
ABSTRACT
This report describes a strong connection between maxi-
mum satisfiability and minimally-unsatisfiable subfor-
mulas of any constraint system, as well as techniques for
exploiting it. Focusing on CNF formulas, we explore this
relationship and present novel algorithms for extracting
minimally-unsatisfiable subformulas, including one that
finds all such subformulas. We present experimental
results showing how these can be used in counterexam-
ple-guided abstraction refinement for hardware verifica-
tion, decreasing the number of iterations the process
requires to verify a design. A large set of benchmarks is
used to investigate the relationship between maximum
satisfiability and minimally-unsatisfiable subformulas in
a product configuration application.

1 INTRODUCTION
Many problems in hardware design and verification are
posed as constraint satisfaction problems, most often in
the form of Boolean CNF formulas analyzed with satisfi-
ability (SAT) solvers. While SAT solvers can return a
short proof in the form of an assignment when a formula
is satisfiable, typically no proof or explanation is given
when a formula is found to be unsatisfiable. Explana-
tions of infeasibility are often valuable, and techniques
for finding them have been developed for use in these
problems. Some techniques have focused on reducing the
original set of constraints to produce a minimal, unsatis-
fiable core representing a cause of infeasibility. In this
report, we present a new approach to finding these
cores, from a direction not yet explored in other work.

Consider an unsatisfiable CNF formula . A mini-
mally-unsatisfiable subformula (MUS) of  is an unsat-
isfiable subset of the clauses in  such that removing
any clause from the set makes it satisfiable. An MUS
can be seen as an irreducible cause of the infeasibility of
the original formula.  could have multiple reasons for
its infeasibility, and the removal of any one may not
make  satisfiable. In this case  contains multiple
MUSes. As long as any MUS is present in the formula, it
will remain infeasible. In many applications, it is valu-
able to find the set of all MUSes.

We can look to counterexample-guided abstraction
refinement [7] for a motivating example. Abstraction has
been applied to model checking to greatly enhance its
scalability; one can abstract the complete state space of
a design and search for violations of required properties
in the more tractable approximated state space. Because
the abstraction has hidden some details of the design

through over-approximation, a violation, in the form of
a counterexample, may be spurious, not representing the
behavior of the concrete design. In this case, the
abstraction must be refined.

A counterexample can be applied to the concrete
model and checked for consistency by way of a Boolean
function that indicates whether the behavior could occur
in the real design. If the formula is unsatisfiable, the
counterexample represents a spurious behavior. An MUS
of that formula points to elements of the abstraction
that hid the real behavior, and these can be refined
directly by adding constraints to the abstraction that
prevent the behavior seen in the counterexample. The
procedure then iterates by searching for a counterexam-
ple in the refined abstraction.

In many cases, the quality of the MUSes used, and
thus the quality of the refinement, determines the num-
ber of iterations and the efficiency of the abstraction
refinement process. Different types of abstraction have
different criteria for optimal refinement. By finding all
MUSes, one can perform high-level reasoning on them to
determine which provide the best refinement. Alterna-
tively, refining with all MUSes at once is guaranteed to
subsume the optimal refinement, and it could addition-
ally prevent spurious counterexamples not yet encoun-
tered. We present an example in Section 4.

Past work on minimally unsatisfiable subformulas
has generally been either theoretical or experimental in
nature. The theoretical side has focused mainly on the
complexity of the problem, such as [17], which proves
that the general problem of recognizing an MUS is DP-
Complete, and [9,14,20], which place complexity bounds
on recognizing MUSes with deficiency  (the deficiency
of a formula is its number of clauses minus its number of
variables).

