and stored on the file server are
protected. Second, we set an interposition point in
the smb proc read kernel function (Figure 5) which
reads file data from the server and copies it to the local
file cache. We interpose after the data is read in from the
network to perform the decryption. The result is that the
file cache stores the decrypted file data locally, but file
data sent over the network or stored on the file server is
encrypted.

Only the file data itself is encrypted, the remainder of
the SMB packet is untouched. As a result, the file server
does not require knowledge of the encrypted data, and
operates without any modifications. This service took
one of the authors a couple of hours and less than 70
lines of code to implement, and he was not familiar with
Linux file system implementation or SMB.

5.2 FileGuard

Attackers often install Trojan binaries on computers they
break into. One defense against this is to periodically
check the integrity of system binaries using an applica-
tion like tripwire. Since integrity is checked only pe-
riodically, modified binaries can cause damage from the
time the break-in occurred until detection. To increase
file security, we implemented the FileGuard virtual ma-
chine service. FileGuard is similar to the Linux kernel
hardening system, LIDS [14], in that files are protected
by additional operating system checks. With these addi-
tional checks, specified files cannot be modified, even if
the attacker has root access.

For our threat model, we assume the attacker has root
access to the machine and all guest user-mode software
is malicious. Because of this threat model, FileGuard
enforces policies at the system call level, disallowing
certain actions for all software. FileGuard is configured
enforce read-only and append-only access to specified
files. Several different system calls are interposed on to
enforce the policies. This level of protection is in addi-
tion to the standard UNIX file system permissions and
prevents attacker with root access from modifying sys-
tem binaries.

There are a number of system calls FileGuard must in-
terpose upon to work. write must be monitored and
any attempted writes to files designated as read-only are
stopped. Also, writes to files specified as append-only
are only allowed when the file position is equal to the
end of the file. truncate, open, and creat are not
allowed to open a file specified as read-only with the
truncate flag specified. mmap and mprotect are moni-
tored to ensure the process does not map a file designate
as read-only into the address space with write permis-
sions. Finally, unlink and rename are not allowed
on files specified as read-only and append-only.

For the rules to work properly, FileGuard must also han-
dle system call argument race conditions and file sys-
tem race conditions [9] [20]. System call argument race
conditions are when a system call is made and the vir-
tual machine service checks the arguments before they
are sent to the kernel. System call race conditions oc-
cur when the virtual machine service checks the argu-
ment, then passes control back to the virtual machine.
However, before the system call is handled by the ker-
nel, a separate thread could be scheduled in and modify
the argument. The result is that the virtual machine ser-
vice makes policy decisions based on different argument
than are sent to the kernel. File system race conditions
are similar except a symbolic link or file data could be
change in the time between when the check is made and

7

smb_proc_read() {
 readFileDataFromNetwork();
 copyDataToFileCache();

 return;
}

Guest Kernel Execution

(1)

(4)

(2)

(3)

 data = readVar("data");
 data_len = readVar("data_len");

 encryptData();
}

smbReadCallback() {

Secure Smbfs Execution

Figure 5: Secure Smbfs. As the guest kernel is executing the smb proc read function, an interposition point is hit
after the file data is copied into the local guest file cache. At (1), execution is transferred to the Secure Smbfs service
and the callback function is called (2). As the callback function runs, the execution of the virtual machine is stopped.
The callback function then encrypts the data in the guest file cache. After the callback function returns (3) the guest
kernel resumes (4).

when the system handles the data. These are referred to
as time-of-check/time-of-use bugs [3].

FileGuard avoids these bugs by not interposing at the
beginning of system calls but rather waiting until the ar-
guments are copied into kernel space and file name res-
olution is complete. This type of fine granularity inter-
position is easy to implement using Plato and is done
by specifying a source code line number to interpose on.
When the interposition point is reached, access to the
current context of the guest OS is provided by reading
the guest local variables. As a result, using interposi-
tion points and reading local variables provides all of
the convenience of implementing the code directly in-
side the kernel, even though the service is running in a
separate execution domain.

When a policy violation is detected, FileGuard forces
the action to fail. Figure 6 shows this for the unlink
system call. To make the system call fail, a guest lo-
cal variable is modified to look like there was an error.
However, guest resources associated with the modified
variable have to be freed, but since the guest no longer
knows about the variable, it must be handled by File-
Guard. To clean up, FileGuard calls a guest kernel func-
tion. Although this is not vital to the functionality of Fi-
leGuard, it is another example of the flexibility provided
by Plato.

