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Abstract

The ongoing revolution in life sciences research is
producing vast amounts of genetic and proteomic
sequence data. Scientists want to pose increas-
ingly complex queries on this data, but current
methods for querying biological sequences are
primitive and largely procedural. This limits the
ease with which complex queries can be posed,
and often results in very inefficient query plans.
There is a growing and urgent need for declara-
tive and efficient methods for querying biologi-
cal sequence data. In this paper we introduce a
system called Periscope/SQ which addresses this
need. Queries in our system are based on a well-
defined extension of relational algebra. We in-
troduce new physical operators and support for
novel indexes in the database. As part of the opti-
mization framework, we describe a new technique
for selectivity estimation of string pattern match-
ing predicates that is more accurate than previous
methods. We also describe a simple, yet highly
effective algorithm to optimize sequence queries.
Using a real-world application in eye genetics, we
show how Periscope/SQ can be used to achieve a
speedup of two orders of magnitude over existing
procedural methods!

1 Introduction
The life sciences community today faces the same prob-
lem that the business world faced over 25 years ago. They
are generating increasingly large volumes of data that they
want to manage and query in sophisticated ways. However,
existing querying techniques employ procedural methods,
with life sciences laboratories around the world using cus-
tom Perl, Python, or JAVA programs for posing and eval-
uating complex queries. The perils of using a procedu-
ral querying paradigm are well known to a database au-
dience, namely a) severely limiting the ability of the scien-
tist to rapidly express complex queries, and b) often result-
ing in very inefficient query plans as sophisticated query
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optimization and evaluation methods are not employed.
However, existing database products do not have adequate
support for sophisticated querying on biological data sets.
This is unfortunate as new discoveries in modern life sci-
ences are strongly driven by analysis of biological datasets.
Not surprisingly, there is a growing and urgent need for a
system that can support complex declarative and efficient
querying on biological datasets.

A large majority of biological data is sequence data per-
taining to DNA and proteins. DNA datasets are sequences
over the nucleotide alphabet of size four: A, C, G, and T.
Proteins can be represented as sequences over the amino
acid alphabet, which is of size twenty. Proteins also have
a secondary structure which refers to the local geometric
folding. This too is represented as a sequence over the sec-
ondary structure alphabet of size three: alpha helix, beta
sheet, and loops. These sequence datasets are often stored
with additional information such as gene annotations in the
case of DNA, and 3-D structure and known functions in the
case of proteins.

There are several large databases worldwide that store
protein and DNA sequence information. Some of these
databases are growing very fast. For instance, GenBank,
a repository for genetic information has been doubling ev-
ery 16 months [9] – a rate faster than Moore’s law! Pro-
tein databases, such as PDB [12] and PIR [22, 34] have
also grown rapidly in the last few years. The growing sizes
of the databases make the current deficiency in querying
methods worse.

Biologists try to analyze these databases in several com-
plex ways. Similarity search is an important operation that
is often used for both protein and genetic databases, al-
though the way in which similarity search is used is dif-
ferent in each case. When querying protein databases, the
goal is often to find proteins that are similar to the pro-
tein being studied. Studying a similar protein can yield
important information about the role of the query protein
in the cell. The computational criteria for specifying simi-
larity is approximate, and includes similarity based on the
amino acid sequence of the protein, or similarity based on
the geometrical structure of the protein, or a combination of
these. With genetic databases, scientists perform approxi-
mate similarity searches to identify regions of interest such
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as genes, regulatory markers, repeating units, etc. For any
approximate matching query, the desired output is an or-
dered list of results.

We note that existing sequence search tools such as
BLAST [3, 4] only provide a limited search functionality.
With BLAST one can only search for approximate hits to a
single query sequence. One cannot look for more complex
patterns such as one query sequence separated from another
query sequence by a certain distance, or a query sequence
with some constraints on other non-sequence attributes.
Consider the following query: “Find all genes in the hu-
man genome that are expressed in the liver and have a
TTGGACAGGATCCGA (allowing for 1 or 2 mismatches)
followed by GCCGCG within 40 symbols in a 4000 symbol
stretch upstream of the gene”. This is an instance of a rela-
tively straightforward, yet important query that can be quite
cumbersome to express and evaluate with current methods.
One could code a specific query plan for this query in a
scripting language. For example, the query plan may first
perform a BLAST [3,4] or Smith-Waterman [26] search to
locate all instances of the two query patterns on the human
genome. Then, the results of these matches can be com-
bined to find all pairs that are within 40 symbols of each
other. Next, a gene database can be consulted to check if
this match is in the region upstream of any known gene. Fi-
nally, another database search would be required to check if
the gene is expressed in the liver. Note that there are several
other ways of evaluating this query, which may be more ef-
ficient. Moreover, current tools do not permit expressing
such queries declaratively, and force the script programmer
to pick and encode a query plan. Researchers frequently
ask such queries and current procedural methods are quite
cumbersome to use and reuse.

In this paper, we describe a system called Periscope/SQ,
which takes on the challenge of building a declarative and
efficient query processing tool for biological sequences.
The system makes it possible to declaratively pose queries
such as the one described above. We also describe tech-
niques to efficiently evaluate such queries, and using a real
world example, demonstrate that Periscope/SQ is faster
than current procedural techniques by over two orders of
magnitude!

Periscope/SQ is part of a larger research project - called
Periscope - which aims to build a declarative and efficient
query processing engine for querying on all protein and ge-
netic structures [20]. For proteins the structures include not
only sequence structure but also various geometrical struc-
tures that describe the shape and 3D structure of the protein.
The SQ component stands for “Sequence Querying” and is
the focus of this paper.

The main contributions of this paper are as follows:

• We identify the need for an efficient and declarative
querying system for biological sequences. We present the
design of the Periscope/SQ system that extends SQL to
support complex sequence querying operations.

• To optimize complex sequence queries, fast and accurate
estimation methods are critical. We make a contribution

in this area by presenting a technique for estimating the
selectivity of string/sequence pattern matching predicates
based on a new structure called the Symmetric Markovian
Summary. We show that this new summary structure is
less expensive and more accurate than existing methods.

• We introduce novel query processing operators and also
present an optimization framework that yields query
plans that are significantly faster than simple approaches
(which are usually coded by existing procedural querying
methods).

• We present a case study of an actual application in eye
genetics that is currently using our system, and demon-
strate through a simple performance study the advantages
of the Periscope/SQ approach.

The remainder of this paper is structured as follows:
Section 2 discusses our extensions to SQL. Our query pro-
cessing technique includes novel string/sequence predicate
estimation methods, which are presented in Section 3, and
query optimization and evaluation methods, which are pre-
sented in Section 4. Section 5 contains the results of our
experimental evaluation, including an actual application in
eye genetics. Section 6 describes related work, and Sec-
tion 7 contains our conclusions and directions for future
work.

2 Extending a Relational DBMS
Biologists often pose queries that involve complex se-
quence similarity conditions as well as regular relational
operations (select, project, join, etc.). Consequently, rather
than build a stand-alone tool only for complex querying
on sequences, the best way to achieve this goal is to ex-
tend an existing object-relational DBMS [28] to include
support for the complex sequence processing. For the
Periscope project, we have chosen to extend the free open-
source object-relational DBMS (ORDBMS) Postgres [1].
Periscope/SQ, and also comment on the new types that are
needed for this extension.