Experimental work on finding MUSes can be grouped
into algorithms that find a single MUS and those that
find multiple, sometimes all, MUSes. Three algorithms
from the former group are AMUSE [16], Bruni and Sas-
sano’s algorithm [4,5], and ZCore [22]. All of these uti-
lize information from the resolution procedure of a
modern SAT solver to find an unsatisfiable subformula,
but they offer no guarantees on its minimality. The min-
imal unsatisfiability prover from [12] can complement
these tools by removing unnecessary clauses from unsat-
isfiable subformulas to make them minimal. None of
these techniques provide a reliable method of extracting
more than one MUS.
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One approach that does attempt to find an exact
MUS and specifically searches for the minimum MUS
(the smallest subset of unsatisfiable clauses) in a for-
mula is presented in [15]. It employs a SAT solver to
search through the entire set of unsatisfiable formulas
to find the smallest one. In this way, it will find the
solution exactly, but the technique is unlikely to scale
well without further work, due to the extreme size of
the search space. An algorithm with a similar search
space, but intended to find all MUSes, is given in [3].

Others have noted a relationship between maximum
feasibility and minimal infeasibility before (e.g., [4,6]).
We have found a deeper connection, however, with
many potential applications such as finding all MUSes
of a formula. We describe this relationship and some of
its uses in the sequel, which is organized as follows. In
Section 2 we discuss the relationship between maximum
satisfiability and minimally-unsatisfiable subformulas.
The details of algorithms for exploiting this relation-
ship are given in Section 3. Section 4 contains empirical
results for an abstraction refinement application as well
as a large set of automotive benchmarks. Finally, Sec-
tion 5 ends the report with conclusions and potential
future work.

2 THE RELATIONSHIP BETWEEN 
MAX-SAT AND MIN-UNSAT

The Maximum Satisfiability problem (Max-SAT) is an
optimization problem on a CNF formula  in which
the goal is to find an assignment that maximizes the
number of satisfied clauses. In other words, Max-SAT
yields a satisfiable subset of 's clauses with maximum
cardinality. For example,

 has a Max-SAT solu-
tion with three satisfiable clauses:

.
Whereas the Max-SAT problem has been defined

with the cardinality of a subset of clauses as the optimi-
zation goal, the problem can be relaxed to have inaug-
mentability as the goal instead. Instead of Max-SAT,
defined as

we can define a new problem, which we will call Maxi-
mally Satisfiable Subformula (MSS) defined here, along
with an analogous definition of the set of MUSes for
comparison

MSS( ) is defined as the set of satisfiable subfor-
mulas of  such that adding any remaining clause to
one will render it unsatisfiable. Notice that MSS and
MUS are essentially duals of one another! An MSS is
satisfiable and cannot be made larger, and an MUS is
unsatisfiable and cannot be made smaller. Their rela-
tionship goes beyond this, though; we can use one set
to quickly find elements of the other.

We will quickly point out a few properties of MSS.
First, any Max-SAT solution is also an MSS solution; if
a set is of maximum possible size, it cannot be made
larger by definition. Solutions to MSS, however, may be
of different sizes, and not all will necessarily have maxi-
mum cardinality. In the earlier example,

 is one set in MSS( ), corre-
sponding to the Max-SAT solution, and  is
another, but of a different size.

Consider , the clause not included in the Max-
SAT solution (which is also an MSS solution, as noted).
It provides useful information; if it is removed from ,
the resulting formula is satisfiable. In general, the
clauses not included in a maximally satisfiable subfor-
mula are a minimal-cardinality set of clauses that can
be removed to make  satisfiable. Therefore, we define
“coMSS” to consist of these complementary sets; in a
way, it contains the same information, but provides it
in a different format:

This complementary view of MSS reveals another
connection between maximum satisfiability and mini-
mally-unsatisfiable subformulas. Because the presence
of any MUS in a formula  makes  unsatisfiable, at
least one clause from every MUS in  must be
removed to make it satisfiable. That is, given an unsat-
isfiable formula  and a set of clauses ,

 is satisfiable if and only if  contains at
least one clause from every MUS in . Therefore, a set
in coMSS( ) must contain at least one clause from
every MUS.

