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Abstract

We compare two weakly supervised graph-based classification algorithms:
spectral partitioning and tripartite updating. We provideresults from empir-
ical tests on the problem of number classification. Our results indicate (a)
that both methods require minimal labeled data, (b) that both methods scale
well with the number of unlabeled examples, and (c) that tripartite updating
outperforms spectral partitioning.

1 Introduction

Information extraction (IE) systems analyze unrestrictedtext in order to extract in-
formation about pre-specified types of events, entities or relationships. Tradition-
ally, IE systems [9, 4, 7] have focused on the extraction and classification of entities
into major categories like people, places, organizations,numbers, and dates. Many
applications such as Question Answering (QA) [17, 13] require much finer grained
entity categories (up to 100 and more phrase types overall) to identify candidate
phrases for answers to factual questions. In such applications, high-level classifi-
cation is only partially helpful.

In this paper, we consider the problem of number classification which has been
somehow overlooked in the literature on IE. Number classification is particularly
important in question answering systems. There are more than a dozen types of
numbers which can be used to answer different question types(e.g., “What is the
temperature in Phoenix?”, “What year did Columbus reach America?”, “What is
the value of the Dow Jones index?”, etc). We will compare two types of graph-
based algorithms for weakly supervised classification, andempirically evaluate
their performance on number classification. Our machine learning approaches are
based on a minimal amount of supervision with only a small number

� ���
of la-
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beled examples. Such algorithms are known in the literatureas weakly supervised
algorithms.

2 Related work

2.1 Weakly-supervised learning

One of the earliest papers on bootstrapping for NLP problems, [21] presents an
unsupervised learning algorithm for word sense disambiguation that, when trained
on unannotated English text, rivals the performance of supervised techniques that
require time-consuming hand annotations. The algorithm isbased on two powerful
constraints – that words tend to have one sense per discourseand one sense per
collocation – exploited in an iterative bootstrapping procedure. Tested accuracy
exceeds 96%.

Blum and Mitchell [5] introduced co-training for the problem of classifying
Web pages based on two views including different types of features (one based on
the words in the pages themselves and another on the words on the hyperlinks of
the pages pointing to them). Their main contribution is to show how two views can
iteratively train each other to label a set of data.

Collins and Singer [7] discuss the use of unlabeled examplesfor the problem
of named entity classification. They develop a technique that uses only 7 man-
ually labeled “seed” examples to classify entities into three classes plus “other”.
Their approach works because given a particular instance toclassify, many fea-
tures correlate with any particular class and one can thus iteratively augment the
set of features associated with a given class. Two algorithms are presented. The
first method uses a decision list algorithm similar to that of[21], with modifications
motivated by [5]. The second algorithm extends ideas from boosting algorithms,
designed for supervised learning tasks, to the framework suggested by [5].

Recent theoretical results can be found in [1], who refines the analysis of co-
training, defines and evaluates a new co-training algorithmthat gives a theoretical
justification for the Yarowsky algorithm [21], and shows that co-training and the
Yarowsky algorithm are based on different independence assumptions.

Nigam et al. [15] show that the accuracy of text classifiers can be improved
by adding large collections of unlabeled documents. The authors use an algorithm
based on a combination of Expectation Maximization (EM) andNaive Bayes. The
initial classifier is trained on labeled data and then used tolabel the unlabeled
set. The next classifier uses the large pool as part of its training process. After
some iterations, the algorithm converges. Some of the improvements on this basic
algorithm, proposed by Nigam et al. include adding a weighting factor to determine
the contribution of the unlabeled data and the use of multiple mixture components
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for each class. The paper reports a reduction in classification error on three real-
world tasks by up to 30%.

Collins and Singer [7] also investigate EM as a weakly supervised learning
algorithm for the application of named entity classification. The performance was
shown to be not as good as the Co-boosting algorithm proposedby the authors.

2.2 Graph-based classification and clustering

Graph-based methods for clustering and classification haveexisted for decades.
A classic example is graph partitioning (see e.g., [11]). That algorithm is used to
identify groups of nodes in a graph that are more strongly connected internally than
to each other. Kernighan and Lin’s method is based on breadthfirst traversal of a
graph� and splits it into two components� � and�� such that� � � � � �� and�� � � � ��� � � �� ���

such that the cost of the partitioning, which is equal to the
number of edges that cross the partitioning (� � �	 �� � 
 �� � �), is minimal.

