
On the Design and Implementation of a Proxy-Based
Architecture for Web Access on Mobile Devices

Krian Upatkoon, Wenjie Wang and Sugih Jamin
Department of Electrical Engineering and Computer Science,

The University of Michigan, Ann Arbor, MI 48109-2122, USA
E-mail: {kupapatt, wenjiew, jamin}@eecs.umich.edu

Abstract— In this paper, we introduce WebBee, a client-proxy
architecture that combines a web scraping proxy with a Java
client to make a platform-independent gateway between small
mobile devices, such as mobile phones, and the vast information
available on the World Wide Web. The key technology behind
WebBee is a web scraping engine that executes “scraping scripts,”
a domain-specific scripting language we designed for the purpose
of fetching web pages and selectively extracting information from
them. By transmitting to and displaying only this extracted
information on the client device, WebBee gives mobile devices
with small displays and low network bandwidth clean and quick
access to web content customarily designed for desktop browsers.
With WebBee, providers do not need to tailor their contents
specifically for mobile devices. Furthermore, the use of a Java
client ensures that WebBee is a portable solution among modern
mobile devices.

I. I NTRODUCTION

Building bridges between the world of small mobile devices
and the Internet remains an open area of research. While
support for some applications such as e-mail have matured,
the ability to serve world-wide-web content on mobile devices
have been limited by screen size and network bandwidth.
Evidence of small displays can be seen even in the latest
devices. High-end phones such as the Nokia 3660 or Nokia
N-Gage series [1], with a screen size of 176 x 208 pixels (35 x
41.5 mm), are considered larger than average. NTT Docomo’s
FOMA SH900i [2] (one of the newer phones on the Japanese
market at the time of writing), hand-held PCs such as HP iPAQ
pocket PC [3], and Dell Axim [4], all have screen sizes not
exceeding 240 x 320 pixels. Given this small space, it may
be considered unacceptable to retain all the information that
would be shown on a desktop-sized display (generally 1024 x
768 pixels or larger).

Although the adoption of 3G [5] alleviates the network
traffic problem in the case of mobile phones, the majority
of mobile phone users in the world today use GSM [6],
which is rated at 171.2 Kbps [7], but typically has a much
slower download speed. For example, in Table I, we averaged
the latency and bandwidth measured by wapSpeed.com [8]
for three major wireless carriers in the United States, from
wapSpeed’s latter 25 tests. We found the average latency to
be about 3 seconds, and the network bandwidth to be limited to
around 20 to 30 Kbps, far less than the theoretical limit. Busse
et al. reported an average latency of about 1 second for GPRS
and about 275 ms for 3G (UMTS) on an European network

TABLE I

LATENCY AND BANDWIDTH MEASUREMENT OF GPRSCONNECTIONS

FROM WAPSPEED.COM ON 05/29/2004

Carrier Device Latency Bandwidth

Sprint PCS SCP-8100 3.49 sec 29.7 Kbps
T-Mobile Nokia N-Gage 3.07 sec 19.9 Kbps

AT&T Wireless MOT-V600 2.85 sec 28.5 Kbps

[9]. In contrast, a computer user on a broadband connection
may experience 3 Mbps downloads at a latency of less than
70 milliseconds.

Making the vast content and services of the world-wide-
web accessible to small mobile devices has traditionally had
two solutions: web browsers designed to render desktop-
sized pages on small displays, and the use of mobile-friendly
markup languages to create sites specifically targeted to the
mobile audience.

Mobile web browser renders each web page to fit the limited
display size of the target device, even if the web pages were
not designed with small displays in mind. A good example
of this technology is Opera [10], a web browser available for
multiple platforms such as Symbian OS [11] and Palm OS
[12]. Another product,ePAGEby Picsel [13], enables users to
view HTML (and several other file formats) on various mobile
devices.ePAGEfeatures a “zoom” control system, where users
pick a spot of interest on the screen to focus on and zoom into.

One big drawback to the generic browser solution is that
the device must still download, at the very least, each web
page’s HTML file in its entirety. This burdens the limited
wireless bandwidth of the device. Moreover, because many
mobile phone plans charge consumers by total network traffic,
users are unlikely to risk surfing bloated web sites. Another
disadvantage of these technologies is that they require large
amounts of computational power, and consequently, battery
life, two of the most limited resources on mobile devices. For
example, we tried viewing the amazon.com web page over
GPRS using Opera on a Nokia N-Gage [1], considered to
be a computationally high-end phone with a 104 MHz ARM
processor. After the page was fully loaded, scrolling was still
painfully slow, as the browser had to pause for almost one
second after each click of the directional key.

One way to reduce the network demands and alleviate
power-consuming processing on the mobile device is to per-
form the rendering and image shrinking in a proxy [14], [15].

