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Abstract

We present an effective method for automatically select-
ing the appropriate scale of shape features that are depicted
when rendering a 3D mesh in the style of a line drawing.
The method exhibits good temporal coherence when intro-
ducing and removing lines as needed under changing view-
ing conditions, and it is fast because the calculations are
carried out entirely on the graphics card. The strategy is
to pre-compute a sequence of filtered versions of the mesh
that eliminate (via a signal processing technique) shape fea-
tures at progressively larger scales. Each mesh in the se-
quence retains the original number of vertices and connec-
tivity, providing a direct correspondence between meshes.
The mesh sequence is loaded onto the graphics card, and at
run-time a vertex program interpolates positions and cur-
vature values between two of the meshes, depending on dis-
tance to the camera. A pixel program then renders silhou-
ettes and suggestive contours to produce the line drawing.
In this way, fine shape features are depicted over nearby
surfaces, while appropriately coarse-scaled features are de-
picted over more distant regions.

1. Introduction

Simplified line drawings are often preferred over realistic
depictions in a number of contexts. Examples range from il-
lustrations created to convey information about structure (as
in repair manuals or medical texts), to story-telling directed
at children (who respond to simple cartoon-like images), to
the early stages of design, when a realistic rendering gives
the false impression that design decisions have been largely
finalized. In the context of 3D computer graphics, an addi-
tional consideration is that rendering complex shapes real-
istically requires significant resources, when very often the
same shapes can be effectively depicted in a line drawing
style that uses less data, modeling effort (e.g. for textures
and BRDFs), and computation time.

The most basic non-photorealistic rendering uses little
or no shading, and simply draws lines along silhouettes
and sharp features. Recently, Decarloet al. introducedsug-
gestive contours[3]. These are additional view-dependent

lines (like silhouettes) that convey a more complete impres-
sion of shape while adding relatively few additional lines.
We refer to rendering styles that rely primarily on silhou-
ettes, sharp features, and suggestive contours ascomputer-
generated line drawings, or line drawingsfor short.

An important (but largely overlooked) point about
computer-generated line drawings is that lines con-
vey information about shape featuresat some scale, and
the choice of scale matters. Specifically, features de-
picted via lines should project to a reasonable sizein
image space. For example, from the viewpoint of a per-
son standing on a mountain slope, nearby pebbles and
undulations in the dirt on the scale of a few centime-
ters could reasonably be depicted via lines in a line
drawing. But the same features, seen from a distant view-
point on a neighboring mountain, would appear in the
drawing as a meaningless mass of sub-pixel lines. Render-
ing them conveys no shape information. Undulations in
the terrain on a larger scale (tens of meters, say) would in-
stead be appropriate to convey via lines from that view-
point.

This issue can be side-stepped by restricting the camera
to maintain roughly a constant distance from the surface,
and selecting an appropriately filtered mesh (e.g. down-
sampled and smoothed as needed for the intended viewing
distance). For more general situations where the camera
cannot be so constrained, a better solution is needed. We
propose a novel solution that has the following benefits:

• It automatically controls the scale of depicted features
to meet a target image-space size.

• It is simple and easy to implement.

• It achieves excellent temporal coherence when transi-
tioning between features at different scales.

• It runs entirely on the graphics card, and so is quite
fast.

• Our improved fragment program better controls the
width of rendered lines.

The main disadvantage of the method is that it requires mul-
tiple versions of the original mesh to be stored simultane-
ously on the graphics card. Addressing this problem is an
important challenge for future work.
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Figure 1. Left: a terrain model rendered with full detail. Right: The same view rendered with reduced
detail in distant regions.

The basic idea is as follows. Given an input meshM0,
we produce a sequence of progressively smoothed meshes
M1 throughMN−1. (For all the results demonstrated in this
paper and the accompanying video [15], we usedN = 4.)
These meshes retain the same sampling and connectivity
as the original mesh. It is thus straightforward to establish
a correspondence between them. The smoothing is carried
out so that each mesh in the sequence can resolve shape
details of approximately half the size of those resolved by
the next mesh in the sequence. Also in the pre-process, we
compute vertex normals and curvature information for each
mesh. This data is loaded onto the graphics card and at
run-time a vertex program interpolates positions, normals,
and curvature values between two of the meshes, depending
on distance to the camera. A pixel program then renders
silhouettes and suggestive contours to produce the line
drawing. In this way, fine shape features are depicted over
nearby surfaces, while appropriately coarse-scaled features
are depicted over more distant regions.