Although FileGuard is useful, it can be subverted using
a layer-below attack. A layer-below attack is when the
attacker breaks out of the abstractions provided by the

operating system to make modifications to the system.
For example, an attacker could modify a file by changing
the file cache directly, without using a write system
call on the file. In that case, FileGuard would not be
able to stop the attacker.

5.3 SandMail

Many mail clients use helper applications to handle var-
ious media types. For example, reading a Postscript
email attachment causes Pine to launch a ghostview
process to view the data. Unfortunately, helper appli-
cations can be large and may contain bugs. Because
the data they process comes from untrusted sources,
the bugs can be exploited to give attackers control of
your computer. To secure applications, sandboxing tech-
niques have been applied to limit the damage an ex-
ploited helper process can cause and to detect malicious
payloads [11]. Using Plato, we implemented SandMail
to create a Janus style sandbox around email helper
applications by implementing a number of system call
policies. In addition to the system call policy outlined in
Janus, SandMail checks the integrity of executable files
before they are run and rolls back virtual state when an
attack is detected.

For our threat model, we assume all email attachments
are potentially malicious. Attackers gain access to the
computer through malformed email attachments that are
run inside helper applications. In this example, we ex-

8

sys_unlink() {
 dentry = lookup_hash();

 if(!IS_ERROR(dentry)) {
 vfs_unlink();
 dput(dentry);
 }
}

unlinkCallback() {
 dentry = readVar("dentry");
 inode = dentry−>d_inode−>i_ino;
 if(isReadOnly(inode)) {
 writeVar("dentry",−EACCES);
 callGuestFunc("dput",dentry);
 }
}

FileGuard Execution

dput() {
 freeResources();
 return;
}

(4)

(3)

(6)

(8)

(1) (2)

(5)
(7)

Guest Kernel Execution

Figure 6: FileGuard unlink system call interposition point. When the guest unlink system call is made, FileGuard
insures that files specified as read-only are not deleted. After the arguments have been read and the directory entry
(dentry) is looked up in the guest kernel, the unlinkCallback is invoked via Plato. If the file is specified as
read-only to FileGuard, the system call is canceled by setting the guest dentry variable to specify an error. One
problem is the dentry variable does not get cleaned up because the execution path has been altered. FileGuard calls
the guest kernel dput function to take care of freeing the resources of dentry. When the function call is made,
control returns to the guest kernel where the function is called. When the dput function returns, control passes back
to FileGuard.

amine Postscript files run using ghostview, but the
techniques are applicable to other attachment types.

To implement this, SandMail has to keep track of all
ghostview helper processes and all the processes
they create. This is done by interposing execution in
the do fork guest kernel function, which is used by
the fork, clone, and vfork system calls to cre-
ate new processes. Interposition is done after the pro-
cess has been created but before it is placed on the run
queue. SandMail keeps track of all processes created by
ghostview because the Linux process tree does not
maintain this information.1

SandMail interposes on the execve system call made
by helper processes to monitor new binaries being exe-
cuted. SandMail only allows a specified subset of file
inode numbers to execute. In addition to inode numbers,
SandMail is configured with a valid md5 sum for each
executable file. Before the file is mapped into the ad-
dress space, SandMail reads the file data using the guest

1When a process is created using the Linux clone system call, the
CLONE PARENT flag causes the calling process to become a sibling
of the new process, rather than the parent.

OS kernel read function and verifies the md5 sum.

If an intrusion is detected, SandMail uses the checkpoint
and rollback functionality provided by Plato to correct
for any damage caused by the malicious payload. Sand-
Mail takes a checkpoint before the ghostview helper
application executes. When the process or its children
violates a policy, the user is given the option of rolling
back the state of the system. On rollback, the mem-
ory and hard disks are restored and the ghostview
instance that was exploited is not allowed to run. The ra-
tionale of rollback is that malicious code may have made
perturbations to the system before the intrusion was de-
tected. Rollback allows SandMail to automatically re-
verse any file and memory modifications made by the
exploit, thus nullifying the undetected effects.

