Language and Analysis Techniques for Efficient
Software Model Checking of Data Structure Properties

Paul Darga

Chandrasekhar Boyapati

Electrical Engineering and Computer Science Department
University of Michigan, Ann Arbor, Ml 48109

{pdarga,bchandra} @eecs.umich.edu

Abstract

This paper presents novel language and analysis techniques
that significantly speed up software model checking of data
structure properties. Consider checking a red-black tree im-
plementation. Traditional software model checkers system-
atically generate all red-black tree states (within some given
bounds) and check every red-black tree operation (such as
insert, delete, or lookup) on every red-black tree state. Our
key idea is as follows. As our checker checks a red-black tree
operation o on a red-black tree state s, it uses a combination
of dynamic and static analyses to identify other red-black
tree states s}, sh, ..., s, on which the operation o behaves
similarly. Our analyses guarantee that if o executes correctly
on s, then o will execute correctly on every s;. Our checker
therefore does not need to check o on any s} once it checks
o on s. It thus safely prunes those state transitions from
its search space, while still achieving complete test coverage
within the bounded domain. Our preliminary results show
orders of magnitude improvement over previous approaches.
We believe our techniques can make checking of data struc-
ture properties significantly faster, and thus enable checking
of much larger programs than currently possible.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Program Verification;
D.2.5 [Software Engineering]: Testing and Debugging;
D.3.4 [Programming Languages|: Processors;

F.3.1 [Logics]: Specifying and Verifying Programs
General Terms

Verification, Reliability, Languages

Keywords
Software Model Checking, Program Analysis

1 Introduction

Software model checking [1, 2, 5, 8, 9, 13, 16, 39, 19, 32]
is a formal verification technique that exhaustively tests a
program on all possible inputs up to a given size (to handle

input nondeterminism) and on all possible nondeterministic
schedules (to handle scheduling nondeterminism). Most pre-
vious work on software model checking focuses on schedul-
ing nondeterminism to verify event sequences with respect
to properties expressed in temporal logics. This paper deals
with input nondeterminism. In particular, it focuses on ver-
ifying properties of linked data structures.

Consider checking that a red-black tree [10] implementa-
tion maintains the red-black tree invariants. Previous model
checking approaches such as JPF [39, 23], CMC [32, 31],
Korat [2], or Alloy [22] systematically generate all red-black
trees (up to a given size n) and check every red-black tree
operation (such as insert or delete) on every red-black tree.
Since the number of red-black trees with at most n nodes is
exponential in n, these systems take time exponential in n
for checking a red-black tree implementation.

This paper presents novel language and analysis techniques
that significantly speed up software model checking of pro-
grams with input nondeterminism. Our key idea is as fol-
lows. Consider checking the red-black tree implementation
again on trees with at most n nodes. Our checker detects
that any red-black tree operation such as insert or delete
touches only one path in the tree from root to a leaf (and per-
haps some nearby nodes). Our checker then determines that
it is sufficient to check every operation on every unique tree
path, rather than on every unique tree. Since the number of
unique red-black tree paths is polynomial in n, our checker
takes time polynomial in n. This leads to orders of magni-
tude speedups over previous model checking approaches.

In general, our system works as follows. Consider checking
a file system implementation, as another example. As our
checker checks a file system operation o (such as reading,
writing, creating, or deleting a file or a directory) on a file
system state s, it uses dynamic and static analyses to identify
other file system states s/, s5, ..., s}, on which the operation o
behaves similarly. Our analyses guarantee that if o executes
correctly on s, then o will also execute correctly on every
s;. Our checker therefore does not need to check o on any
s; once it checks o on s. It thus safely prunes all those
state transitions from its search space, while still achieving
complete test coverage within the bounded domain.

We call this the glass boz approach to software model check-
ing because our checker analyzes the behavior of an opera-
tion to prune large portions of the search space. This is in
contrast to the traditional black box approach that checks



Figure 1: Three red-black trees before and after an insert
operation. The tree path touched by the operation is
highlighted in each case. Once our glass box checker
checks the insert operation on tree t1, it determines that
it is redundant to check the same operation on t2 and t3.

every operation on every state, treating the operation as a
black box. Depending on the strength of the analyses, a
glass box checker can be significantly more efficient than a
black box checker in exploring the same search space.

Our preliminary results show orders of magnitude improve-
ment over previous model checking approaches. We believe
that our techniques can make software model checking sig-
nificantly faster, and thus enable checking of much larger
programs than currently possible.

The rest of this paper is organized as follows. Section 2
illustrates our approach with examples. Section 3 describes
our glass box model checker. Section 4 presents experimental
results. Section 5 discusses related work. Section 6 concludes
and lists our contributions.

2 Examples

This section illustrates our key idea with examples.

2.1 Red-Black Tree Example

Consider the red-black tree example from Section 1. That
is, consider checking that a red-black tree implementation
maintains the red-black tree invariants. As we discussed
in Section 1, a black box checker (such as JPF [39, 23],
CMC [32, 31], Korat [2], or Alloy [22]) systematically gener-
ates all red-black trees (up to a given size n) and checks every
red-black tree operation (such as insert or delete) on every
red-black tree. Since the number of red-black trees with at
most n nodes is exponential in n, a black box checker takes
time exponential in n for the checking.