We can see that each set in coMSS provides an
implicit solution to a covering problem on the set of
MUSes (without being given the set explicitly or gener-
ating it at an intermediate step). Specifically, it is solv-
ing the HITTING-SET problem [10] on the set of MUSes.
Each MUS is a subset of the clauses of , and a hitting
set of the collection of MUSes is a set of clauses that
contains at least one clause from every MUS. A set in
coMSS is thus an irreducible hitting set of the set of
MUSes. For convenience, we will refer to the sets in
coMSS( ) as MUS covers of . We will generally use

 to refer to an individual MUS cover.
In line with the “duality” of MSSes and MUSes, an

MUS is also an irreducible hitting set of the set of MUS
covers. We can give new definitions of the MUS covers
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and the MUSes, now written in terms of irreducible hit-
ting sets of each other:

This states that an MUS cover  of formula  is a
subset of the clauses in  such that the intersection of

 with any MUS of  is non-empty, and if any one
clause is removed from , it will no longer have that
property. Another way of stating the second half is to
say that for any clause in  there exists at least one
MUS for which that clause is the only “representative”
in . The definition of an MUS is equivalent to that of
an MUS cover modulo exchanging MUS covers for
MUSes.

Figure 1 illustrates this relationship with covering
problems linking coMSS( ) and MUS( ) for the
example formula given earlier. On the left is a table
representing the covering problem that finds MUS( )
from coMSS( ). Each column is one clause from ,
and each row is an element of coMSS( ). A clause cov-
ers a row if it is contained in the row’s set of clauses
(marked with an X in the table), and the goal is to
select irreducible subsets of the clauses that cover all of
the rows. This is done in the example in a manner sim-
ilar to Petrick’s Method for finding all minimum sum-
of-products solutions from a prime implicant chart;
each row becomes a disjunction of the columns that
cover that row, and the disjunctions are conjoined and
simplified by the distributive rule. The other half of the
figure shows the same problem solved on the set of
MUSes to find coMSS( ).

Intuitively, we can see how the new definitions are
equivalent to the first definitions given. With an earlier
argument, we showed that the intersection of an MUS
cover with any MUS is non-zero (i.e., each MUS cover
contains at least one clause from every MUS), and this
relationship is commutative. Both of the new defini-
tions also state that their elements are irreducible,

equivalent to saying that removing any element from
one causes it to lose its defining property. This follows
directly from the constraint of irreducibility in the ear-
lier definitions.

With these new definitions, we have a complete
implicit encoding of all MUSes within the collection of
MUS covers, or a complete implicit encoding of the
MUS covers if we have the collection of MUSes. They
are essentially two sides of the same coin. In practice, it
can be much easier to find maximally satisfiable subsets
(and thus MUS covers) than to find minimally unsatis-
fiable subsets directly, so this relationship gives us a
valuable bridge to reach MUSes more efficiently. If we
can find the collection of MUS covers for a formula, we
can obtain an MUS by finding an irreducible hitting set
of the collection. In fact, we will show that an MUS can
be extracted from the MUS covers in polynomial time.

This relationship between maximal feasibility and
minimal infeasibility holds for any type of constraint
system with hard constraints (i.e., constraints that are
either satisfied or violated and can not be in any softer
intermediate state). Therefore, anything related to this
concept, including the following algorithms, can be
applied to any type of constraint system with a well-
defined concept of feasibility and a method for finding
maximally feasible subsets of constraints.

3 ALGORITHM DETAILS
Exploiting this relationship to find all MUSes of a given
CNF formula can be decomposed into two steps: 1)
Finding the set of MUS covers coMSS( ), and 2)
Extracting MUSes from the set of covers. This decom-
position is natural because the step of extracting
MUSes cannot be done until the entire set of covers has
been found, and the technique used to solve one sub-
problem does not affect the solution of the other.

3.1 Finding coMSS( )
As defined earlier, each MUS cover is the set of clauses
not included in some maximally satisfiable subformula.
To find all MUS covers, one must find all MSSes. One
way to find an MSS is to solve the more constrained
Max-SAT problem, and in our proof-of-concept imple-
mentation, we employ an incremental Max-SAT proce-
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dure. Algorithm 1 provides a pseudocode outline of the
procedure.

