
Performance Validation of Network-Intensive Workloads on a

Full-System Simulator

Ali G. Saidi Nathan L. Binkert Lisa R. Hsu
Steven K. Reinhardt

{saidi,binkertn,hsul,stever}@umich.edu

Advanced Computer Architecture Laboratory
Department of Electrical Engineering and Computer Science

The University of Michigan
Ann Arbor, MI 48109-2122

Abstract

Performance accuracy is a critical but often ne-
glected aspect of architectural performance simula-
tors. One approach to evaluating performance accu-
racy is to attempt to reproduce observed performance
results from a real machine. In this paper, we at-
tempt to model the performance of a Compaq Alpha
XP1000 workstation using the M5 full-system simula-
tor. There are two novel aspects to this work. First,
we simulate complex TCP/IP networking workloads
and use network bandwidth as our primary perfor-
mance metric. Unlike conventional CPU-intensive
applications, these workloads spend most of their
time in the operating system kernel and include sig-
nificant interactions with platform hardware such as
the interrupt controller and network interface device.
Second, we attempt to achieve performance accuracy
without extremely precise modeling of the reference
hardware. Instead, we use simple generic component
models and tune them to achieve appropriate band-
widths and latencies.

Overall, we were able to achieve reasonable accu-
racy even with our relatively imprecise model, match-
ing the bandwidth of the real system within 15% in
most cases. We also used profiling to break CPU time
down into categories, and found that the simulation
results correlated well with the real machine.

1 Introduction

The computer architecture community makes wide
use of simulation to evaluate new ideas. To pro-
vide meaningful results, execution-driven architec-
tural simulators must both be functionally cor-

rect and model performance accurately. Functional
correctness, though often challenging, is typically
straightforward to test. In many cases, a lack of
functional correctness has catastrophic consequences
that cannot be ignored. Performance accuracy, on
the other hand, is much harder to verify and much
easier to neglect. As a result, it generally gets short
shrift from the research community. This situation is
ironic: given that the primary output of these simu-
lators is performance data rather than simulated pro-
gram output, performance accuracy is at least as im-
portant as functional correctness, if not more so.

One of the key obstacles to validating performance
accuracy is that accuracy measurement requires a
reference implementation with which the simulator’s
performance results can be compared. Because the
primary purpose of simulation is to model designs
that have not been (and may never be) implemented,
this reference usually does not exist. Some of the
few simulator validation studies in the literature came
from situations where the simulator was used in the
design of a system that was afterwards implemented
in hardware, at which point the designers could go
back and retroactively measure the accuracy of their
simulators [1, 2]. While valuable for the insights pro-
vided, these studies do not provide validation before
design decisions are made, when it is needed most.

Another approach to performance validation is to
configure a parameterizable simulator to model an
existing system and evaluate its accuracy in doing so
[3, 4]. Although this process does not fully validate
the simulator’s accuracy in modeling all the various
configurations of interest, it identifies common-mode
errors and provides a much higher degree of confi-
dence than having no validation whatsoever. Un-
fortunately, modern computer systems are extremely

1



complex, and modeling the myriad subtleties of a
particular hardware implementation is a painstak-
ing effort. Capturing these subtleties may be re-
quired to correlate the simulator’s absolute perfor-
mance with that of the actual reference hardware.
However, to the extent that these details are orthog-
onal to the architectural features under study, more
approximate models would suffice to provide accu-
rate relative performance measurements. Developing
performance models that incorporate numerous po-
tentially irrelevant details may not be the most pro-
ductive use of a researcher’s time.

The difficulty of performance validation increases
as researchers attempt to investigate more complex
applications. For example, Desikan et al. [4] were
able to model the performance of CPU-bound mi-
crobenchmarks on an Alpha 21264 with an accuracy
of 2%, but complexities in the memory system (in-
cluding the impact of virtual-to-physical page map-
pings and refresh timing) caused their modeling error
to average 18% on the SPEC CPU2000 macrobench-
marks.

This paper describes our experience in validating
the performance accuracy of the M5 full-system simu-
lator for TCP/IP-based network-intensive workloads.
Our efforts differ from previous work in this area in
two key aspects. First, we use complex workloads
that are both OS- and I/O-intensive. In contrast,
earlier simulation validation studies used application-
only simulation [3, 4] or used workloads that did
not stress the OS or perform significant I/O [1, 2].
Second, while we adjust our simulator configuration
to model our reference machine (a Compaq Alpha
XP1000), we do not strive to model that system pre-
cisely. One of our goals is to determine how accu-
rately we can model the overall behavior of a com-
plex system using appropriately tuned but relatively
generic component models. Avoiding irrelevant mod-
eling details both saves time and increases our confi-
dence that our set of model parameters captures the
most important behavioral characteristics.