Our glass box checker works as follows. Consider checking
the insert operation on tree t1 in Figure 1. The tree t1’
depicts the state of the tree after the operation. (For sim-
plicity, the figure only shows the tree structures and does
not show the color of the nodes, or the keys or values stored
in the nodes.) As our checker checks the insert operation
on t1, it detects that the operation touches only one path
in the tree from the root to a leaf. This path is highlighted
in the figure. That means, assuming deterministic execu-
tion, the insert operation will behave similarly on all trees,

class Queue {
private Stack front
private Stack back
public boolean repOk() {

1

2 new Stack();

3

4

5 return (back != null) && back.repOk() && (back != front)
6

7

8

new Stack();

&& (front !'= null) && front.repOk();

}
9 //
10 // dequeue <--- front | | back <--- enqueue
11 //
12
13  public void enqueue(Object o) {
14 back.push(o) ;
15
16  public Object dequeue() throws EmptyQueueException {
17 if (front.isEmpty()) moveBackToFront();
18 if (front.isEmpty()) throw new EmptyQueueException();
19 return front.pop();
20 }
21 private void moveBackToFront() {
22 assert (front.isEmpty());
23 back.reverse(); front = back; back = new Stack();
24 }
25 }

Figure 2: Queue implemented using two Stacks

such as t2 or t3, where the highlighted path remains the
same. Our checker determines that it is redundant to check
the same insert operation on trees such as t2 or t3 once it
checks the insert operation on tree t1. Our checker safely
prunes those state transitions from its search space, while
still achieving complete test coverage within the bounded
domain. Our checker thus ends up checking every red-black
tree operation on every unique tree path, rather than on ev-
ery unique tree. Since the number of unique red-black tree
paths (in trees with at most n nodes) is polynomial in n, our
checker takes time polynomial in n to check a red-black tree
implementation. This leads to orders of magnitude speedups
over the black box approach.

2.2 Queue Example

This section illustrates our approach with a more detailed ex-
ample. Figure 2 presents a Queue that is implemented using
two Stack objects front and back. The enqueue method in-
serts an item at the back of a Queue by pushing it onto back.
The dequeue method removes and returns the item at the
front of a Queue by popping and returning the top item of
front. If front is empty, dequeue first moves all the items
from back to front. If front is still empty, dequeue throws
an EmptyQueueException. (One possible implementaton of
Stack is shown in Figure 5.)

Queue’s class invariant is described by its rep0k method, as
good programming practice suggests [26]. The class invari-
ant of an object must hold before and after every public
method of the object. That is, the class invariant is both
a precondition and a postcondition of every public method.
The repOk method returns true iff the current state (or rep-
resentation) of an object satisfies its class invariant. The
class invariant of Queue holds iff its subobjects front and
back are different and not null, and their invariants hold.

Consider checking that every public method of Queue pre-
serves its class invariant. That is, consider checking that
if the class invariant holds before a method, then the class



Figure 3: State space of Queue with at most n = 4 items.
State (f,b) has f items in front Stack and b in back. A
black box checker checks 2(n?) state transitions.

Figure 4: A glass box checker generates only O(n) states
and checks only O(n) transitions, yet achieves complete
coverage within the bounded domain.

invariant holds after the method, and the method either re-
turns normally or by throwing one of its declared excep-
tions. We assume all Queue methods execute determinis-
tically. (Otherwise, one must expose the nondeterminism
points to the model checker to check every possibility.)

A black box checker such as JPF [39] or CMC [32, 31]
starts from an empty Queue state and recursively invokes
and checks every Queue operation on every successive Queue
state (within a bounded domain). A stateful checker stores
all the checked states in a hashtable to avoid redundantly
checking the same operation on the same state more than
once. Suppose there is exactly one concrete state represent-
ing a Stack of size n. Then there are n + 1 concrete states
representing a Queue of size n. Figure 3 shows the state
space of Queue with at most n = 4 items. State (f,b) has f
items in front and b in back. Edges represent enqueue and
dequeue operations. E.g., the edge from (1,1) to (1,2) rep-
resents an enqueue. The edges from (1,2) to (0,2) and (0,2)
to (1,0) represent dequeue operations. A black box checker
executes Q(n?) state transitions to explore this space.

1 public class Stack {

2 private static class Node<nOwner> {

3 Node<nOwner> next;

4 Object value;

5 Node (Node<nOwner> n, Object v) { next = n; value = v; }
6 }

7

8 private Node<this> head;

9 public boolean repOk() {

10 Set visited = new java.util.HashSet();

11 for (Node n = head; n != null; n = n.next) {
12 if (!visited.add(n)) return false;

13 }

14 return true;

15 T

16

17 public void push(Object value) {

18 head = new Node(head,value);

19 T
20 public Object pop() {
21 if (head == null) return null;
22 Object v = head.value; head = head.next; return v;
23 }
24 }

Figure 5: Stack implemented using a linked list

Our glass box checker works as follows. Consider the tran-
sition from (0,0) to (0,1) using the enqueue method. This
operation terminates normally and the class invariant holds
after the method. As our checker checks this operation, its
dynamic analysis detects that the enqueue method does not
read the front Stack. That means, if the state of the front
Stack were different, the enqueue method would still exe-
cute similarly. Our checker then determines that if enqueue
executes successfully on (0,0), then it will execute success-
fully on (¢,0) for any i. Our checker therefore safely prunes
all those state transitions from its search space. In partic-
ular, if Queue has at most n = 4 items, our checker prunes
the enqueue edges from (0,0), (1,0), (2,0), (3,0), and (4,0)
once it successfully checks enqueue on (0,0).

Similarly, checking enqueue on (0,1), (0,2) and (0,3) results
in pruning enqueue operations on all (4,1), (4,2) and (,3).
Checking dequeue on (1,0), (2,0), and (3,0) results in prun-
ing dequeue operations on all (1,7), (2,i), and (3,7). Figure 4
presents the same state space as Figure 3 except that it
only shows the transitions that our checker executes. Our
glass box checker executes only O(n) state transitions to
explore the state space, while still achieving complete test
coverage within the bounded domain. Moreover, our checker
never generates states from which all transitions have been
pruned. For example, our checker never generates any state
(4,j) where ¢ # 0 and j # 0. Thus, our checker generates only
O(n) states and checks only O(n) transitions, compared to
O(n?) states and O(n?) transitions in a black box approach.
This results in significant speedups.

