
Network Maps beyond Connectivity

Cheng Jin Zhiheng Wang Sugih Jamin
{chengjin, zhihengw, jamin}@eecs.umich.edu

December 1, 2004

Abstract

Knowing network topology is becoming increasingly important for a number of applications such as
server placement [1] and traceback of DDoS attacks [2]. Recent works in modeling the Internet topology
and constructing network maps have focused on the connectivity aspect. This paper describes the first
study in incorporating connectivity, latency, and routing information all into a network map based on
a large set of traceroute data. We highlight the common challenges in constructing such network
maps and discuss our solutions. We evaluate our network map based on various Internet routing models
proposed in the literature. The evaluation shows that, for those traceroute data that we are able
to evaluate, at least 85% of computed hop-counts and latencies are within a factor of two of the actual
values. Furthermore, we show that a flat routing model based on hop-count performs as well as more
complicated policy routing models.

1 Introduction

There is a frequent need in network research to learn the topology of the Internet or other networks of in-
terest. The knowledge of network topologies proves useful in two ways. First, studies to uncover properties
of network topologies can be made based on real network topologies. There have been a number of studies
[3, 4, 5, 6, 7] that try to understand and model the Internet topology based on actual data. Second, the
actual network topological information can be used by a number of applications and services, such as CDN
placement [1, 8], and prevention of DDoS attacks [2, 9]. AS-level connectivity can usually be obtained
from BGP routing table dumps [10, 6]. It is generally more difficult to obtain host-level connectivity since
host-level routing tables are not readily available. There have been a number of studies [11, 12, 13] that
focused on building host-level connectivity maps. Authors in [11] build network maps for visualization of
network connectivity. Authors in [12] capture the transit portion of the Internet to study path inflation by
policy routing, and authors in [13] focus on building complete connectivity maps of ISPs. All three mapping
efforts produce only connectivity maps.

Connectivity information is sufficient to describe AS-level topology since no other metrics such as la-
tency or bandwidth can be meaningfully assigned between many large ASs. Such is not the case with
host-level network maps. Host-level network topologies also contain information such as latency and band-
width. Latency and bandwidth information are often highly useful for performance studies. For example, for
studies on TCP’s throughput [14], in either simulations or real experiments, end-to-end latency determines
how quickly a sender detects network congestion, and determines the throughput along with the bottleneck
bandwidth. In simulations, end-to-end latencies and bottleneck bandwidths generally computed based on
some routing model that computes paths among nodes inside a network. Presently, there are no studies
on building a network map with more than connectivity information or on the best routing model to use
for path computation. In this paper, we combine connectivity, latency, and routing information all into an
interface-level network map based on Internet traceroute data. The interface-level network map differs

from the host-level network map in that only IP addresses, not actual hosts, are represented in the map. We
will not attempt to resolve interface aliases [12, 6], i.e. a single router having multiple interfaces, since the
network metrics we use for evaluations, hop-counts and latencies, are valid only on the IP interface level.

We emphasize that we are not proposing a network topology generator in this paper; instead, we are
interested in utilizing a given set of Internet measurements to generate the most comprehensive network
map covered by the measurements. We hope that an accurate network map based on real measurements will
be useful to applications and services that require topological information, and will provide the basis for a
more complete model of Internet topology. Our contributions in this paper are as follows:

• A detailed study on how to incorporate link latencies into topology construction.

• A survey of routing models that can be used for path computations.

• An evaluation of the network map showing that we can indeed compute hop-count and latency infor-
mation with reasonable accuracy on this network map.

In the rest of the paper, we first introduce a framework for building a full-featured network map and
give a survey of current approaches to building network maps in Section 2. We then explain the common
challenges in incorporating latency information into network maps and discuss some of our solutions in
Section 3. Section 4 surveys a number of routing models used to compute end-to-end latencies on our
network map. In Section 5, we evaluate the network map by checking the computed hop-counts and latencies
in the map against the actual data. We conclude our discussion in Section 6.

2 Building A Complete Network Map

The focus of this work is to define procedures and algorithms to build a full-featured network map that
generates accurate end-to-end network metrics. Figure 1 illustrates our approach to constructing a full-
featured network map. We separate a network map into three layers of information. The bottom layer is the
connectivity information. The middle layer has static link information such as minimum link latency and
nominal bandwidth. In this study, a minimum link latency is the sum of propagation delay on the physical
link and the router processing delay under no load. We are not aware of any effort that tries to model either
minimum link latencies or nominal bandwidths. The top layer captures dynamic events such as routing
instability and packet queueing. There are a number of studies [15, 16, 17, 18] that address the dynamic
behavior of the Internet, which can be incorporated into a static network map. Having the three layers of
information alone is not enough to give us end-to-end network metrics. We also need to define network
routing in order to compute end-to-end network metrics. We examine a number of routing models proposed
in the existing literature to compute latencies in Section 4.

As the first step toward building a full-featured network map, we construct a network map that provides
accurate end-to-end latencies. An end-to-end latency has both a static and a dynamic component. The
static component of an end-to-end latency is the sum of propagation delay and fixed processing delays at all
intermediate routers, i.e., the minimum latency. The dynamic component is the sum of queueing delays at
intermediate routers. The two components are governed by different physical processes. The static latencies
are governed by the propagation speed of light inside various mediums and semiconductor physics. The
dynamic queueing delays are governed by packet arrival processes and users’ network usages at different
times of the day. Therefore, it is appropriate to model static latencies separately from dynamic latencies. In
this paper, we build a network map that can accurately represent the static end-to-end latencies.