We use two Alpha 21264-based Compaq XP1000
systems as our reference platforms, with CPUs run-
ning at 500 and 667 MHz. We evaluate both the ab-
solute and relative performance accuracy of our sim-
ulator modeling these systems, using network band-
width as our primary metric. After correcting several
inaccuracies in our model, we have narrowed the dis-
crepancy between it and the actual hardware to less
than 15% in most cases. We also evaluate simulations
on their ability to model the relative time spent in dif-
ferent portions of the software (application, protocol
stack, device driver, etc.). We see that the simulated
and actual CPU utilization numbers are strongly cor-

related.
In addition to the validation, we perform a sensitiv-

ity analysis on our final simulator to determine which
parameters have the largest impact on simulated sys-
tem behavior. Identifying components and param-
eters that do not contribute significantly to overall
accuracy is important, as we can save development
time by not writing or validating detailed models for
these components, and save simulation time by not
executing those detailed models. We find that most
of the parameters we modified had little effect on the
bandwidth of the simulation.

The remainder of this paper begins with a discus-
sion of our M5 simulator in Section 2. We then dis-
cuss the benchmarks we used in Section 3 and how
we gathered the data in Section 4. The results we
ultimately achieved are presented in Section 5, and
we discuss the sensitivity of the results in Section 6.
Section 7 presents related work, and we conclude in
Section 8.

2 The M5 Simulator

The primary goal of the M5 simulator is to en-
able research in end-system architectures for high-
bandwidth TCP/IP networking. TCP/IP network
protocol and device interface code resides in the op-
erating system kernel, so TCP-intensive workloads
spend much of their time there. As a result, full-
system simulation is a necessity. This research re-
quires additional capabilities beyond previously ex-
isting full-system simulators [5, 6, 7], such as a de-
tailed and accurate model of the I/O subsystem, in-
cluding the network interface controller (NIC), and
the ability to simulate multiple networked systems in
a controlled and timing-accurate fashion. The diffi-
culty of adapting an existing full-system simulator to
meet our needs seemed larger than that of developing
our own system, so we embarked on the development
of M5.

A key goal of M5 is modularity. All simulated com-
ponents are encapsulated as C++ objects with com-
mon interfaces for instantiation, configuration, and
checkpointing. The following subsections describe
the categories of component models most relevant to
this study: processors, memory and I/O systems, and
the network interface.

2.1 Processor Models

M5 includes two processor models used in this study:
a simple functional model used primarily for fast-
forwarding and cache warmup, and a detailed out-
of-order model used for collecting performance mea-

CSE-TR-511-05 2



surements. (The latter was originally derived from
Simplescalar’s sim-outorder [8], but has been almost
completely rewritten.) In addition to standard out-
of-order execution modeling, the detailed processor
model includes the timing impact of memory barri-
ers, write barriers, and uncached memory accesses.

These processor models functionally emulate an
Alpha 21164 (EV5). The simulator executes actual
Alpha PALcode to handle booting, interrupts, and
traps. The 21164 was originally chosen because it
allowed us to use SimOS/Alpha [5] as a reference
platform during initial development of our full-system
support. Although we implement 21164 control reg-
isters and execute 21164 PALcode, both the OS and
application code see the processor as an Alpha 21264,
with all associated 21264 ISA extensions [9].

To boot Linux, M5 functionally models a Compaq
Tsunami platform [10], of which the XP1000 is an
example. Our implementation includes the chipset
and corresponding devices such as a real-time clock
and serial ports. These devices are emulated with
enough fidelity to boot an unmodified Linux 2.4 or
2.6 series kernel.

2.2 Memory and I/O System

The busses and chips connecting the CPU, memory,
and I/O devices of the system are a key factor in
the performance of a system. We build the memory
and I/O system out of memory and device models
interconnected by busses and bus bridges.

The bus model is a simple split-transaction broad-
cast channel of configurable width and frequency.
When used as a point-to-point interconnect, as in
some places in our Tsunami model, performance is
optimistic, as it provides full bandwidth at half du-
plex (i.e., in each direction, though not concurrently),
while the real link provides half the total bandwidth
but in full duplex.