2. Related Work

Techniques for producing computer-generated line draw-
ings date back at least to 1967 with the work of Appel [1].
He proposed anobject-space approachin which silhouettes
and sharp features are detected in object space, then pro-
jected into the image, processed for visibility, and rendered
as strokes. A variety of methods in this category have been
proposed [4, 14, 5, 8, 11, 21, 13, 3]. (For a survey, see Isen-
berg et al. [10].) An important advantage of object-space
methods is that they can produce stylized strokes – i.e.,
strokes that wobble, overshoot, or vary in width, color or

texture to resemble natural media. They generally require
good-quality meshes (in the form of oriented 2-manifolds).

Alternatives to object-space methods include image-
space methods [20], and frame-buffer methods [5, 18, 17].
In both cases, feature lines are not detected explicitly,
but instead appear in the image due to per-pixel opera-
tions. A disadvantage of these approaches is that they do
not support stroke stylization. They are generally sim-
ple, though, and can work with arbitrary models, including
“polygon soup.”

Despite the variety of work on computer-generated line
drawings, we are not aware of any that addresses the prob-
lem of depicting just those shape features that project into
the image at an appropriate scale. Somewhat related is the
idea of controlling linedensityin image space. Recently,
Grabli et al. [6] and Wilson and Ma [22] separately de-
scribe systems that render complex 3D geometry in the style
of pen-and-ink drawings, with special processing to con-
trol the resulting stroke density and reduce visual “clutter.”
Both systems combine 3D operations with 2D image pro-
cessing to detect regions of visual complexity (e.g. dense
silhouettes), and remove detail where it exceeds a thresh-
old. Both systems require significant processing time, and
neither addresses temporal coherence for image sequences,
or the specific problem of depicting shape features at a de-
sired scale in image space.

The work of Paulyet al. [16] has some similarities
to our work. While they work with point sampled sur-
faces, they produce a scale-space representation of the in-
put shape (as we do), consisting of a sequence of shapes
with progressively coarser features smoothed away. They
extract features at various scales, and apply the results in a
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Figure 2. An armadillo model rendered with constant detail from three viewpoints (left), then with
controlled detail (right).

non-photorealistic renderer. However, the resulting features
(ridges and valleys) are view-independent, and the scale is
not chosen according to the image-space size of the pro-
jected shape.

Our method is implemented entirely in hardware, via
a vertex program that computes positions and curvature
values, and a fragment program that draws silhouettes and
suggestive contours via per-pixel operations. As a result,
the method is extremely fast, but does not produce stylized
strokes. However, the same algorithm could be carried out
in the CPU, resulting in object-space stroke paths that could
be rendered as stylized strokes. Our fragment program is
somewhat related to the idea of using environment maps
to render silhouettes, described by Goochet al. [5], and
also to the strategy of using a specially constructed texture
(parametrized by radial curvature in one dimension, and
its derivative in the other) to render suggestive contours,
described by DeCarloet al. [2]. Our method does not use
texture maps or environment maps. Instead it uses screen-
space derivatives to better control line width of the resulting
silhouettes and suggestive contours. DeCarloet al. alluded
to such a strategy as future work in their paper.

3. Pre-process: Smoothing

Our overall goal is to let the user choose, within some
reasonable range, an image space “target size” for features
depicted in the line drawing. (Following DeCarloet al.[2],
we treat edge length as a measure of feature size.) As the
camera zooms in, we do not expect to add detail beyond
what is present in the original mesh, so the problem is to
eliminate details that are too small for the current view-
ing conditions. One possible approach would be to view-
dependently simplify the mesh so that the length of its
edges in image space (ignoring foreshortening) approxi-
mately equals the target size.

This scheme presents two problems: it requires consider-
able run-time computation, and achieving temporal coher-
ence of silhouettes and suggestive contours on a dynami-
cally changing mesh is difficult. In fact, prior to developing
the method we present here, we investigated such an ap-
proach using a view-dependent progressive mesh scheme to
perform mesh simplification [12]. The alternative strategy
we propose in this paper is more temporally coherent, and
much faster. (E.g., the 346,000 polygon armadillo model
shown in Figure 2 renders over 30 times faster, at 64 fps.)