We are aware of only one current approach that can provide both connectivity and latency information
on the interface-level. Authors in [19] propose a method that computes hop-by-hop link latencies by mod-
eling path latencies as linear combinations of individual link latencies and then solving the system of linear

2

connectivity map

minimum
 link
latency

 nominal
 link
bandwidth

dynamic events

routing
 model

 end-to-end
network metrics

Figure 1: Components of a full-featured network map.

equations. The authors use traceroute to collect path and Round-Trip Time (RTT) data to solve for a
number of previously unmeasurable link latencies. For example, if we have H measurement hosts and D

destinations where H � D typically, the number of RTT measurements we need to conduct is O(D ·H). If
we were to obtain the connectivity information among these hosts, we could have O((D + H)2) ≈ O(D2)
latencies by doing distance computations among the (D + H) hosts. The drawback with their approach
is that the system of linear equations are typically over-defined, and measurement noises make the over-
defined system unsolvable. To deal with noisy measurements, the authors use least-square approximation to
solve the system of linear equations. We adopt the basic idea in this approach to building an interface-level
network map without explicitly solving the system of linear equations due to the large number of links that
need to be computed. We compute individual link latencies on every path independently. We then use a
filtering technique discussed in the next section when multiple values exist for a single link latency.

The current approach to generating host-level connectivity maps is for one or more measurement hosts
on the Internet to actively probe and discover routes to other hosts. After probing thousands of hosts on
the Internet, one ends up with a collection of paths that potentially has a large number of shared routers, or
more precisely router interfaces, among the many paths. The paths can then be joined together at the shared
router interfaces to form a connected topology. There are also approaches that yield latency information
directly without connectivity. The common practice to collecting end-to-end latencies is to use ping or
time the three-way handshake of TCP connection initiation [20]. The advantage of this approach is its low
cost for a single measurement, but the disadvantage is that it is a point-to-point measurement. We would not
obtain any connectivity information from these point-to-point measurements so we could not easily compute
latencies between hosts not conducting measurements on a network map. There is a triangulation technique
[21] that can approximate latencies among hosts lacking connectivity information. In [19], we used a set of
traceroute gateways [22] to probe a set of destination hosts. To estimate the end-to-end latency between
two destination hosts, we chose the traceroute gateway through which the triangulated latency was the
minimum. This minimum triangulated latency became the estimated latency for the given pair of hosts.
However, studies [23, 24] have shown that Internet paths often are not the shortest in latency. Since it is
difficult to evaluate the quality of the triangulated latencies without conducting measurements at each client
host, we do not use the triangulation technique.

3 Incorporating Link Latency Information

In this section, we will first give an overview of the basic operations involved in computing link latencies. We
present a detailed description of how we construct the network map while incorporating latency information.
There are a number of challenges to accurately computing link latencies. We will discuss these challenges
and some of our solutions.

3

S R R1 2

l 1

l 2

Figure 2: Compute link latency based on traceroute data.

3.1 Computing Individual Link Latency

We used a previously collected set of traceroute data, from a number of traceroute gateways to
clients extracted from log files of five web sites. The detailed description of the data collection procedure
can be found in [1]. There are a total of 2,306,560 individual traceroute runs in our data collection.
Approximately 2% of them are unusable due to outages in the traceroute gateways.

Based on latencies between traceroute gateways and intermediate router interfaces, we compute
link latencies and build the interface-level network map. For each link, we first obtain a filtered RTT sample
(discussed in Section 3.3.2) between the source traceroute gateway and each of the two router interfaces
connected by the link. We then subtract the two RTT samples to obtain the link latency. The link latency
here is actually a round-trip latency since we subtract two RTT samples. For simplicity, we will refer to it
simply as link latency. Figure 2 illustrates this procedure with two adjacent router interfaces, R1 and R2,
on a path from S. We can compute the link latency between R1 and R2 by subtracting latency l1 from l2.
We call this the hop-by-hop subtraction. Based on hop-by-hop subtraction, we can compute latencies for all
links that appear in the traceroute data.

3.2 Constructing A Network Map with Latencies

The most important step in our construction is getting accurate latency information between source traceroute
gateway and intermediate router interfaces. In this section, we first describe how we obtain these latencies
and then give a detailed step-by-step procedure to building an interface-level network map.

Our initial attempt to perform hop-by-hop subtraction is to subtract RTT samples of adjacent router
interfaces in each traceroute run and filter link latencies if there are multiple samples for each link
latency. The main drawback is that RTT samples from a single traceroute (at most three) are generally
very noisy. Subtracting these noisy samples will likely produce large margins of error in latency computa-
tion. A better approach is to collect all RTT samples for each source-destination pair and filter the samples
to obtain a single value. We filter RTT samples for all source-destination pairs and then perform hop-by-hop
subtraction of these filtered values. We evaluated the accuracy of latency computation for both approaches
with a small set of data, and the results indicated that the latter approach worked better. Based on our initial
evaluation, we design the map-construction procedure as follows:

1. We organize traceroute outputs according to the individual source traceroute gateway. For
each source traceroute gateway, we generate two sets of data. The first set contains RTT samples

4

between the source traceroute gateway and all intermediate router interfaces and all destinations.
Step 2 describes the generation of this data set. The second set contains intermediate router inter-
faces on the path from the traceroute gateway to each destination end-host. Step 3 describes the
generation of the second data set.

2. There are usually a number of RTT sample between the traceroute gateway and most of the router
interfaces. We apply our filtering procedure to each set of RTT samples to obtain a single value. We
discover that a router can sometimes be reached by the source traceroute gateway via a number
of different paths. Therefore, RTT samples between the same pair of traceroute gateway and
destination must be further identified by the exact path to which they belong. Ideally, the complete
path discovered by traceroute can be used to identify the set of RTT samples from a source to a
destination; however, the storage and computation cost would be overwhelming if we were to do it
for every source-destination pair. We observe that most paths branch out around the fourth hop, likely
because it takes approximately four hops to reach transit backbone networks. We use the fourth-hop
router interface on every path to identify RTT samples on that path. We discard a small number (fewer
than .1%) of traceroute runs that are missing the fourth-hop router interfaces.