The bus bridge model joins two busses and has
configurable delay and buffering capacity. Bridges
are used to connect busses with different bandwidths
and to model the latency of chip crossings. These
bridges also have the capability to acknowledge writes
back to the requester before passing them on, which is
needed to accurately model Compaq Tsunami timing
(see Section 6.1).

Using these simple components, we can assemble
an entire memory hierarchy from a CPU through
multiple levels of cache to DRAM or I/O devices
as desired. I/O DMA transactions are kept coher-
ent by having the cache hierarchy snoop them. DMA
reads get modified data from the cache if present, and
DMA writes invalidate any cached copies. Since we

are modeling a uniprocessor system, a more complex
coherence scheme is not required.

2.3 Ethernet Interface

We chose to model a National Semiconductor
DP83820 network interface controller (NIC), as it is
the only commercial gigabit Ethernet interface for
which we could find publicly available documenta-
tion. This card supports full-duplex transmission at
1Gb/s and comprises two separate units, the MAC
and the PHY.

The Bus Interface Unit/Media Access Controller
(MAC) connects to the PCI Bus on one side and to
the physical layer interface on the other. This unit
holds configuration and status registers which can be
accessed by the device driver through programmed
I/O, as well as a DMA engine to transfer packets
to/from main memory. It participates in the memory
model as a first class device, arbitrating for the PCI
bus and transferring data like any other device in the
memory hierarchy.

The NIC’s physical interface (PHY) provides a con-
nection between the MAC FIFOs and the physical
link, modulating and demodulating signals on the
wire. Since this component contains no buffering and
represents minimal delay, we do not model it explic-
itly.

The Ethernet link we model is a lossless full-duplex
link of configurable bandwidth and delay. The time
on the link is calculated by dividing the packet size
by the link bandwidth. If the result is less than the
wire delay, only a single packet is allowed on link at
a time. If the delay is large, then it is possible for the
link to have multiple packets in flight. If insufficient
buffer space is available at the receiver when a packet
exits the link, the packet is dropped.

The DP83820 was used in many actual gigabit Eth-
ernet cards including the NetGear GA622T, D-Link
DGE500T, and SMC 9462TX. We used a NetGear
GA622T for our tests. The DP83820 has a bug which
requires it to DMA to a 8-byte aligned address. A
NIC can normally DMA to an arbitrarily aligned ad-
dress so that the payload within the Ethernet packet
can be aligned at the expense of unaligning the Eth-
ernet header. We have fixed this bug in our simulated
model. However, to be true to the actual card, we re-
moved that fix for this paper. As a result, we take
many unaligned access traps on both the real and
simulated Alphas.

CSE-TR-511-05 3



3 Benchmarks

We used several workloads to compare the perfor-
mance of our simulated systems and the two Al-
pha XP1000s. Two memory microbenchmarks, the
mem lat rd utility from LMBench [11] and a cus-
tom Linux kernel module, provided detailed memory
timing information. To measure networking perfor-
mance, we used the netperf microbenchmark [12] and
a modified version of SPEC WEB99 [13].

3.1 Memory Microbenchmarks

We used two different microbenchmarks to calibrate
memory and I/O device delays in our simulator. The
first is a small custom Linux kernel module that cal-
culates the latency to a given uncachable memory lo-
cation. It accomplishes this by using the Alpha rpcc
instruction to time the execution of loads and stores
to the address in question. With this kernel module
on a real machine we were able to discern the read
and write latency to chipset registers and I/O device
registers. We used these measured delays to calibrate
the bus-bridge timing in our simulator appropriately.

The mem lat rd benchmark from LMBench helped
us calibrate and verify the DRAM and cache timing
parameters used in the system. This tool allows the
user to select a stride and a region size of memory for
testing. The benchmark then builds a linked list in
the memory region with each memory location hold-
ing a pointer to a location a stride away. The pointer
dependence forces each load to complete before the
next load can issue. By adjusting the stride it is
possible to cause a variety behaviors in the cache hi-
erarchy and thus determine timing information for
accesses to different levels of cache and for events like
TLB misses.

3.2 Netperf

Netperf is a collection of network microbenchmarks
developed by Hewlett-Packard, including bench-
marks for evaluating the bandwidth and latency char-
acteristics of various network protocols. Of the vari-
ous benchmarks, we selected TCP stream, a transmit
benchmark, and TCP maerts, a receive benchmark.
In both of these benchmarks, the client informs the
server of the benchmark and the server acts either as
a sink (for the transmit benchmark) or as a source
(for the receive benchmark), consuming or producing
data as fast as it can. These benchmarks are simple,
just filling a buffer and calling send() or receive().
Thus they spend most of their time in the kernel
TCP/IP stack and interrupt handler, and very little

time in user mode.

