
Node Mergers in the Presence of Don’t Cares

Stephen Plaza, Kai-hui Chang, Igor Markov, and Valeria Bertacco

CSE-TR-521-06

July 06, 2006

THE UNIVERSITY OF MICHIGAN
Computer Science and Engineering Division
Department of Electrical Engineering and Computer Science
Ann Arbor, Michigan 48109-2121
USA

Node Mergers in the Presence of Don’t Cares

Stephen Plaza, Kai-hui Chang, Igor Markov, and Valeria Bertacco
{splaza, changkh, imarkov, valeria}@umich.edu

Advanced Computer Architecture Laboratory
Department of Electrical Engineering and Computer Science

University of Michigan
Ann Arbor, Michigan 48109-2121

July 06, 2006

CSE-TR-521-06: Node Mergers in the Presence of Don’t Cares 1

Abstract

Merging equivalent nodes in a circuit is a synthesis technique useful for reducing area and improv-
ing equivalence checking. Recently proposed algorithms that determine node equivalence are unable
to exploit observability don’t cares (ODC) and therefore miss several merging opportunities. Current
strategies for extracting don’t care information for identifying additional node mergers restrict the types
of don’t cares computed because of computational expense.

We develop an efficient framework that merges nodes by exploiting ODCs through simulation and
SAT. Specifically, the framework integrates (1) a novel strategy for representing ODC information dur-
ing logic simulation, (2) a fast ODC-aware simulator, (3) an ODC-aware equivalence checker, and (4)
progressive refinement of simulation vectors. Our results indicate that ODCs enable many node mergers
with up to 30% gate reduction on unoptimized circuits and 23% area reduction after synthesis.

1 Introduction

Merging equivalent nodes is a synthesis technique that directly results in the reduction of logic in the circuit.
For networks that are constructed using BDDs [3], a candidate for merger can be identified and verified in
O(1)-time. However, the size of BDDs is prohibitive for many practical designs and does not scale well.

To efficiently identify node-merging opportunities in larger designs, the work in [12, 15] uses a com-
bination of SAT and simulation. Candidate nodes for merging can be identified by checking whether their
outputs correspond to random simulation patterns applied to the design, and their equivalence can be verified
using SAT [9]. To avoid related unsuccessful equivalence checks, the work in [15] reuses counterexamples
produced by such checks. It refines node signatures by simulating these additional input patterns.

The work in [15] is useful in equivalence checking. By simplifying and proving the equivalence of inter-
nal nodes incrementally, the equivalence between the outputs of two designs can be more easily ascertained.

Using simulation and SAT to perform node mergers implicitly takes into account satisfiable don’t cares
(SDCs) because unsatisfiable combinations never arise during simulation. However, observability don’t
cares (ODCs) are not exploited in [15], where two nodes can be merged only when one of them has just been
constructed but its downstream nodes have not. ODCs occur when node values for certain input patterns
are irrelevant to the outputs of the design. By taking into account ODCs, additional node mergers will be
possible.

Several algorithms for efficiently generating ODC information to be used in network simplification and
improving the quality of SAT solvers have been developed [7, 16, 17, 19]. Techniques that determine ODCs
often restrict the computation to a subset of them [19] or consider small windows [17] of the circuit. Also,
these algorithms generate don’t care information that may be unnecessary for finding node mergers.

In this paper, we introduce a framework that uses simulation vectors and downstream logic to identify
potential mergers in the presence of ODCs. Unlike previous approaches, we avoid expensive computation
unless fast simulation indicates a potential merger. In addition, SAT computation is limited to portions of
the circuit that are necessary to verify a merger. By using simulation, we can find potential mergers in large
circuits with high-accuracy and allow the complexity of the verification procedure to explicitly limit what is
examined.

Our first insight involves maintaining signatures storing don’t care values in a manner that allow po-
tential mergers to be identified quickly through efficient signature manipulations. Second, we develop a
fast simulator that identifies don’t care situations to produce these signatures. Next, we verify a merger
indicated by the signatures using a SAT engine that considers downstream logic. Instead of considering all
downstream logic we examine only a fraction of it and incrementally increase the logic considered until the
merger can be verified. Through incremental SAT-solving, this process avoids miters that are unnecessarily

CSE-TR-521-06: Node Mergers in the Presence of Don’t Cares 2

large. In many cases, only a few layers of logic are needed to prove or disprove equivalences. If the miter
becomes too deep, the verification can be aborted and the merger opportunity rejected.