Because many web sites tend to display links, images, and
other information intended for desktop displays, the rendering
algorithm (regardless of whether it is implemented on the
phone or on a proxy) must be extremely sophisticated if it is
to automatically eliminate extraneous information in order to
shrink the page’s rendering size. No matter how sophisticated
the renderer, however, there is a limit to how much information
a generic browser can remove without having any knowledge
of what the user is interested in. For example, a weather
web site made for desktop browsing may not only contain
the current temperature and daily forecast, but also driving
conditions, next week’s forecasts, statistics, Doppler radar
images, advertisements and so on. Without knowing exactly
what the user is interested in, a generic browser would be
forced to squeeze all this information into the portable device’s
display. This tight packing of information makes it hard for
the user to find what she really wants to see on the page.

In contrast to the mobile web browser approach, mobile-
specific solution requires providers to create content specif-
ically made for mobile devices. Examples are web sites
written in mobile markup languages such as WML [16] or
NTT Docomo’s cHTML for i-mode [17]. While this is a
clean solution, it relies completely on the content provider
to create these sites; the additional set up and maintenance
cost of these sites is multiplied if the provider is to cover the
various markup language platforms available. To illustrate the
problem, consider the large amount of content in Japan written
exclusively for i-mode. This content is inaccessible to GSM
phones, because they do not have an i-mode browser built in.
Since GSM is the dominant standard in most other countries,
this limits the potential audience of these i-mode sites.

In short, current mobile browsing solutions face the follow-
ing issues:

• Screen space is too small for a generic HTML browser
• Generic browser solutions consume much power
• Network bandwidth is slow and costly
• Mobile-specific solutions require effort on the content

provider’s part, for each platform to be supported

In this paper, we introduceWebBee, a client-proxy ar-
chitecture that combines a web scraping proxy with a Java
client to make a platform-independent gateway between small
mobile devices and the vast information available on the World
Wide Web. The key technology behind WebBee is a web
scraping engine that executes “scraping scripts,” a domain-
specific scripting language we designed for the purpose of
fetching web pages and selectively extracting informationfrom
them. Because scripts can be customized for each web site,
the client will display only information of interest to the end
user. In this way, WebBee gives mobile devices with small
displays and low network bandwidth clean access to web
content originally designed for desktop browsers. Furthermore,
the use of a Java client ensures that WebBee is a portable
solution among modern mobile devices.

Our prototype implementation of WebBee1 includes
commonly-used services such as directory services and
weather forecasts. Trial users have found web access to these
services on their mobile phones to take far less time using
WebBee than it would using a generic browser like Opera.
In addition to the convenience, network traffic is significantly
reduced, resulting in cost savings for users with a pay-per-
kilobyte Internet access plan. For example, a generic web
browser needs to download a total of about 419KB for the
full amazon.com web page and to retrieve the price of a
book searched by its ISBN. With our WebBee prototype,
the mobile client only needs to retrieve about 150 bytes of
data. The WebBee mobile client program is compact and
computationally inexpensive, expanding Internet accessibility
to a large range of mobile devices.

We do not intend for WebBee to be a magic solution that
automatically makesall of the World Wide Web’s sites fit onto
devices with small screens and bandwidth; in fact, we have
argued that the general solution is not feasible. Some amount
of human effort is required for making each site accessible
through the WebBee system (namely, the creation of scraping
scripts and client user interfaces). We will show later in this
paper, however, that the effort needed per site is very little.
As a result, we argue that WebBee can be adopted widely to
cover almost all the useful web services that one might think
to use while on-the-go with a mobile device.

In our design of WebBee we follow the following three
design principles. We illustrate their use on the design of a
WebBee-based weather lookup application.

1) The mobile device is the portal: instead of forcing
users to go through a network portal to access each
separate web site, we push the applications to the
mobile device itself. With WebBee, users have aWeather
application on their mobile device that they can start to
immediately begin receiving weather information; the
role of the network is transparent to the users.

2) Minimize network use, maximize local interactions:
instead of requiring each user to browse a series of web
pages just to submit a query for the weather of a city,
the weather application residing on the mobile device
interacts locally with the user to obtain the necessary
information and makes a single query over the network
on behalf of the user.

3) Keep applications simple: each WebBee application
performs only a single purpose. This way, we minimize
both user interaction and screen usage.

A faster network such as promised by 3G technologies will
not obviate these design principles because screen real-estate
on the mobile phone will continue to be limited, and network
latency at 250 ms will continue to be an issue.

The rest of this paper is organized as follows. We first give a
description of the WebBee architecture in Section II. In Section

1Sample WebBee applications are available for public
download at http://webbee.eecs.umich.edu/index.wml (WML) or
http://webbee.eecs.umich.edu/ (HTML)

Web Server

Web Server

Web Server

WebBee Server

Cell Phone /

PDA

Comm. Tower
 Scraping

Script

Scraping

Module

User-Defined

Script

Scraping

Script

Scraping

Script

Web Server

Fig. 1. WebBee Architecture

III, we present the specifics of our prototype implementation.
We then discuss some challenges that we face in the design
of WebBee in Section IV, and conclude in Section V.