3.3 SPEC WEB99

SPEC WEB99 is a popular benchmark for evaluating
webserver performance. It simulates multiple users
accessing a mix of both static and dynamic content
over HTTP 1.1 connections. The benchmark includes
CGI scripts to do dynamic ad rotation and other ser-
vices a production webserver would normally han-
dle. For our simulations, we used the Apache web-
server [14] version 2.0.52. We also used the Apache
mod specweb99 module, which is available on the
SPEC and Apache websites. This module replaces
the generic reference CGI scripts with a more opti-
mized C implementation.

We also wrote our own client request generator
that is more appropriate for a simulation environ-
ment while preserving the workload characteristics of
the benchmark. The standard SPEC WEB99 score is
the maximum number of simultaneous clients a server
can support at a minimum bandwidth per connec-
tion. Each client requests a reasonably small amount
of data at a maximum rate of 400kbps and expects
that request to be serviced within a certain time. The
server’s score is normally determined by configuring
a very large testbed of client machines and iteratively
tuning the number of connections and various server
parameters. Given the enormous slowdown incurred
by simulation, this iterative approach is clearly im-
practical for our purposes. Since we are interested in
the performance characteristics of the benchmark and
not the actual score achieved, we chose to modify the
client to enable a single client to scale up its perfor-
mance to saturate the web server, thus avoiding the
iterative tuning step. Instead of modifying the stock
SPEC WEB99 client, we created our own lightweight
client based on the Surge [15] traffic generator, but
using the statistical distribution of requests from the
stock SPEC WEB99 client.

4 Methodology

In this section we describe the metrics we used to
compare our simulated results to the real hardware
and the methodology we chose to gather data.

4.1 Metrics

We used two metrics to compare our simulated
and real systems: bandwidth and CPU utilization.
Our primary comparison focused on the bandwidth
achieved by the server, since that is of greatest con-
cern for network-oriented benchmarks. Our sec-

CSE-TR-511-05 4



Category Description
Alignment Time spent processing reads or writes to unaligned addresses.
Buffer Time spent dealing with buffer management issues.
Copy Time spent copying packets around in the kernel and to/from user space.
Driver Time spent executing code from the network driver.
Idle Time spent with the CPU being idle.
Interrupt Time spent handling I/O and timer interrupts (not including device driver code).
Other Time spent in the kernel that doesn’t fall into any of the other categories.
Stack Time spent processing packets in the TCP/IP protocol stack.
User Time spent executing a user level process.

Table 1: Description of CPU Utilization Categories.

ondary metric was CPU utilization. We broke CPU
time down into several categories (Idle, Other, User,
Copy, Buffer, Stack, Driver, Interrupt, and Align-
ment) and compared the relative amount of time
spent in each category across the simulated and ac-
tual machines. See Table 1 for a description of the
categories.

4.2 Simulated System

Full-system cycle-level simulation is orders of magni-
tude slower than real hardware, making it impracti-
cal to run benchmarks to completion. To cope with
this limitation, we turned to fast-forwarding, cache
warmup, and sampling to reduce the simulation time
while maintaining the characteristics of the bench-
mark. These techniques, however, can not be applied
blindly as the TCP protocol is self-tuning. Sampling
too soon after switching from a function to a detailed
model can produce incorrect results [16].

To apply fast-forwarding we functionally executed
the code with a perfect memory system. This allowed
us to quickly boot the system and reach an interest-
ing point of execution. After we reached a point of
interest we switched to a detailed CPU with a mem-
ory hierarchy. To make sure that we gave the TCP
stack ample time to tune itself to the new system
configuration it was operating on we waited for 1.4
seconds of simulated time to elapse before gathering
data. This delay also gives the caches and TLB time
to warm up. At 1.4 seconds we then sampled every
100ms until the simulation reached 2.5 seconds and
terminated.

The system that we are interested in varies depend-
ing on the benchmark; the system under test is the
client for netperf and the server for SPEC WEB99.
To ensure that the system under test can perform
to its fullest the other machine is simulated with a
perfect memory system, making it artificially fast.

We sampled the program counter every 100 cycles

to measure the amount of time the CPU spent exe-
cuting different categories of code. With the use of
the kernel symbol table we found the symbol clos-
est to that address and kept track of how many times
each symbol was seen during the execution. In a post
processing step these function names were aggregated
into the broad categories presented above.