2.1 Algebra and Query Language

Our query language, which extends the SQL query lan-
guage, is called called PiQL (pronounced as “pickle”).
PiQL incorporates the new data types and algebraic opera-
tions that are described in our query algebra PiQA [30] 1.

The purpose of this section is to describe very briefly
the PiQL extension to SQL and the related algebraic con-
structs. Readers who are interested in the details of the
algebraic properties of these extensions may refer to [30].

2.1.1 Hit and Match Types

Hit: A hit is basically a triple (p,l,s). When specified to-
gether with some sequence, the hit (p,l,s) means that there

1PiQL stands for Protein Query Language – the full versions of both
PiQA and PiQL can be used to query sequences and protein geometrical
structures. Since DNA datasets don’t have geometrical structures, query-
ing on DNA only requires the subsets of these these methods that allows
for querying on biological sequences.
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Example PiQL Queries
1.CREATE TABLE prot-matches (pid INT,

p STRING, match MATCH TYPE)

2. SELECT * FROM MATCH(R,p,“EEK”,EXACT,3)

3. SELECT AUGMENT(M1.match, M2.match, 0, 10) FROM

MATCH(prots.p,“VLLSTTSA”, MM(PAM30)) M1,

MATCH(prots.p,“REVWAYLL”, MM(PAM30)) M2

4. SELECT CONTAINS(AUGMENT(

M1.match, M2.match, 0,10),M3.match) AS resmatch

FROM

MATCH(prots.p,“VLLSTTSA”, MM(PAM60)) M1,

MATCH(prots.p,“REVWAYLL”, MM(PAM60) M2,

MATCH(prots.s,“LLLLL”, EXACT) M3

WHERE score(resmatch) ≥ 15

Figure 1: Example PiQL Statements

is a hit at position p of length l with a score of s on the given
sequence. For instance, suppose that A = (2,3,3) is a hit
on the sequence SEQ = “TGGTTTAGGAGGTA”. This hit
refers to the “GGT” substring, which could have matched
some query for a score of 3. This hit can be shown in the
original database sequence as “TGGTTTAGGAGGTA”,
with the hit portion highlighted in bold-face.
Match: A match is simply a set of hits. For example, con-
sider the sequence SEQ = “TGGTTTAGGAGGTA”, and
a query to find “GGT” followed by a “GGA” within 10
symbols. A match for this query using an exact matching
paradigm is X= {(2,3,3), (8,3,2)}. This match describes
two hits in the data sequences as shown in bold-face in
“TGGTTTAGGAGGTA”.

Several operations are defined on the Match type:

• Start(match) is the lowest p value of all the hits in the
match.

• End(match) is the highest p+l value of all the hits.

• Length(match) is End(match)-Start(match).

• Flatten(match, f) is the match {(Start(match),
Length(match), f (match)}, where f is a score-
combination function.

Operations for match type are implemented as user de-
fined functions on this new data type. Query 1 in Figure 1
shows how to create attributes of this type using PiQL.

2.1.2 Match Operator

The Match operator finds approximate matches for a query
string. It is implemented as a table function which takes as
input a string, an attribute name, a match model (described
later), and a cutoff score. The operator returns a relation
with the match attribute. As an example of this operator,
consider Query 2 shown in Figure 1 that finds all instances
of the string “EEK” in attribute p of relation R (Table 1).
The result of the PiQL query returns the relation R with an
additional match column as shown in Table 2. The match-
ing portions are shown in boldface in Table 1. These are

id p s
1 GQISDSIEEKRGHH HLLLLLLLLLHEE
2 EEKKGFEEKRAVW LLEEEEEHHHHHL
3 QDGGSEEKSTKEEK HHHHLLLEEEELLL

Table 1: Relation R

id p s match
1 GQI... HLL... {(8,3,3)}
2 EEK... LLE... {(1,3,3),(7,3,3)}
3 QDG... HHH... {(6,3,3),(12,3,3)}

Table 2: Match Results

referred to by position, length, and score in the match col-
umn of Table 2.

Since local-similarity search is a crucial operation in
querying biological sequences, one needs to pay close at-
tention to the match-model. In practice, the commonly
used match models include the exact match model, the k-
mismatch model, and the substitution matrix based models
with different gap penalties. An exact match model simply
requires that we find exact matches for the query with any
substring in the database. A k-mismatch model allows for
at most k differences (mismatches) between the query and
any database substring. Finally, the general substitution
matrix based models use a substitution matrix that speci-
fies the precise score to be awarded when one symbol in the
query is matched with a different symbol in the database.
In this model, both insertions and deletions are permitted.
A more detailed discussion of various matching models is
beyond the scope of this manuscript, and we refer the in-
terested reader to an excellent treatise on this subject [7].
The algorithms that Periscope/SQ uses for these different
match models are discussed in Section 4.1.

While Periscope/SQ supports the three match models
listed above, to focus this paper, we concentrate on the ex-
act match model and the k-mismatch model. The substitu-
tion matrix model is primarily used for protein sequences,
and is not applicable for querying DNA or RNA sequences.
The exact and k-mismatch models however are often used
with both protein and DNA sequences. When we discuss
the techniques for query evaluation with the exact and k-
mismatch models, we will make brief remarks on the ex-
tension for arbitrary substitution matrix based model.

2.1.3 Nest and Unnest

These operations can be implemented as table functions
that take as input arguments the relation and the list of
attributes to nest/unnest, returning the nested/unnested re-
lation. For example, an expression like Unnest(prot-
matches, match) will unnest the match attribute in relation
prot-matches. Similarly, an expression such as Nest(prot-
matches, pid) will nest the relation prot-matches with the
pid as the simple key attribute [30].
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2.1.4 Match Augmentation Operator

This operator operates on two relations (say R1 and R2 -
both having a match attribute), and produces a new rela-
tion that contains all the non-match attributes, a new match
attribute, and a key/id attribute. The match attribute is the
union of the match of the left relation and a match on the
right relation if the one from the right relation has the same
(specified) id-field, and is within a specified distance range
after the match of the relation on the left. If the match field
in an operand contains several hits, then the operator com-
putes flatten(m) and uses that value for computation. As is
obvious, the augmentation operator needs to be given the
list of attributes in the two tables that need to be equal be-
fore it can compute a tuple in the result relation. As an
example, consider Query 3 in Figure 1, which will find
all matches that are the form “VLLSTTSA” followed by
“REVWAYLL” with a gap of 0-10 symbols between them.
Each component is found using a match operator, and com-
bined using the augmentation operator.

2.1.5 Contains, Not-Contains

The contains operator selects those matches from its left
operand that contain some match from the right operand. A
match A(p1, l1, s1) is contained in B(p2, l2, s2) if p2 ≥ p1

and p2 + l2 ≤ p1 + l1. The syntax is similar to the Match
Augmentation operator. The complex query described next
(Query 4 in Figure 1) demonstrates a use of the contains
operator. See [30] for more details.

Complex Query Example: As an example of a complex
PiQL query consider the following query:

Find all proteins that match the string “VLLSTTSSA”
followed by a match of the string “REVWAYLL” such
that a hit to the second pattern is within 10 symbols of
a hit to the first pattern. The secondary structure of the
fragment should contain a loop of length 5. Only report
those matches that score over 15 points.