II. W EBBEE ARCHITECTURE

A. Overview

At the core of WebBee is a web scraping engine that
executes mini-scripts, referred to as “scraping scripts.”Web
scraping is the process of extracting information from a web
page; the scraping scripting language we designed allows for
pattern matching to locate the desired information on each web
page. Scraping is typically useful for extracting information
from sites that have changing content, such as weather reports
and news. Combined with user input, scraping can also be
used for querying applications such as online dictionary or
online auctions.

The scraping functionality of the WebBee architecture is
closely related to that ofdata-miners. A data-miner is a
program that automatically extracts specified informationof
interest (e.g., text) from one or more web sites. A basic
data-miner can be thought of as having two tasks: first,
to comprehensively explore a web site by following links;
second, for each page it comes across, the data-miner will
scrape the desired information and add it to its database. The
difference with WebBee is mainly in the first task; rather than
automatically crawling through a web site, WebBee downloads
a specific page to scrape in response to a user’s request.

The structure of the WebBee architecture is illustrated in
Fig. 1. The target client device can be any small mobile device
with some form of Internet access, such as a mobile phone
with an Internet plan. Another common client may be a PDA
with wireless access like GPRS or WiFi (802.11b, etc.).

The WebBee server runs on a machine with a high-speed
Internet connection. This server contains a web server as
well as the scraping engine itself. The web server allows the
WebBee server to act as a proxy between the mobile device
and the web sites the user wants to view. The scraping engine
is a web server module that is executed to process incoming
requests from clients.

When a client on the mobile device communicates with
the WebBee server via an HTTP POST request, the scraping
engine module is invoked to service the request. The client
indicates which script the user wants to run (or supplies its
own script, if necessary), and the scraping engine begins to
execute the script. The script instructs the WebBee server to
download and scrape the appropriate web page(s). The scraped
information is then returned to the mobile device via an HTTP
reply.

The advantage of the proxy approach is that all the unneces-
sary information is eliminated before any data is transferred to
the mobile device, reducing transfer time and network traffic
costs. Also, because the work of scraping is done off the
device, the client program can be kept small and simple, saving
memory and processing power (which can have a significant
impact on battery life) on the device.

We illustrate how our system works with a simple example.
When a mobile phone user wants to look up the price of a
book on amazon.com, she starts a Java client on her phone
and enters the ISBN of the book (Fig. 2). The client contacts
a WebBee server, which fetches the appropriate script from
its cache and begins to execute it. According to the script, the
WebBee server then posts a search request to amazon.com for
that particular book by ISBN, and downloads the page with
detailed information regarding the book. The title and price
are scraped from the page, formatted, and sent back to the
phone to display. On the surface, the user sees only the end
result: a screen showing the price of the book (Fig. 3).

Using HTTP as the method of client-server communication
brings several advantages. First, in the case of mobile phones,
some service providers block access to all remote ports except
port 80 (HTTP). Additionally, HTTP connection classes are
provided with Java MIDP [18], which handles most communi-
cation error handling, simplifying the Java client and keeping
its footprint small. Another important consequence of using
HTTP is that the WebBee server appears as if it were just
another web server to the clients; the fact that external web
sites are being downloaded for scraping is hidden from the
perspective of the client.

User Input

ISBN
 Number

HTTP Request for

amazon.com

Display Search

Results

WebServer (Apache):

Execute the Scraping Module (Python)

Scraping Module:

Execute the Script for
amazon.com

HTTP Request

with ISBN

Returned

Webpage

Amazon.com

Call

amazon.com.script
 Scraped Result

Scraped Result

Cell Phone

WebBee

Server

Fig. 2. Searching for a book’s price from amazon.com.

Fig. 3. Screenshots for searching book price from amazon.com.

B. Scraping Scripts

In our prototype implementation, WebBee scraping scripts
are manually written for each web site to scrape. The scripting
language is simple enough that a user with some HTML
experience can pick it up in an hour. Creating a simple scriptto
scrape a page may typically take around fifteen minutes or less.
The scripting language includes functionality such as fetching
a web page, forwarding form data, and pattern matching for
locating information.

Similar to sites with mobile-friendly pages, there is a need
for creation (and possibly maintenance) of scripts for each
site. However, we argue that the use of scraping scripts
requires no more work than the creation of these specialized
mobile content pages by the content author, and has additional
advantages as well.

The first is portability: any mobile device capable of running
Java MIDP applications will have access to all the content
scraped by any script, regardless of whether the device’s built-
in browser understands HTML, WML or cHTML. The content
author need only produce a normal HTML site and a scraping

script for it, rather than creating multiple versions of each
page. If the content author includes “scrape-friendly” tags
(described later in this paper) in their pages, no changes to
the scraping script will be necessary when the author updates
the site’s layout; thus, maintenance of scripts will be keptto
a minimum.

The second advantage is ease of implementation. In the tra-
ditional solution of creating separate mobile-friendly versions
of a site, it is the content provider’s responsibility to author
the mobile-friendly pages, and to tie in their functionality
to their server back-end. Using the scraping approach, any
savvy user (not just the content author) can create a mobile-
friendly interface to an existing web site without requiring
any additional access to the server back-end functionality. By
opening the development of such scripts to all users, we are
confident that WebBee will speed the expansion of mobile-
accessible content.