Other techniques for graph partitioning are based on the spectrum (set of all
eigenvectors) of the graph. Spectral partitioning (a.k.a.bisection) uses the Lapla-
cian of a graph� . The Laplacian is symmetric and the values of all rows and
columns add up to zero. The second smallest eigenvalue of theLaplacian,�� �� �� ��

,
is known as the algebraic connectivity of the graph. The vector corresponding to
it is called the Fiedler vector. If a graph� consists of two subgraphs� � and��
such that there are relatively few edgesbetween� � and�� compared to the num-
ber of edgeswithin each of them, then the Fiedler vector is effectively a two-class
classifier. If� and� are two components of the Fiedler vector, then

� � � � � �� elements� and� of � correspond to the same subgraph (� �
or ��).

while
� � � � � �� elements� and� of � correspond to different subgraphs.
Graph-based partitioning methods can in general be appliedto more than 2-way

classification, although their accuracy is not very high if the underlying data differ
significantly from the assumed distribution. One such method, recursive spectral
bisection, is described in detail in [16].

A bipartite graph consists of two components of differing functionality. Edges
exist only across components and not within a single component. Bipartite graphs
are very popular in information retrieval and social network analysis. For example,
one of the subgraphs can represent a set of documents and another, a set of terms
in them or one of the components may be people and the other – the clubs in which
they belong. Bipartite graphs are a very useful representation for classification
problems. Several incarnations of methods based on bipartite graphs exist. Klein-
berg’s HITS algorithm [12] modelshubs(Web pages that contain a lot of pointers
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to important pages) andauthorities(the important pages that are pointed to by the
hubs). For example, a list of bookmarks on sports is a hub while the home pages of
sports organizations and teams such as FIFA or Manchester United are authorities.
The HITS algorithm uses an iterative method to compute the hub and authority
scores of each page. In his model,� is the vector of the hub scores and� is the
vector of the authority scores. The iterative process updates� and� in turn as
follows: � � �� � and� � �� . This process converges to the stationary values
of � and� .

In [3], Beeferman and Berger describe a method for analyzinguser transac-
tions on an Internet search engine to discover clusters of queries and URLs. Their
model uses information about each user query as well as the document that the
user clicked on from the list presented by the search engine.In this case, one of
the components of the bipartite graph corresponds to the queries and the other one
to the URLs. Beeferman and Berger apply an agglomerative clustering method to
identify groups of related queries and groups of related pages. This method doesn’t
use any information about the textual content of the queriesor pages and instead,
makes all of its decisions based on the link information alone.

In [22], the authors propose a method for bipartite graph clustering that is based
on the singular value decomposition (SVD) of the associatededge weight matrix
of the bipartite graph. They apply their technique successfully on document clus-
tering.

[23] describe a classification method based on the Gaussian random field
model. The represent labeled and unlabeled data as verticesin a weighted graph
with edge weights representing the similarity between datainstances. They apply
belief propagation methods to identify the labeled node that is closest based on the
graph topology to a given unlabeled instance. Results on digit classification are
very promising.

[14] present a simple spectral clustering algorithm implemented in a few lines
of matlab. They analyze the algorithm based using matrix perturbation theory and
determine the conditions under which it can be expected to dowell in theory.

In Natural Language Processing, [6] describe an application of spectral cluster-
ing [14] to the problem of unsupervised clustering of Germanverbs. They present
results comparing the output of the spectral algorithm to a gold standard.

Vert and Kanehisa [20] present an algorithm to extract features from high-
dimensional gene expression profiles, based on a graph that indicates which genes
are known to participate together in reactions in metabolicpathways.

To classify a large number of unlabeled examples, [19] startfrom a small num-
ber of labeled examples and implement a Markov random walk over the unlabeled
examples. Results are shown on synthetic examples and text classification prob-
lems.
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2.3 Numbers

Number classification has been traditionally overlooked inthe NLP literature. A re-
cent paper [18] discusses numbers in the context of non-standard “words” (NSWs)
which include time expressions, dates, currency amounts, abbreviations, and acronyms.
They indicate that such words are actually quite common in textual documents and
furthermore (coming from a speech perspective) there are nostandard approaches
to generate pronunciations for them automatically. Numerous Question Answer-
ing papers (e.g., [17, 13]) show that identifying and correctly labeling numerical
expressions can significantly help question answering. [2]also point out the per-
vasiveness of numerical expressions on Web pages and indicate their importance
in document retrieval. More specifically, Agrawal et al. focus on the problem
of retrieving documents with particular attribute-value pairs (e.g., power=660mW,
speed=18ns, etc.) without having the attributes for each number annotated. They
claim that the distributions of numbers for each possible attribute overlap very lit-
tle and that one can infer the correct attribute with reasonable accuracy purely by
looking at the number itself.