For simplicity, we implicitly assumed in the above example
that there is only one possible argument to enqueue, so there
is only one enqueue transition from each state. But suppose
there are n different items that can be passed as arguments
to enqueue, so there are n enqueue transitions from each
state. Then, for checking a Queue of size n, a black box
checker actually executes an exponential number of transi-
tions. Our glass box checker still executes O(n) transitions.



class ReachabilityDemo {
private boolean x, y, z;
public boolean repOk() { return x && y || !z; }

public void setY() { y = true; }
public void setZ() { if (x && y) z = true; }

1
2
3
4
5 public void setX() { x = true; }
6
7
8}

Figure 6: A class with three boolean variables x, y, z

@@

Figure 7: State space of code in Figure 6 (excluding self
loops). (b1,b2,b3) implies x = b1, y = b2, z = b3. The figures
on the left and right show the state transitions executed
by a black box and glass box checker respectively.

3 Glass Box Model Checker

This section presents our glass box model checker. Figure 5
shows a Stack that is implemented using a linked list. Its
class invariant (rep0k) checks that the list is acyclic. We use
this as a running example. and show how we check that the
Stack implementation preserves the Stack invariant.

3.1 Search

This section describes our basic search process.

3.1.1 Generating States from Invariants

Consider our running example Stack from Figure 5. One
way to systematically test the Stack implementation is to
start from the initial empty Stack state, and recursively
invoke and check every Stack operation on every succes-
sive Stack state (within a bounded domain). Some black
box checkers such as JPF [39] or CMC [32] use this ap-
proach. The stateful black box checkers store (a hash of) ev-
ery checked state in a hashtable to avoid redundantly check-
ing the same operation on the same state more than once.

The above technique, however, is not a suitable way for a
glass box checker to organize its search space. The example
in Figure 6 illustrates why. Figure 7 shows the correspond-
ing state space (excluding self loops). A black box checker
using the above technique starts from the initial state and
reaches all five states by recursively invoking methods on
successive states. However, as a glass box checker checks
the setX method on state (F,F,F), its analyses detect that
setX behaves similarly on state (F,T,F). Therefore, the glass
box checker prunes that edge from its state space. Similarly,
as a glass box checker checks setY on (F,F,F), it prunes setY
from (T,F,F). But this disconnects the state space graph. A
glass box checker thus cannot depend on reachability of the
state space to reach the state (T,T,F).

1 public Finitization checkStack(int nNodes, int nValues) {
2

3 Finitization f = new Finitization("Stack");

4

5 Set nodes = f.createObjects("Node", nNodes - 1);
6 Set values = f.createObjects("Object", nValues - 1);
7 nodes.add(null);

8 values.add(null);

9

10 f.setFieldDomain("head", nodes) ;

11 f.setFieldDomain("Node.next", nodes);

12 f.setFieldDomain("Node.value", values);

13 f.setOperations("push", "pop");

14 f.setArgumentDomain("push", "value", values);

15

16 return f;

17 %}

Figure 8: Finitization description for code in Figure 5

[ Field [ Domain |
head {NO, N1, N2, null}
NO.next {NO, N1, N2, null}
NO.value {00, 01, 02, null}
N1.next {NO, N1, N2, null}
Ni.value {00, 01, 02, mu11}
N2.next {NO, N1, N2, null}
N2.value {00, 01, 02, null}
operation {push, pop}
push.value | {00, 01, 02, null}

Figure 9: Search space for checkStack(4,4)

Instead, our glass box checker uses a different approach. In
previous work on Korat [2], we developed a technique to
systematically generate all the states (within a bounded do-
main) that satisfy a given class invariant. Our glass box
checker uses a similar approach, and similarly relies on class
invariants to cover every state. The main difference between
Korat and a glass box checker is that Korat ultimately works
like a black box checker. That is, Korat generates every
valid state (within a bounded domain) and checks every op-
eration on every state. Our glass box checker, on the other
hand, prunes away a large number of states and operations
on states without explicitly checking them (as illustrated in
Section 2). We also makes several improvements to the Ko-
rat technique itself, which we present later in this paper.

3.1.2 Finitization

In any model checker that checks data structure properties,
programmers must specify finite bounds on the state space.
In our glass box checker, programmers specify the maximum
number of objects of each class, and the domain of every field
and every method argument. Our checker then checks the
program on every possible state in this finite space.

Figure 8 presents an example finitization description that is
automatically generated by our system from the type dec-
larations in Figure 5. The createObjects methods specify
that a state can contain at most (nNodes-1) number of Nodes
and (nValues-1) number of Objects. The setFieldDomain
and setArgumentDomain methods specify that the fields head
and next can either contain null or a Node, and the field
value and the argument to push can either contain null or
an Object. The setOperations method specifies that the
checker must check the two public methods of Stack.



NO N1 N2
next vaue next vaue next vaue operation push.value

o] (][] ] o] o] ] el

Figure 10: A valid element of the search space represent-
ing the pop operation on a Stack with two items 01 an 02

NO N1 N2

next vaue next vaue next vaue operation push.value

o] (][] ] [o] o] ] el

Figure 11: An invalid element of the search space with a
cycle in the linked list

Once our system generates a finitization, programmers can
specialize it; e.g., they can make checkStack take a single
argument n and set nNodes and nValues to n. We provide
several helper functions for easy domain construction.

3.1.3 Search Space

Suppose our checker is invoked using checkStack(4,4) in
Figure 8. Our system then constructs the search space in
Figure 9. Our system first allocates the specified number of
objects: one Stack, three Nodes, and three Objects. It then
sets the domain of each object field and method argument
as described in the finitization. Finally, it includes the two
public methods of Stack in the operations to be checked.