The PiQL query for this example is shown as Query 4 in
Figure 1. The three MATCH clauses correspond to the
match operators that would be needed to search for each
of the specified patterns. The inner AUGMENT function
in the SELECT clause finds the patterns that have “VLL-
STTSA” followed by the “REVWAYLL”. The CONTAINS
call makes sure that only those matches that contain a loop
of length 5 get selected.

3 Selectivity Estimation

The introduction of sequence/string matching predicates
poses an important problem while trying to optimize PiQL
queries. Since an optimizer relies on fast and accurate se-
lectivity estimation methods, poor estimation methods can
lead to inefficient query plans (see Section 4). We address
this issue by first presenting a new technique for estimating
the selectivity of exact match predicates that is more accu-
rate than previous methods. Then, we describe extensions

of this technique for the k-mismatch and the substitution
matrix models.

Our estimation method uses a novel structure called the
Symmetric Markovian Summary (SMS). SMS produces
more accurate estimates than the two currently known sum-
mary structures, namely: Markov tables [2], and pruned
suffix trees [15, 16]. A Markov table stores the frequencies
of the most common q-grams. (A q-gram is simply a string
of length q that occurs in the database.) Pruned suffix trees
are derived from count suffix trees. A count suffix tree is
a suffix tree [17] where each node contains a count of the
number of occurrences of the substring from the root that
terminates at that node. To find the number of occurrences
of the pattern “computer” using a count suffix tree, we sim-
ply traverse the edges of the tree until we locate the node
that is at the end of a path labeled “computer’, and return
the corresponding count value. The pruned count suffix
tree uses a pruning rule to store only a small portion of the
entire count suffix tree [15]. A simple rule is to store just
the top few levels of the tree, or store only those nodes that
have a count above a certain value. Observe that a pruned
count suffix tree in effect stores the frequencies of the most
commonly occurring patterns in the database.

Notice that in these previously proposed strategies, the
summary structures are biased towards recording the pat-
terns that occur frequently. The estimation algorithms then
typically assume a default frequency for patterns that are
not found in the summary. For instance, this could be the
threshold frequency used in pruning a count suffix tree. If a
query is composed mostly of frequently occurring patterns,
then this bias towards recording the frequent patterns is not
an issue. However, if the query tends to have a higher se-
lectivity (i.e., matches very few tuples,) such a summary
can bias the estimation algorithm towards greatly overes-
timating the result size. As the experimental evaluation in
Section 3.3 shows, these existing algorithms perform very
poorly when it comes to negative queries (where 0 tuples
are selected) and queries that are highly selective.

The key strength of SMS is that it captures both the
frequent and rare patterns. Our estimation algorithm that
uses SMS not only produces more accurate estimates for
the highly selective predicates (the “weak spot” of previous
methods,) but also produces better estimates for predicates
with lower selectivities. In the following section, we now
describe our estimation algorithm, and the SMS structure.

3.1 Estimation Method

3.1.1 Preliminaries

In a traditional database context, the selectivity of a string
predicate is the number of rows in which the query string
occurs. Alternately, we can define it as the number of oc-
currences of the query string in the database. Multiple
occurrences in each row make these two metrics differ-
ent. This alternate definition is more useful in bioinformat-
ics where we are interested in finding all occurrences of a
query string. This is the definition of selectivity we use in
the rest of the paper. Our technique can also be adapted
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Estimation Function StrEst(q, summary)
1. p = 1.0
2. For i= 1 to |q|

3. s = q1...qi−1

4. If Prob(qi/s) is stored in the summary, v = Prob(qi/s)
5. Else, v = Prob(qi/s′),

where s′ is the longest suffix of s such that Prob(qi/s′)
is in the summary

6. p = p × v
7. End For
8. Return p × DBsize

Figure 2: Estimation Function StrEst

to return the number of rows, and thereby be used in a tra-
ditional database setting for text predicates. This involves
calculating q-gram frequencies differently, and in the inter-
est of space we omit this discussion.

Most string datasets (English text or DNA or protein se-
quences) can be modeled quite accurately as a sequence
emitted by a Markov source. That is, we assume that the
source generates the text by emitting each symbol with a
probability that depends on the previous symbols emitted.
If this dependence is limited to k previous symbols, then
we call this a Markovian source with memory k, or simply
a kth order Markov source. In [15], the authors show that
for most real world data sets, this k is a fairly small number.
We refer to this property as the “short-memory” property,
to mean that most real world sequences do not have signif-
icant long range correlations.

3.1.2 The Estimation Algorithm

Now, suppose that we have a query q = a1a2a3...an. The
number of occurrences of the string q in the database is the
probability of finding an occurrence of q times the size of
the database. Equivalently, this is (the probability that the
Markov source emits q) × (the size of the database). If
P (q) denotes the probability of the source emitting q, then:

P (q) = P (a1) × P (a2/a1) × P (a3/a1a2) ×

... × P (an/a1...an−1)

= P (a1) × Πn
i=2P (ai/a1...ai−1)

We can exploit the short-memory assumption and use
the fact that P (a/b1..bn) is the same as P (a/bn−k+1..bn),
where k is the memory of the Markovian source. The
expression can now be rewritten as P (q) = P (a1) ×
Πn

i=2P (ai/ai−k..i−1). If we had a table where we could
look up values for P (ai/ai−k..i−1), this probability can
be computed easily. The Symmetric Markovian Summary
(SMS) provides these values.

The crux of the estimation algorithm is in making the
best use of these values, and using reasonable approxima-
tions when these values are not found in the summary.

Algorithm StrEst
This algorithm, as shown in Figure 2, computes the esti-
mates using the equation described above. While retrieving
a probability from the summary, it first looks for P (a/Y ).
If this value is not found, it searches the summary for
P (a/Z), where Y = bZ for some symbol b. It successively
searches for shorter suffixes of Y , and if nothing else is
found, it returns P (a). This algorithm may make as many
as k|q| probes of the summary. The basic intuition behind
this approach is that we expect P (a/bZ) can be approxi-
mated by P (a/Z).

Other Match Models
For the k-mismatch model, we use a simple estimation
technique. For small values of k, we list all possible strings
that have at most k mismatches with the query string. We
compute their selectivity using the exact match model, and
add them up. For larger values of k, we use a differ-
ent approach. We compute a representative selectivity sr

for the set of strings (W ) that have at most k differences
with the query string. The number of such strings is:
|W | =

∑k

i=1
C(L, i) × (A − 1)i. L is the length of the

string and A is the alphabet size. (For an i-mismatch string,
you choose i symbols from the L and replace them with one
of A−1 symbols for a mismatch.) We then compute the se-
lectivity as sr × |W |. An obvious choice for sr is the exact
match selectivity of the query string. A better choice is the
average selectivity of the set of strings with l mismatches,
where l is a small number like 1 or 2. Such an average will
effectively sample a larger subset of W and produce a bet-
ter estimate (as also supported by the experimental results
presented in Section 3.4).

For predicates using the general substitution matrix
model, a simple estimation method is to use a heuristic that
computes the selectivity of an equivalent k-mismatch pred-
icate by choosing an appropriate k. The value of k is deter-
mined by examining the substitution matrix, the length of
the query (L), and the threshold similarity score (T) of the
predicate. We compute the average score for identity (Ai),
and the average score for substitution(As). Frequent sub-
stitutions have a positive score, and rare ones often have a
negative score. A near identical match would have a score
of approximately L × Ai. Since the required threshold is
T , the slack we have is L×Ai − T . This can be uniformly
divided over the mismatches - so we compute k = L×Ai

2×|As|
.