Because the identification of ODCs relies on the quality of signatures, we reuse all counterexamples
generated by SAT calls to prevent spurious merger candidates. We note that this technique is only super-
ficially similar to that used in [15] because we focus on downstream logic, which is unavailable in their
approach.

The work closest to ours is that on and-inverter graphs (AIGs) [12] and functionally-reduced AIGS
(FRAIGs) [15] used to efficiently represent logic networks. However, there are several key differences.
In addition to handling ODCs by considering downstream logic, our work does not assume a technology-
independent representation such as an AIG and can operate on an arbitrarily mapped netlist. In particular, it
is applicable to post-placement logic optimization, whereas AIG-based techniques are most likely not.

Section 2 gives background on signatures, SAT, and recent advances in ODC computation. Section 3
explains a representation scheme for ODCs along with an efficient simulator. Section 4 describes the SAT
engine that verifies the merger. Section 5 elaborates on our strategy for generating dynamic simulation
patterns. Finally, in Section 6, results are given that show the number of ODC-based mergers performed for
several benchmarks.

2 Background

The following discusses work in signature-based equivalence checking [12, 15] which we extend to handle
ODC-based equivalence. Then, prior strategies for computing ODCs [16, 19] are described.

2.1 Simulation and Satisfiability
A given node F in a Boolean network can be characterized by its signature, SF , for K input vectors X1 · · ·XK .

Definition 1 SF = {F(X1), . . . ,F(XK)} where F(Xi) = {0,1} indicates the output of F for input Xi.

Typically, random simulation is used to generate vectors Xi and derive signatures for each node in a
design. For a network with N nodes, the time complexity of generating signatures for the whole network is
O(NK). Nodes can be distinguished by the following formula: SF 6= SG ⇒ F 6= G.

Signatures can be easily created and manipulated by taking advantage of bit-parallel operations. There-
fore, equivalent signatures can be used to efficiently identify potential node equivalences in a circuit [12]. A
hash index can be derived for each signature and equivalent signatures can be discovered using an O(1)-time
hash table lookup. Since SF = SG does not imply that F = G, this potential equivalence must be verified us-
ing SAT. In [12], dynamic input vectors are generated from the counter-examples derived from SAT checks
that prove F 6= G. The dynamic input vectors improve the quality of the signatures by limiting situations
where SF = SG despite F 6= G.

The efficiency of the frameworks in [12, 15] is dependent on the underlying engines for formally veri-
fying the equivalence of nodes with equivalent signatures. Recent advances in SAT such as learning, non-
chronological backtracking, and watch literals [18,22] have made SAT a more scalable alternative to BDDs
in applications like equivalence checking. The equivalence of two nodes, F and G, in a network can be
determined by constructing an XOR-based miter [2] between them and asserting the output to 1 as shown in
the following formula:

F = G ⇔∀i F(Xi)⊕G(Xi) 6= 1 (1)
where

S

i Xi is the set of all possible inputs.

CSE-TR-521-06: Node Mergers in the Presence of Don’t Cares 3

2.2 Observability Don’t Cares
Figure 1 shows examples of satisfiability don’t cares (SDCs) and observability don’t cares (ODCs). An SDC
arises when certain inputs are not possible. For example, the combination of x = 1 and y = 0 cannot occur
for the circuit shown on the left in Figure 1. SDCs are implicitly handled when using SAT for equivalence
checking because this combination cannot occur for any satisfying assignment. ODCs occur when the value
of an internal node does not effect the outputs of the design. For the circuit on the right, when a = 0 and
b = 0, the value F is a don’t care.

� �

� �

� �

�

Figure 1: The left circuit shows examples of SDCs, and the right circuit shows examples of ODCs.

���������	
	����

��
��������

�

� ��

�
	
����

�
	
������������
�

��

Figure 2: Identifying an ODC for an internal node a in a network by constructing a miter for each output
and inverting a in a modified copy of the network. The set of inputs where the miter is 1 corresponds to the
care-set of that node.