3. In order to perform hop-by-hop subtraction, we also need the exact path traversed from each source
to each destination in the traceroute data. When a traceroute run has responses from all
intermediate routers, we simply record the IP address of each router interface encountered. However,
many traceroute runs are missing one or more router interfaces. Our first solution is to skip the
missing interfaces by establishing a virtual link between the last known interface and the next available
interface. However, this would create a semantic inconsistency in what we mean by link latency since
some link latencies would be virtual link latencies. To have a consistent notion of link latency, we
decide to only allow real links in the network map. The cost of not establishing a virtual link is
that parts of the network may be disconnected if there is only one outgoing path, and an intermediate
router interface on that path did not respond to traceroute. Another problem that prevents us from
recording IP addresses directly is that some router interfaces discovered have private IP addresses [25].
These private IP addresses can not simply be added to the path list since many ISPs allocate addresses
from the same ranges of private IP address, e.g., the 10.255.255.255 range. We omit private
IP addresses and connect together two router interfaces that come immediately before and after the
private IP addresses. We treat the case of private IP address differently from missing router interfaces
because private IP addresses should not be “leaked” to the real Internet, i.e., real Internet hosts should
not communicate with non-local private IP addresses. To the rest of the Internet, two router interfaces
that come before and after a router interface using private IP address are directly connected.

4. The two sets of data give both latency and path information from each traceroute gateway to all
IP addresses reached by the traceroute gateway. We compute link latencies by doing hop-by-
hop subtraction of latencies of paths originated at each traceroute gateway. From the collection
of link latencies for each traceroute gateway, we extract the connected components with at least
100 IP addresses to form the individual traceroute-gateway map. We then combine the individual
traceroute-gateway maps into an aggregate network map. There may be multiple samples for the
same link latency from different traceroute gateways. We apply the same filtering technique
again to obtain a single link latency. Finally, we extract the largest connected component from this
aggregate map as the interface-level network map.

There are many imperfections in our construction of the network map, such as the filtering technique,
the identification of RTT samples using the fourth-hop router, etc. In the next section, we discuss some of
the challenges we face with our approach.

5

S R R S R R3 421

Figure 3: Effect of path asymmetry on link-latency computation.

3.3 Challenges in Building A Latency Map

There are three main challenges to building an accurate network map with latency information: asymmetry
of Internet paths in the forward and reverse directions, RTT measurement noise, and instability of Internet
routes and network topologies. The first two challenges are relevant to network maps with latency informa-
tion. The last one is also relevant to connectivity maps. Here we discuss each challenge in detail and our
solution to lessen its impact on the accuracy of network maps.

3.3.1 Path Asymmetry

As Figure 2 illustrates, the hop-by-hop subtraction implicitly assumes that paths from the source to the
two router interfaces share all but the link connecting the two interfaces for both the forward and reverse
directions. This assumption would be correct if Internet routing is completely symmetric. However, the
author in [15] found that from 25% to 80% of Internet paths in their data sets, collected between 1994 and
1995, were asymmetric depending on where these paths originated in the Internet. Furthermore, their data
sets showed that there was a trend of increasing path asymmetry. Therefore, it is important to understand
how routing asymmetry affects the accuracy of constructed network maps.

Under stable routing, forward paths from a source to two consecutive router interfaces (en-route to a
destination) differ only at the latter router interface. In Figure 2, the path S–R1 is part of the path S–R2

since both are on the longer path from source S to the same destination. Even if forward and reverse paths
are asymmetric, as long as the two reverse paths are identical except for the latter router interface R2, our
approach will compute the correct link latency. When the two reverse paths are different, our link-latency
computation will be incorrect. Figure 3 shows a scenario of routing asymmetry, where the two reverse paths
are different. For clarity, we only indicate reverse paths in the figure. In Figure 3, the reverse path R2–S has
a larger latency (represented by the longer arch) than that of R1–S. Since the latency of R2–S would also
be larger than that of R1–S even when paths are symmetric, we can not determine whether path asymmetry
exists. However, when the reverse path R3–S has a larger latency than R4–S in Figure 3, we will be able
to recognize the existence of path asymmetry. When path asymmetry is detected, we will not attempt to
calculate the link latency R3–R4 and remove the RTT samples between S and R3.

In general, path asymmetry can cause both under-estimation and over-estimation depending on the dif-
ference in latency between two reverse paths. It is also very difficult to assess the impact of path asymmetry
on link-latency computation without knowledge of paths in both directions. In this study, we assume path
symmetry as long as we observe consistent latencies along a path, i.e., when interfaces with higher hop-
counts always return longer RTT sample values than any of the interfaces with lower hop-counts on the
same path. We will only calculate link latencies for those interfaces that return consistent RTT samples.

6

3.3.2 RTT Measurement Noise

The second challenge comes from the high variability of RTT measurements. An RTT measurement has
three components: propagation delay, router processing delay, and queueing delay. The propagation delay
component is constant as long as there is no path change, and the router processing delay component is the
sum of per packet fixed processing delay at each router. The queueing delay component may be large and
fluctuating rapidly when congestion occurs, which introduces the high variability. We want to capture the
minimum latency, i.e., the sum of propagation and processing delays, and use that as the latency between
two router interfaces.

From a set of RTT samples between a traceroute gateway and a router interface, we could use the
minimum RTT as the minimum latency. However, the presence of spurious data in traceroute makes
the use of minimum RTT error prone. We often find multiple responses mingled on a single line, which
could be due to route changes in the middle of a traceroute run. We also notice that traceroute
gateways often combine streams from both stdin and stderr such that numeric values in error messages
in stderr could be interpreted as RTT values during parsing. Creating special cases to handle all such
spurious instances during parsing would be too time consuming to be practical. Instead, we develop a
filtering technique to avoid using outliers in RTT samples as latencies since outliers are likely to be spurious
data. We filter each set of RTT samples by examining its distribution. If all RTT samples differ from the
minimum RTT by a small margin (< 10 ms), then we take the minimum as the latency. Otherwise, starting
with the minimum RTT sample, we find the first neighborhood of RTT samples of sufficiently large size,
one-third of total samples, but at least 8 samples. We use the minimum in this neighborhood as the latency.
If we are unable to do either, we find the minimum mode and use the minimum value in the neighborhood
around the mode. When locating the mode, we ensure that the neighborhood around the mode contains
at least 5 samples. If we are not able find a mode, we will use the median of the RTT distribution. The
technique and parameters used in filtering are based on our own observations and repeated refinements after
checking computed latencies in the network map against the actual latencies in the traceroute data.