Simply scraping information for display with scripts, how-
ever, is just the most basic use of WebBee. Most forms of
interaction that a desktop browser can perform with a site,

can also be mirrored in WebBee using appropriate scripts
and clients. For example, specialized clients can be written to
make more sophisticated applications, such as a secure bidding
interface for an online auction. Other example interactivesites
suitable for WebBee include web loggers (or “blogs”), and
phone and address directory services.

C. Image Transcoding

Besides the extraction of text, we have designed WebBee to
transcode [19] images as well. Image transcoding is especially
useful for scraping web sites with content such as map
services. A scraping script for getting driving directionsoff
MapQuest [20], for example, extracts not only the text of the
directions, but also the associated images illustrating the route
to follow.

For each image indicated by the script, the WebBee server
will download the image, then resize and re-encode it as
necessary to make it fit on a small display. The allowed limit
of resizing can be specified in the scraping script to ensure
that the image is not made so small as to be illegible. Other
possible operations to reduce the image size include cropping
(the removal of sides of the image) and color reduction (a
256-color image may be reduced to 8 colors, or to greyscale,
for example). The transcoded image binaries are tagged onto
the end of the HTTP replies that are sent back by the server
to the mobile devices.

We chose PNG (Portable Network Graphics) [21] as the file
format for the transcoded images, as PNG image decoding is
natively supported in all Java MIDP devices; support for other
formats such as GIF or JPEG, on the other hand, are not always
guaranteed. The use of PNG considerably simplifies the client
code needed to load and display the received images. One issue
with the use of PNG, however, is that it is a lossless format;
while it achieves a good compression ratio on line drawings
(e.g., maps), it performs poorly compared to the lossy JPEG
format on images such as photographs.

D. Location-Aware Services

In the United States, the Enhanced 911 mandate passed by
the U.S. Federal Communications Commission requires, by
the end of 2005, that all wireless carriers be able to locate any
wireless phone calling 911 to an accuracy of 50 to 100 meters
[22]. If this location information were available to client
software running on the phones, the user’s current positioncan
be used with WebBee to provide location-dependent services.

Given a user’s position from the client, for example, the
WebBee server can look up the user’s current address or zip
code via a database, facilitating the automated retrieval of a
map of the user’s vicinity from a map services site. A quick
lookup on directory services can locate nearby shops and
restaurants. Getting the local weather forecast would be trivial.
We have experimented with Bluetooth Global Positioning
System (GPS) units. At the time of writing, however, there
are very few mobile phones that support the JSR 82 Java API
[23] for Bluetooth accessibility from within a Java application.

III. I MPLEMENTATION DETAILS

A. The WebBee Server

We have implemented a working prototype of our architec-
ture. The scraping engine is written in Python [24], and runs
on any machine that has the Apache web server [25] with the
mod python module.Mod python is an Apache module
that embeds the Python interpreter within the server. We
chosemod python because it is proven capable of efficiently
handling large volumes of concurrent requests [26].

The Apache web server listens for incoming client re-
quests on the standard HTTP port 80. When a connection
from a client is established, Apache forwards the request
to mod python for handling. Values of the form fields
submitted by the client are extracted and sent as parameters
to an instance of the WebBee scraping engine. The most
significant parameter specifies which scraping script to run.
As shown in Fig. 2, the WebBee engine loads the appropriate
script from disk and begins to execute it. The script will
instruct the WebBee engine to download one or more web
pages into memory. The downloaded web page is then scraped
according to the instructions in the script, and the formatted
output is sent through Apache to the waiting client. Once the
client has received all the output data, the connection is closed.

Whenever a new user request is received while all existing
WebBee engine instances are busy serving other requests,
mod python creates a newsubinterpreter to service that
request. Subinterpreters ensure that different instancesof the
WebBee engine do not interfere with each other. Once created,
a subinterpreter will be reused for subsequent requests. Thus,
the multiple WebBee engine instances remain persistent in
memory, keeping overhead minimal for future requests.

B. Web Scraping Scripting Language

We have designed a preliminary version of our scraping
script language. The script is interpreted line-by-line, and
each line contains a command to be executed. When the last
command has run to completion, the script terminates and the
resulting output is sent back to the client. Some important
script commands are listed in Fig. 4.

The way information is extracted is based on manipulating
a cursor through the HTML file (or files) downloaded from
the web site to be scraped. The movement of the cursor is
influenced by search commands that attempt to locate the
specified patterns in the HTML file that encase the information
to be extracted. As the cursor is moved to its desired positions,
the script allows for the setting of starting and ending markers
at the current cursor position. These markers serve to indicate
blocks of text to be extracted. An additional command copies
the indicated block of text to an output buffer, removing
HTML tags if desired. The contents of the output buffer is
returned to the client at the end of the script. A simplified
example of how to extract the title from an HTML document
is shown in Fig. 5.

In Fig. 5, line 1 specifies the web page that the script
should fetch. The second line searches for the first instance

Description 1 (Script commands)

1. fetch {get|post} <url >
Fetches a web site into an internal buffer.