4.3 Real System

Our testbed consisted of one Compaq Alpha XP1000
running with either a 500MHz EV6 or 667MHz EV67
processor and a National Semiconductor NS82830
based Gigabit Ethernet card. To stress the Alpha
we used a dual-processor Opteron with a Tigon III
Ethernet card. For the real system we had the lux-
ury of running benchmarks to completion at the price
of the data gathering slightly perturbing the results.
To reduce this interference as much as possible we
ran for hundreds of seconds sampling the transmit
and receive byte counts on the Opteron at 30 sec-
ond intervals and using OProfile[17] sampling every
100,000 cycles to obtain the Alpha’s CPU utilization
breakdowns.

5 Comparison to M5

In this section, we compare our measurements of two
real Alpha XP1000 systems to the simulator’s results
for similarly configured systems. The first section de-
scribes our results for the memory microbenchmarks
we used to calibrate M5’s modeled memory latencies.
The second section discusses the network benchmarks
that are of primary interest.

5.1 Memory Latency

Figures 1 through 3 show the results of our simulated
runs compared to the real hardware.

CSE-TR-511-05 5



 0

 5

 10

 15

 20

 25

 30

 35

32M16M8M4M1M256K64K16K4K1K

T
im

e 
(n

se
c)

Size (bytes)

XP1000 500MHz
XP1000 667MHz

Simulator 500MHz
Simulator 667MHz

Figure 1: mem lat read: Memory Latency with
Stride 8

 0

 50

 100

 150

 200

 250

32M16M8M4M1M256K64K16K4K1K

T
im

e 
(n

se
c)

Size (bytes)

Stride: 64

XP1000 500MHz
XP1000 667MHz

Simulator 500MHz
Simulator 667MHz

Figure 2: mem lat read: Memory Latency with
Stride 64

In Figure 1 we configured mem lat rd to read ev-
ery word sequentially. This setup incurs an L1 cache
miss every 8 accesses. For sizes over 4MB, the L1
misses also miss in the L2. We tuned our memory
system latencies so that our data matches the real
data rather closely. The little bump around 64kB is
due to page mapping issues. The Alpha has a virtu-
ally indexed physically tagged L1, while M5 currently
supports only physically indexed caches. Thus pages
within a 64KB array could conflict in our L1 where
they cannot on the real machine. The other discrep-
ancies observed for the 500MHz system are within
the timer resolution latency.

Figure 2 shows results for a 64-byte stride, and is
mainly concerned with L2 hit time. For array sizes

 100

 150

 200

 250

 300

 350

 400

 450

16M8M4M

T
im

e 
(n

se
c)

Size (bytes)

Stride: 8KB

XP1000 500MHz
XP1000 667MHz

Simulator 500MHz
Simulator 667MHz

Figure 3: mem lat read: Memory Latency with
Stride 8k

 100

 110

 120

 130

 140

 150

 160

 170

 180

32M16M8M4M

T
im

e 
(n

se
c)

Size (bytes)

TLB Miss penalty

XP1000 500MHz 1
XP1000 500MHz 2
XP1000 500MHz 3
XP1000 500MHz 4
XP1000 667MHz 1
XP1000 667MHz 2
XP1000 667MHz 3
XP1000 667MHz 4

Figure 4: mem lat read: Memory Latency Stability
with Stride 8k

larger than the L1 cache, all accesses are L1 misses.
Again we have successfully tuned M5 to model the
real hardware latencies. The simulated main memory
access times seen at the right end of the graph are
within 4ns of the measured times.

Figure 3 focuses on TLB miss latency by showing
results for a stride of 8kB. Below 4MB, each access
is a TLB miss but an L2 hit. At the right end of
the graph, accesses miss in both the TLB and the L2
cache. We were able to model the TLB miss latency
precisely for both situations on the 667MHz machine.
However, the 500MHz machine posed more of a chal-
lenge. Using the same TLB miss overhead (in CPU
cycles) as in the 667MHz machine, we were able to
correctly model the cost of a TLB miss that hits in

CSE-TR-511-05 6



0

100

200

300

400

500

600

Stream Maerts Specweb 

Ba
nd
w
id
th
(M
bp
s)

XP1000 500MHz
Simulator 500MHz
XP1000 667MHz
Simulator 667MHz

Figure 5: Bandwidth(Mbps) for benchmarks

the L2 cache. However, the latency for a combined
TLB/L2 miss on the 500MHz system takes approxi-
mately 30ns longer on the simulator than on the real
machine, in spite of having an accurate latency for
main memory accesses on this system (see Figure 2).
We are unable to explain this phenomenon. We also
noticed that the TLB miss penalty is much more sta-
ble in the 667MHz system than in the 500MHz sys-
tem. Figure 4 illustrates this effect by plotting just
the TLB miss penalty (subtracting out the memory
access latency) for multiple runs of the microbench-
mark. The reason for this difference in stability also
eludes us.