To provide a means of adding and removing clauses
and enabling or disabling them within a constraint
solver, every clause  in  is aug-
mented with a negated clause selector variable  to
give  in a new formula .
While solving , assigning a certain  FALSE has
the effect of disabling or removing  from the set of
constraints, as the augmented clause is satisfied by the
assignment to . Conversely, assigning  TRUE
enables the original clause. Max-SAT is solved by find-
ing a satisfying assignment with a minimal number of

 variables assigned FALSE, which ensures that as few
constraints as possible are disabled. The clauses left
unsatisfied, which are an MUS cover, are indicated by
the set of  variables assigned FALSE in the optimal
solution.

Instead of solving an optimization problem for every
solution, however, we utilized a sliding objective
approach. We set a bound on the number of  that
may be assigned FALSE using an AtMost bound. Given
a set of literals  and a positive integer

, an AtMost bound is defined as

where assign( ) is 1 if  is assigned TRUE and 0 oth-
erwise. In this application, then, we add a constraint of
the form AtMost( ), bounding the
number of  variables assigned FALSE. For each
bound, starting at 1 and increasing, we exhaustively
search for all satisfiable assignments.

When one solution is found, the search continues
incrementally after adding a blocking clause that forces
out that solution. The blocking clause is a disjunction
of the y variables for the clauses in the previous solu-
tion. For example, if the solution contains

, indicating that clauses
 are an MUS cover, then adding

 to  will prevent finding that same MUS
cover, or any superset of it, in any future solutions.

Finding covers in order of increasing size and prevent-
ing supersets from being future solutions ensures that
only irreducible MUS covers are found.

Adding a new constraint does not violate any of the
learned clauses or other work done in solving the prob-
lem, so an incremental solver can be used. Each new
solution is removed with a blocking clause and the
search continues until no further solutions exist for the
current bound. Incrementing the bound at this point
relaxes a constraint on the system, so the search must
start over with a new copy of the formula, augmented
with all blocking clauses created thus far. (It may be
possible to retain some learned clauses from the previ-
ous iteration, but we have not investigated this at this
time.)

The search halts when  augmented with the col-
lected blocking clauses is no longer satisfiable with no
bound on the  variables. At this point, the blocking
clauses will prevent the disabling of any clauses in any
MUSes, so no satisfying assignment will exist. When
this occurs, the entire set of MUS covers has been
found.

3.2 Obtaining MUS( )
The set of MUS covers implicitly encodes the entire set
of MUSes of a formula, and information can be
extracted from it in a variety of ways. Here, we will
focus on methods for extracting MUSes, though it is
likely that other useful data can be obtained by analyz-
ing the set as well.
Extracting a Single MUS in Polynomial Time. Every
MUS of a formula  is an irreducible hitting set of the
MUS covers of . Although MINIMAL-HITTING-SET is
an NP-Complete problem [13], an irreducible hitting
set for the set of MUS covers can be found in polyno-
mial time, in part because of the fact that no cover is a
subset of any other. With this condition, an MUS can
be found by a straightforward iterative construction,
with no search necessary. Algorithm 2 outlines the con-
struction in pseudocode.

Intuitively, we want to generate a set of clauses,
with at least one clause from each cover, such that
every clause is an essential element of the set. By

Algorithm 1 (FindCovers) Finds all MUS covers of a
given CNF formula.
findcovers(formula)
// formula is a CNF instance
AddYVars(formula)
bound = 1
Covers = null
while (formula is satisfiable)
formulaCopy = formula
AddAtMost(formulaCopy, bound)
while (formulacopy is satisfiable)
newCover=incrementalSolve(formulaCopy)
push(Covers, newCover)
AddBlocking(formulaCopy, newCover)
AddBlocking(formula, newCover)

bound++
return Covers
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Algorithm 2 (ExtractMUS) Generates one MUS from
a set of MUS covers in polynomial time.
ExtractMUS(Covers)
// Covers is the set of all MUS covers
MUS = null
while (Covers != null)
curCover = pop(Covers)
curClause = pop(curCover)
push(MUS, curClause)
for all testClause in curCover
for all testCover in Covers
if testCover contains testClause
remove testClause from testCover 

for all testCover in Covers
if testCover contains curClause

remove testCover 
return MUS

ϕ
ϕ
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“essential” we mean that removing a clause will leave
at least one MUS cover unrepresented in the generated
MUS; this enforces the irreducibility requirement.