2. seek{start|current |end} <offset>
Moves the cursor.

3. search{fwd|back} {start|end} <exp>
Searches for the first exact instance of a string (exp)
within the file.

4. searchre{fwd|back} {start|end} <reg exp>
Similar to “search” command, but does a regular
expression search instead.

5. select{start|end}
Sets the start/end selection markers to the current
cursor position.

6. select{print |cleanprint}
Prints the current selection to the output stream
(“cleanprint” also removes HTML tags).

7. print <string>

Prints a string to the output stream.
8. if {pass|fail}

else
endif

These three commands are used to test if a
command (e.g., search) succeeded, and branch
accordingly.

Fig. 4. Basic WebBee script commands.

Description 2 (Script Example)

1. fetch get http://www.some-url.info
2. search fwd end<title>

3. if pass
4. select start
5. search fwd start</title>

6. select end
7. print The title is:
8. select print
9. else
10. print No title found!
11. endif

Fig. 5. An example scraping script that extracts the title of apage.

of “<title>”. If there is a hit, as indicated in line 3, the script
continues to scrape the page. Otherwise, the script stops and
prints an error message (lines 9-11). Line 4 marks the start of
selection to current cursor position, which is right after the first
instance of “<title>”; line 5 search for a following instance
of “</title>”; line 6 marks the end of selection to the new
cursor position, which is before “</title>”.2 Lines 7 and 8
then print out the result.

The scripting language is designed to be as simple as
possible for the jobs that it performs. By keeping the script’s
complexity down, possible security concerns can be more
easily addressed. Additionally, the automatic generationof
such scripts can be made simpler.

In our current implementation, scraping scripts are stored
as text files on the scraping proxy server. A future version is
planned to allow the client to send the server additional scripts,
or instruct the server to download scripts from an external
source on the Internet.

The client is implemented in Java MIDP, a platform chosen

2To simplify the example, we do not include the script commands to handle
the failure case for line 5, which occurs if the web page has a “<title>” tag
but no “</title>”.

with portability in mind. The purpose of the client is to provide
a user interface such that the user can post requests to the
server, and to display returned results. Because all the scraping
is done on the proxy, the client program can be kept small and
simple.

C. Output Formats

In its simplest operating mode, WebBee scraping scripts
output scraped information as plain text, which is sent by the
server for verbatim display on the mobile client. While this is
very suitable for small tasks such as retrieving weather reports
or news, the application designer might sometimes desire to
obtain more information in a structured manner, such as a list
of search results, where each result is a name along with its
associated contact information and ID number. In this case,
plain text output would require specialized parsing in each
client, which places an additional burden on the application
developer.

To handle these cases, it is natural to consider using XML
for data transport. XML gives the convenience of representing
data structures in a standardized format that is easy to parse,
thought it adds a cost of requiring tags around data elements
and groups.

The WebBee server can be set to use XML in its output
mode with a script command. To the script writer, this operat-
ing mode appears fundamentally the same as plain text mode,
in the sense that it supports the same commands for searching
and extraction. However, there are additional commands for
delimiting extracted pieces of text by name and group, for
which the WebBee server will generate the appropriate XML
tags. There are several compact XML parsers for Java MIDP
(such as kXML [27], which we are currently using) that can
be incorporated into the client. The use of XML makes the
transmission of structured data simple. An important point,
however, is that the script writer need not be aware that XML
is even used for transport; he only needs to keep in mind the
concept of using names and groups to structure his extracted
data. The WebBee server and the communications library in
WebBee clients hide the details of transport from the user.

Transmission of binary data is handled by first setting the
output mode to XML. Whenever a binary block of data is
“attached,” a descriptor for its content and length is addedas
XML, and the binary data itself is appended at the end of
the output stream. The communications library in the client
automatically handles binary data based on the descriptorsit
sees.

D. Applications

We have prepared a variety of sample applications for
WebBee. Some of these include:

• Amazon: Search Amazon.com for books and other items,
see prices and reviews, etc.

• Local: Search local.google.com for nearby businesses,
obtain maps and directions.

• Maps: Get driving directions, route maps, area maps, etc.
through MapQuest.

• Movie: Get local movie listings and show times.
• UM Directory: Search the University of Michigan’s

database for affiliated people.
• Weather: Obtain the local weather forecast from

weather.gov.

Some of these applications are already available as sub-
scription services from several major cellular operators in
the United States, e.g., the Verizon SuperPages service [28].
WebBee applications are service-independent, however, and
the number of applications can grow quickly from public
contribution, rather than waiting on each provider to create
new services. Given this public contribution of scripts and
applications, we believe that it will be possible, in a reasonable
amount of time, to cover almost everyusefulInternet function
that one may wish to perform on a mobile device.

We reassert that WebBee is not meant to be a general
browsing solution. There are a number of functions on the
Web that users would rather use a desktop browser instead;
for example, applying for a home loan, purchasing stocks or
airline tickets. Choosing what Internet functions one may or
may not want to perform on a mobile device is subjective; due
to the open nature of WebBee, if a user finds an application
inadequate, she can easily alter the existing script or write her
own.