Adding the integrity check and rollback features to
SandMail was straightforward. The openssl library is
used to take the md5 sum of the file, and the guest kernel
kernel read function was used to read in the data.
Taking a checkpoint and rolling back both only require
a single Plato function call. Using standard Linux user-
mode libraries and calling guest kernel functions simpli-

9

fied the implementation of SandMail.

Although SandMail is easy to implement and provides
a useful service, it does have limitations. Despite the
SandMail policy on execve, attackers could still exe-
cute a file. For example, the attacker could map a file
into the address space using mmap, and jump to the ap-
propriate location. This is similar to what the kernel
does when the execve system call is made. Although
this is theoretically possible, it is difficult to do in prac-
tice. For buffer overflow exploits, the amount of code
that can be injected into the system is limited. Because
of this, attackers often rely on existing applications to
carry out complex functionality, and the code required
to parse and map an executable file may not fit into the
limited space. Also, this type of behavior is anomalous
and could be added into the SandMail policy to aid in
the detection of malicious attachments.

SandMail assumes that most email attachments are not
malicious. For reasons outlined in the Section 3, rolling
back a checkpoint may be an inconvenience to the user
because of dropped network packets and lost work. This
is acceptable if it does not occur often but could be prob-
lematic if the frequency increases.

6 Performance Evaluation

In this section, we evaluate the performance impact of
using Plato to implement virtual machine services.

All tests are run on an AMD Athlon 1800+ CPU with
512 MB of RAM networked via 100 Mb Ethernet, and
using a Samsung SV4084 IDE disk. The virtual machine
is a modified version [18] of FAUmachine [13], running
a Linux 2.4.18 guest kernel. Other guest software comes
from the default RedHat 7.0 installation. The virtual ma-
chine is configured with 192 MB of virtual RAM. The
host is running a RedHat 9.0 installation with a version
of the Linux 2.4.18 kernel that is modified to increase the
performance of the virtual machine [18]. Our version
of FAUmachine runs this set of macrobenchmarks 14-
35% slower than a standalone system [18]. This paper
focuses on the overhead added by Plato and the VM ser-
vices rather than on the overhead of the basic virtual ma-
chine, so we report all results relative to the performance
of FAUmachine without Plato or any VM services.

1.05
1.00 1.00

0

0.2

0.4

0.6

0.8

1

1.2

Kernel POV-Ray SPECweb

R
el

at
iv

e
P

er
fo

rm
an

ce

Figure 7: Interposition macrobenchmark results. This
figure shows the performance of three macrobench-
marks, each running in a virtual machine that is being
monitored by the FileGuard VM service. All perfor-
mance results are shown as normalized runtime, where
the baseline result is obtained by running the benchmark
in a virtual machine without Plato or any VM services
running.

6.1 Interposition Overhead

We use a number of macrobenchmarks to measure the
impact of interposition in Plato. The kernel compile
benchmark compiles the Linux 2.4.23 kernel using the
default configurations. The SPECweb99 benchmark
measure web server performance on an Apache web
server. POV-Ray is a CPU-bound ray-tracer. These
benchmarks are similar to the I/O-intensive and kernel-
intensive tests from [12] and [18]. We measure interpo-
sition overhead for each macrobenchmark with the File-
Guard service. Overhead for the Secure Smbfs service
is dominated by encryption rather than Plato, and over-
head for the checkpointing done by SandMail is shown
in the next section. All results represent the average of
five runs; variance for all results is below 1%.

Figure 7 shows that Plato with the FileGuard VM ser-
vice adds no measurable overhead to POV-Ray and
SPECweb99. Plato and FileGuard add 5% overhead to a
kernel compile, due to the high rate (about 1000/second)
of interpositions generated by this benchmark.

We use two microbenchmarks to quantify more precisely
the overhead of VM service interposition (Table 1). The
first microbenchmark, null getpid, measures the time to
interpose on a guest system call with no other action
taken on an interposition. The second microbenchmark,

10

Benchmark Results
Null Getpid 12 � s per interposition point

FileGuard Micro 40 � s per write syscall

Table 1: Interposition microbenchmarks. Null Getpid
calls the getpid system call, with a VM service that
interposes on each guest system call. FileGuard Micro
calls the write system call on a FileGuard-protected
file, with the FileGuard VM service running. All times
are in addition to the same test run without any Plato
interaction.