The search space consists of all possible assignments to the
above fields, where each field gets a value from its corre-
sponding domain. FEvery element of this search space is
a state transition consisting of a concrete Stack state, a
method to invoke on the state, and the method arguments.
For example, Figure 10 corresponds to invoking pop on a
Stack with two items 00 and 01. In Figure 9, there are eight
fields with four elements in their domains and one with two,
so the size of this search space in 2 % 45, In general, when
our checker is invoked with checkStack(n,n), the size of the
search space is 2 * (n)?". Note that many elements of this
space are invalid because the corresponding Stack objects
do not satisfy the class invariant. For example, the element
in Figure 11 is invalid because the linked list has a cycle.

3.1.4 Search

Figure 12 presents the basic glass box search algorithm.
Given a class to check and a finitization, our system first
initializes the search space as we described in Section 3.1.3.
It then systematically explores this space by repeatedly se-
lecting a transition t from the space, checking t, running
its analyses to identify other transitions similar to t, and
pruning t and the similar transitions from the space.

3.1.5 Search Space Representation

Consider checking the Stack with checkStack(n,n). Our
checker generates O(1) states and checks O(1) transitions to
cover this search space (as we show later). But the size of the
search space is 2 * (n)?". If we are not careful, then search
space management itself could take exponential time. We

void search(Finitization f) {
Set searchSpace = GlassBoxChecker.initialize(f);
while (!searchSpace.isEmpty()) {
Transition t = searchSpace.getAnUncheckedTransition();
Set checkedTransitions = GlassBoxChecker.check(t);
searchSpace.prune (checkedTransitions) ;

~NOoO O WwN

13,

Figure 12: Pseudo-code for the search algorithm

avoid this by compactly representing the search space us-
ing reduced ordered binary decision diagrams [4], or BDDs.
We use a BDD to represent the Set searchSpace in Fig-
ure 12. For the Stack example, the set initially contains
all the 2 % (n)*™ elements in the search space. The size of
the BDD representing this set is, however, O(1). As the
search proceeds, we progressively prune elements from this
set by applying BDD operations. In theory, the size of the
BDD could grow exponentially during this search process.
In practice, we found that the size of the BDD usually re-
mains small. For example, for Stack, experiments indicate
that the BDD only grows to a maximum size of O(logn).

The key to keeping the BDD size small is a good field order-
ing. We use a simple heuristic—fields that are read together
by the code are kept together in the BDD. This seems to nat-
urally induce a good field ordering and thus compact BDDs.

3.2 Dynamic Analysis

This section presents our dynamic analysis techniques that
are key to making our glass box checker efficient.

3.2.1 Monitoring Fields Read

Consider the Stack example again. Given a state transition,
our checker first checks if the precondition (repOk) returns
true. If so, our checker runs the corresponding method, and
then checks if the postcondition (repQOk) returns true.

Case Where Precondition is False

Consider checking the state transition in Figure 11. As our
checker runs rep0Ok, it monitors the input fields that repOk
reads. In this case, repOk reads head, NO.next, and N1.next
and returns false (because it detects a cycle in the linked
list). That means, no matter what the values of the re-
maining fields are, repOk will always return false (assuming
deterministic execution). Our system therefore prunes all
elements of the search space where head=NO, NO.next=N1,
and N1.next=NO. This idea is similar to how we generated
all inputs that satisfied a given precondition in Korat [2].

Case Where Precondition is True

Consider checking the state transition in Figure 10. The
precondition is true this time. As our checker then runs the
pop method, it once again monitors the input fields that
pop reads. In this case, pop reads head, NO.value, and
NO.next. That means, regardless of the values of the remain-
ing fields, pop will still behave similarly. Our static analysis
then determines that regardless of the values of the remain-
ing fields, if the precondition (repOk) holds before pop, then
the postcondition (repOk) holds after pop. Our system there-
fore prunes all elements of the search space where head=NO,
NO.value=00, NO.next=N1, and operation=pop.



This is the main idea that makes glass box checking fast.
Note that regardless of the maximum length of the linked
list, our checker verifies pop by running it on a constant
number of states (assuming it also prunes isomorphic struc-
tures as we describe in Section 3.2.3). On the other hand,
Korat (and every black box checker) runs pop on every valid
(and nonisomorphic) state to verify it.

3.2.2 Monitoring Information Flow

The above analysis conservatively assumes that a rep0Ok (or a
method) depends on all the fields it reads. This assumption
is usually true for naturally written programs, but not al-
ways. The Rational class below provides an example. Sup-
pose repOk returns false on Line 5 because d==0. The above
analysis assumes that because repOk read both numerator
and denominator, the return value depends on both the
fields—even though it depends only on denominator.

1 class Rational {

2 private int numerator, denominator;

3 public boolean repOk() {

4 int n=abs(numerator), d=denominator;
5 if (d <= 0) return false;

6 if (n>0 && gcd(n,d)>1) return false;
7 return true;

8

1}

To make our analysis more precise, we use dynamic informa-
tion flow tracking. Consider Stack in Figure 9. There are
nine fields. For every value v the program computes, our
system also computes a nine-bit shadow value v’ that tracks
the input fields from which there is an information flow to
v. Note that information flow analysis [12, 33] is different
from dynamic slicing [24], as the following example shows.

1 class InfoFlowDemo {

2 private boolean b;

3 public boolean repOk() {

4 boolean x = false; if (b) x = true; return x;
5

3

There is information flow from b to x above. But if b is
false, then x is not control or data dependent on b because
the branch is not taken. If we use dynamic slicing, then on
running repOk with b=false we would incorrectly conclude
that repOk does not depend on b and always returns false.
To avoid that, our analysis conservatively assumes that after
any join point in the control flow graph, all variables depend
on the corresponding branch conditional. Thus the return
value x depends on b. However, in the following example, q
on Line 2 does not depend on p because the branch on Line 1
always exits from the method, so there is no join point.

1 if (p) return true;
2 if (q) return true;

For a repOk, our analysis tracks flow to the value returned
by repOk. For a method m, our analysis tracks flow to the
value returned by m, to all the values written by m, and to
the predicates of all branches in the execution trace of m.