This is a simple and straightforward way of exploiting the
matrix. However, this method makes it difficult to account
for insertions and deletions. We are currently evaluating
the performance of this technique.

Another alternative is to examine the properties of the
substitution matrix to expand the query string into a set of
closely homologous strings and to use existing estimation
methods for each string. For instance, one could construct
a set of homologous strings that included insertions and
deletions, and then use the method previously described on
each string and combine the results. A detailed exploration
and evaluation of this technique is part of future work.
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3.2 The Symmetric Markovian Summary

The Symmetric Markovian Summary (SMS) is essentially
a lookup table that stores various probabilities of the form
P (a/Y ), where a is a symbol in A (the alphabet,) and Y is
a string of length at most k. If we let Dk denote the set of
all probabilities where Y is exactly of length k, then |Dk|
= |A|k+1. In the simplest case when k = 0, this reduces
to storing the unconditional probability for each symbol in
the alphabet. Ideally, one would like to have the summary
S = ∪k

i=0Dk for some sufficiently large k.
The size of such a table grows exponentially with the

value of k, making it impractical especially for large alpha-
bets. Therefore, we need to choose a smaller subset of S
such that these probabilities provide an accurate estimate.
The basic idea behind SMS is to choose only the most im-
portant probabilities from S. A probability value is less
important if we would incur only a small error if we didn’t
store it and approximated it with a different probability in-
stead (when using algorithm StrEst).

We present two algorithms H1 and H2 that use differ-
ent notions of the importance of a probability to construct
an SMS. These two methods differ in the manner in which
they compute the importance of an entry. Before describ-
ing these algorithms in detail, we first present the intuition
behind defining a good notion of importance.

There are two components to the importance of a prob-
ability. A straightforward indicator of importance is the
error that might be incurred if the value were not in the
summary. We call this the δ-value of the probability en-
try. Suppose that we exclude P (a/Y ) from the SMS,
and use some P (a/X) (where X is the maximal suffix
of Y ,) from the summary to approximate it. We compute
δ = |P (a/Y ) − P (a/X)|. Note that P (a/Y ) being more
likely than P (a/X) is just as important as it being less
likely. It is this symmetric property that leads to a better
summary.

An orthogonal but important factor that determines the
importance of a probability entry is the likelihood that
it will actually be used in some queries. This is basi-
cally a workload dependent factor. For instance, even
if the probability P (A/CACAC) has a higher δ value
than P (A/AC), it might still make better sense to choose
P (A/AC) to retain in the summary, simply because it is
likely to be used more often than the former. For the work-
load as a whole, the average error incurred from approxi-
mating P (A/AC) will add up to more than the error from
approximating P (A/CACAC) since P (A/AC) is likely
to be used more often. The likelihood that a given proba-
bility entry will be used for a given workload is the γ-value
of the entry. In the absence of any characterization of the
queries, one can assume a uniform query distribution and
assign a higher γ to shorter strings. We combine these two
components to define importance as the product of δ and γ.

Formally speaking, for a given k, and a fixed summary
size (B entries), we want to store a subset of values from
each of D0, D1, ...Dk such that the values we prune away
can be approximated well. Mathematically, we want to

Algorithm H1(String,k,B)
OCC = [], STR = [], PROB=[] A = Alphabet U {null}
1. Calculate the frequency of each q-gram s for

q varying from 1 to k as OCC(s).
//Now calculate conditional probability
2. For every a,Y such that |Y| < k

3. PROB(a/Y) = OCC(Ya)/OCC(Y)
4. End For
5. Create Priority Queue PQ of Size B bytes
6. Fix unconditional probabilities into PQ.
7. For each entry in Prob

8. priority = |A|−|Y |+1 × |Prob(a/Y) - Prob(a/X)|
where X is the longest suffix of Y present in PQ.

9. PQ.insert(<a/Y, Prob(a/Y), priority>)
10. If Size of PQ exceeds B, drop lowest priority element

and adjust the priorities of affected elements.
11. End For
12. PQ contains the Symmetric Markovian Summary

Figure 3: Algorithm H1 to construct SMS

choose T ⊂ Uk
i=0Di such that imp = Σp∈T (γ × |p −

ApproxT (p)|) is maximized. Here ApproxT (p) is the
value that will be used to approximate p in T , if p is ex-
cluded from T . We want a subset such that the total im-
portance of each of the elements is the maximum over any
subset of this size. In other words, we pick the subset that
has the most important B elements. This is clearly a hard
optimization problem. Constructing an optimal summary
with a naive approach will take an unacceptably long time.
We therefore present two heuristic approaches H1 and H2
that perform very well for a wide range of datasets.

3.2.1 Algorithm H1

Algorithm H1 first computes D0,D1,...,Dk using a q-gram
frequency table. Note that values from D0 are the uncon-
ditional probabilities of occurrence of each of the sym-
bols. We’ll always need these for the first symbol of
the query string. The algorithm first selects D0 into the
summary structure (maintained as a priority queue). For
each of the entries in Di(i > 0), the algorithm computes
δ = |P (a/Y ) − P (a/X)|. To find X , the maximal suf-
fix of Y , it scans the priority queue. It then computes
γ = |A|−|Y |+1, and importance = δ×γ and inserts the entry
into the priority queue. If the queue size exceeds the max-
imum size of the summary, we remove the element with
the lowest importance. We then scan the queue and adjust
the δ value for those elements that were directly dependent
on the entry we just deleted. This heuristic runs in time
O(nBlog(B)), where B is the summary size, and n is the
total number of probability entries being considered.

3.2.2 Algorithm H2

Though H1 is a good heuristic, an important drawback is
that it is computationally expensive. H2 uses a simpler al-
gorithm that runs faster than H1, but may yield a slightly
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Figure 4: Low Selectivity Queries,
MGEN: H1 vs. H2

Figure 5: Medium Selectivity
Queries, MGEN: H1 vs. H2

Figure 6: High Selectivity Queries,
MGEN: H1 vs. H2

less accurate summary. Instead of scanning the priority
queue to find the X that is the maximal suffix, H2 sim-
ply uses the unconditional probability instead of the ac-
tual ApproxT (p) entry. Everything else remains the same.
Note that we don’t have to adjust any values now when we
delete an element from the priority queue. The main advan-
tage of this algorithm is that it is very simple, and fast. The
running time for H2 is O(nlog(B)). Experimental eval-
uations show that H2 is not much worse than H1, but is
significantly faster to compute.

Both H1 and H2 store the summary as a list of pairs
(“a/Y ”, P (a/Y )) sorted on the first part. A lookup can be
performed in O(log(B)) time using binary search.

3.3 Experimental Evaluation

In this section, we first compare the SMS-based algorithms
H1 and H2. We also compare the SMS method with the
method of [15], which is currently considered to be the best
method for estimating the selectivities of exact match pred-
icates. (Note that the recent work by Surajit et al. [5] uses
an estimation method that is built upon existing summary
structures such as the pruned suffix tree. Their technique
uses a learning model to exploit the properties of English
text, and is not applicable to biological data. We note that
our contribution is orthogonal to [5] as their system can be
built on top of SMS.)