E. User Profiles

To select the appropriate script to execute on the server,
the client refers to each script’s unique identifier, which in
our current implementation is the script’s filename, and flag
indicating whether or not to look in the global or private
pool of scripts. The global pool of scripts consists of user-
contributed scripts which have been made available to the
public. Other scripts stored on the server may be private to
each particular user.

In order to maintain this database of scripts, the WebBee
server maintains a database of profiles linked to each user.
Within these profiles, an authenticated user can store her
private scripts. She can also choose to make publicly avail-
able any of the scripts she has uploaded. Guest users may
execute any of the globally-available scripts without having to
authenticate to the server.

IV. D ISCUSSIONS ANDFUTURE WORKS

A. Server Scalability

As mentioned earlier, the WebBee server appears from the
outside simply as a web server; that is because it is in fact
a web server, albeit with an intelligent back-end. WebBee
experiences similar CPU and network loads to an ordinary
web server. One difference is that the bulk of the network
data transferred is downstream: from web sites to the WebBee
server. The scraped data returned to the client is a tiny fraction
of this downstream data, around 0.5% to 2.5% for a typical
application. Because the images that appear on each web page
are seldom downloaded (only when the script specifies certain
images to be scraped), it can be inferred that WebBee actually

generates less network traffic, per page per user, than the web
site that serves the original content would.

The WebBee server code maintains the desirable properties
of any back-end service for a web site. It executes quickly,
adding little CPU overhead to serving each request. The code
is reentrant and remains in memory as a single instance for
all requests, and consumes a reasonably light amount of addi-
tional data memory per request. To illustrate, our unoptimized
prototype implementation, running on a 1.7 GHz Intel Pentium
M machine, takes a total of just 85 microseconds of CPU time
to parse and execute a script that scrapes a sample 24 KB page
(disk and network time excluded). There is generally very little
disk access; the only data to reside on disk are the scraping
scripts, and because these are small and frequently accessed,
they tend to remain cached in memory.

Scaling up WebBee is as simple as scaling up a web server.
The common solutions of using server farms to distribute CPU
load, as well as mirroring and multi-homing to spread network
traffic [29], can be suitably adopted to WebBee. Additionally,
caching the data obtained from active crawling of popular sites
can reduce network traffic.

B. Resilience to Failure

WebBee’s architecture requires all web traffic to pass
through a proxy server; thus, the server becomes a single
point of failure, whether by malicious attack, bugs or network
congestion. We will briefly address these issues here.

The simplest way to deal with single points of failure would
be to maintain several proxy servers in different locations, and
have clients maintain a list of known servers to choose from.
Clients may initially choose a server at random, and adjust
their probabilities of using each server based on evaluations
of their performance. If the server does not respond, the client
will lower its probability of being selected the next time. If
one working server offers better average response times for
executing the same scraping script over another server, the
probability that it will be chosen next time is increased.

To address the possibility of server degradation through
buggy or malicious scripts, we put effort into keeping the
scripting language as simple as possible, while maintaining
desired functionality. Fortunately, pattern-based scraping is a
relatively straightforward task, and a small set of commands
and basic flow control is sufficient for most web sites of
interest.

C. Script Creation

Critical to widespread adoption of WebBee would be the
ease of creation of WebBee scraping scripts. While manual
creation of such scripts is almost trivial to users familiarwith
HTML, we believe that the script creation process must be
simplified to the point that any users who can use a web
browser can create their own scripts. To meet this end, we are
developing a tool named WebBee ScriptHelper to aid in the
generation of WebBee scripts. ScriptHelper is a desktop tool,
but the resulting scripts are to be used by WebBee applications.

In the design of this tool, we postulate that users are
generally interested in receivingdynamic content on their
mobile devices. We definedynamicto mean any content that
changes over time, either through updates outside the user’s
control (e.g., news), through variations in user interaction
(e.g., results from looking up different words in an online
dictionary), or by a combination of both factors (e.g., weather
reports that change over time, or as the user searches new
locations).Staticcontent refers to content that does not change
over time. Separating dynamic from static content on a page
is the basic function of ScriptHelper.

The idea behind ScriptHelper is simple: the user chooses
a web page to scrape, and opens it using the embedded
web browser in the ScriptHelper application. Using the
ScriptHelper browser, she views multiple versions of the same
page with varying content. ScriptHelper then compares the
all the different versions of the page, and from its analysis
detects the blocks of dynamic content sandwiched between
static content. The user then selects which particular blocks
of dynamic content she is interested in, and ScriptHelper
generates the appropriate scraping script for her.