Figure 2 shows a strategy for identifying ODCs for a node a. First, the design D is copied and a is
inverted in the design D∗. Then, miters are constructed between the outputs of the two designs and the care
set, denoted as C(a), can be derived as follows:

C(a) =
[

i
Xi i f D(Xi) 6= D∗(Xi) (2)

A SAT solver can derive C by adding constraints called blocking clauses that prevent the solver from
re-deriving previous satisfying assignments to the miter in Figure 2 [16]. The ODC of a is therefore:

ODC(a) =
[

i
Xi −C(a) (3)

This approach can be computationally expensive and therefore unscalable particularly when the miters
are far from a. To address this problem, in [16], small windows of the circuit are examined that reduces
computation but produces smaller don’t care sets. Also, other strategies derive a subset of ODCs called
compatibility ODCs (CODCs) that are easier to compute because of their convenient properties [19, 20].
CODCs have the nice property that optimizations involving one node’s CODCs do not effect the CODCs

CSE-TR-521-06: Node Mergers in the Presence of Don’t Cares 4

of another. In our work, we achieve scalability by identifying ODCs by simulation without requiring small
windows to reduce computation. Furthermore, we are not limited to CODCs because in our framework we
examine one node at a time, making compatibility unnecessary.

3 Finding ODC Equivalences

Traditionally, a node merger can occur between a and b when they are functionally equivalent. We now
define node mergers between a and b in the presence of ODCs when a is ODC equivalent to b.

Definition 2 a is ODC equivalent to b if ONSET(a)+ODC(b) = ONSET(b)+ODC(b).

When a is ODC equivalent to b, a merger between a and b means that a can be substituted for b.
Because the ODCs of only one node are considered, ODC equivalence is not symmetric as b might not be
ODC equivalent to a.

Our strategy of merging nodes in the presence of ODCs first uses signatures to find candidate ODC
equivalences. Unlike [15], we need to consider downstream logic. Also, identifying ODC merger candidates
with signatures cannot be done with O(1)-time signature hashing because the candidate merger depends on
which node’s ODCs are considered.

In the following, we describe a strategy for encapsulating ODC information in signatures so that they
can be sorted and searched efficiently to minimize the cost of identifying merging candidates. In addition,
we develop a simulator that generates ODC information by considering downstream logic with complexity
comparable to non-ODC signature generation without considering downstream logic.

3.1 Reasoning About ODCs in Signatures
Each node in the design maintains a signature S as defined in Definition 1. In addition to this, an ODC-mask
S∗ is maintained:

Definition 3 For node f ,
S∗f = {X1 6∈ ODC(f), . . . ,XK 6∈ ODC(f)}. When an input vector Xi is in the set ODC(f), that bit position
is denoted by a 0.

Set operations can be efficiently executed on these signatures through bit-wise manipulations. The
following shows how the ⊆ relation is defined using the signatures of two nodes, Sa and Sb:

Definition 4 Sb ⊆ Sa if and only if Sb|Sa = Sa where | represents bit-wise OR.

Figure 3 shows a circuit with signatures for each node and a mask for node c. Each ODC for a node is
marked by a 0 in the ODC-mask. In our framework, we show the flexibility of a given node by maintaining
upper-bound Shi and lower-bound signatures Slo.

Definition 5 Slo = S&S∗ where & represents bit-wise AND and Shi = S|¬(S∗).

Slo and Shi of node f correspond to range of Boolean function [f lo
, f hi] that are ODC-equivalent to f

because the differences between the range of functions are a subset of ODC(f).
After simulation populates the different signatures, merger candidates can be found. In the example in

Figure 3, after the first four simulation, node b is depicted as a candidate for ODC-equivalence with c.

CSE-TR-521-06: Node Mergers in the Presence of Don’t Cares 5

���

����

��	���

�	���

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

�� ��

�

�

�� �� �

�� �� �

�� �� �

�� �� �

�

�

�

�

�

�

�

�

�

� � � � �

Figure 3: An example showing how ODCs are represented in a circuit. For clarity, the example only shows
ODC information for node c. The other internal nodes show only signatures S. When examining the first
four simulation, node b is a candidate for merging with c. Further simulation indicates that an ODC merger
is not possible.