The algorithm works by sequentially adding clauses
to a forming MUS. When a clause is selected for inclu-
sion, the remaining problem can be altered to force
that clause to be required. Specifically, when a clause

 is chosen and inserted into the MUS, all of the
other clauses in one cover  in which  appears are
removed from the remaining problem. Then,  is
required, as it will be the only element chosen from .
Additionally, any covers in which  appears are
removed, because they are now represented in the
MUS. After these modifications are made, a new clause
is selected from the resulting set of covers and the algo-
rithm iterates. When no more covers remain, the con-
structed set of clauses is a complete, exact MUS.
Extracting All MUSes. Finding all MUSes involves
searching for all irreducible hitting sets of the set of
MUS covers. In general, this may be impractical due to
the possibly exponential number of MUSes, but in
many cases the result is tractable.

One technique for extracting the complete set of
MUSes from the MUS covers uses the general form of
the polynomial time algorithm for extracting a single
MUS, additionally employing branching on two deci-
sions. At the points where curCover and curClause
are chosen by selecting arbitrary elements from Covers
and curCover respectively, the program can instead
branch on both the cover and the clause choices. Thus,
every iteration of the loop will become two stages of
branching. At each even stage there will be one branch
for every possible cover and in each odd stage a new
branch for every clause in the previously selected cover.
Duplicate branches are possible, and in practice they
seem quite common, so various pruning heuristics can
be employed to reduce the space searched without miss-
ing any unique MUSes.
Extracting the Smallest MUS. In some applications, it
is most useful to find the smallest MUS, in terms of its
cardinality [15]. The smallest MUS of a formula is the
smallest set of clauses that contains at least one clause
from every MUS cover. This can be formulated as an
instance of the minimum set covering problem [10],
with the MUS covers as the row constraints and the
clauses of  as variables that cover the columns. Any
set covering algorithm can be applied to the set of MUS
covers; we have successfully employed a common
branch-and-bound algorithm in our experiments. Gen-
erally, this takes less time to solve than finding the
complete set of MUS covers in the first place. Another
approach would be to use heuristics to guide the poly-
nomial time MUS construction described above towards
smaller MUSes. For example, always choosing the
clause that is present in the largest number of remain-
ing covers could produce smaller MUSes.

4 EXPERIMENTAL RESULTS
The algorithm for finding MUS covers was imple-
mented using MiniSAT [8] as a framework for con-
straint solving. MiniSAT can be extended with new
types of constraints through an object-oriented inter-
face in C++. This made it possible to integrate AtMost
constraints alongside standard Boolean CNF clauses as
needed by the algorithm. For extracting MUSes from
the covers, the branching MUS construction algorithm
was used, implemented in C++.

4.1 Abstraction Refinement
We integrated our implementation into the Vapor
framework [1], which performs counterexample-guided
abstraction refinement to verify Verilog designs. The
abstraction models bit vectors with first-order logic
terms and operators with uninterpreted functions. Veri-
fication yields abstract counterexamples, the feasibility
of which can be checked by reduction to satisfiability of
a Boolean formula involving the counterexample and
the concrete model. If the formula

 is unsatisfiable,
the constraints given by the counterexample represent
behavior inconsistent with that of the concrete model.
In this case, the model is refined, using MUSes of that
formula, to eliminate the spurious counterexample.