However, our filtering technique can not always remove variable delays in RTT samples because of
router configurations or traffic patterns in the Internet. One component of variable delay is the delayed pro-
cessing of ICMP packets at routers themselves [26, 27]. This extra delay does not show up in regular packet
forwarding so it is not part of any minimum latency that we are interested. Another component of variable
delay is due to persistent congestion at a router. If congestion is present at all times, we will not be able to
capture the minimum latencies of those router interfaces affected by congestion. The computed latencies
from RTT samples under congestion will over-estimate minimum latencies. The over-estimation of laten-
cies can cause both under-estimation and over-estimation of link latencies depending on where the variable
delay is. We believe the errors on link latencies introduced by RTT measurement noise is not significant
for backbone links because there are usually many RTT samples. For links in the stub networks, there are
usually fewer samples except for those close to the traceroute gateways. Thus, filtered latencies are not
as reliable, which translates into less accurate link latencies for stub networks.

3.3.3 Topological Instability

Routing instability has been a frequent event since the earlier days of the Internet. The analysis in [15]
showed that only 68% of the routes were stable on the order of days based on data collected from 1994
to 1995. The analysis also showed that most of the shorter-lived routes were in backbone networks rather
than stub networks. A more recent study [18] confirms the continuing existence of route oscillations in
backbone networks. Considering that the duration of our data collection is 30 days, our traceroute data
almost certainly contains many instances of routing instability. Furthermore, because our link-computation
is highly path sensitive, routing instability can severely impact the accuracy of link latencies in our map.

7

original view after IP re-assignment result

10.10.10.1

10.10.10.2
10.10.10.3

10.10.10.4 10.10.10.3
10.10.10.2

10.10.10.1

10.10.10.1

10.10.10.2
10.10.10.3

10.10.10.4

Figure 4: Effect of IP address re-assignment on link-latencies.

There are two consequences of routing instability on our network map. One consequence of routing
instability is that our traceroute data contains links and paths that are never simultaneously present in
the Internet, e.g., primary links and backup links are generally not used simultaneously. The addition of the
backup links to the network map may create back-door paths among some hosts, thus forming paths much
shorter in latency than the actual paths. Due to these backup links, a network map constructed using our
approach will probably have richer connectivity and likely shorter end-to-end latencies than in the real Inter-
net. Another consequence of routing instability is the introduction of different RTT values between a source
and an intermediate router interface. Using a backup route that is typically longer than the primary route
can result in a longer path, both in latency and in hop-count, to router interfaces that have been reached via
the primary route before routing failure. These revisited interfaces would appear twice with different hop-
counts in the traceroute output. We remove all cases involving router failures along with routing loops
by implementing a loop/failure detection heuristic. The heuristic examines all interfaces traversed between a
source and a destination and removes all instances where the same router interface appears at multiple non-
consecutive hops. However, we allow the same router interfaces to appear in multiple consecutive hops.
Some gateway routers forward all incoming packets from another domain to itself at a different interface for
local delivery so multiple hops may use the same IP address [6] to reply to the source of traceroute.

One source of topological instability comes from networks that reconfigure their IP addresses or switch
to a different service provider. As a result, different physical links may appear to be a single link. In
Figure 4, we show a hypothetical example of how network reconfiguration causes bad latency estimates.
In the original view of the network, we have four interfaces, 10.10.10.1 to 10.10.10.4, located
in England and the state of New York. Soon after the original snapshot, the ISP decides to reconfig-
ure the network and moves one router IP address that was in England across the Atlantic Ocean to the
state of New York. The latency of the trans-atlantic link remains the same, but the link changes from
10.10.10.2–10.10.10.3 to 10.10.10.1–10.10.10.2. Taking the minimum of the RTT sam-
ples for 10.10.10.1–10.10.10.2 causes the latency estimate for the present trans-atlantic link to have
the latency of the much shorter link with the same IP addresses in the original view. Worse yet, the original
trans-atlantic link 10.10.10.2–10.10.10.3will have the latency of the new link, which is also much
shorter. The net result is that three very short links connect IP addresses in two different continents. We
observe instances similar to the above scenario where an entire block of addresses were moved to a differ-
ent geographic location. We have yet to devise a solution to cope with relocation of IP addresses and will
address this in the future refinement of the construction procedure.

8

4 Routing Models

The interface-level network map generated has both connectivity information and link latency information.
In network simulations, there is often a need to know the end-to-end latencies between host pairs in a
network. To compute such end-to-end latencies, we need a model of network routing. We will examine
simple models based on Dijkstra’s shortest-path algorithm as well as a number of policy-routing models
proposed by previous works [28, 7, 29] to compute end-to-end latencies. Authors in [7] used shortest-path
routing in AS hop-count as an approximation to policy routing on the Internet. In a later paper [29], the
(same) authors established a more accurate model of policy routing that took into account the observations
on peering relationship and AS degrees reported in [28]. Below, we describe these routing models in detail.

4.1 One-Level Routing Models

Under one-level model, we assume a flat routing hierarchy, which is not used in today’s Internet. We study
the flat model to see whether this simple model can generate accurate end-to-end network metrics in our
network map. We assume a one-level routing protocol that finds the shortest path between two hosts in the
network. We use Dijkstra’s shortest path algorithm [30] to compute three types of shortest paths: shortest
paths in latency, router-level hop-count, and AS-level hop-count. Dijkstra’s algorithm based on hop-count
may find multiple paths with the same number of hop-counts between two IP addresses. In this case, we
select the path with the minimum latency. As the final tie-breaker, we select the path with the smaller
IP address for the first router interface that differs between two paths. We use router-level hop-counts as
tier-breakers for Dijkstra’s shortest-path algorithm in latency.