3.2.3 Pruning Isomorphic Structures

Compare the Stack in Figure 10 with a Stack where head=N1,
N1.next=N2, N1.value=00, N2.next=null, and N2.value=01. The
two are isomorphic. Clearly, once we check pop on the first

Stack, it is redundant to check pop on the second Stack. Our
checker avoids checking isomorphic structures as follows. Af-
ter checking the transition in Figure 10, our dynamic anal-
ysis concludes that the pop operation on all Stacks with
head=NO, NO.next=N1, and NO.value=00 can be pruned. Our
isomorphism analysis then determines that all structures
that satisfy the following formula can also be pruned:

(head#N0/null) V (head=NO A NO.next#N1/null) V (head=NO
A NO.next=N1 A NO.value700/null)

In general, to construct the formula, our isomorphism anal-
ysis traverses all the relevant fields of a transition t. Each
time it encounters a fresh object o that a field points to, it
includes (in the formula) all other transitions ¢’ where the
fields read by the traversal so far have the same values except
that instead of o in t there is another fresh object o' in t'.
Our system then prunes all transitions denoted by the for-
mula using efficient BDD operations. The above technique
is sound if the analysis traverses the fields in a fixed order.

Note that some black box checkers also prune isomorphs us-
ing heap canonicalization [21, 30]. The difference is, in heap
canonicalization, once a checker visits a state, it canonical-
izes the state and checks if the state has been previously vis-
ited. In our isomorphism pruning, once our checker checks a
transition t, it computes a formula F denoting (often an ex-
ponentially large number of) transitions isomorphic to t, and
prunes F from the search space (often with a small number
of BDD operations). Our checker never visits F’s transitions.

In addition to heap symmetries, our checker also handles
other symmetries. For example, if the actual values of in-
tegers in a program do not matter but only their relative
ordering matters, our checker prunes states which are sym-
metric in the above respect using efficient BDD operations.

3.3 Language Mechanisms

This section describes languages mechanisms. These are not
necessary for glass box checking, but facilitate the process.

3.3.1 Ownership Types

Consider the Queue example in Figure 2. Suppose the Stacks
are implemented using linked lists. Then the invariant of
Queue must state that the two Stacks do not share list nodes.
It is difficult to express such an invariant without expos-
ing the representation of Stack. The problem gets worse if
there are several implementations of Stack. Our system al-
lows programmers to express such invariants elegantly using
ownership types [3, 7]. Consider the Stack in Figure 5 for
an example. Line 8 declares that the Stack owns the head
node. Line 5 recursively declares that the next node in the
list has the same owner as the this node. These declarations
imply that all the nodes in a Stack are private to the Stack.
Two Stacks therefore cannot share list nodes. Our finitiza-
tion process (see Section 3.1.2) then exploits these ownership
declarations to automatically generate a finitization descrip-
tion for Queue where the domains of front and back and the
next fields of the nodes they point to do not overlap. Own-
ership types thus enable convenient expression of invariants
and efficient generation of structures from invariants.



3.3.2 Special Asserts
Consider the code below from repOk of a doubly linked list:

if (this.next.prev != this) return false;

Suppose the domain of prev is No..N,,. Our system tries all
possible values of prev, even though there is only one value
for which repOk does not return false. Instead, programmers
can write the above code as follows:

assertEqual (this.next .prev, this);

Our preprocessor then translates the above line into code
that provides feedback to our checker. When repOk returns
false because of the above line, our checker knows that it is
unnecessary to try out all other values for this.next.prev
except this. It thus avoids checking many states. Our sys-
tem provides several such asserts. E.g., assertGreater and
assertGreaterOrEqual are applicable to domains contain-
ing Comparable items, and are translated into efficient BDD
operations. assertTree makes it convenient to specify the
tree backbone of tree-based data structures; e.g., repOk of
Stack can be simply written as assertTree (head, "next*"),
and a binary tree as assertTree(root,"{left+right}*").
assertTree also speeds up the generation of tree-based data
structures from invariants by avoiding non-tree states. A
later version of Korat [27] also provides similar asserts.

3.4 Static Analysis

The dynamic analyses in Section 3.2 detect don’t care fields
in a transition ¢, and suggest that all transitions ¢’ that differ
with ¢ only at the don’t care fields can potentially be pruned
from the search space. The goal of the static analysis is to
prove that it is indeed safe to prune those transitions. To
see why static analysis is necessary, consider the following:

class StaticAnalysisDemo {
private boolean a, b;
public boolean repOk() { return !a || b; }
public void flipA() { a = la; 3
}

gD wWwN -

repOk returns true iff a implies b. Suppose we invoke f1ipA
on a=false and b=true. The pre and postconditions (both
repOk) hold. flipA reads only a; b is a don’t care. Our
dynamic analysis suggests that £1ipA will perhaps verify on
all states where a=false (and therefore those elements be
pruned from the search space). But the suggestion is incor-
rect because £1ipA does not verify on a=false and b=false.
The precondition holds then but not the postcondition.

Our static analysis works as follows. Consider checking an
operation o on a state s. Suppose our dynamic analysis
identifies fields f1.r as don’t cares. Let v denote the values
of the remaining fields in s, and v’ in the state after ex-
ecuting o. The static analysis partially evaluates the pre
and postconditions of o, say pre and post, with respect
to v and v’ respectively, to get functions pre,(fi.r) and
post,(fi..k). The analysis then attempts to prove that for
all values of f1.x in the bounded domain, pre,(fi..x) implies
post, (fi.k). (Note that even if pre and post are the same
function, v and v’ could be different if the method performs
mutations. So pre, and post,s could be different.)