To demonstrate the effect of using multiple MUSes
in one refinement step, we have used the integrated tool
to verify an equivalence problem represented in Verilog;
the Verilog model is shown in Figure 2. The tool pro-
duces a counterexample represented as a set of first-
order logic constraints on the model’s bit vectors. We
are then able to find multiple MUSes of the resulting
Boolean formula, each representing a subset of these
constraints.
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γ
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ConcreteModel Counterexample∧

module equivalence(data,clk);
input [7:0] data;
input clk;

wire [7:0] a = data;

// specification
wire [7:0] spec1 = a+1;
wire [7:0] spec2 = a>>1;

// pipelined implementation
reg [7:0] impl1;
reg [7:0] impl2;
wire [7:0] arg = 8’d1;

initial begin
impl1 = 0;
impl2 = 0;

end
always @(posedge clk) begin
impl1 = a+arg;
impl2 = {1’b0,a[7:1]};

end

// equal==1 verifies the implementation matches
// the specification starting from cycle 1.
wire equal = spec1==impl1 && spec2==impl2;
endmodule

Figure 2: Equivalence Problem Verilog Model



6

A subset of the constraints that, conjoined, form one
such counterexample is shown here:
3 shift_right(data,const1) = alpha1
4

concat_7_1(sel_0_6(data),const0)=alpha2
5 alpha1 != alpha2
6 sel_0_6(data) = const1
7 a = const0
8 b = const1
9 add(arg,const1) = alpha3
10 f = arg+1
11 alpha3 != f

In these constraints, data and arg are 8 bits wide,
and the alphas are auxiliary bit vectors. This example
has three representative MUSes. The set of constraints

 simplifies to the statement
(data >> 1) != {1’b0 , data[6:0]}

where >>, {}, and [] are the Verilog operators shift-
right, concatenate, and extract, respectively. This con-
straint is unsatisfiable, and it is one cause of the false
counterexample. Additional MUSes of the CNF formula
represent the sets  and

. The abstract model can be
refined, eliminating the false counterexample, by assert-
ing the negation of each MUS.

This example shows two advantages of refining with
multiple MUSes. First, all causes of a spurious counter-
example are simultaneously removed, which reduces the
number of needed refinement iterations dramatically. In
our example, refining with  alone allows the pos-
sibility of  appearing in future iterations. The sec-
ond advantage is demonstrated by . This MUS
(along with several others) showed up in the counterex-
ample, but it was not triggered directly by the Verilog
code. Rather, it is an artifact of the high level of
abstraction used. While checking the feasibility of the
counterexample, the distinction between “real” and
“side-effect” MUSes is not possible. In fact, refining
with one MUS at a time could effectively waste refine-
ment iterations removing many of these side-effects.

We performed the verification multiple times, each
time changing the number of MUSes used in every
refinement iteration. We found that using more MUSes
at once did lead to fewer refinement iterations. Specifi-
cally, using one MUS at each step, or any fewer than
five, led to more than 20 iterations. Once five MUSes
were used in each refinement, the number of iterations
dropped to 4. Finally, using 34 or more MUSes at once
reduced the number of iterations to 3.

4.2 Automotive Benchmarks
To investigate the structure and properties of MUSes in
a real-world application, we gathered data on a large
set of unsatisfiable CNF benchmarks for automotive
product configuration [18,19]. Each benchmark encodes
a set of available configurations for a product, along
with constraints enforcing a specific property to be
checked. We observed that the encodings were not
“tight,” in that they contained numerous duplicate
clauses. Duplicate clauses can yield a combinatorial
explosion of MUSes, so they were removed before gath-

ering data. There are a total of 84 benchmarks in the
set, each with around 1500-1800 variables and 4000-
8000 clauses. The data were collected in Linux on a PC
with a 2.2GHz Opteron processor.