Instead of directly manipulating the connectivity of the
mesh, we use the signal processing framework of Guskov
et al.[7] to pre-compute a sequence of meshes (with iden-
tical connectivity) in which progressively larger shape fea-
tures are smoothed away. In brief, Guskov’s method works
as follows. In an analysis phase, the input mesh is first sim-
plified to a “base mesh” via a sequence of edge collapse op-
erations. (This is a modified progressive mesh scheme [9]).
A vertex is removed with each edge collapse, but first an as-
sociated “detail coefficient” is recorded. The detail coeffi-
cient is defined as the difference between the actual posi-
tions of vertices in a local neighborhood of the collapsed
edge and their “predicted” positions – i.e., positions that
minimize a discrete fairing functional defined over the lo-
cal neighborhood. The complete sequence of edge collapses
(with associated detail coefficients) is stored.

With this representation, the original mesh can be ex-
actly reconstructed by reversing the process: the edge col-
lapses are undone via “vertex split” operations, applied in
reverse order. Each time, the positions of vertices in the lo-
cal neighborhood are predicted as before, and the actual po-
sitions are restored by adding back the detail coefficient. A
kind of band-pass filter can be achieved by simply omit-
ting the addition of detail coefficients after a given number
of vertex split operations. The resulting mesh has the same
connectivity as the original, with fine details removed.
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Figure 3. A skull model rendered with controlled detail from three viewpoints.

We can double the feature size resolved by the mesh
(eliminating detail) if we stop adding detail coefficients
after a certain fractionr of vertex split operations have been
applied (assuming the mesh triangles are roughly equal in
size). I.e., ifn is the total number of vertex split operations,
we omit the detail coefficients after the firstrn operations.
Initially we expectedr = 1/4 would work to double the
feature size of the mesh (since a decimated mesh with
1/4 the original edges should have edges roughly twice
the length of the original). However, the smoothing effect
associated with each edge collapse is greater than would
occur for an ordinary progressive mesh, since with each
operation 7 vertices are moved to “smoother” locations.
We thus found empirically that takingr = 3/4 produces a
smoothed mesh that is (subjectively) closer to our goal of
doubling the feature size.

We thus produce a sequence of meshesMk, where for
eachk we omit detail coefficients after the firstrkn vertex
split operations have been applied. Consequently,Mk con-
tains features half the size of featuresMk+1. In practice, we
stop atM3, whose features are 8 times coarser than those of
M0. More meshes could be used to achieve a greater range
of detail levels, at the cost of additional memory taken up
on the graphics card.

The last step in the pre-process stage is to compute,
for each vertex of each mesh in the sequence, principal
directions and curvatures, and the derivative-of-curvature
tensorC, as described by DeCarloet al.[2].

Because the majority of our smoothing is accomplished
by moving vertices along their normals, the vertex density
can change and affect the accuracy of one-ring based nor-
mal and curvature calculations. These minor defects can be
largely removed by smoothing the normals (used to com-
pute curvature) by averaging them with their neighbors.

4. Run-time

At run-time, the pre-computed data is loaded onto the
graphics card. We use a display list to assure the data
remains resident on the card.

The number of floats needed per vertex is as follows. Po-
sition: 3, principal directions and curvatures: 8, derivative-
of-curvature tensorC: 4. Total: 15 floats, or 60 bytes per
vertex, assuming 4-byte floats. Thus the required memory
is 60vN bytes, wherev is the number of vertices in the mesh
andN is the number of meshes in the sequenceMk. E.g.,
the armadillo model shown in Figure 2 has about 173,000
vertices, andN = 4, so roughly 41 MB of memory on the
graphics card is needed.

4.1. Vertex Program

The responsibility of the vertex program is (1) to deter-
mine the desired feature scale (per vertex), and then (2) in-
terpolate data between the corresponding two levels of the
mesh sequence to produce values used by the fragment pro-
gram (Section 4.2) to render silhouettes and suggestive con-
tours.

To determine the feature scale at a vertex, we start with
an image space target sizeT. In our demonstrations in this
paper, we treatT as a constant that is specified by the user
via a slider. Given the average edge lengthL around a ver-
tex in meshM0, we can compute the distanced0 at which
mesh features near the vertex appear in the image at the
desired size:d0 = cL/T, wherec is a constant determined
by parameters of the perspective camera and by the win-
dow size. By construction, fork > 0 the corresponding dis-
tance for meshMk is dk = 2kd0. Consequently, for each ver-
tex processed by the vertex program, we first compute its
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distanced to the camera, then compute its fractional level
` in the mesh sequence as` = log( d

d0
). We then interpo-

late needed values between levelk = b`c andk+ 1, using
interpolation parameter̀− k. (In our current implementa-
tion, we assume that edges of meshM0 are of roughly con-
stant size, and so we use the same value ofL for all ver-
tices.)