FileGuard micro, measures the time to interpose on a
guest write system call to a FileGuard-protected file,
with the FileGuard VM service running. The null get-
pid microbenchmark adds 12 � s to each getpid call,
and the FileGuard micro microbenchmark adds 40 � s to
each write call. The majority of this overhead is due
to context switching between the virtual machine and
virtual machine service processes. Each interposition
point requires two hardware breakpoints, leading to four
context switches between the two processes. FileGuard
also calls a guest kernel function to handle write sys-
tem calls, which induces two additional context switches
per function call. Context switching in x86 processors
is expensive because the TLB must be flushed on each
switch [19]. To reduce the number of context switches,
portions of the virtual machine service code could be
safely inserted into the guest address space using binary
re-writing techniques [8] [2].

6.2 Checkpoint Overhead

The SandMail virtual machine service implemented for
this paper uses checkpoint and rollback to correct for
malicious Postscript attachments. The checkpoint inter-
val spanned several seconds on an interactive mail ses-
sion in which we opened several Postscript attachments.
We perceived no overhead relative to running without
the SandMail service.

We next investigate in more detail the overhead of tak-
ing a checkpoint, executing in a checkpoint period, and
committing the current execution state or rolling back to
the checkpointed state.

Taking a checkpoint adds 22ms on our platform. The
main task in taking a checkpoint is write protecting the
guest’s physical memory so the VMM can trap any mod-
ifications and implement copy-on-write RAM.

51.9

51.9

44.6

5.19

0.19

0 10 20 30 40 50 60

Checkpoint / Commit

Checkpoint / Rollback

Baseline

Time (sec)

Apache Install

Commit/Rollback

Figure 8: Apache install checkpointing. A full Apache
compile and installation is used to quantify checkpoint
overhead. The checkpoint period takes the same amount
of time regardless if you commit or rollback the state.
The commit time and rollback times are in addition to
the checkpoint period time.

During a checkpoint interval, Plato adds overhead pri-
marily by copying memory pages before they are writ-
ten. After the checkpoint interval completes, the VM
service can either rollback to the last checkpoint or
commit the current execution state. If the VM service
rolls back to the last checkpoint, Plato incurs overhead
primarily by restoring the original version of modified
memory pages. If the VM service commits the cur-
rent execution state, Plato incurs overhead primarily by
copying the new version of modified disk blocks from
the sparse host sparse to the virtual disk. Plato gains
some performance by writing modified disk blocks to
the sparse host file during the checkpoint interval; these
disk blocks are stored temporarily in the host file cache,
which may defer writing them to disk.

To quantify these effects, we use a benchmark where the
Apache web server source code is unpacked, compiled,
and installed. A checkpoint is taken before the source
in unpacked, and the checkpoint interval lasts until after
the installation is complete. Measurements are made for
the cases when the checkpoint is rolled back and when
the speculative execution is committed.

Results for checkpointing the Apache installation are
shown in Figure 8. During the checkpoint interval, the
guest modifies approximately 10,000 unique memory
pages and 45,000 unique disk blocks. The net result
of Plato’s checkpointing mechanism is an additional 7.3
seconds (16%) to the time to unpack, compile, and in-

11

stall Apache.

At the end of the checkpoint interval, rolling back the
state takes an additional 0.19 seconds, due to the 40MB
of data that must be copied back into the virtual RAM.
At rollback, no disk state has to be restored since the
speculatively modified disk blocks are not in the virtual
partition. If the VM service chooses to commit the spec-
ulatively modified state, it need not roll back the mod-
ified virtual RAM, but it must instead propagate 23MB
of disk blocks to the virtual disk partition. Committing
the speculatively executed state takes 5.1 seconds.

7 Alternative Approaches and Related
Work

The functionality added by VM services could be im-
plemented in several other ways. One traditional strat-
egy is to modify the target operating system by recom-
piling it, inserting a kernel module [26], or using dy-
namic instrumentation [23]. Like Plato, this strategy al-
lows full access to kernel functions. The main advantage
of Plato over OS modifications is Plato’s ability to lever-
age the capabilities provided by a virtual machine. Be-
cause Plato uses a virtual-machine platform, it can easily
support checkpoint and rollback to allow arbitrary func-
tionality to be added without perturbing the system state.
As another example of the advantage accrued by a VM
approach, BackTracker [18] utilized ReVirt’s ability to
replay executions [6] to capture and analyze intrusions
while BackTracker was being developed.