4.2 Two-Level Routing Models

A two-level routing model is more realistic in the sense that it separates routing on the AS level from
routing inside a single AS. The top-level routing is done on an AS topology, and then Dijkstra’s shortest-
path algorithm in hop-count is run for the bottom-level routing inside each AS. Since our network map
is an interface-level map, we need to construct an AS overlay on top of our map in order to run various
two-level routing models. We adopt the approach used in [7, 29] to compute an AS overlay. We obtain
an AS connectivity map on December 1, 2001, which is during the data collection time, from NLANR
(http://moat.nlanr.net/AS/), which contains 8,259 unique ASs. To establish the connection be-
tween the AS overlay and our network map, we need to project each IP address in the network map onto the
AS connectivity map. We map each IP address into the AS that advertises the network address that has the
longest common prefix as the IP address. We map all IP addresses into 2,469 of the 8,259 unique ASs. We
will give details about the AS overlay in Section 5.1.

We also incorporate the modeling of AS peering relationship studied in [28]. The policy-routing model
in [28] infers relationships such as customer-provider or peer-to-peer based on AS degrees. This model only
accepts paths that do not violate peering relationships. For example, it will not allow an AS path connecting
two providers through one of their shared customers. Likewise, we also classify AS relationships into two
categories: customer-provider and peer-to-peer. We make the same assumption as in [28] with regard to
how AS degree affects the relationship. We classify the AS relationship between two ASs to be customer-
provider when there is a “significant” difference between the two AS degrees. The AS having the larger
degree is the provider. For pairs of ASs with similar degrees, we classify the relationship as peer-to-peer.
We use two parameters {m,T} to capture AS relationships. We assume a provider AS will always have a
degree that is at least m (multiplier) times that of its customer, and we further assume that a provider must
have a degree of at least T (Threshold). We will omit T when we do not place the requirement on AS
degree in our evaluation.

9

To model the AS-level policy routing, we adopt the procedure used in [29]. We assume that the path
must follow a sequence of [{c− p}|{p− p}] ∗ [{p− c}|{p− p}]∗. We abuse the standard regular expression
in order to write the model for policy routing in a compact form. The notations {c − p}, {p − c}, and
{p − p} represent customer-provider, provider-customer, and peer-to-peer relationship, respectively. This
sequence states that a valid path is one that starts with zero or more customer-provider or peer-to-peer links,
followed by zero or more provider-customer or peer-to-peer links. Under this model, an invalid AS path is
one where a provider-customer link is followed by zero or more peer-to-peer links, and then followed by a
customer-provider link. In our path computation, we don’t explicitly forbid such a path since doing so often
eliminates all paths connecting two interfaces due to limitations in our policy routing model; instead, we
assign a large AS hop-count to the link that violates the AS path hierarchy, i.e. the customer-provider up link
that appears after a provider-customer down link. Thus, when our policy routing model fails, there would
still be a path, which has the fewest violations, connecting two interfaces. We examine the percentage of
path violations, for m = 2, the percentage is between 10% and 15% for most traceroute gateways. The
percentage drops to around 5% for m = 10.

We use Dijkstra’s shortest-path algorithm as the basic algorithm for all two-level routing models. To
compute the path between two IP addresses in our map, we first compute an AS path that traverses the
fewest AS hops. Inside each AS, we always select the path with the fewest interface-level hop-counts. If
more than one path with the fewest AS hops exists, we then select the path with the fewest interface-level
hops, and then those with smallest latencies if two or more paths are again identical. Finally, we will select
the path with the smallest AS numbers.

5 Evaluation of the Network Map

We are able to construct an interface-level network map consisting of 85,007 IP addresses and 162,821 links
with latency information. In this section, we evaluate our interface-level map and determine the accuracies
of end-to-end hop-counts and latencies. There are two implications with evaluating the map. First, we
want to validate our methodology of constructing network maps. Second, if we are able to find a routing
model that reasonably duplicates end-to-end network metrics, we then essentially find a way to substitute
computation for storage. Instead of storing all pairs of latencies or hop-counts among hosts in a network,
we could simply store link latency and connectivity information and use the routing algorithm to compute
reasonably accurate network metrics.

Below, we will first study the coverage of the Internet by our network map. We want to understand
the limitation of our network map and therefore our evaluations. We then present evaluation results on
computed network metrics. We will present the distributions of computed network metrics, the distributions
of errors in computed network metrics, and the distributions of the percentages of correct pair-wise ordering
of network metrics.

5.1 Map Coverage

Even though our study is not focused on obtaining the most complete network map of the Internet, we
are still interested in learning how much of the Internet our network map actually covers. In terms of AS
coverage, even though only 30% of ASs are mapped into our interface-level network map, all ASs (26) with
degrees larger than 100 are covered by our network map; furthermore, only 64 of 366 ASs with degrees
larger than 10 are not covered by our network map. We feel that the the majority of the more important ASs,
i.e., those with large degrees are covered. However, AS coverage does not give a complete picture since
many ASs contain tens of thousands of IP addresses. We also compare our network map against previously
published network maps. The mapping effort reported in the SCAN project [12] claims that its network

10

0

0.2

0.4

0.6

0.8

1

1 5 10 15 20 25 30 35 40

C
D

F

hop-count

Filtered Internet data
Dijkstra latency
Dijkstra on hop

Dijkstra on AS hop
plain AS model

AS model m2
AS model m2 T20
AS model m5 T20

AS model m10
AS model m10 T20

Figure 5: Hop-count distribution.