Using the familiar example of a weather web site, the user
would begin by querying the forecast for her current location.
She then goes back and runs a query for a different location.
Next, she asks ScriptHelper to perform its analysis. Based
on the differences between the two pages, ScriptHelper tells
the user it has detected three dynamic blocks: one containing
the current day’s forecast, another containing travel advisories,
and the last a text advertisement. The user is interested only
in scraping the forecast, so she selects only the first block and
hits the “generate” button. ScriptHelper detects unique text
patterns encapsulating the selected block, that are commonto
both versions of the page. It uses these text patterns, as well
as the URL of the weather web site that the user viewed, to
create WebBee script commands for searching, selecting, and
extracting that particular block. From this simple interaction
with the user, ScriptHelper is able to gain all the information
it needs to generate a simple WebBee script.

There are some challenges involved in developing such a
tool. First of all, the identification of patterns around a piece of
data is not foolproof, nor are the patterns necessarily unique.
To improve the accuracy of the search patterns, the user is
encouraged to view more than just two versions of each page.
Also, when the resulting pages can differ significantly based
on the query, ScriptHelper will fail. An example of this case
would be when the user searches for driving directions. If
she supplies exact addresses, the resulting page shows the
driving directions she expected. If she supplies incorrector
vague locations, the resulting page may instead display a
selectable list of approximate results. An advanced version
of ScriptHelper would have to be able to generate scripts that
branch conditionally to handle both cases.

D. Making Pages “Scrape-Friendly”

An important issue with the use of scraping scripts is that
once the layout of a site changes, the patterns that surround

each piece of information of interest are likely to change too.
This will likely cause scripts to fail.

A content author who creates a scraping script for his
own site (or wants to aid script writers) can include “scrape-
friendly” tags in their site content. Such tags preserve the
validity of scraping scripts throughout any site revisions, and
require almost no effort to add and maintain.

The syntax for scrape-friendly tags is simple:

<scrape id="data_element_name">
interesting information goes here

</scrape>

We illustrate the use of these tags with an example of a weather
report page:

Your current weather:
<scrape id="temperature">18</scrape>
degrees centigrade.
<scrape id="forecast">
Expect strong winds tonight,
with a chance of rain.
</scrape>
A message from our sponsor:
<scrape id="advertisement">
For roof repairs,
call Biff & Buff Builders Inc.
at 222-555-1234
</scrape>

Desktop browsers that do not recognize the “scrape” tags
will simply ignore them, rendering the pages without any
visible difference. To the WebBee script author however,
pattern matching has been made trivial, and they can also be
assured that their scripts continue to work correctly afterany
page layout changes. Content authors who are interested in
allowing mobile-friendly access to their content can include
these tags at almost no additional effort. In contrast, the current
practice of making explicit mobile-accessible content would
require the content author to create multiple versions of each
page in each mobile markup language (WML, etc.).

Scrape-friendly tags are not required for WebBee to function
normally; they are just an optional means of ensuring scripts
remain robust in the face of site layout changes.

E. WebBee as Client Middleware

Our current implementation of the client entails the creation
of individual Java binaries for each WebBee application, each
with a hard-coded user interface (UI). A cleaner solution is
to implement the WebBee client as a middleware for mobile
devices, where a WebBee “application” would consist of a UI
Descriptor and additional information tying the UI Descriptor
to a particular WebBee script. The UI Descriptor of an
application describes the user interface for that application and
is written in a UI markup language. Such a markup language
will have descriptions for the data entry screen, including
widget layout and text entry boxes. It will also describe how
the returned information is to be formatted for display.

This middleware version of the WebBee client would be
a Java program that allows the user to select an existing
WebBee “application” to execute, or to download and save
new ones from the Internet. Once a WebBee “application”
is launched, the middleware interprets the UI Descriptors for
display, and handles the network communication between the
mobile device and the WebBee server. The communications
layer relays requests submitted from the rendered UI to the
server, and forwards the server’s response back to the UI layer
for display as specified by the UI Descriptors.

One advantage of a middleware client is that the user needs
only one Java application for all the functionality WebBee
offers; each WebBee “application” is simply a UI Descriptor
and some associated metadata saved in the mobile device’s
persistent storage. The rendering and communications code
would be shared, ensuring that any bug fixes and updates
to the middleware immediately affect all the “applications.”
However it is essential that the UI Descriptors must be as
easy to create as the scrapping scripts in order for WebBee to
gain widespread use.

Another benefit of this approach is that common parameters,
such as user name or address, can be shared among all WebBee
applications. For example, the zip code in the target address
in a driving directions application may also be the default
zip code in a weather application, and the same address may
be used for querying local cinema showtimes. Java MIDP
currently does not allow for data sharing between Java applets.

F. Limitations

WebBee uses web forms to pass user input to web sites,
and scrapes the resulting HTML pages for information to send
back to the user. Because WebBee relies on web forms for user
interaction, it is not a suitable solution for accessing sites using
client-side technologies like Java, Javascript or Macromedia
Flash to process and display queries. The amount of work
required to duplicate the functionality of these client-side
technologies on the WebBee server would be enormous, and
to extract meaningful results (e.g., from graphical rendering of
text in a Flash application) may also be difficult. We do not
feel this is a major issue, however, as sites that provide their
information in this manner are still by far the minority.