Modifying the target OS could be done in conjunction
with a virtual machine approach by adding a custom in-
terface to the VMM to the guest OS. Using this VMM in-
terface, guest kernel modules could have access to func-
tionality like checkpointing virtual state, and the VMM
could invoke guest OS functionality. This approach was
used by VMware to free up physical memory pages used
by the guest [24]. Plato’s advantage over this approach
is it allows the VM service to run in another user pro-
cess on the host, which is often more convenient than
modifying the VMM and more isolated from the guest
than functionality implemented entirely in the guest OS.
At the same time, Plato provides the convenience and
power of calling guest kernel functions and modifying
guest kernel variables.

Garfinkel and Rosenblum’s intrusion detection VM ser-
vice [10] uses manual reconstruction to understand
events inside the virtual machine. This task of recon-
structing guest OS semantics is encapsulated in an OS

interface library specific to each guest OS. The OS in-
terface library was based on the crash tool to leverage
the kernel’s debugging information and understand guest
kernel data structures. BackTracker [17] also uses man-
ual reconstruction to understand events inside the virtual
machine. BackTracker compiles the guest kernel head-
ers into the VM service to help it navigate guest kernel
data structures.

Plato draws on checkpointing and interposition tech-
niques that have been used by many projects [16] [7].
Virtual machine checkpoint and rollback were used by
Hypervisor-based fault tolerance [5] and ReVirt [6] and
is supported by commercial products like VMware [1].

� Denali [25] proposes a uniform API for VMMs to ex-
port to allow VM services to interpose on and modify the
execution of virtual machines. � Denali’s API focuses on
machine-level abstractions and events, such as interpos-
ing and extending virtual devices; it does not address
the semantic gap between virtual machines and VM ser-
vices. In contrast, Plato allows a VM service to interpose
on and call arbitrary guest OS functionality and access
to guest OS variables.

8 Conclusions

Virtual machines are well suited for adding new func-
tionality to system level software. They provide a con-
venient abstraction of the computer that allows new VM
services to utilize both machine-level interfaces and the
semantic information of the guest software. However,
existing methods for using guest semantic information
in VM services are limited.

We developed a new platform to enable VM services
to more easily bridge the semantic gap between guest
software and hardware level events. Plato allows VM
services to interpose execution at arbitrary places in the
guest kernel, access guest local variables, call guest ker-
nel functions, and checkpoint and rollback virtual state.
Using Plato, we developed three example VM services:
Secure Smbfs, FileGuard, and SandMail. Each of these
VM services required minimal implementation effort
and induced a modest runtime overhead. The most com-
plicated service took less than 300 lines of code to im-
plement, and the slowest running macro benchmark re-
sulted in a 5% runtime overhead increase.

12

References

[1] VMware Virtual Machine Technology. Technical
report, VMware, Inc., September 2000.

[2] Vasanth Bala, Evelyn Duesterwald, and San-
jeev Banerjia. Dynamo: a transparent dynamic
optimization system. ACM SIGPLAN Notices,
35(5):1–12, 2000.

[3] Matt Bishop and Michael Dilger. Checking for
Race Conditions on File Accesses. USENIX Com-
puting Systems, 9(2):131–152, 1996.

[4] Matt Blaze. A cryptographic file system for UNIX.
In ACM Conference on Computer and Communi-
cations Security, pages 9–16, 1993.

[5] Thomas C. Bressoud and Fred B. Schneider.
Hypervisor-based fault tolerance. ACM Transac-
tions on Computer Systems, 14(1):80–107, Febru-
ary 1996.

[6] George W. Dunlap, Samuel T. King, Sukru Cinar,
Murtaza Basrai, and Peter M. Chen. ReVirt: En-
abling Intrusion Analysis through Virtual-Machine
Logging and Replay. In Proceedings of the 2002
Symposium on Operating Systems Design and Im-
plementation (OSDI), pages 211–224, December
2002.

[7] E. N. Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and
David B. Johnson. A survey of rollback-recovery
protocols in message-passing systems. ACM Com-
puting Surveys, 34(3):375–408, September 2002.