Recall the Queue from Section 2.2 for an example. Con-
sider the enqueue transition from (0,0) to (0,1) in Figure 4.
Our dynamic analysis identifies front as a don’t care. Our
static analysis then performs a partial evaluation of the pre
and postconditions (both repOk) with respect to back, as
we show informally below assuming front=F and back=B
before the operation and back=B’ after the operation.

prep(F)

= Queue{front = F,back = B}.rep0Ok()

= F #null A FirepOk() A B # null A B.repOk() A F # B
= F #null A Frep0k()AF # B

because B is a constant, so any constraints on B can be
statically determined to be true

post 5+ (F)
= Queue{front = F,back = B’}.repOk()
= F #null A F.repOk() A B’ # null A B’.rep0k() A F' # B’
= F #null A F.repOk() A F # B’
because B’ is a constant
= F #null A Frep0k() A F # B

because B and B’ are the same Java object, even though
their states are different

. VF. (prep(F) = postp/(F))

Note that after the partial evaluation above the pre and
postconditions turn out to be identical, as they often do
when the pre and postconditions are both the same class
invariant. The implication holds trivially then.

However, partial evaluation of repOks written in object-
oriented languages is non-trivial [36]. We instead use the
following approach. We ask users to write class invariants
in a declarative language similar to Alloy [22]. Usually,
declarative specifications are more convenient to write than
repOks. We automatically generate executable repOks from
the declarative specifications for our dynamic analysis. We
use the declarative specifications for the static analysis. We
eliminate quantifiers using skolemization (as our domains
are bounded) and then do the partial evaluation. We handle
assertTree (described in Section 3.3.2) specially to improve
analysis precision. The analysis is straightforward otherwise.

3.5 Programming Effort

Previous sections describe how our system verifies data struc-
ture invariants. Our system does not require any additional
specifications from programmers other than the invariants
themselves. The checking is therefore almost automatic.

In addition to verifying invariants, our checker also verifies
any data structure properties that can be expressed as exe-
cutable pre and postconditions. In that case, in addition to
the specifications being checked, our system also requires
class invariants from programmers. This is because, our
checker depends on the invariants to explore all states. Note
that the effort required to write class invariants is propor-
tional to the size and complexity of the data declarations,
not the size of the code. Moreover, if users make a mistake in
writing the invariants, our system provides concrete counter
examples to help users correct the invariants.



[ Black Box | Glass Box | [ Black Box | Glass Box |
[ Benchmark | Max Size | Transitions | Transitions | BDD Size ] [ Benchmark | Max Size | Transitions | Transitions | BDD Size ]
1 9 8 8 1 6 6 6
2 32 10 14 2 24 14 22
3 115 10 11 3 120 27 31
4 450 10 25 HeapArray 4 660 54 141
5 1946 10 23 5 4648 114 305
Stack 6 9240 10 31 6 36120 310 770
7 47655 10 14 7 375264 515 1592
8 264420 10 48 8 3445710 828 7706
9 1566587 10 43 1 24 10 15
10 9851844 10 56 2 240 36 49
RedBlackTree 3 1176 92 102
15 timeout 10 17 4 15610 277 230
31 timeout 10 20 5 145872 619 556
1 15 12 11 6 2056320 1181 1203
2 132 18 38
3 1815 24 30 . . . . .
Queue 1 38838 30 97 Figure 14: Comparm.g black box model checking with
5 1175041 36 105 glass box model checking
15 timeout 96 312
31 timeout 192 831 imum size of the BDD as a measure of the search space

Figure 13: Comparing black box model checking with
glass box model checking

4 Experimental Results

This section presents our preliminary experimental results.
We implemented both a black box model checker and a glass
box model checker to study improvements obtained with
glass box checking. Our black box checker starts from the
initial state and recursively invokes and checks every opera-
tion on every successive state. We implemented all the rele-
vant optimizations published in literature including stateful
search and heap canonicalization. Our glass box checker
works as described in this paper. We extended the Poly-
glot [34] compiler framework to automatically instrument
programs to perform our dynamic analysis, and to automat-
ically generate the finitization descriptions. We used Jav-
aBDD [40] for BDDs, which is built on top of BuDDy [25].

We present results for the following benchmarks: (a) Stack
shown in Figure 5, with methods push and pop; (b) Queue
shown in Figure 2, implemented using the Stack in Figure 5,
with methods enqueue and dequeue; (c) HeapArray [10], an
array based implementation of a binary heap to represent a
priority queue, with methods insert and extractMin, and (d)
RedBlackTree [10], from java.util. TreeMap, with methods
get, put, and remove;

We checked each benchmark on states up to a maximum
size n, where: a Stack, a HeapArray, and a RedBlackTree
of maximum size n has at most n nodes and n values; and a
Queue of maximum size n has at most n nodes in the front
Stack, n nodes in the back Stack, and n values.

We report the following numbers. For a black box checker,
we report the number of state transitions executed by the
checker. This number depends on the number of states vis-
ited by the checker and the number of transitions enabled on
each state. For a glass box checker, we report the number
of transitions considered by the checker. This includes both
valid transitions executed by the checker (such as Figure 10)
and invalid transitions considered by the checker (such as
Figure 11). For a glass box checker, we also report the max-

management overhead. We do not report execution times
because we did not yet optimize the checkers for that; e.g.,
for the black box checker, we implemented heap canonical-
ization, but not incremental heap canonicalization [30]. But
to give an indication, our current glass box implementation
checks Queue on states of size up to 31 in under 200 millisec-
onds, whereas our black box implementation takes about
15 seconds for checking Queue on states of size up to 5.

Figure 13 presents results for the Stack and Queue bench-
marks. For checking the Stack, our glass box checker consid-
ers only O(1) transitions regardless of the size of the Stack,
because push and pop touch only a constant number of fields
at the beginning of the linked list. The BDD size growth
appears a bit erratic because BDDs whose fields have do-
main sizes that are powers of 2 tend to be smaller. However,
on careful observation, one can see that the BDD size grows
roughly as O(logn); e.g., observe the BDD size when the
Stack size is 1,3,7,15,31. (Note that if a Stack has most n
nodes, the domain of its next fields consists of n nodes and
null, so the size of the domain is n + 1.) The O(logn)
factor come in because it takes O(logn) bits to represent a
domain of size n in a BDD. For checking the Queue, our
glass box checker considers O(n) transitions, as explained in
Section 2.2. The BDD size grows roughly as O(nlogn). A
black box checker, on the other hand, executes an exponen-
tial number of transitions to check the Queue (and similarly
the Stack), as explained at the end of Section 2.2.