3.3.1 Experimental Setup

Data sets: We tested our estimation methods on num-
ber of different biological datasets: a nucleotide (DNA)
dataset [10] (Chromosome 1 of Mouse, 200 million sym-
bols) and a protein dataset (the SwissProt [22, 32] collec-
tion, 53 million symbols). We refer to these datasets as
MGEN and SPROT respectively. To demonstrate the appli-
cability of our methods for conventional databases, we tried
our methods on a number of English text sources, including
DBLP [6], a number of sources from the LDC Corpus [31],
and the Gutenberg text repository [21]. The results using
these text sources was very similar, and we only present
the results using data from the Gutenberg project [21]. We
refer to this dataset as GUTEN.

Query Sets: For MGEN, we generated 150 random strings
ranging from lengths 6 to 12 so it would span all the se-
lectivities. Similarly, for SPROT, we generated a set of 150
random strings of lengths ranging from 3 to 7. For GUTEN,
we randomly picked 150 words of varying lengths from the
database itself.
Result Organization: For each algorithm, we classify the
queries based on their actual selectivities. Queries that
have less than 1% selectivity are classified as high selec-
tivity queries. The ones between 1%-10% were classified
medium selectivity, and those that had more than 10% se-
lectivity were classified as low selectivity queries. The met-
ric of accuracy we use is the average absolute relative error
calculated as a percentage : e = 100 × |prediction−actual|

actual
.

We refer to it simply as the average error.
Note that since highly selective queries produce only a

few results, the error in estimating this class can potentially
present a skewed picture. For instance, if the actual number
of occurrences was just 1, and we predicted 2 , that’s a
100% error! A well established convention to not bias the
result presentation for such cases, is to use a correction [5,
15]. While calculating the error, if the actual selectivity is
less than 100/|R|, we divide the absolute error in selectivity
by 100/|R| instead of the actual value. |R| is the number of
tuples in the relation.
Platform: All experiments in this paper were carried out
on an 2.8 GHz Intel Pentium 4 machine with 2GB of main
memory, and running Linux, kernel version 2.4.20.

3.3.2 Comparison of H1 and H2

In our first study, we examine the effect of using an SMS
of type H1 versus one of type H2.

We ran the query sets using H1 and H2 on each of the
datasets for varying summary sizes. We present the results
for low, medium, and high selectivity queries with MGEN
in Figures 4, 5 and 6. The results for other datasets are
similar and are omitted here. From these figures, we see
that as the summary size increases, both H1 and H2 have
increased accuracy. However, H1 has a consistent advan-
tage over H2. At larger summary sizes the error from H2 is
within 10% of H1.

Note that the cost of using H1 is significantly higher
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Figure 7: MGEN: SMS vs. PSTMO Figure 8: SPROT: SMS vs. PSTMO Figure 9: GUTEN: SMS vs. PSTMO

than the cost of H2. For instance, with the MGEN dataset
and an SMS with 1000 entries, the time taken to construct
H1 is 219 seconds, while H2 takes only 93 seconds. How-
ever, H2 incurs only a small loss in accuracy. Therefore, we
conclude that except for cases where very high accuracy is
needed, or if the summary size is very small, we use H1 to
construct the summary. In all other cases, we use H2 as it
is cheaper to construct, and nearly as accurate as H1.

3.3.3 Comparison with Existing Methods

In this section, we compare our SMS based algorithm with
the algorithm proposed in [15]. For this experiment, we
used algorithm H2 to construct the summaries. The algo-
rithm in [15] uses a maximum overlap parsing along with a
Markovian model for the text. The summary structure they
use is a pruned count suffix tree. For ease in presentation,
we refer to the method in [15] as the PSTMO algorithm.

For this experiment, we fixed the summary size to be
5% of the database size (results with 1% and 10% summary
sizes are similar, and suppressed in the interest of space).
We present the average absolute relative error for each class
of query for each dataset in Figures 7, 8, and 9.

For the MGEN dataset (Figure 7), SMS has a slight
advantage over PSTMO for low and medium selectivity
queries. However, for high selectivity queries, PSTMO
has a very large error - over 340%, compared to only 18%
with SMS! In the case of SPROT (Figure 8), we see that
PSTMO has a slight advantage for low and medium selec-
tivity queries. This is mostly due to the fact that the query
set has many short strings. PSTMO stores the exact counts
of these short strings and therefore ends up being very ac-
curate for these queries. However, for longer strings (high
selectivity), the error for PSTMO rises sharply to 164%. In
contrast, SMS has a low error of 21%. For GUTEN (Fig-
ure 9), SMS is better in all three cases, and the advantage
is very large (70% versus 470%) in the case of highly se-
lective queries. As discussed before in Section 3.2 SMS
produces more accurate estimates because it is a symmet-
ric digest of the information in the text.

The queries considered in the above study does not
consider an important type of query – namely a nega-

tive query. While searching text databases, users com-
monly make spelling or typographical errors which result
in the string predicate selecting zero records. Algorithms
like PSTMO tend to provide very poor estimates for these
queries. However, our SMS based algorithm works very
well for these queries too. We have also experimented with
negative queries, and the results are similar to the highly
selective queries such as in Figure 6.
Execution times: In addition to producing accurate esti-
mates, it is also desirable to have estimation methods that
can compute the estimation very fast. We examined the es-
timation computation time for each method, and show the
average per-query estimation times in Table 3. As can be
seen from this table, our approach is cheaper than PSTMO.
This is because PSTMO needs to repeatedly traverse a suf-
fix tree. Traversing suffix tree nodes is expensive as it in-
volves chasing a number of pointers. It is noteworthy that
the SMS based estimation is both faster and more accurate
than PSTMO!

3.4 K-Mismatch Estimation

We examined the efficacy of our approach for estimating
predicates using the k-mismatch model for different values
of k. We present the results of the study for the case of a
small k (2) and a large k (5) in Figure 10. Observe that the
error in estimation in this case is generally higher than the
exact model. This is because we use the estimates from the
exact model to compute these estimates, and the cumula-
tive error tends to be significantly larger. Inspite of the rel-
atively larger error, the estimates are reasonably accurate
for queries of all selectivities.

3.4.1 Summary

In summary, we have presented an algorithm for estimat-
ing the selectivity of string/sequence predicates using a
novel structure called the Symmetric Markovian Summary
(SMS). Our estimation method using SMS is more accurate
than existing algorithms, and also takes less time for com-
puting the estimate. Existing methods are particularly poor
in estimating the selectivity of highly selective predicates,
which is gracefully handled by our approach. As our em-
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Figure 10: K-Mismatch Estimation Error

pirical evaluation shows, in some cases our approach is up
to 5 times more accurate than the previous best algorithm.

4 Query Evaluation

The introduction of new operators in PiQL presents two
significant challenges. First, we need efficient algorithms
to execute new operators like match, augment, contains,
etc. Second, we need to extend the optimizer to be able
to optimize over the new operators. We first discuss al-
gorithms for the crucial match operator. We then briefly
describe algorithms for other operators and present a new
physical operator called the Match-and-Augment. Finally,
we present an optimization algorithm that is highly effec-
tive at finding good plans for a subset of queries.