Definition 6 Node b is a candidate for ODC-equivalence with node c if and only if (Sb ⊕ Sc) ⊆ ¬S∗c . This
can be re-expressed as Sb ⊆ [Slo

c ,Shi
c], or Sb is contained within the signature range defined by Slo

c and Shi
c .

Therefore, by simple application of S∗
c , it can be determined that b is an ODC-equivalent candidate with

c. However, in this example, further simulation reveals that this candidate equivalence is incorrect. Similar
to Definition 2, if b is an ODC-equivalent candidate with c, it does not imply that c is an ODC-equivalent
candidate with b.

Unlike checking for equivalence with signatures, O(1)-time complexity hashing cannot be used to iden-
tify ODC-equivalence candidates. Each node needs to apply its mask to every other node to find candidates.
The result is that for N nodes, finding all ODC-equivalence candidates for the design requires O(N 2K)-time
complexity assuming that applying a mask is an O(K)-time operation. Although we do not implement a
better worst-case complexity algorithm, we now discuss a technique that reduces computation in practice.

First, all of the signatures, S, in the design are sorted by the value obtained by treating each K-bit
signature as a single K-bit number. This operation requires O(NKlgN)-time. Then, for a given node c,
candidates can be found by performing two binary searches with S lo

c and Shi
c to obtain a lower and upper

bound on the sorted S, an O(KlgN)-time operation. The following formula defines the set of signatures
Sx that will be checked for candidacy:

S

x Sx i f num(Slo
c) ≤ num(Sx) ≤ num(Shi

c) where num represents the
K-bit number of the signature. This set is linearly traversed to find any candidates according to Definition 6.

3.2 Generating ODC Information
Generating ODC masks S∗ efficiently is integral to maintaining the scalability of our framework. Whereas
each node’s S can be computed from its immediate fanin, computing each node’s S∗ often requires all
downstream logic.

The S∗ can be computed for each node by determining the care-set using Equation 2 where the Xi are
the random simulation vectors. This approach requires circuit simulation of each Xi for each node. For K
simulation vectors and N nodes the time-complexity is O(N 2K). Although the simulation can be confined
to just the fanout cone of the node, the procedure is computationally expensive.

Approximate ODC Simulator: we now describe our approximate ODC simulator whose complexity
is only O(n′K) where n′ is the number of nets or wires in the design. The algorithm for generating masks
using the approximate simulator is shown in Figure 4.

CSE-TR-521-06: Node Mergers in the Presence of Don’t Cares 6

void gen odc mask(Nodes N){
set output S∗(N);
reverse levelize(N);
for each node ∈ N
{

node.S∗ = 0;
for each out put in node.fanout
{
temp S∗ = get local ODC(node, out put);
temp S∗ = temp S∗ & out put.S∗;
node.S∗ |= temp S∗;
}

}
}

Figure 4: Algorithm for efficiently generating ODC masks for each node.

The function set output S∗ initializes the mask of nodes directly connected to the input of a latch
or primary output to all 1s. The nodes are then ordered and traversed in reverse topological order as gen-
erated by reverse levelize. The immediate fanout of each node is then examined. The function
get local ODC performs ODC analysis for every simulation vector for node as defined by Equation 2
except only the sub-circuit defined by node and out put is considered. This local ODC mask is bitwise-
ANDed with the out put’s S∗ and is subsequently ORed with the node’s S∗.

The algorithm requires only a traversal of all the nets given by the two for each loops and the K simula-
tion vectors considered for get local ODC, resulting in the O(n′K) complexity. Intuitively, each fanout
node is another constraint that reduces the number of ODCs in the mask hence the bitwise-OR. The flexibil-
ity is increased by the local ODCs that are generated across each fanout node hence the bitwise-AND.

������������

����	
����

� �
�

 � �

 � � �

�

�

�

�

�

� � � �

 � � �

 �

���������
����

���

����

Figure 5: The ODC information produced by approximate ODC simulation. Sometimes reconvergence can
cause ODC simulation to produce incorrect ODC masks. S∗ and S are shown for the internal nodes, and
only S are shown for the inputs and outputs.