Figure 14 present results for other benchmarks. The num-
bers demonstrate that glass box checking is significantly
more efficient than black box checking.

5 Related Work

There has been much research on software model checking
tools that exhaustively test a program on all possible inputs
up to a given size (to handle input nondeterminism) and on
all possible nondeterministic schedules (to handle scheduling
nondeterminism). Verisoft [16] is a stateless model checker
for C programs. Java PathFinder (JPF) [39, 23] is a state-
ful model checker for Java programs. XRT [18] checks Mi-
crosoft CIL programs. Bandera [9] and JCAT [11] translate
Java programs into the input language of model checkers like



SPIN [20] and SMV [28]. Bogor [13] provides an extensible
framework for building software model checkers. CMC [32] is
a stateful model checker for C programs that has been used
to test large pieces of software including the Linux imple-
mentation of TCP/IP and the ext3 file system [31]. How-
ever, most of the above work on applying model checking
to software focuses on scheduling nondeterminism to verify
event sequences with respect to temporal properties. This
paper deals with input nondeterminism. In particular, it
focuses on verifying properties of linked data structures.

The main contribution of this paper is as follows. Consider
checking a red-black tree implementation. Previous model
checking approaches such as JPF [39, 23], CMC [32, 31], Ko-
rat [2], and Alloy [22] systematically generate all red-black
trees up to a given size n and check every red-black tree oper-
ation on every red-black tree. Since the number of red-black
trees is exponential in n, these checkers take exponential
time. On the other hand, our checker detects similarities
in the search space and infers that it is sufficient to check
every red-black tree operation on every red-black tree path.
Since the number of red-black tree paths is polynomial in
n, our checker takes polynomial time. This leads to orders
of magnitude speedups over the previous approaches. More-
over, our isomorphism pruning technique is different from
heap canonicalization [21, 30] used in the previous checkers,
as explained in Section 3.2.3.

Tools such a Slam [1], Blast [19], and Magic [5] use heuristics
to construct and check an abstraction of a program (usually
predicate abstraction [17]). Abstractions that are too coarse
generate false positives, which are then used to refine the
abstraction and redo the checking. The abstraction-based
tools group several concrete program states into an abstract
state and check the abstract state instead of checking several
concrete states. Our glass box checker also in effect groups
concrete states by using program analyses to identify states
on which a given operation behaves similarly, and checks the
operation on only one state from each group. One difference
is that the abstraction-based tools use heuristics to group
states, whereas our system groups states only if they are
found to be similar with respect to an operation. However,
the two techniques are complementary and can be combined.

There are many static [16] and dynamic [14] partial order
reduction systems. These systems are designed to handle
scheduling nondeterminism and use techniques that are quite
different from our techniques for checking data structure
properties. In particular, the dynamic partial order reduc-
tion [14] works only in a stateless checker. Our checker is
stateful in that it does not visit a state more than once.

For systematically generating states from invariants we use
an approach we developed in Korat [2]. The main differ-
ence between Korat and our checker is that Korat generates
every valid state (within a bounded domain) and checks ev-
ery operation on every state. Our checker, on the other
hand, prunes away a large number of states and operations
on states without explicitly checking them. This paper also
improves on the Korat state generation technique by using
dynamic information flow tracking (Section 3.2.2), special

language constructs (Section 3.3), and BDDs (Section 3.1.5).
In particular, Korat imposes a linear (lexicographic) order
on the search space and keeps all unexplored elements con-
tiguous at the end of the linear order. While this makes the
search space management efficient, it also means that Korat
can only prune a subset of elements its analyses identify, so
that all unexplored elements remain contiguous at the end.
Our checker uses BDDs, so it can prune all the elements its
analyses identify. [38] translates a program and its specifi-
cations into a SAT formula and uses a constraint solver to
check the program. However, this approach does not seem to
scale well because it generates huge formulas. Moreover, it
introduces additional unsoundness by bounding the lengths
of computations (e.g., 3 unrollings of loops).

ESC/Java [15] uses a theorem prover to verify absence of
such errors as null pointer dereferences and array bounds
violations. JVer [6] uses a theorem prover to verify resource
bounds of applets. Static analyses such as TVLA [35] and
PALE [29] offer a promising approach for verifying properties
of data structures. However, none of the above techniques
are currently practical enough to verify, say, the correct-
ness of implementations of balanced trees, such as red-black
trees. Exhaustive testing, on the other hand, is a general ap-
proach that can verify any decidable property, but for inputs
bounded by a given size.

6 Conclusions

This paper makes the following contributions.

It introduces the glass box approach to software model check-
ing. Our checker detects similarities in the search space and
prunes redundant states and operations without explicitly
checking them. This results in significant speedups.

It shows how to compactly represent the search space of
a glass box checker with BDDs. BDDs have been used
for checking temporal properties of software before (e.g., in
jMoped [37]). But they have not been used in this context
for verifying data structure properties. The resulting state
spaces and operations on the state spaces are different.

It presents an optimization to avoid checking isomorphic
states. This technique is different from heap canonicaliza-
tion, as explained in Section 3.2.3.

It presents dynamic and static analysis techniques and lan-
guage mechanisms that make glass box checking efficient.

Finally, the paper presents preliminary experimental results
to show the improvements obtained by glass box checking.

References
[1] T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani.
Automatic predicate abstraction of ¢ programs. In

Programming Language Design and Implementation
(PLDI), June 2001.