4.1 Algorithms for Match

The algorithms for evaluating the match operator varies de-
pending on the match model. In the simplest case - the ex-
act match - a linear scan of the database can be used. The
Scan algorithm scans the sequence from start to finish and
compares each sequence with the query pattern for an exact
match. With a match model such as a k-mismatch model, a
Finite State Automaton (FSA) is constructed for the query,
and each sequence is run through this automaton. The cost
of this algorithm is O(n × qeq) where n is the length of
the database, and qeq is the expected number of states of
the automaton that are traversed before deciding on a hit or
a miss. For the more complex model using a substitution
matrix, the linear scan or the FSA scan algorithm cannot
be used directly. For this complex match model, we can
use the Smith-Waterman [26] (SW) algorithm, which is a
dynamic programming local-alignment algorithm. Its time
complexity is O(m × n) where m is the size of the query
and n is the size of the database. The BLAST [3, 4] fam-
ily of algorithms is a heuristic approach to local-similarity
searching that runs faster than SW, and finds most matches
for a given query.

The OASIS [18] algorithm is a suffix tree based tech-
nique for sequence similarity that can be used with
any match model (including the substitution-based matrix

Data Type SMS PSTMO
MGEN 3.1 66.1
SPROT 7.2 17.8

Table 3: Estimation Time (in microseconds)

model with affine gap penalties). In the case of the exact
match, one can simply traverse down the suffix tree along
the query string and collect all the leaf nodes under that
node (this is essentially a simple suffix tree query). The
cost of this algorithm is O(q + r) where q is the length of
the query and r is the number of matches. The cost of a
k-mismatch search with a suffix tree is typically similar to
an OASIS search.

Choosing the right algorithm can not only impact the
performance greatly, but sometimes even the accuracy. If
BLAST is used, then there is a possibility that some of
the hits might be missed - it should be used only in cases
when this is acceptable. Smith-Waterman and OASIS on
the other hand never miss matches and could always be
used in all situations, though these algorithms can be more
expensive to execute.

Algorithms for other operators like augment, contains,
not-contains are similar to a traditional join. Instead of a
simple equality, the join condition tends to be a complex
predicate involving match types. A nested loop style algo-
rithm is used to evaluate the match-augmentation and the
contains operator.

4.2 A New Combined Operator

We have designed a new physical operator that combines
matching with the match augmentation operator. We call
this the Match-and-Augment (MA) operator. It can be used
to extend a set of matches with another set of matches on
the same dataset. For instance, consider the following ex-
pression:
AUGMENT(MATCH(A.seq,“ATTA”,MM(BLOSUM62)),
MATCH(A.seq.“CA”,EXACT), 0,50).

A simple way to compute this expression is to evalu-
ate each match independently, and then use a join to com-
pute the augment. Alternately, we can evaluate the first
MATCH, then scan 50 symbols to the right of each match
that is found, and check for the occurrences of “CA”. In this
process, we select and augment only those matches where
we find the “CA”. This is essentially the approach used in
the MA operator. The MA approach can often be cheaper
than performing two matches separately and combining the
results with the augment operation.

4.3 Optimization

Our current optimization strategy uses a two stage opti-
mization method. In the first step, we optimize the por-
tion of the query that refers to the complex sequence pred-
icates, and in the second stage we call the Postgres opti-
mizer to optimize the traditional relational components of
the query. We acknowledge that this two step process may
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miss opportunities for optimization across the two compo-
nents. Our eventual aim is to integrate these two steps,
but we start with this two step optimization as it is more
amenable for rapid prototyping. In this section, we de-
scribe the methods that we have developed for optimizing
the complex sequence predicates.

The basic idea behind the optimization algorithm is as
follows: Suppose that the query contains n match predi-
cates connected together by operators like augments. We
compute the selectivity of each match predicate, and pick
the most selective predicate to start with. We examine the
predicate adjacent to this and compute the cost of evaluat-
ing that match and combining it with the current predicate.
Now, we compare this with the cost of using a match and
augment operator. If it is cheaper, then we rewrite the plan
to use a match and augment operation and examine another
adjacent predicate in the same way. The algorithm termi-
nates when an adjacent predicate cannot be combined using
a match and augment or when all the predicates have been
combined. The algorithm is outlined in Figure 11.

It is clear that the algorithm runs in time proportional
to the number of match predicates. Although it explores a
very small portion of the plan space, it is highly effective at
finding good plans. We demonstrate this in Section 5 using
extensive experimental evaluation.

The optimizer uses SMS for predicate selectivity esti-
mation. The cost models are fairly straightforward and
considers CPU cost and I/O cost. The cost models follow
the complexity of the algorithms with empirically deter-
mined constants plugged in. The following section briefly
describes the cost models.

4.4 Cost Models

In real database systems, the cost models for various opera-
tions are often finely tuned and returned over the lifetime of
the system. The cost models presented here represent initial
and very simplistic cost estimates, and we expect that in the
future these cost models will be updated in the Periscope
system as part of system tuning.

The match operator can be evaluated using many algo-
rithms. The linear scan for the exact match will incur N
reads, where N is the number of pages the database se-
quence occupies (every page is read once). The CPU cost
for this is (c1 × lexp × D) + (c2 × Q), where lexp is the
expected number of comparisons needed to determine if a
match has occurred or not for the given string. Q is the
number of results - every time a match is obtained, it is
copied into a buffer, and that incurs a cost. D is the length
of the database sequence. So, the total cost for the scan op-
erator is: (c1 × lexp × D) + (c2 × Q) + (c3 × N), where
c3 is the cost of a disk I/O. The FSA scan operator has the
same cost, except that lexp is computed differently, and c1

has a larger value.
When a suffix tree is used to compute exact matches, we

first traverse down the suffix tree until we find the node at
the end of the query path, and collect all leaves below that
node. The first part requires computational time propor-

tional to the length of the query. The computational cost
of the second part is proportional to the size of the subtree
below the node. The number of I/O’s incurred depends on
the size of the buffer pool, and the buffer replacement pol-
icy. To simplify the analysis, we assume that the top few
levels of the suffix tree are kept in memory. So the first part
does not incur any I/O (for short queries). The second part
incurs at least as much I/O as the number of pages that the
leaf nodes occupy. This is approximately Q× f where f is
the number of nodes per page. Therefore the cost for this
operation is approximately (c1×|S|)+(c2×Q×f), where
|S| is the length of the query string and Q is the number of
matches. The first part tends to be very small, so we use
c2 × f × Q as the cost estimate. c2 accounts for the I/O
cost and also includes a correction factor to account for the
non-leaf nodes.

The OASIS and BLAST algorithms are more complex.
The OASIS algorithm has a worst case cost, W , which is
equal to min(c1 × |S||A|, l), where |S| is the length of the
query, |A| is the size of the alphabet, c1 is a constant, and l
is the number of symbols in the database. The constant c1 is
roughly the time it takes to compare an entry in a cell of the
Smith-Waterman matrix [18]. The average cost of an OA-
SIS operation is often smaller than this. Assuming that the
top few levels of the suffix tree are cached in memory, the
algorithm incurs roughly k × Q page reads where Q is the
number of results, and k is an empirical constant. (This I/O
estimate is very crude, but represents a good starting point.
In reality the I/O complexity depends on the parameters of
the search, such as the E-value, the characteristics of the
substitution matrix, and the affine gap penalty model.) The
total cost is therefore W + (c2 × k × Q).