[8] Alan Eustace and J. Bradley Chen. ATOM Ker-
nel Instrumentation Guide Version 0.2: INITIAL
DRAFT, June 1995.

[9] Tal Garfinkel. Traps and Pitfalls: Practical Prob-
lems in System Call Interposition Based Security
Tools. In Proceedings of the 2003 Network and
Distributed System Security Symposium (NDSS),
February 2003.

[10] Tal Garfinkel and Mendel Rosenblum. A Virtual
Machine Introspection Based Architecture for In-
trusion Detection. In Proceedings of the 2003 Net-
work and Distributed System Security Symposium
(NDSS), February 2003.

[11] Ian Goldberg, David Wagner, Randi Thomas, and
Eric A. Brewer. A Secure Environment for Un-
trusted Helper Applications. In Proceedings of the
1996 USENIX Technical Conference, July 1996.

[12] Kinshuk Govil, Dan Teodosiu, Yongqiang Huang,
and Mendel Rosenblum. Cellular disco: resource
management using virtual clusters on shared-
memory multiprocessors. ACM Transactions on
Computer Systems, 18(3):226–262, August 2000.

[13] H. J. Hoxer, K. Buchacker, and V. Sieh. Im-
plementing a User-Mode Linux with Minimal
Changes from Original Kernel. In Proceedings of
the 2002 International Linux System Technology
Conference, pages 72–82, September 2002.

[14] Xie Huagang. Build a secure system with LIDS,
2000. http://www.lids.org/document/build lids-
0.2.html.

[15] UNIX International. Dwarf debugging information
format. Technical report, Programming Languages
SIG, July 1993.

[16] Michael B. Jones. Interposition Agents: Transpar-
ently Interposing User Code at the System Inter-
face. In Proceedings of the 1993 Symposium on
Operating Systems Principles, pages 80–93, De-
cember 1993.

[17] Samuel T. King and Peter M. Chen. Backtracking
Intrusions. In Proceedings of the 2003 Symposium
on Operating Systems Principles (SOSP), October
2003.

[18] Samuel T. King, George W. Dunlap, and Peter M.
Chen. Operating System Support for Virtual Ma-
chines. In Proceedings of the 2003 USENIX Tech-
nical Conference, pages 71–84, June 2003.

[19] Jochen Liedtke. Improved address-space switching
on Pentium processors by transparently multiplex-
ing user address spaces. Arbeitspapiere der GMD
No. 933, GMD — German National Research Cen-
ter for Information Technology, Sankt Augustin,
September 1995.

[20] David Mazières and M. Frans Kaashoek. Secure
applications need flexible operating systems. In
Proceedings of the 6th Workshop on Hot Topics
in Operating Systems (HotOS-VI), pages 56–61,
Chatham, Cape Cod, Massachusetts, May 1997.
IEEE Computer Society.

[21] Robert Meushaw and Donald Simard. NetTop:
Commercial Technology in High Assurance Appli-
cations. Tech Trend Notes: Preview of Tomorrow’s
Information Technologies, 9(4), September 2000.

[22] Constantine P. Sapuntzakis, Ramesh Chandra, Ben
Pfaff, Jim Chow, Monica S. Lam, and Mendel
Rosenblum. Optimizing the Migration of Virtual
Computers. In Proceedings of the 2002 Symposium

13

on Operating Systems Design and Implementation
(OSDI), December 2002.

[23] Ariel Tamches and Barton P. Miller. Fine-grained
dynamic instrumentation of commodity operating
system kernels. In Proceedings of the 1999 Sym-
posium on Operating Systems Design and Imple-
mentation, pages 117–130, 1999.

[24] Carl A. Waldspurger. Memory Resource Manage-
ment in VMware ESX Server. In Proceedings of
the 2002 Symposium on Operating Systems Design
and Implementation (OSDI), December 2002.

[25] Andrew Whitaker, Richard S. Cox, Marianne
Shaw, and Steven D. Gribble. Constructing ser-
vices with interposable virtual hardware. In To ap-
pear in NSDI 2004, 2004.

[26] C. Wright, C. Cowan, S. Smalley, J. Morris, and
G. Kroah-Hartman. Linux security modules: Gen-
eral security support for the linux kernel. In Pro-
ceedings of the 2002 USENIX Security Symposium,
2002.

14