0

0.2

0.4

0.6

0.8

1

10 50 100 200 500

C
D

F

latency (ms)

Filtered Internet data
Dijkstra latency
Dijkstra on hop

Dijkstra on AS hop
plain AS model

AS model m2
AS model m2 T20
AS model m5 T20

AS model m10
AS model m10 T20

Figure 6: Latency distribution.

map captures the transit portion of the interface-level Internet topology. There are a total of 228,298 IP
addresses in the SCAN map. Since our network map contains only 85,007 IP addresses, we expect our map
would be a subset of the SCAN map. However, only 13,662 IP addresses are common to both maps, which
means that only 16.1% of the IP addresses in our map are in the SCAN map. Given the large number of
non-overlapping IP addresses, we feel that such discrepancy is not a result of different collection times. It is
likely that both the SCAN map and our network map are incomplete at least in terms of end-host coverage.

In [31], the authors study the marginal utility of traceroute and conclude that, given a set of des-
tinations, six or seven measurement hosts are enough to discover most of the IP addresses that would be
discovered with a larger number of measurement hosts. Considering that we use 50 traceroute gate-
ways as measurement hosts in our data collection, as described [1], we may have discovered all possible IP
addresses associated with the destination set. We attribute the existence of the large number of IP addresses
that have not been discovered to the limitation of our destination set, in terms of either the number or the
distribution of IP addresses. The Rocketfuel project [13] has recently developed a number of heuristics
that make intelligent selections of destinations to obtain complete maps of ISP networks. These destination
selection heuristics will be incorporated into our future mapping efforts.

11

0

0.2

0.4

0.6

0.8

1

-10 -5 0 5 10 15 20

C
D

F

estimation error (hop)

Dijkstra on latency
Dijkstra on hop

Dijkstra on AS hop
plain AS model
AS model m=2

AS model m=2 T=20
AS model m=5 T=20

AS model m=10
AS model m=10 T=20

Figure 7: Hop-count error distribution.

0

0.2

0.4

0.6

0.8

1

-50 -40 -30 -20 -10 0 10 20 30 40 50

C
D

F

estimation error (%)

Dijkstra on latency
Dijkstra on hop

Dijkstra on AS hop
plain AS model
AS model m=2

AS model m=2 T=20
AS model m=5 T=20

AS model m=10
AS model m=10 T=20

Figure 8: Hop-count percent error distribution.

5.2 Accuracy of Computed Network Metrics

We validate the interface-level network map by comparing the end-to-end metrics in the traceroute
runs and those computed on the network map. The end-to-end metrics that we are able to compare are the
latencies and hop-counts. Since we only have real hop-count and latency information for those interface
pairs appearing in the traceroute output, we will only be able to compare the end-to-end metrics for
these interface pairs. Even though we use the term “end-to-end,” we will also compare the metrics between
end-hosts and intermediate router interfaces since we want to evaluate as much of the map as possible, not
just those involving end-hosts.

To evaluate latencies in the network map, we find all source-destination pairs in the network map that
have corresponding matching pairs in the traceroute data. We declare two pairs a match if the corre-
sponding interfaces in the two pairs have identical IP addresses. We are able to find a total of 3,029,584
matching pairs out of 3,626,233 in the parsed traceroute data. We are not able to match all pairs be-
cause some interfaces are disconnected from the network map due to missing intermediate router responses
in the traceroute data.

Figure 5 and 6 show the distributions of hop-counts and latencies, respectively, under various routing
models along with the actual distributions. The x-axis is either hop-count or latency in ms, and the y-axis

12

is the CDF of network metric. The curve labeled “plain AS model” is one where the customer-provider
relationship is strictly enforced–the AS with larger degree is always the provider. All other curves are as
indicated by their labels. In Figure 5, hop-counts computed by Dijkstra’s shortest-path algorithm in latency
are significantly larger than the actual hop-counts. In searching for the shortest latency paths, the Dijkstra’s
algorithm has to find “short-cuts” that are are the shortest in latency, but longer in hop-counts, than the actual
paths. Hop-counts computed by Dijkstra’s shortest-path algorithm in hop-count are shorter than hop-counts
of the actual paths. However, the two distributions are qualitatively similar, the computed distribution is
essentially the actual distribution shifted to the left by five hops. The distributions computed by the two-
level models are almost identical and are in between the actual distribution and the distribution computed by
the Dijkstra’s shortest-hop-count algorithm. In Figure 6, as expected, the latencies computed by Dijkstra’s
shortest-path algorithm in latency are significantly smaller than the actual latencies. In addition, the com-
puted distribution shows qualitative difference since a large percentage (70%) of the latencies are smaller
than 50 ms compared to only 15% in case of the actual distribution. In Figure 6, all other routing models
under-estimate latencies in the network map. The distributions under these routing models are similar to
the actual latency distribution in the sense that there are significant number (20%) of large latencies (greater
than 200 ms), and the number of latencies less than 50 ms is smaller than 20%. We observe that even though
the two-level routing models use very different parameters, they all have very similar performance, which
is consistent with the finding in [29] that there is little performance difference between a simple model of
policy routing and more realistic models.

We also examine the errors between computed network metrics and actual network metrics. We will first
discuss the errors in terms of hop count. We compare the computed hop-counts under each model with the
actual hop-counts for each pair of matched IP addresses. We show the distributions of the actual errors in
hop-count in Figure 7, and the distributions of percentage errors, computed by dividing errors in hop-count
by actual hop-counts, in Figure 8. Dijkstra’s shortest-path algorithm on latency has larger margins of errors
both in terms of absolute error in hop-count and in terms of percentage error compared to the two-level
routing models. We note that such errors are generally exclusively under-estimation errors. Even though
our data was collected nine months later, our results are in good agreement with the findings in [7] where
the inflation in router hop-counts by Internet policy routing is generally not more than ten hops compared
to the shortest-hop-count paths as indicated in Figure 7. Furthermore, authors in [7] report that the inflation
ratios of actual paths were generally less than two. In Figure 8, we find good agreement with prior result
where only 5% of the paths computed using Dijkstra’s shortest-path algorithm in hop-count are inflated by
more than a factor of two.1