Accuracy of Approximate Simulator: because of reconvergence in logic, it is possible for the algo-
rithm in Figure 4 to incorrectly produce Os (false positives) or 1s (false negatives) in S∗. For the example in
Figure 5, node a misses a don’t care (false negative) in the third bit of S∗

a. Notice that node b and c do not
have any ODCs and no local ODCs exist between a and b or a and c, resulting in no ODCs being detected

CSE-TR-521-06: Node Mergers in the Presence of Don’t Cares 7

Table 1: Efficiency/quality of the approximate ODC simulator.
bench runtime(s) #cands %pos %neg

sim simodc approx

ac97 ctrl 1 6 1 63758 0.0 0.0
aes core 2 79 1 315917 0.1 0.0
des perf 9 410 7 296095 0.0 0.0
ethernet 4 76 2 8852009 0.3 0.8
mem ctrl 1 119 1 867145 1.0 1.4
pci bdge32 1 28 1 1158654 0.2 0.4
spi 0 39 0 156291 0.0 3.1
systemcaes 1 48 1 285189 0.2 0.2
systemcdes 0 24 0 5288 2.8 0.7
tv80 1 130 1 1348277 1.5 9.0
usb funct 1 11 1 1685374 2.2 1.8
wb conmax 3 69 4 1904773 0.0 0.0

by the approximate simulator. However the reconvergence of downstream logic makes the third value of
node a a don’t care. Our experiments show that these situations happen infrequently.

Performance of Approximate Simulator: in Table 1, the quality of the approximate ODC simulator
is assessed. The first column indicates the benchmarks examined. The second column, sim, gives the time
required to generate only signatures S for each node. We use this as a baseline to assess the cost of generating
masks. The third column, simodc, shows the time required to generate S∗ for each node using Equation 2.
The fourth column, approx, shows the time to compute S∗ using the approximate simulator. The last few
columns show the number of ODC-equivalence candidates identified by the approximate simulator and the
percent of false positives and negatives relative to the signatures generated by simodc. A false positive
(false negative) in this context refers to a situation where approx confirms (rejects) an ODC-equivalence
candidate that simodc rejects (confirms).

The results indicate that the approximate simulator is comparable to that of sim and is much faster
than sim odc. In addition, the number of false positives and negatives is typically a small percentage of
the number of opportunities identified. These results were generated by running 2048 random simulation
vectors.

The number of candidate equivalences is often much greater than the number of equivalences possible.
In Section 5, a strategy that prunes the number of candidate equivalences significantly will be discussed.

4 Verifying ODC Equivalence

In the following sections, we discuss how to efficiently prove ODC-equivalence candidates. We first describe
a simple technique for proving ODC-equivalence with SAT. We improve this technique with an adaptive SAT
framework.

4.1 Output Equivalence Checker
Figure 2 shows how ODCs can be identified for a given node in a network. We can prove whether b is ODC
equivalent to a in a similar manner. Instead of using a′ in the modified circuit D∗, b is substituted for a and
miters are constructed at the outputs. If the care-set determined by Equation 2 is null, b is ODC equivalent
to a and a merging opportunity exists. The whole care-set does not need to be derived as a single satisfiable
solution proves non-equivalence.

CSE-TR-521-06: Node Mergers in the Presence of Don’t Cares 8

4.2 Moving-Dominator Equivalence Checker
For large designs, proving ODC equivalence could be prohibitive because all downstream logic is consid-
ered. We introduce a dynamic SAT framework that attempts to determine ODC-equivalence by considering
a small portion of downstream logic.

Consider Figure 6 where b is a candidate of ODC equivalence with a. If a miter is constructed across a
and b instead of the primary outputs as shown in part a), a set of differences between a and b that result in sat-
isfying assignments is given by DIFFSET(a,b) = ONSET(a)∗OFFSET (b)+OFFSET(a)∗ONSET (b).
A satisfying solution here indicates the non-equivalence for the given section of logic considered. If the sat-
isfying solution is simulated for the remaining downstream logic and discrepancies between the two circuits
exist at the primary outputs, then non-equivalence for the whole design is proven. If the DIFFSET is null,
equivalence is proven.