Due to space constraints, we cannot present the
complete set of data here; instead, we highlight some
representative results. Perhaps the most interesting
result overall is the lack of consistency between bench-
marks, even though they were encoded with the same
techniques from one set of data. Some instances have
hundreds of thousands of MUS covers, while others
have very few. C202_FS_SZ_74, with 1,556 variables
and 5,561 clauses, has 525,723 MUS covers, and
C202_FS_SZ_121, with the same number of variables
and 200 fewer clauses, has only 24. The number of
MUSes also varies greatly. Twelve instances have one
MUS, the size of which ranges from 31 to 213 clauses.
One instance, C208_FA_UT_3255, has 52,736 MUSes,
whose sizes were between 40 and 74 clauses. For others,
the MUS extraction algorithm generated more than a
million MUSes before reaching a twenty minute timeout
in our experiments. By inspection of some instances
with structurally simple MUS covers, we found that
some of the instances have over 1039 distinct MUSes.

5 CONCLUSION AND FUTURE 
WORK

This report introduces a relationship between maxi-
mum satisfiability and minimally unsatisfiable subsets
of constraints. The relationship is a rich one, and we
have shown multiple techniques for deriving useful
information using it. We have applied some of these
techniques to a hardware verification process, showing
how they can be used to increase its efficiency. Experi-
mental results also indicate that there is much to be
learned about minimal unsatisfiability using the rela-
tionship, with relevant properties varying greatly
between similar CNF instances and no known good pre-
dictor for these properties. Further research on this
topic can proceed in a number of areas:

The connection between maximal satisfiability and
minimal unsatisfiability we describe has been inde-
pendently noted by Bailey and Stuckey [2], who
applied it to type-error checking in software verifica-
tion. Their implementation, however, differs from
ours in several important areas. Most notably, they
use a constraint solver as a subroutine, as opposed to
fully integrating their search into the solver to auto-
matically obtain benefits from its advanced heuristics
and pruning techniques. Future work should include
an experimental comparison of their approach,
adapted to Boolean constraints, with our own.
The process of finding MUS covers could be made
more efficient with changes to either the implemen-
tation or the algorithm itself. The current
implementation uses a general constraint solver,
whereas algorithms specific to Max-SAT (e.g.,
[11,21]) could perform much better. The algorithm
itself could be modified to exploit common structures

mus1 3 4 5, ,{ }=

mus2 6 7,{ }=
mus3 9 10 11, ,{ }=

mus1
mus3

mus2
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in CNF formulas such as symmetry or to use domain-
specific knowledge. Performance may also be
improved by relaxing optimality constraints and
finding approximations of MUSes.
There may be much more useful information to be
obtained from the set of MUS covers. As an implicit
encoding of the entire set of MUSes, it holds a great
deal of information. We have shown three different
analyses of these data, and others exist. Extracting
only those MUSes that have certain useful properties
is one possibility.
Finally, we believe that the ideas presented here can
be of use in learning more about the properties of
MUSes and their relation to higher-level causes of
infeasibility in constraint systems. Both the set of
MUS covers and the complete set of MUSes (when
tractable) could provide valuable information to
developers of constraint systems and those investi-
gating the “structure” of infeasibility.

ACKNOWLEDGMENTS
This work was funded in part by the National Science
Foundation under ITR Grant No. 0205288.

REFERENCES
[1] Z. Andraus and K. Sakallah. “Automatic Abstrac-

tion and Verification of Verilog Models.” In Proc. 
of the 41st annual conference on Design automa-
tion (DAC), pages 218-223, 2004.

[2] J. Bailey and P. J. Stuckey. “Discovery of Minimal 
Unsatisfiable Subsets of Constraints Using Hitting 
Set Dualization.” In Proc. of the 7th International 
Symposium on Practical Aspects of Declarative 
Languages (PADL05), volume 3350 of Lecture 
Notes in Computer Science. Springer-Verlag, 2005.

[3] M. de la Banda, P. Stuckey, and J. Wazny. “Find-
ing All Minimal Unsatisfiable Subsets.” In Proc. of 
the Fifth ACM-SIGPLAN International Confer-
ence on Principles and Practice of Declarative Pro-
gramming (PPDP 2003), pages 32-43, 2003.

[4] R. Bruni and A. Sassano. “Restoring Satisfiability 
or Maintaining Unsatisfiability by Finding Small 
Unsatisfiable Subformulae.” Electronic Notes in 
Discrete Mathematics, vol. 9, 2001.