3 Number classification

Our goal is to classify numbers (integers) automatically extracted from a text cor-
pus (the APW section of the AQUAINT corpus distributed by theLDC). The APW
section is 731 MB large and contains 113M word tokens, however we have only
used a small portion of it (as described below) for our experiments.

A cursory analysis of our corpus indicates that there are more than a dozen
significant classes of numbers.

Numbers are a special type of entity with many interesting properties, e.g., if
the numbers under investigation are not entirely random butsomehow socially or
naturally related, the distribution of the first digit is notuniform. More accurately,
digit D appears as the first digit with the frequency proportional to log10(1 + 1/D).
In other words, one may expect 1 to be the first digit of a randomnumber in about
30% of cases, 2 will come up in about 18% of cases, 3 in 12%, 4 in 9%, 5 in 8%,
etc. This is known as Benford’s Law. While we don’t use this law in this paper, we
have empirically validated its applicability to the APW corpus. For example, there
are 53,107 instances of “1”, 45,090 instances of “2”, 34,395instances of “3”, etc.

For our experiments, we consider the following four types ofnumerical enti-
ties: quantity, time, money, and miscellaneous, effectively merging many of the
classes above into a single class “Miscellaneous”.

� Quantity: numbers used for counting physical objects or units, such as “1,012

5



Class Example
Quantity 25 people
Money 167 3/8
Time 8 a.m., Sept. 17
Score 5 to 2, 4-under-par 68
Age Kozlov, 24
Address 201 Pennsylvania Ave
Duration 12 years
Percent 25 percent
Temperature Highs of 28 to 32
Distance 4 feet
Telephone (212) 555-1902
StockIndex 10000
Measure 10 mph
Miscellaneous Women’s 100, No. 9, Game 4

Table 1: Sample numbers extracted from the APW corpus.

people”, “160 miles”, etc.

� Time: any number that represents the notion of time, such as year, date, etc.

� Money: all numbers that represent monetary value, such as “$100”, “2 mil-
lion dollars”, etc.

� Miscellaneous: all other numbers that don’t fall into the categories above,
such as rate, percentage, address, phone number, etc.

4 Classification algorithms based on bipartite graphs

Both algorithms that we use for number classification are based on bipartite graphs.
We are considering a set of objects

�
which is split into two classes, labeled

�
and unlabeled� .

We are considering joint binary features� ��� 
 �� � which is 1 if feature
��

holds on object
��

. For example,� may be a feature that corresponds to the
word to the left of an object. In that case, given the word sequence “today 5
people”, the following two features can be defined:� ������	 

 
 ��

 � � �

while
� ��	 ������	 

 
 ��

 � is 0.

The representation is illustrated in Figure 1.
The following notation is used:

�
�

: the set of features
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Figure 1: Bipartite representation
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�
�

: the set of labeled (positive) examples

� � : the set of unlabeled examples

� � �: the connectivity matrix (represented by the bold lines) between
�

and
�

� � �: the connectivity matrix (represented by the dashed lines)between
�

and
� .

The initial values are set as follows:
�� �

is equal to the number of distinct
features associated with either

�
or � ; each component

� � is set to 0.5; the initial
values of

�� are all 1; and the initial values of�� are all 0.5. The idea is that
a 1 represents a certain connection between a feature or a data instance with the
positive class and a 0 indicates a certain connection with the negative class.

In this paper, each feature is based on the following historyfor each object� �:
� � � �� ��� 
� �� � 
� � 
� �� � 
� ��� 
 � �� � ��

where
� �� � � is therangeof a number (� � � �, � � � � � ��,

�� � � � � ��,
�� � � � � ���), etc. This feature is based on an idea by Jerry Hobbs [10] who
claims that humans tend to group numbers into “half-orders of magnitude”.