However, if a and b are very different, the DIFFSET could result in a prohibitive amount of simulation.
To reduce the size of the DIFFSET , we construct miters further from the merger site while reducing the
amount of downstream logic considered. We introduce the notion of a dominator set to define where we
place the miters.

Definition 7 The dominator set for node-a is a set of nodes in the circuit such that every path from node-a
to a primary output contains a member in the dominator set and where for each dominator member there
exists at least one path from node-a to a primary output that contains only that member. Multiple dominator
sets can exist for a given node.

�������

���	
	���

��
�

�

�

���
����

���
����
�������

���	
	���

�

�

���
����

���
�����

Figure 6: An example that shows how to prove that b is ODC-equivalent to a. a) A miter is constructed
between a and b to find test vectors that are incompatible. b) A dominator set can be formed in the fanout
cone of a and miters can be placed across the dominators.

In part b) of Figure 6, we show miters constructed for a dominator set of a. Dominator sets close to
the candidate merger will result in less complex SAT instances but potentially more downstream simulation
to check whether satisfying assignments prove non-equivalence. We devise a strategy that dynamically
moves the dominator set closer to the primary outputs depending on the number of satisfying assignments
generated. Our moving dominator algorithm is outlined in Figure 7.

In addition to the incremental SAT solver that finds satisfying assignments for a given dominator set,
we also maintain a checker SAT instance with the dominator set being the primary outputs. The purpose of

CSE-TR-521-06: Node Mergers in the Presence of Don’t Cares 9

bool odc equivalent(a, b){
current dom = {a};
while(dom Sat(miter(current dom, a, b)) == SAT){
if(checker Sat(satisfying solution){
return false;
}
else{
add blocking clause;
if(threshold reached){

current dom = calculate new dom();
} }

}
return true;

}

Figure 7: Algorithm for determining the equivalence of two nodes in the presence of ODCs.

the checker SAT instance is to check whether satisfying assignments for a given dominator set propagate to
the outputs. If the checker solver finds a conflict, a blocking clause is generated and sent to the other SAT
instance to potentially prevent similar satisfying solutions from being derived.

The moving dominator algorithm starts by deriving a dominator set that is close to the merger site given
by current dom. Then, dom SAT solves an instance where miters are placed across the current dominator
set. An UNSAT solution means ODC equivalence and the procedure exits. Otherwise, the satisfying solution
is checked in checker SAT and an UNSAT solution here results in a blocking clause and potentially a new
dominator set as determined by calculate new dom. calculate new dom extends the dominator set
by one level of logic. The threshold for changing the dominator set was experimentally determined.

5 Improving Simulation Vectors

The previous sections were concerned with efficiently identifying ODC equivalence candidates and proving
these candidate mergers. In this section, the focus is on ensuring that SAT checks required are minimized
while maximizing the number of mergers that can be exploited in a design.

Table 1 indicates that better simulation is needed to reduce the number of potential merger candidates.
To improve upon this, we generate an input vector based on the SAT call that proves non-ODC-equivalence.
The satisfying assignment preventing the merger is added to the set of input vectors and new signature
information is derived for each node. ODC equivalence candidates that are also false involving nearby
nodes can benefit from the additional input vector and hence we immediately update every nodes’ S and S∗.

When a merger is performed, the fanin and fanout cone of the merger site will be effected requiring
that the corresponding signatures be updated. However, since signatures are used to find candidates that
are later proven by a SAT solver, incorrect signatures can never lead to an incorrect merger and updates
are not necessary. We have found experimentally that examining nodes for mergers in reverse topological
order tends to reduce the flexibility in the circuit more than examining in topological order. Hence, we favor
topological traversals.

CSE-TR-521-06: Node Mergers in the Presence of Don’t Cares 10

Table 2: Gate reductions and performance of the ODC merging algorithm on unoptimized benchmarks. The
algorithm has a timeout of 5000 seconds and is denoted by U.