We examine latencies smaller than 200 ms separately from those that are smaller than five seconds. We
make this separation to ensure that errors are not exceedingly large for smaller latency values. For each case,
we examine in detail how the individual hop-counts and latencies match with the actual data. As we have
indicated earlier, Dijkstra’s shortest-path algorithm in latency produces many underestimated latencies. We
note that almost 80% of computed paths have latencies smaller by at least 50 ms in Figure 9, and 90% of the
computed latencies are smaller by more than 50% in Figure 11. Clearly, Dijkstra’s shortest-path algorithm
in latency is not a realistic routing model for network maps. The rest of the routing models produce very
similar results with Dijkstra’s shortest-path algorithm in hop-count slightly outperforming the rest. We note
that, in the case of actual latencies smaller than 200 ms, nearly 40% of the computed latencies are within
20 ms of the actual latencies. There are a relative small percentage (less than 15%) of latencies that are off
by more than 50 ms. We also represent the errors in terms of percentage in Figures 11 and 12. Again, we
observe that the vast majority of latencies are within a factor of two of the actual latencies. Approximately
15% of the latencies are outside of this range.

1By a factor of two, we mean that the computed values are within -50% to 100% of the actual values.

13

0

0.2

0.4

0.6

0.8

1

-200 -100 -50 -20 0 20 50 100 200

C
D

F

estimation error (ms)

Dijkstra on latency
Dijkstra on hop

Dijkstra on AS hop
plain AS model
AS model m=2

AS model m=2 T=20
AS model m=5 T=20

AS model m=10
AS model m=10 T=20

Figure 9: Latency error for latencies ≤ 200 ms.

0

0.2

0.4

0.6

0.8

1

-200 -100 -50 -20 0 20 50 100 200

C
D

F

estimation error (ms)

Dijkstra on latency
Dijkstra on hop

Dijkstra on AS hop
plain AS model
AS model m=2

AS model m=2 T=20
AS model m=5 T=20

AS model m=10
AS model m=10 T=20

Figure 10: Latency error for latencies ≤ 5 s.

As a final evaluation of the network map, we want to test whether orderings of the network metrics
are preserved through computation under various routing models. By this we mean, whether two network
metrics have the same ordering in the actual data set as when they are computed under a particular routing
model. For certain applications, such as the closest-server selection, knowing the correct ordering of laten-
cies between a client and a set of servers will allow the client to incur the least access latency. We examine
the ordering of hop-counts and latencies of paths rooted at each of the 49 traceroute gateways. For
each traceroute gateway and every pairs of destination IP addresses reachable by the traceroute
gateway, we examine the ordering of hop-counts and latencies from the traceroute gateway to the two
IP addresses. The ordering under a particular routing model is correct if it matches the ordering of actual
network metrics. We compute the percentage of correct orderings for each traceroute gateway and then
plot the CDF of the 49 percentages. Figure 13 shows the CDF of correct ordering percentage for the 49
traceroute gateway. Dijkstra’s shortest-path algorithm in latency again has the lowest percentage of
correct orderings, while Dijkstra’s shortest-path algorithm in hop-count has the highest percentage of cor-
rect orderings. All other routing models have nearly identical performances. We see under most routing
models, the mean ordering accuracy is approximately 68%. This is a only small improvement from random
ordering which will give a correct ordering half the time. Figure 14 shows the CDF for latency orderings.

14

0

0.2

0.4

0.6

0.8

1

-100 -50 0 50 100 150 200

C
D

F

estimation error (%)

Dijkstra on latency
Dijkstra on hop

Dijkstra on AS hop
plain AS model
AS model m=2

AS model m=2 T=20
AS model m=5 T=20

AS model m=10
AS model m=10 T=20

Figure 11: Percent error for latencies ≤ 200 ms.

0

0.2

0.4

0.6

0.8

1

-100 -50 0 50 100 150 200

C
D

F

estimation error (%)

Dijkstra on latency
Dijkstra on hop

Dijkstra on AS hop
plain AS model
AS model m=2

AS model m=2 T=20
AS model m=5 T=20

AS model m=10
AS model m=10 T=20

Figure 12: Percent error for latencies ≤ 5 s.

Again, we observe similar qualitative results with Dijkstra’s shortest-path algorithm in latency having the
worst performance. All other routing models are essentially equivalent with the one-level model in hop-
count slightly outperforming two-level routing models. The mean ordering accuracy is around 78%, which
is a larger improvement over random ordering. It is clear that having such a network map will improve the
ordering of latencies and hop-counts over random ordering; however, further studies are needed to improve
the ordering accuracy based on network maps.

From the evaluation results, we conclude that Dijkstra’s shortest-path algorithm in latency is not an
appropriate routing model for computing network metrics on interface-level network maps. All other routing
models are essentially equivalent to each other. The simple routing model based on Dijkstra’s shortest-path
algorithm in hop-count generally provides as accurate network metrics as the more sophisticated two-level
routing models. Despite the varying parameters, all of the two-level routing models have nearly identical
performance in our evaluations. We again like to point out that this result is consistent with the finding in
[29] where the authors conclude that a simple policy routing model produces results very similar to those by
a more accurate model.

15

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

50 55 60 65 70 75 80

C
D

F

correct ordering (%)

Dijkstra on latency
Dijkstra on hop

Dijkstra on AS hop
plain AS model
AS model m=2

AS model m=2 T=20
AS model m=5 T=20

AS model m=10
AS model m=10 T=20

Figure 13: Ordering of hop-counts for paths rooted at each
traceroute gateway.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

50 55 60 65 70 75 80 85 90 95 100

C
D

F

correct ordering (%)

Dijkstra on latency
Dijkstra on hop

Dijkstra on AS hop
plain AS model
AS model m=2

AS model m=2 T=20
AS model m=5 T=20

AS model m=10
AS model m=10 T=20

Figure 14: Ordering of latencies for paths rooted at each
traceroute gateway.