In the rest of this chapter we will describe in turn two graph-based classification
algorithms, Tripartite Updating and Spectral Partitioning.

4.1 Tripartite Updating

This is the novel algorithm that we introduce in this paper. It is essentially a bipar-
tite method, however we call it tripartite for reasons that should be evident in the
rest of this subsection. Tripartite updating is related to the principal eigenvector
of a stochastic Markov process. This algorithm is a variant of the HITS algorithm
(it uses a bipartite underlying structure and its stationary solution is computed it-
eratively), though it differs from it in three important ways: (a) the “right-hand”
component of the graph is split into two groups: labeled and unlabeled data in-
stances – therefore the name “tripartite”, (b) there is an initial assignment of values
for the labeled examples, and (c) the scores of the labeled examples are not allowed
to change with time.

The actual algorithm is described here.

� 	
� � � �� � � � 	
� ��

� 	
� � � �� 	
� � � 	
� ��
� 	
� �� � � �� � 	
� � � 	
�
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This process iteratively updates
�

and� . Note that
�

is not updated during
this process.

The final� vector is then normalized according to the following formula:

� � � � � �

� � �� �

4.2 Spectral Partitioning

We use an implementation of Spectral Partitioning (see 2.2)implemented as part
of themeshpartpackage developed by Gilbert et al.[8].

4.3 Four-way classifier

We built individual classifiers for each of the four binary cases (money:yes/no,
time:yes/no, quantity:yes/no, miscellaneous:yes/no). In the four-way classification
scheme, we assign an unlabeled data instance into the class for the classifier that
gives it the highest score. An example is shown in Figure 2. The history-based
features are marked as follows:bb is the wordbefore-before� � (that is, it is� ���),
b is � �� �, a is � �� � andaa is � ���. The final two features are the Hobbs range of
the number and the number itself (not shown in the Feature representation column
in the Figure). Note that sometimes the context is incomplete, i.e., some features
(e.g., both words on the left of� �) are not defined. This is due to the way that
we extracted context. Instead of picking out entire sentences from the corpus,
we limited ourselves to (approximately) 80-byte substrings from the documents as
formatted in the original SGML files (that is, each sentence may span several lines
but we would look at one line at a time).

The column labeled “Correct class” indicates the gold standard for this word
and the column “Assigned class” shows the output of the four-way classifier (based
on the largest of the values in the four per-class columns).

5 Experimental results

We used two disjoint sets of numbers for the experiments: labeled data (
�

) and
unlabeled data (� ). We limited ourselves to 5,000 unlabeled examples (extracted
randomly, with replacement), of which 300 were manually annotated (only for
evaluation purposes). We also marked up 200 labeled examples (split into four
classes). Again, the labeled examples and the unlabeled examples are drawn inde-
pendently and don’t overlap. The frequencies of these classes are shown in Table 2.
The classes are very unevenly distributed with the majorityclass (miscellaneous)
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Nb Feature representation Correct class Money Quantity Time Misc Assigned
2 bb 300,000 bto a aamillion. 0 3 Money 0.4776 0.4543 0.6387 0.5231 Time
10 bb of b every a aaacres 410 Quantity 0.4773 0.4731 0.6390 0.4873 Time
18 bb 14 b to a aacents 1030 Money 0.3671 0.6241 0.4461 0.5059 Quantity
8 bb game bat a aap.m. 410 Time 0.4774 0.4356 0.6393 0.4873 Time
202 bb of b the a aaproperties 101300 Quantity 0.3629 0.5292 0.4376 0.3976 Quantity
17 bb the b Sept. a aadeath 1030 Time 0.3666 0.6053 0.6426 0.5237 Time
27 bb 5 b 24 a aa30 1030 Misc 0.3662 0.5864 0.4446 0.5057 Quantity
12 bb runs band a aahits 1030 Misc 0.3665 0.5865 0.4451 0.5058 Quantity
218 bb to b get a aasignatures 101300 Quantity 0.3624 0.4916 0.4369 0.3975 Quantity
56 bb at b least a aa 31 100 Quantity 0.9375 0.6055 0.4504 0.5420 Money
199 bb rounds bin a 8, aaon 101300 Misc 0.0021 0.1317 0.0039 0.0003 Quantity
22 bb squads bexecuted aaapeople 1030 Quantity 0.3662 0.5864 0.4445 0.5057 Quantity

Figure 2: The four-way tripartite classifier illustrated.

labeled as Miscellaneous. We will report classification results under two conditions
(similar to [7]): (a) including and (b) ignoring the miscellaneous (noise) category.