5.2 Network Benchmarks

Figure 5 shows the final bandwidth results we pro-
duced for the networking workloads. Error bars indi-
cate one standard deviation of error across the mea-
surement samples we took. Although the simulator
consistently underestimates the network bandwidth,
the results are reasonably close and stable.

For the stream benchmark we see an absolute er-
ror of 37% and 32% for the 500MHz and 667MHz
machines respectively. We achieve errors of 18% and
7% for maerts and 16% and 13% for SPEC WEB99.
Though the simulated systems always underestimate
the absolute bandwidth, the relative change in band-
width due to varying the CPU frequency is modeled
accurately.

We believe that the consistently lower performance
of the simulated systems is related to the fact that
they transmit half as many packets per transmit in-
terrupt as the real hardware does. The overhead
of twice as many interrupt-handler invocations per

transmitted packet could account for the reduced
bandwidth. Our hypothesis is supported by the fact
that the stream benchmark exhibits the largest error;
being a transmit-oriented benchmark, it would suffer
the most from this effect. We do not currently un-
derstand the cause of this interrupt-rate differential.

In Figure 6 we compare the fractional CPU uti-
lization broken down into the above mentioned cat-
egories. As mentioned above, the data was gathered
from OProfile on the real hardware and using high-
frequency sampling (every 100 cycles) on the simu-
lator. Note that the simulator spends almost twice
as much time in interrupt code as the real system.
This result is consistent with the simulated system
taking more transmit interrupts, but is possibly due
to OProfile not being able to interrupt the CPU for a
monitoring event if the CPU is at a higher interrupt
priority level. Unlike OProfile, our simulator’s sam-
pling is not affected by the CPU’s interrupt priority
level.

The other two discrepancies seen in the utilization
graph are a difference in time spent in TCP/IP stack
processing and the lack of idle time we see in the
simulated stream runs. We hypothesize that this is
due to our CPU model underestimating some aspects
of the real CPU’s performance. This effect is not
surprising, as we spent most of our tuning effort on
the memory and I/O system.

6 Sensitivity of Results

During the process of running experiments we found
and remedied a number of modeling errors in our sim-
ulator. In this section, we describe these errors and
present an analysis of the impact they each have on
the final results. Other than the TLB miss penalty,
the impact of most of the changes presented in this
section are largely within the sampling noise; the ad-
dition or removal of a feature generally yielded an
average change of only a few percentage points. Nev-
ertheless, some of these parameters were important
in improving correlation of the utilization breakdown
seen above.

6.1 Acknowledging Writes

While analyzing a previous version of the CPU uti-
lization numbers mentioned in Section 5, we noticed
that the time the simulated system spent in a func-
tion updating the chipset interrupt mask register was
much higher than it was on the real machine. An in-
vestigation into this issue led us to conclude that,
on the real machine, uncached writes to this register
were getting acknowledged by the memory controller

CSE-TR-511-05 7



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

R
ea

l 
M

ac
h
in

e

S
im

u
la

to
r

R
ea

l 
M

ac
h
in

e

S
im

u
la

to
r

R
ea

l 
M

ac
h
in

e

S
im

u
la

to
r

R
ea

l 
M

ac
h
in

e

S
im

u
la

to
r

R
ea

l 
M

ac
h
in

e

S
im

u
la

to
r

R
ea

l 
M

ac
h
in

e

S
im

u
la

to
r

Stream
500

Stream
667

Maerts
500

Maerts
667

Specweb
500

Specweb
667

P
e
rc

e
n

t 
o

f 
C

P
U

 U
ti

li
za

ti
o

n

Idle
Other
User
Copy
Buffer
Stack
Driver
Interrupt
Alignment

Figure 6: Processor Utilization over Benchmarks

before the write had actually propagated to the de-
vice register. As a result, the register’s write latency
was substantially smaller than the read latency we
measured with the kernel microbenchmarks described
in Section 3.