The BLAST algorithm has a computational cost of
(c1 × D) + (c2 × c3 × Q). D and Q are as described
above. c1 is the cost of a hash lookup, and c2 is the cost
of expanding a word hit, which we set to a constant (actu-
ally, this depends on the method used like the 1-hit or the
2-hit extension and the scoring model.) Finally, c3 is the
number of word hits produced by the word matching com-
ponent of BLAST, which we set to a fixed constant. The
I/O cost for the first phase (finding word hits) in BLAST
is modeled as a search of the entire database sequentially
- this is N reads. The word extension phase reads c3 ran-
dom blocks out of these N . This leads to approximately
N [1−Πk

i=1(D −B − i + 1)/(D − i + 1)] page accesses,
where B is the number of symbols per page. This formula
is an approximation [33] to Yao’s formula [35] used for es-
timating page accesses.

The match augmentation and the contains operators are
join-based algorithms. We use a nested loops style join for
these operators, and estimate these costs using traditional
join cost models [23].

The match-and-augment operator’s cost is similar to the
cost of the FSA scan. Suppose the left operand is a set
of A1 matches, and distance to which we need to search
is L symbols, then a total of A1 × L symbols need to be
compared. The computational cost is (c1 × lexp × A1 ×
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Algorithm Optimize
1. Compute selectivity s(i) of each predicate
2. Compute cost c(i) of evaluating each predicate
3. Let f be the most selective predicate
4. Let g be an adjacent predicate
5. t = cost of evaluating g, then combining it with f.
6. u = cost of using a match-and-augment operator
7. If t > u , then rewrite the plan as match-and-augment
8. If there is another adjacent predicate that has

not been considered, pick it to be g. Go to step 5.
9. End

Figure 11: The Optimization Algorithm

L) + (c2 ×Q). If f is the number of symbols per page, the
I/O cost incurred is roughly A1 × dL × fe page accesses.

5 Experimental Validation
In this section, we present the results of various experimen-
tal studies that we conducted to examine the performance
of our system. Using several synthetically generated query
loads, we explore a wide range of query situations. In ad-
dition, we also present results that are based on a real-life
workload that was captured while a scientist was perform-
ing explorative querying using our tools. We used the full
mouse genome [10] (2.6 billion symbols) as the dataset
for the experiments in this section. We also performed
experiments on several other genetic datasets and protein
datasets, which show similar trends.

5.1 Impact of SMS-based Estimation

In order to understand the benefits of increased accuracy
from the new SMS based estimation algorithm, we per-
formed the following experiment. We randomly generated
a hundred queries having three match predicates each. One
of the predicates used a k-mismatch model, while the oth-
ers used an exact match. The query load was executed for
k = 0, 1, and 2. (We use these relatively small values since
k is usually a small number in practice. Our methods also
work for larger values of k.

The lengths of each of these predicates was randomly
chosen to be between 6 and 14. Neither the suffix tree in-
dex, nor the match and augment operator is used in evalu-
ating these queries. Each query was optimized by exhaus-
tively searching over the plan space. (Note that in this ex-
periment we are not using the linear optimization algorithm
of Section 4.3, but rather, a simple exhaustive enumeration
of all the query plans. This exhaustive optimization is guar-
anteed to pick the plan with the best estimated cost, thereby
isolating any effects related to the optimization algorithm.)

We optimized the queries in two ways: In one case we
used PSTMO [15] to estimate the selectivities while opti-
mizing the query, and in another case, we used the SMS
based estimation algorithm. We used a one percent sum-
mary in both cases. We found that the average running time
of the query plan (which does not include the optimization
time) was higher by about 43% when using PSTMO. Of

k Without MA With MA
Average (Std-Dev) Average (Std-Dev)

0 3.04 (11.5) 0.19 (0.08)
1 46.71 (142.08) 0.55 (0.65)
2 226.76 (808.5) 13.55 (41.46)

Table 4: Query Plan Evaluation Times (in minutes)

the 100 queries, 90 queries were optimized identically by
both algorithms, and 10 queries were optimized differently.
These 10 query plans took roughly 4.6 times as long to ex-
ecute when optimized using PSTMO as opposed to using
SMS. The reason for this behavior is because PSTMO had
overestimated the selectivity of some of the predicates by a
margin large enough that it led to a different execution plan
in each of these ten queries.

5.2 Impact of Using Match and Augment

In this experiment, we explore the effectiveness of using
the new match and augment operator (MA), which was de-
scribed in Section 4.2. For this experiment, we ran the set
of 100 queries generated as above in two different ways.
One plan was optimized with the match and augment oper-
ator and the other plan without it. For this experiment also,
we used an exhaustive search optimization algorithm. The
query plan evaluation times are summarized in Table 4 for
each value of k. As is evident, the use of the new opera-
tor can lead to significant savings. The plan that used the
match-and-augment operator executed 10 to 80 times faster
on average!

In Table 4, we also provide the standard deviation of the
times for the 100 queries. To get a better understanding
of how often and how much the match and augment op-
erator helps, we split the queries into three sets: the first
set, where the new operator provides at most a 2X speedup
(small advantage), the second bin where the speedup was
greater than 2 but less than 10 (significant advantage), and
the third bin where the speedup exceeded a factor of 10
(large advantage). We observed that for k = 0, in 65% of
the queries were in the first category, around 20% in the
second, and 15% in the third. Similarly for the case where
k = 1, the split-up was 35%, 30%, and 35% respectively.
Finally for k = 2, the query set split was 30%, 20%, 50%
into the three categories. It is clear from the evidence that
the new operator can be very useful in a significant number
of queries.

5.3 Optimizer Evaluation

In this experiment, we compare two optimization algo-
rithms. The first one is a conventional algorithm that ex-
haustively searches the plan space for the best plan. The
second algorithm is the linear time optimization algorithm
described in Figure 11. For this experiment, a suffix tree
index is available on the data, which increases the num-
ber of algorithms that the optimizer can choose from. We
generated three sets of hundred queries each with 3, 5, and
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Figure 13: Promoter Binding Region

7 predicates. One of the predicates in each query was ran-
domly selected to use a k-mismatch model with k randomly
chosen as one of 0, 1, 2. The average query optimiza-
tion time and the evaluation time in each case is shown in
Figure 12. The plan obtained using the linear time opti-
mization algorithm always runs within 6% of the optimal
plan’s running time. For the exhaustive query optimization
method, the time take to optimize the query is low for a
small number of predicates (3 or 5), but is unacceptably
large when more predicates (7 and above) are used. Per-
forming an exhaustive search to find the optimal plan is a
better option only in the case of 3 predicates. Overall, what
this experiment shows is that the linear query optimiza-
tion method is quite robust. The exhaustive optimization
method can produce slightly better plans, but should only
be used when the query has a small number of predicates.