Class Frequency Percentage
Money 13 6.5%
Quantity 72 36.0%
Time 16 8.0%
Miscellaneous 99 49.5%

Table 2: Frequencies of the four classes among the 200 labeled examples.

5.1 Evaluation Measures

We will report a number of measures of performance: overall accuracy (how many
numbers were classified into each of the four classes), as well the per-class Preci-
sion and Recall scores for the four classes.

We will report these measures under two conditions. In the first case, we will
include the items labeled as “miscellaneous” in the gold standard while we will
ignore them in the second case.

5.2 Results

Tables 3 and 4 show our final results.
The 4-way classification results are very interesting. Tripartite Updating out-

performs Spectral Partitioning. None of the two methods seemed to change its
performance when given 200 instead of 50 training (labeled)examples. This is
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50 training examples 200 training examples
Tripartite Spectral Tripartite Spectral

Accuracy 0.28 0.29 0.28 0.08
1000 Money P/R 0.06/0.33 0/0 0.07/0.33 0.05/0.67
unlabeled Quantity P/R 0.47/0.61 0.38/0.39 0.46/0.61 0.75/0.08
examples Time P/R 0.19/0.67 0.04/0.33 0.17/0.67 0.06/0.83

Misc P/R 0/0 0.45/0.29 0/0 0.25/0.02
Accuracy 0.28 0.24 0.28 0.17

5000 Money P/R 0.06/0.33 0.06/0.67 0.07/0.33 0/0
unlabeled Quantity P/R 0.47/0.61 0/0 0.46/0.61 0/0
examples Time P/R 0.19/0.67 0/0 0.17/0.67 0.03/0.33

Misc P/R 0/0 0.58/0.75 0/0 0.51/0.71

Table 3: Comparative evaluation of Tripartite Updating andSpectral Partitioning
on 100 data points from a set of 1000 or 5000 unlabeled data points. The numbers
in this figure are for 4-way classification.

encouraging as it indicates the power of even a minimal number of training exam-
ples. Finally, going from 1000 to 5000 unlabeled examples didn’t seem to change
performance either. This is an encouraging indication thatthese two methods are
scaleable to large amounts of unlabeled data.

The 3-way classification results were obtained by ignoring the Miscellaneous
category. The classifier decision was based only on the threebinary classifiers
for the other three classes while all instances labeled as Miscellaneous in the gold
standard are ignored from the computation. The idea here is that in the future one
could write classifiers for the classes currently lumped as Miscellaneous and avoid
the awkward class frequency distribution that makes Miscellaneous as likely as
the other three classes combined. The overall performance on 3-way classification
(0.58 accuracy) is significantly higher than 4-way classification (0.28).

6 Conclusion and future work

We presented and compared two weakly supervised graph algorithms for number
classification. The results are quite encouraging for future exploration. We found
out that both algorithms don’t require large amounts of training examples and that
they appear to scale well to different ratios between the number of labeled training
examples and the number of unlabeled examples. Future experiments are needed
to verify these properties. We are also particularly interested in applying similar
techniques to other problems such as word sense disambiguation, named entity
classification, and document classification. We will also investigate the algorithmic
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50 training examples 200 training examples
Tripartite Spectral Tripartite Spectral

Accuracy 0.58 0.46 0.48 0.17
1000 Money P/R 0.17/0.33 0/0 0.17/0.33 0.10/0.67
unlabeled Quantity P/R 0.85/0.61 0.72/0.58 0.81/0.61 0.80/0.11
examples Time P/R 0.40/0.67 0.13 0.50 0.44/0.67 0.12/0.83

Accuracy 0.58 0.13 0.58 0.13
5000 Money P/R 0.17/0.33 0/0.13 0.17/0.33 0/0
unlabeled Quantity P/R 0.85/0.61 0.50/0.03 0.81/0.61 0/0
examples Time P/R 0.40/0.67 0/0 0.44/0.67 0.13/1

Table 4: Comparative evaluation of Tripartite Updating andSpectral Partitioning
(3-way classification).

properties of these methods by comparing them to known algorithms such as Naive
Bayes and Co-training. We are currently working on an enhancement of tripartite
updating with active learning.
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