6 Conclusion

Many simulation studies in network applications and services can benefit from accurate network maps that
contain more than just connectivity information. In this paper, we describe a model for building a more com-
prehensive network map than one with just connectivity information. We demonstrate this concept by com-
bining connectivity, latency, and routing information into an interface-level network map based on a large
collection of traceroute data. We discuss the challenges of this approach and some solutions. We eval-
uate our interface-level map by comparing computed hop-counts and latencies against the traceroute
data under a number of routing models. For the network maps we constructed, a one-level routing model
based on shortest hop-count generates the most accurate network metrics of all the routing models studied.

We believe that it is possible to construct a reasonably accurate network map with both connectivity
and latency information with traceroute data. We note that this is only our first step at building a more
comprehensive network map. Future work includes improved routing models, mechanisms that identify
routing instability and minimize its effects , and the modeling of dynamic events such as network congestion.

16

References

[1] E. Cronin, S. Jamin, C. Jin, T. Kurc, D. Raz, and Y. Shavitt, “Constrained mirror placement on the
internet,” IEEE Journal on Selected Areas in Communications, 2002.

[2] D. Song and A. Perrig, “Advanced and authenticated marking schemes for ip traceback,” in IEEE
Infocom’01, Apr. 2001.

[3] C. Faloutsos, P. Faloutsos, and M. Faloutsos, “On power-law relationships of the internet topology,”
in Proc. of ACM SIGCOMM, Sep. 1999.

[4] A. Medina and I. Matta, “Brite: A flexible generator of internet topologies,” Tech. Rep. BU-CS-TR-
2000-005, Boston University, Boston, MA, 2000.

[5] C. Jin, Q. Chen, and S. Jamin, “Inet: Internet topology generator,” Tech. Rep. CSE-TR-433-00,
University of Michigan, 2000.

[6] H. Chang, S. Jamin, and W. Willinger, “Inferring as-level internet topology from router-level path
traces,” Aug. 2001.

[7] H. Tangmunarunkit, R. Govindan, S. Shenker, and D. Estrin, “The impact of routing policy on internet
paths,” in Proc. of IEEE INFOCOM 2001, Apr. 2001.

[8] L. Qiu, V. Padmanabhan, and G. Voelker, “On the placement of web server replics,” in Proc. of IEEE
INFOCOM, Apr. 2001.

[9] K. Park and H. Lee, “On the effectiveness of router-based packet filtering for distributed dos attack
prevention in power-law internets,” in Proc. of ACM SIGCOMM, Sep. 2001.

[10] “NLANR Network and Measurement Analysis Group”, ,” University of California, San Diego. [On-
line]. Available: http://moat.nlanr.net/, 1997-1999.

[11] H. Burch and B. Cheswick, “Mapping the internet,” IEEE Computer, vol. 32, no. 4, pp. 97–98, Apr.
1999.

[12] R. Govindan and H. Tangmunarunkit, ““Heuristics for Internet Map Discovery”,” in Proc. of IEEE
INFOCOM 2000, pp. 1371–1380, Mar. 2000.

[13] “Rocketfuel,” University of Washington. [Online]. Available:
http://www.cs.washington.edu/research/networking/topsim/.

[14] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP throughput: A simple model and its
empiracl validation,” in Proc. of ACM SIGCOMM, Sep. 1998.

[15] V. Paxson, “End-to-end routing behavior in the internet,” in Proc. of ACM SIGCOMM, pp. 25 – 38,
1995.

[16] V. Paxson, “End-to-End Routing Behavior in the Internet,” Proc. of ACM SIGCOMM ’96, pp. 25–38,
Aug. 1996.

[17] C. Labovitz, R. Malan, and F. Jahanian, “Origins of internet routing instability,” in Proc. of IEEE
INFOCOM, 1999.

17

[18] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian, “Delayed internet routing convergence,” in Proc. of
ACM SIGCOMM, 2000.

[19] Y. Shavitt, X. Sun, A. Wool, and B. Yener, “Computing the unmeasured: An algebraic approach to
internet mapping,” in Proc. of IEEE INFOCOM, Apr. 2001.

[20] W. R. Stevens, TCP/IP Illustrated, Volume I, Addison-Wesley, 1994.

[21] S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, and L. Zhang, “On the placement of internet instrumenta-
tion,” Proc. of IEEE INFOCOM, Mar. 2000.

[22] TRaceRT, “Multiple traceroute v0.96,” [Online]. Available: http://www.tracert.com/cgi-bin/trace.pl,
2000.

[23] P. Francis, S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, and L. Zhang, “Idmaps: A global internet host
distance estimation service,” ACM/IEEE Transactions on Networking, Oct. 2001.

[24] S. Savage et al., “The End-to-End Effects of Internet Path Selection,” Proc. of ACM SIGCOMM ’99,
Sep. 1999.

[25] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. de Groot, and E. Lear, “Address allocation for private
internets,” RFC 1918, Internet Engineering Task Force, Feb. 1996.

[26] J. Nagle, “Congestion control in ip/tcp internetworks,” RFC 896, IETF, Jan. 1984.

[27] F. Baker, “Requirements for ip version 4 routers,” RFC 1812, IETF, Jun. 1995.

[28] L. Gao and J. Rexford, “Stable internet routing without global coordination,” Proc. ACM SIGMETRICS
2000, Jun. 2000.

[29] H. Tangmunarunkit, R. Govindan, and S. Shenker, “Internet path inflation due to policy routing,”
Proceeding of SPIE ITCom, pp. 188–195, Aug. 2001.

[30] T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to Algorithms, Cambridge, MA: MIT
Press, 1990.

[31] P. Barford, A. Bestavros, J. Byers, and M. Crovella, “the marginal utility of network topology mea-
surements,” SIGCOMM Internet Measurement Workshop’01, 2001.

18