5.4 GeneLocator: An Application

The current prototype implementation of Periscope/SQ has
been used in an web-based application called GeneLocator
that we have built in collaboration with researchers at the
Kellogg Eye Institute at the University of Michigan. Gene-
Locator is a tool for finding target promoter regions. In
order to understand certain genetic factors associated with
eye diseases, our collaborators are trying to identify all
genes that are regulated by a particular transcription factor
(a regulatory protein, also called a promoter). Such pro-
teins typically bind to a “signature” binding site: a short
sequence of DNA about 10-15 bases long. The pattern usu-

Algorithm Time (min)
Unoptimized Plan (No Index) 473.05
Optimized, No MA (With Index) 9.76
Optimized, With MA 1.02

Table 5: Execution Times

ally allows for a few mismatches. The presence of a TATA-
box (a pattern such as “TAATA”) or a GC-box (a pattern
like “GCGC”) within a certain distance downstream of the
match to the signature often indicates that it is a potential
binding site. Also, transcription almost always begins at a
“CA” site, which is a short distance following the TATA-
box or the GC-box. Figure 13 pictorially represents the
kind of pattern our collaborators are looking for. In PiQL,
this query can be expressed as:

SELECT AUGMENT(AUGMENT(
M1.match, M2.match, 0,2988),
M3.match, 15,35) AS res, G.name FROM
MATCH(DB.dna,“ACGTTGATGGAG”,KM(1)) M1,
MATCH(DB.dna,“TAATA”,EX) M2,
MATCH(DB.dna,“CA”,EX) M3,
GeneAnnotations as G, WHERE score(res) > 15 AND
G.start > start(res) AND G.start - start(res) ≤ 5000 AND
G.chromosome = DB.chromosome

The extra conditions in the Where clause filter out the
matches to report only those that are a short distance up-
stream of a known gene. In the above query, GeneAnno-
tations is a table with the following schema: GeneAnnota-
tions (id, chromosome, start, end, type, annotation), and is
loaded with the gene annotation data from NCBI [10].

GeneLocator is accessed by a web interface, which al-
lows the end user to pose queries by filling out a sim-
ple form. Our collaborators are working with the mouse
genome, and use this tool for posing interactive queries.
With their permission we logged the queries that they is-
sued. Most of their queries had three match predicates. The
inter-predicate distance and the number of mismatches al-
lowed in the match model varied across the queries. One or
two of the predicates often used an exact match model. The
others used a k-mismatch model. The actual queries are not
presented in order to protect the privacy of the research. For
this application we built a suffix tree on the mouse genome
using our suffix tree construction method [29]. A screen-
shot of the GeneLocator interface is shown in Figure 14.
The search results are displayed as in Figure 15.

5.5 Performance of GeneLocator

We compared the execution times of the set of queries
logged using three different query plans. The first query
plan does not use any indexes, and uses no optimization -
a naive left to right evaluation of the augments is used to
compute the result. The second plan uses a suffix tree and
an exhaustive search to choose the cheapest plan. It does
not use the match-and-augment operator. The third plan
is optimized using the linear optimization method and in-
cludes the match-and-augment operator. The dataset used
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Figure 14: Screenshot of the GeneLocator Interface Figure 15: Screenshot of the Search Results

was entire the mouse genome (2.6 billion symbols). The
execution times are as are shown in Table 5.

The first observation we can make from Table 5 is that
using the suffix tree can dramatically improve the query ex-
ecution time. This does not come as a surprise, since suf-
fix tree index based algorithms are usually very efficient.
Second, we observe that the plan with the match and aug-
ment operator executes faster than the version without it
by nearly an order of magnitude. The current procedural
methods that are used in life sciences research labs tend to
resemble the first plan (no indexes, no optimization, sim-
ple operators) and therefore take an extremely long time to
run. The contribution of Periscope is not only that it pro-
vides a declarative and easy way to pose complex queries,
but also that it executes them upto 450 times faster than
existing procedural approaches!

5.6 Results

Using GeneLocator, the eye genetics researchers were able
to identify several potential targets for the transcription fac-
tor of interest, which are now being verified using wet-lab
experiments. These targets were computationally identified
using our system after just a few days of explorative query-
ing. This process could easily have taken several weeks
or months to accomplish using conventional methods. En-
couraged by these results, we are now planning more am-
bitious queries in comparative genomics.

6 Related Work
Miranker et al. suggest an approach for querying biological
sequences in [19]. They borrow some constructs from our
previous algebraic proposal PiQA [30], to describe com-
plex queries, and largely focus on designing and exploiting

metric space indexing structures for querying sequences.
Our work does not require a similarity measure to be a
metric and focuses on providing a declarative way of pos-
ing complex queries while being able to evaluate them ef-
ficiently.

A closely related previous effort is the work by Hammer
and Schneider [14], which outlines an approach to express-
ing complex biological phenomenon through algebraic op-
erations. Their approach aims to build a completely new
algebra that is very powerful in expressing all biological
operations such as transcription, translation, crossover, mu-
tations, etc. However, our approach more carefully charts
out the operations for querying sequences and aims at ex-
tending relational algebra so that we can take advantage of
all the existing relational infrastructure.

In [13], the authors propose an alignment calculus on
strings to query string databases. They also describe a sys-
tem that was built based on this algebra [11]. The language
lets a user express very complex queries, by permitting
complex string processing predicates to be written using
alignment calculus declarations. However, the notion of an
approximate match is hard to capture in this context. Also,
to our knowledge, no performance evaluations have been
carried out for this system.

Previous work in querying sequences by Seshadri,
Livny, and Ramakrishnan [24, 25], describe techniques for
storing and declaratively querying sequences. However,
this work is tailored towards handling time series style
data where windowing, projecting, aggregating over sub-
sequences are important. In our work, we are interested
in operations on biological sequences which are quite dif-
ferent as it involves approximate pattern matching queries
with complex match models.

Recognizing the need for supporting sequence query
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matching in a relational framework, commercial DBMS
vendors have recently started supporting BLAST calls
from SQL statements [8, 27]. However, these methods
only provided limited sequence searching capabilities, al-
lowing only simple pattern search (for example match-
augmentation is not supported), and can only work with
the BLAST match model.

Krishnan, Vitter, and Iyer presented one of the earli-
est approaches for estimating the selectivity of exact wild-
card string predicates in [16]. The more recent work by
Jagadish et al. [15] improves on [16] by using a short-
memory Markovian assumption instead of an indepen-
dence assumption. These methods employ pruned suffix
trees as the summary of the text in the database. Suffix trees
are versatile data structures, however, they have the draw-
back of being biased towards storing more frequent pat-
terns. The SMS based approach we propose does not have
this bias and is more accurate than existing techniques.

Chaudhuri, Ganti, and Gravano [5] recently proposed
a technique which takes advantage of the frequency dis-
tribution properties of the English text to increase the ac-
curacy of estimation techniques. The method is based on
the fact that English text often has a short identifying sub-
string. This has not been shown to be applicable to other
datasets such as DNA and protein sequences. The estima-
tion methods that we propose in this paper can easily fit
into the overall framework of [5] for use in text databases.

7 Conclusions and Future Work
In this paper, we have presented Periscope/SQ - a DBMS
for declarative querying on biological sequences. We pre-
sented PiQL, a language that extends SQL to permit com-
plex queries on biological sequences, and have also de-
scribed a novel and effective sequence predicate estimation
method. In addition, we have presented techniques for effi-
ciently optimizing and evaluating queries using these com-
plex sequence predicates. We also described a real world
application built using Periscope/SQ, which clearly demon-
strates the huge impact that this approach can have for sci-
entists querying biological sequences.

As part of future work, we are investigating methods for
extending the declarative query processing framework to
cover other biological data types, including protein struc-
tures and biological networks.
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