[5] R. Bruni. “Approximating Minimal Unsatisfiable 
Subformulae by Means of Adaptive Core Search.” 
Discrete Applied Mathematics, vol. 130(2), pages 
85–100, 2003.

[6] J. W. Chinneck. “An effective polynomial-time 
heuristic for the minimum-cardinality IIS set-cov-
ering problem.” Annals of Mathematics and Artifi-
cial Intelligence, vol. 17, pages 127 -144, 1996.

[7] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. 
Veith. “Counterexample-guided Abstraction 
Refinement.” In Computer Aided Verification, 
pages 154-169, 2000.

[8] N. Eén, and N. Sörensson. “An Extensible SAT-
solver.” In Sixth International Conference on The-
ory and Applications of Satisfiability Testing 

(SAT03), 2003.
[9] H. Fleischner, O. Kullmann, and S. Szeider. “Poly-

nomial-time recognition of minimal unsatisfiable 
formulas with fixed clause-variable difference.” 
Theoretical Computer Science, vol. 289 no. 1, pages 
503–516, 2002.

[10] M. R. Garey and D. S. Johnson. Computers and 
Intractability: A Guide to the Theory of NP-Com-
pleteness. Freeman, San Francisco, 1979.

[11] S. de Givry, J. Larrosa, P. Meseguer, and T. 
Schiex. “Solving Max-SAT as weighted CSP.” In 
Principles and Practice of Constraint Programming 
(CP2003), 2003.

[12] J. Huang. “MUP: A Minimal Unsatisfiability 
Prover.” In Proc. of the Tenth Asia and South 
Pacific Design Automation Conference (ASP-
DAC), January 2005.

[13] R. M. Karp. “Reducibility Among Combinatorial 
Problems.” In Proc. of a Symposium on the Com-
plexity of Computer Computations, pages 85-103, 
1972.

[14] O. Kullmann. “An application of matroid theory 
to the SAT problem.” In Proc. of the 15th Annual 
IEEE Conference on Computational Complexity 
(CCC2000), pages 116–124, 2000.

[15] J. Lynce and J. Marques-Silva. “On Computing 
Minimum Unsatisfiable Cores.” In Seventh Inter-
national Conference on Theory and Applications of 
Satisfiability Testing (SAT04), 2004.

[16] Y. Oh, M. N. Mneimneh, Z. S. Andraus, K. A. 
Sakallah, and I. L. Markov. “AMUSE: A Mini-
mally-Unsatisfiable Subformula Extractor.” In 
Proc. of the 41st Annual Conference on Design 
Automation, pages 518–523, ACM Press, 2004.

[17] C. H. Papadimitriou and D. Wolfe. “The complex-
ity of facets resolved.” In Journal of Computer and 
System Sciences, vol. 37, pages 2–13, 1988.

[18] SAT benchmarks from Automotive Product Con-
figuration,
http://www-sr.informatik.uni-tuebingen.de/~sinz/
DC/

[19] C. Sinz, A. Kaiser, and W. Küchlin. “Formal 
Methods for the Validation of Automotive Product 
Configuration Data.” In Artificial Intelligence for 
Engineering Design, Analysis and Manufacturing, 
vol. 17 no. 1, pages 75-97, 2003.

[20] S. Szeider. “Minimal unsatisfiable formulas with 
bounded clause-variable difference are fixed-
parameter tractable.” Journal of Computer and 
System Sciences, vol. 69, no. 4, pages 656-674, 
2004.

[21] H. Zhang, H. Shen, and F. Manyà. “Exact Algo-
rithms for MAX-SAT.” In Electronic Notes in The-
oretical Computer Science, vol. 86 no. 1, 2003.

[22] L. Zhang and S. Malik. “Extracting small unsatis-
fiable cores from unsatisfiable Boolean formula.” 
Presented at the Sixth International Conference on 
Theory and Applications of Satisfiability Testing, 
2003.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
    /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