G. Extending Device Compatibility

For the few mobile devices that do not support Java, but
have a built-in browser for a particular markup language, an
alternate interface to WebBee is required. We propose that
front-ends for each script can be created automatically on the
WebBee server in HTML, WML, or cHTML. As each scraping
script specifies the arguments expected from a client, it would
be a simple matter to automatically create an input widget
for each argument in a script in the desired markup language.
The output generated from the scraping script, whether plain
text or XML, can be converted according to device-specific
markup languages.

Once these pages are generated, the user can access each
script’s interface using the device’s built-in browser by en-

tering each script’s URL, which may simply be its filename
concatenated with “.html”. While this easy solution works
for the majority of simple scripts, it is insufficient for more
sophisticated applications, especially those which process or
retain data on the client. For such applications, the Java client
would work best.

V. CONCLUSION

In this paper, we have presented WebBee, a client-proxy
architecture that describes a platform-independent gateway
between small mobile devices and the World Wide Web. The
design of WebBee encourages each application to specializein
a single task, allowing the user interfaces to be made as simple
as possible; simple UIs are very suitable for the small displays
of mobile devices. Each WebBee application minimizes the
use of the network, requesting as much information from users
as possible before connecting to the network to resolve their
queries. Web scraping scripts, which are an important part of
WebBee, tell the server how to extract information of interest
from each web site. Since only extracted information is re-
turned to each mobile client, less data are sent over the mobile
network, and the information can be fitted to the small displays
of the mobile device. Finally, instead of requiring users togo
through a network portal, WebBee applications reside on the
users’ mobile devices, further reducing network usage. The
WebBee application repository is open to public contribution,
requiring no support from each web site’s administrators in
order to grow.

REFERENCES

[1] “Nokia Phones,” http://www.nokia.com/phones/.
[2] “FOMA SH900i,” http://www.3g.co.uk/PR/March2004/6812.htm.
[3] “HP iPAQ Pocket PC,” http://welcome.hp.com/country/us/en/ prod-

serv/handheld.html.
[4] “Dell Axim Series,” http://www1.us.dell.com/content/ prod-

ucts/compare.aspx/handhelds.
[5] Federal Communications Commission, “Third Generation ”3G”Wire-

less,” 2002, http://www.fcc.gov/3G/3gfinalreport.pdf.
[6] Michel Mouly and Marie-Bernadette Pautet,The GSM System for Mobile

Communications, Telecom Publishing, 1992.
[7] R. Chakravorty and I. Pratt, “Performance Issues with General Packet

Radio Service,” Journal of Communications and Networks (JCN),
Special Issue on Evolving from 3G deployment to 4G definition, vol.
4, no. 2, Dec. 2002.

[8] “wapSpeed.com,” http://wapspeed.com.
[9] M. Busse, B. Lamparter, M. Mauve, and W. Effelsberg, “Lightweight

qos-support for networked mobile gaming,” 2004.
[10] “Opera Web Browser,” http://www.opera.com/.
[11] “Symbian OS,” http://www.symbian.com/.
[12] “Palm OS,” http://www.palmsource.com/palmos/.
[13] “Picsel,” http://www.picsel.com/.
[14] Y. Hwang, J. Kim, and E. Seo, “Structure-Aware Web Transcoding

for Mobile Devices,” IEEE Internet Computing,Septemer/October 2003
(Vol. 7, No. 5), 2003.

[15] A. Fox, S. D. Gribble, and E. A. Brewer Y. Chawathe, “Adapting
to Network and Client Variation Using Active Proxies: Lessons and
Perspectives,”IEEE Personal Communications, Sep. 1998.

[16] “Wmlscript tutorial from wireless developer network,”
http://www.wirelessdevnet.com/channels/wap/training/wmlscript.html.

[17] “NTT Docomo I-Mode,”
http://www.nttdocomo.com/corebiz/imode/index.html.

[18] “Java Mobile Information Device Profile (MIDP),”
http://java.sun.com/products/midp/.

[19] R. Han, P. Bhagwat, R. LaMaire, T. Mummert, V. Peret, and J.Rubas,
“Dynamic adaptation in an image transcoding proxy for mobile web
browsing,” IEEE Personal Communications, vol. 5, no. 6, pp. 30–44,
Dec. 1998.

[20] “MapQuest,” http://www.mapquest.com/.
[21] “Portable Network Graphics (PNG): Functional specification,” ISO/IEC

15948:2004.
[22] J. Warrior, E. McHenry, and Kenneth McGee, “They Know Where You

Are,” IEEE Spectrum, Jul. 2003.
[23] “JSR-000082 Java APIs for Bluetooth,”

http://jcp.org/aboutJava/communityprocess/final/jsr082/index.html.
[24] “Python Programming Language,” http://www.python.org/.
[25] “Apache Web Server,” http://www.apache.org.
[26] “MoinMoin Performance Proposals,”

http://moinmoin.wikiwikiweb.de/PerformanceProposals/.
[27] “kXML,” http://www.kxml.org/.
[28] “Verizon SuperPages On the Go,” http://verizon.superpages.com/.
[29] “Akamai,” http://www.akamai.com/.