The interpolated values mentioned above are all scalar
quantities: radial curvature, derivative of radial curvature,
andn ·v, wheren is the unit surface normal andv is the unit
“view vector” pointing from the vertex to the camera. This
dot product is used by the fragment program to compute
silhouettes, while radial curvature and its derivative are used
to render suggestive contours. The surface normal is not
explicitly passed into the program, since it can be computed
via the cross product of the principal directions.

4.2. Fragment Program

As hinted by DeCarloet al. [2] as possible future work,
we use a fragment shader to control the width of rendered
lines. To control line width, we use the screen-space deriva-
tive instructions specified in the OpenGL Shading Lan-
guage standard [19]. With these operations (also known as
“shader anti-aliasing”) we compute the per-pixel gradient of
radial curvature in screen-space. We divide the radial cur-
vature value at a pixel by the magnitude of the gradient to
yield approximate distance (in pixels) to the suggestive con-
tour (i.e., the zero-crossing of radial curvature). Pixels suf-
ficiently close to the zero-crossing are filled with the stroke
color. An anti-aliased line can be achieved by replacing an
abrupt cut-off with a function that falls off smoothly with
distance over a short interval. (We use a gaussian.) Sugges-
tive contours are clipped by testing the derivative, scaled ap-
propriately using the feature size of the model [2].

We apply the same idea to silhouettes, computing the
gradient of the scalar fieldn ·v, i.e. the unit surface normal
dotted with the unit view vector, as explained in Section 4.1.

This procedure effectively controls line widths and gen-
erally produces good quality, anti-aliased lines. Under some
conditions it can lead to artifacts, however. When triangles
project to sub-pixel sizes in screen space, a small screen dis-
tance to a zero-crossing of radial curvature may correspond
to a span of many triangles in 3D. In that case the approxi-
mate screen distance computed via the screen-space gradi-
ent may lack accuracy, resulting in small irregularities in the
rendered line width. Also, when the rendered lines are very
wide, noticeable discrepancies in line width can occur at tri-
angle boundaries, due to discontinuities in the screen-space
derivative functions. This can be seen at one point in the
accompanying video when the line widths are made extra
wide.

Lastly, because the mesh is used as a canvas for the lines,
any line will be clipped to the mesh’s boundary in 2D.
Silhouettes by definition lie on this boundary, and so are
particularly susceptible to being clipped and losing width.
Increasing their width can counteract this.

5. Results and Discussion

Model Faces Vertices Frames per second

Bunny 69,473 34,835 140
Feline 99,732 49,864 100

Armadillo 345,944 172,974 64
Skull 393,216 196,612 70

Terrain (1) 465,470 233,704 70
Terrain (2) 803,880 403,209 12

Table 1. Performance data for some of our
test models.

In summary, we have presented a solution to the problem
of controlling the scale of features depicted in line drawings
of 3D models. Although this problem is perhaps obvious, it
has received little attention until now. Our solution is easy
to implement, effective, fast, and temporally coherent, as
demonstrated in the images in this paper and the accompa-
nying video. Figure 1 shows the ability of the method to se-
lectively control the scale of shape features, with greater de-
tail reduction in distant regions. Figure 2 shows that a static
mesh leads to an ever-increasing density of lines when the
camera zooms out, but our method avoids that problem. The
skull in Figure 3 reveals more detail in close-up views and
appropriately less detail when the camera pulls back. These
transitions in level of detail happen smoothly, as the video
demonstrates. (Note that temporal coherence in the video is
somewhat reduced by aggressive MPEG-4 encoding.)

Table 1 displays frame rates and model sizes for some
of our test models. In all cases the rendering window was
1024x1024. Our test machine was a 2.8 GHz Pentium 4
with 1 GB of RAM, and a 256 MB NVIDIA GeForce 6800
Ultra GPU. We suspect that the steep drop-off in perfor-
mance observed for the largest model occurred because the
data did not all fit in the memory of the GPU, resulting in ex-
tra overhead in reading data from main memory each frame.

The large memory requirement of our method is a draw-
back. One challenge for future work is to develop ways to
compress the data stored on the GPU, taking advantage of
the high correlation of the values. Another avenue for fu-
ture work is to develop more general criteria for reducing
or increasing the detail depicted in different parts of a line
drawing. E.g., the static terrain model shown in Figure 1
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on the left is quite cluttered in the distant parts, while the
dynamic model on the right exhibits roughly constant de-
tail. However, the increased density in the image on the left
does serve as a depth-cue, which is missing in the right im-
age. Letting the “target size” of features vary according to
a procedure that takes into account depth, importance, im-
age location, or other factors is an interesting idea for fur-
ther exploration.
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