[2] C. Boyapati, S. Khurshid, and D. Marinov. Korat:
Automated testing based on Java predicates. In
International Symposium on Software Testing and Analysis
(ISSTA), July 2002. Winner of an ACM SIGSOFT
distinguished paper award.



[3] C. Boyapati, B. Liskov, and L. Shrira. Ownership types for
object encapsulation. In Principles of Programming
Languages (POPL), January 2003.

[4] R. E. Bryant. Symbolic boolean manipulation with ordered
binary decision diagrams. ACM Computing Surveys 24(3),
1992.

[5] S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith.
Modular verification of software components in C. In
International Conference on Software Engineering (ICSE),
June 2003.

[6] A. Chander, D. Espinosa, N. Islam, P. Lee, and G. Necula.
JVer: A Java verifier. In Computer Aided Verification
(CAV), January 2005.

[7] D. G. Clarke, J. M. Potter, and J. Noble. Ownership types
for flexible alias protection. In Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA ), October 1998.

[8] E. M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. MIT Press, 1999.

J. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu, Robby,

S. Laubach, and H. Zheng. Bandera: Extracting finite-state
models from Java source code. In International Conference
on Software Engineering (ICSE), June 2000.

[10] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.
Introduction to Algorithms. MIT Press, 1991.

[11] C. DeMartini, R. Tosif, and R. Sisto. A deadlock detection
tool for concurrent Java programs. Software—Practice and
Experience (SPE) 29(7), June 1999.

[12] D. E. Denning and P. J. Denning. Certification of programs
for secure information flow. In Communications of the
ACM (CACM) 20(7), July 1977.

[13] M. B. Dwyer, J. Hatcliff, M. Hoosier, and Robby. Building
your own software model checker using the Bogor extensible
model checking framework. In Computer Aided Verification
(CAV), January 2005.

[14] C. Flanagan and P. Godefroid. Dynamic partial-order
reduction for model checking software. In Principles of
Programming Languages (POPL), January 2005.

[15] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson,
J. B. Saxe, and R. Stata. Extended static checking for Java.
In Programming Language Design and Implementation
(PLDI), June 2002.

[16] P. Godefroid. Model checking for programming languages
using VeriSoft. In Principles of Programming Languages
(POPL), January 1997.

[17] S. Graf and H. Saidi. Construction of abstract state graphs
with PVS. In Computer Aided Verification (CAV), June
1997.

[18] W. Grieskamp, N. Tillmann, and W. Shulte.
XRT—Exploring runtime for .NET: Architecture and
applications. In Workshop on Software Model Checking
(SoftMC), July 2005.

[19] T. A. Henzinger, R. Jhala, and R. Majumdar. Lazy
abstraction. In Principles of Programming Languages
(POPL), January 2002.

[20] G. Holzmann. The model checker SPIN. Transactions on
Software Engineering (TSE) 23(5), May 1997.

[21] R. Iosif. Symmetry reduction criteria for software model
checking. In SPIN workshop on Model Checking of Software
(SPIN), April 2002.

[22] D. Jackson. Alloy: A lightweight object modeling notation.
Transactions on Software Engineering and Methodology
(TOSEM) 11(2), April 2002.

9

[23] S. Khurshid, C. S. Pasareanu, and W. Visser. Generalized
symbolic execution for model checking and testing. In Tools
and Algorithms for Construction and Analysis of Systems
(TACAS), April 2003.

[24] B. Korel and J. Laski. Dynamic program slicing. In
Information Processing Letters (IPL) 29(3)s, October 1988.

[25] J. Lind-Nielsen. BuDDy.
http://sourceforge.net/projects/buddy.

[26] B. Liskov and J. Guttag. Abstraction and Specification in
Program Development. MIT Press, 1986.

[27] D. Marinov. Automatic testing of software with structurally
complex inputs. Ph.D. thesis, Massachusetts Institute of
Technology, February 2005.

[28] K. McMillan. Symbolic Model Checking. Kluwer Academic
Publishers, 1993.

[29] A. Moeller and M. I. Schwartzbach. The pointer assertion
logic engine. In Programming Language Design and
Implementation (PLDI), June 2001.

[30] M. Musuvathi and D. L. Dill. An incremental heap
canonicalization algorithm. In SPIN workshop on Model
Checking of Software (SPIN), August 2005.

[31] M. Musuvathi and D. R. Engler. Using model checking to
find serious file system errors. In Operating System Design
and Implementation (OSDI), December 2004. Winner of
the best paper award.

[32] M. Musuvathi, D. Y. W. Park, A. Chou, D. R. Engler, and
D. Dill. CMC: A pragmatic approach to model checking
real code. In Operating System Design and Implementation
(0SDI), December 2002.

[33] A. C. Myers. JFlow: Practical mostly-static information
flow control. In Principles of Programming Languages
(POPL), January 1999.

[34] N. Nystrom, M. R. Clarkson, and A. C. Myers. Polyglot:
An extensible compiler framework for Java. In Compiler
Construction (CC), April 2003.

[35] M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis
problems in languages with destructive updating.
Transactions on Programming Languages and Systems
(TOPLAS) 20(1), January 1998.

[36] U. P. Schultz, J. L. Lawall, and C. Consel. Automatic
program specialization for Java. Transactions on
Programming Languages and Systems (TOPLAS) 25(4),
July 2003.

[37] D. Suwimonteerabuth, S. Schwoon, and J. Esparza.
jMoped: A Java bytecode checker based on Moped. In
Tools and Algorithms for Construction and Analysis of
Systems (TACAS), April 2005.

[38] M. Vaziri and D. Jackson. Checking properties of
heap-manipulating procedures using a constraint solver. In
Tools and Algorithms for Construction and Analysis of
Systems (TACAS), April 2003.

[39] W. Visser, K. Havelund, G. Brat, and S. Park. Model
checking programs. In Automated Software Engineering
(ASE), September 2000.

[40] J. Whaley. JavaBDD. http://javabdd.sourceforge.net/.