The effect of the corrected write acknowledgment
timing on network bandwidth depended on the work-
load. The number of uncached register writes is cor-
related with the number of network packets transmit-
ted. The maerts (receive) benchmark only transmits
TCP ack packets, so it saw a minor 1% change in
bandwidth. On the other hand, the stream (trans-
mit) benchmark saw a 6% change in bandwidth.
Since the webserver does a combination of receives
and transmits, it saw a 3% change. Acknowledging
writes earlier reduced the time spent in the device
driver and interrupt handler, bringing the utilization
breakdown more in line with the real system.

6.2 IPR Latency

Alpha CPUs have a variety of internal processor reg-
isters (IPRs) that are accessed with special PALcode
instructions. Among other things, IPRs store infor-
mation about the most recent TLB miss and provide
access to TLB entries. The PAL-resident software
TLB miss handler on Alpha CPUs makes heavy use
of these IPRs. While attempting to model the TLB
latency, we realized that our initial model treated
IPR accesses as integer ALU operations, meaning
that several of them could execute in each cycle with
a one-cycle latency. In contrast, the real hardware
takes three cycles per access. Also, although the Al-
pha documentation does not specifically mention it,
we assume that only one IPR access can be performed
at a time. Fixing this modeling error causes a 2%-3%
change in bandwidth across all benchmarks.

CSE-TR-511-05 8



6.3 TLB Miss Penalty

To further match the observed TLB miss penalty, we
added an arbitrary delay of 20ns to the invocation of
the TLB miss handler. Eliminating this delay causes
a 10% change in bandwidth for the maerts bench-
mark. The stream benchmark is only affected slightly
by this change.

6.4 Link Delay

Our link delay parameter controls the amount of time
elapsed from when a bit is put onto the wire at the
sender’s NIC to when it is received at the other end.
This delay is in addition to the delay incurred due
to the size of the packet and the bandwidth of the
link. We modeled several link delays ranging from
0us to 1us and found the change in bandwidth to be
negligible.

7 Related Work

Bedicheck [1] validated the Talisman simulator, de-
signed to model the Meerkat prototype multicom-
puter, against the final hardware. He achieved re-
markable accuracy, but beyond a wide range of mi-
crobenchmarks he reports only on a few small kernel
without any OS or I/O activity. Meerkat was based
on the in-order, single-issue Motorola 88100 CPU, so
detailed CPU modeling was not required.

Gibson et al. [2] validated the various simulation
models used to develop the Stanford FLASH pro-
totype (including SimOS-based full-system models)
against the prototype hardware itself. In accordance
with the focus of the FLASH project, the workloads
used for validation were parallel compute-bound ap-
plications from the SPLASH-2 suite [18], which did
not involve significant OS or I/O activity. Interest-
ingly, they found (as we did) that the overhead of
software TLB miss handling was a significant discrep-
ancy between their simulator and the real machine.
They also found that a fast simple in-order proces-
sor model often gave results as accurate as a more
detailed out-of-order model.

Desikan et al. [4] created and validated a model
of a Alpha 21264 microprocessor against a Compaq
DS-10L workstation. They spent considerable ef-
fort modeling detailed aspects of the 21264 proces-
sor core, such as replay traps and clustered execu-
tion, resulting in an error of less than 2% for CPU-
bound microbenchmarks. However, their inability
to model complex interactions within the memory
system caused their error on SPEC CPU2000 mac-
robenchmarks to average 18%. This error reflects in

part issues that are effectively non-deterministic and
cannot be accurately matched in a simulator, such as
physical page mapping effects on cache and DRAM
page conflicts and DRAM refresh timing.

8 Conclusion and Future Work

We validated the performance modeling capabilities
of the M5 simulator by comparing M5 models of
two Compaq Alpha XP1000 servers with their real-
world counterparts. We compared network band-
width and CPU utilization for two network-intensive
micro-benchmarks and a macro-benchmark. The M5
models were able to get within 15% of the real ma-
chines’ bandwidth on most benchmarks. Further-
more, the simulation results accurately reflected the
impact of varying CPU frequency. We feel that this
level of accuracy is quite good given the relatively
generic and imprecise models used in the simulator,
and the fact that our only major effort in tuning for
the reference machine was to correlate memory and
device register latencies. We believe that the dis-
crepancies in some of the runs are largely due to our
simulated system processing two times more transmit
interrupts per packet. If we can address this problem,
our results should match the real Alpha hardware
even more closely.

Our short-term future work involves both verify-
ing and correcting these discrepancies and employing
additional macrobenchmarks for comparison. One
longer-term enhancement to this study would be per-
form multiple runs of each workload while inserting
small random delays into our memory system [19],
thus determining whether or not the small differences
we see tweaking various simulator parameters are
simply artifacts of timing randomness or are statis-
tically significant. Another future opportunity deals
with investigating the applicability of simple in-order
CPU models with a configurable IPC instead of a
larger detailed CPU model [2]. This configuration
would allow runs to be much longer while continuing
to provide reasonable fidelity.

References

[1] R. C. Bedichek, “Talisman: Fast and accurate
multicomputer simulation,” in Proc. 1995 ACM
SIGMETRICS Conf. on Measurement and Mod-
eling of Computer Systems, 1995, pp. 14–24.

[2] J. Gibson, R. Kunz, D. Ofelt, M. Horowitz,
J. Hennessy, and M. Heinrich, “FLASH vs. (sim-
ulated) FLASH: Closing the simulation loop,” in

CSE-TR-511-05 9



Proc. Ninth Int’l Conf. on Architectural Support
for Programming Languages and Operating Sys-
tems (ASPLOS IX), Oct. 2000, pp. 49–58.

[3] B. Black and J. P. Shen, “Calibration of mi-
croprocessor performance models,” IEEE Com-
puter, vol. 31, no. 5, pp. 59–65, May 1998.

[4] R. Desikan, D. Burger, and S. W. Keckler, “Mea-
suring experimental error in microprocessor sim-
ulation,” in Proc. 28th Ann. Int’l Symp. on
Computer Architecture, 2001, pp. 266–277.

[5] M. Rosenblum, S. A. Herrod, E. Witchel, and
A. Gupta, “Complete computer system simula-
tion: The SimOS approach,” IEEE Parallel &
Distributed Technology, vol. 3, no. 4, pp. 34–43,
Winter 1995.

[6] L. Schaelicke and M. Parker, “ML-RSIM
reference manual,” http://www.cse.nd.edu/
∼lambert/pdf/ml-rsim.pdf.

[7] P. S. Magnusson et al., “Simics: A full system
simulation platform,” IEEE Computer, vol. 35,
no. 2, pp. 50–58, Feb. 2002.

[8] D. Burger, T. M. Austin, and S. Bennett, “Eval-
uating future microprocessors: the SimpleScalar
tool set,” Computer Sciences Department, Uni-
versity of Wisconsin–Madison, Tech. Rep. 1308,
July 1996.

[9] R. E. Kessler, “The Alpha 21264 microproce-
sor,” IEEE Micro, vol. 19, no. 2, pp. 24–36,
March/April 1999.

[10] High Performance Technical Comput-
ing Group, “Exploring Alpha Power
for Technical Computing,” April 2002,
http://h18002.www1.hp.com/alphaserver/
download/wp alpha tech apr00.pdf.

[11] L. W. McVoy and C. Staelin, “lmbench:
Portable tools for performance analysis,” in
USENIX Annual Technical Conference, 1996,
pp. 279–294. [Online]. Available: citeseer.csail.
mit.edu/mcvoy96lmbench.html

[12] Hewlett-Packard Company, “Netperf: A net-
work performance benchmark,” http://www.
netperf.org.

[13] Standard Performance Evaluation Corporation,
“SPECweb99 benchmark,” http://www.spec.
org/web99.

[14] Apache Software Foundation, “Apache HTTP
server,” http://httpd.apache.org.

[15] P. Barford and M. Crovella, “Generating repre-
sentative web workloads for network and server
performance evaluation,” in Measurement and
Modeling of Computer Systems, 1998, pp. 151–
160.

[16] L. R. Hsu, A. G. Saidi, N. L. Binkert, and S. K.
Reinhardt, “Sampling and stability in TCP/IP
workloads,” in Proc. First Annual Workshop on
Modeling, Benchmarking, and Simulation, June
2005, pp. 68–77.

[17] P. S. Panchamukhi, “Smashing perfor-
mance with OProfile,” IBM Developer-
Works, Oct. 2003, http://www-106.ibm.com/
developerworks/linux/library/l-oprof.html.

[18] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and
A. Gupta, “The SPLASH-2 programs: Charac-
terization and methodological considerations,”
in Proc. 22nd Ann. Int’l Symp. on Computer Ar-
chitecture, June 1995, pp. 24–36.

[19] A. R. Alameldeen and D. A. Wood, “Variabil-
ity in architectural simulations of multi-threaded
workloads,” in Proc. 9th Int’l Symp. on High-
Performance Computer Architecture (HPCA),
Feb. 2003, pp. 7–18.

CSE-TR-511-05 10