benchmarks #gates time(s) #merge %area reduct

i2c 1037 3 39 4.1%
pci spoci ctrl 1209 14 170 15.9%
alu4 2403 37 697 29.9%
dalu 2625 71 636 28.2%
i10 2676 40 257 10.6%
spi 3011 418 112 3.9%
systemcdes 3196 21 255 8.2%
C5315 3211 20 161 5.7%
C7552 4408 63 340 9.2%
s9234 5597 173 821 20.9%
tv80 6876 2599 658 10.8%
systemcaes 7453 307 658 9.0%
s13207 8027 119 300 5.5%
ac97 ctrl 10285 99 80 0.8%
mem ctrl 10671 1887 2758 27.9%
usb funct 11889 345 246 2.2%
pci bridge32 15701 522 158 1.1%
s38584 19407 1053 2253 12.8%
aes core 20280 1431 2072 10.8%
s38417 22397 1484 636 3.3%
wb conmax 28409 2041 2313 9.7%
b17 30874 U 614 2.5%
ethernet 37638 U 370 1.0%
des perf 97080 U 2505 5.8%
average 10%

6 Experiments

We implemented our algorithms in C++. The SAT engine was developed by modifying MiniSAT [6]. Ran-
dom simulation patterns are used to generate the initial ODC signatures. The test cases are from the IWLS
2005 suite produced from OpenCores designs generated by a quick synthesis run of the Cadence RTL Com-
piler [24]. The tests were run on Pentium-4 3.2 GHz machines.

For combinational simulation and equivalence checking, we treat the latches as inputs. Every internal
node with an ODC-set that is not null is examined. If an ODC-equivalence is detected for the node, a merger
is made. We ignore mergers that increase the number of logic levels in the design. The results were verified
using the equivalence checking tool in ABC [1].

6.1 ODC Equivalence Results
In this section, we present results from a variety of benchmarks that indicate the existence of several merging
opportunities due to ODCs leading to a reduction in circuit size. Table 2 shows the results of applying our
ODC merging algorithm on unoptimized benchmarks. The timeout was set for 5000 seconds. The final
column, %gate reduct, indicates the decrease in the number of gates due to ODC merging. It is possible for
a merger to cause other logic to become unnecessary thus allowing more reduction.

The results indicate that all benchmarks have merging opportunities. Several benchmarks show that 20%
of the gates can be eliminated via ODC merging. Even for larger benchmarks that timed-out, we achieve
favorable reductions by examining nodes earlier in logic that tend to have more ODCs.

CSE-TR-521-06: Node Mergers in the Presence of Don’t Cares 11

Table 3: Gate reductions and performance of the ODC merging algorithm applied to benchmarks synthesized
by running the ABC FRAIG algorithm.

benchmarks #gates abc(s) odc(s) #merge %gate reduct

dalu 1583 1 18 234 16.5%
C5315 1629 1 3 26 1.7%
i2c 1898 0 7 245 13.4%
s9234 2005 0 12 46 2.6%
C7552 2130 1 11 37 1.8%
pci spoci ctrl 2149 1 17 446 23.1%
i10 2229 0 18 89 4.7%
s13207 3289 0 23 54 1.7%
alu4 3540 0 73 931 28.0%
systemcdes 4419 1 53 812 18.9%
spi 6440 1 308 1091 17.3%
s38417 9696 1 241 78 0.9%
s38584 13217 1 247 152 1.4%
tv80 14130 4 2039 2464 18.2%
systemcaes 17488 3 1354 3532 21.0%
ac97 ctrl 24856 5 1101 3124 12.6%
mem ctrl 26932 7 3166 8562 34.9%
b17 27887 4 U 243 1.2%
usb funct 28432 4 2485 4141 15.0%
aes core 30875 19 3164 5729 19.0%
pci bridge32 44091 7 5045 1189 2.8%
wb conmax 79455 47 U 2347 3.2%
des perf 125759 348 U 2000 1.6%
ethernet 169593 103 U 279 0.2%
average 10.9%

6.2 Comparison to Other Synthesis Strategies
We have shown that ODC-based merging alone can lead to a significant reduction of area in a design. In
this section, we show that ODC mergers allow for further optimizations even after optimizing the design
with other strategies. Ultimately, our work could be used to enhance synthesis flows that do not utilize don’t
cares or replace unscalable/restrictive don’t care analysis performed within a synthesis tool.

Previous synthesis tools do not take advantage of many possible ODC optimizations. One main reason
for this is that previous strategies for optimization involving ODCs required too much computation. Below
we show additional gains and also that the amount of additional time required for a post-synthesis ODC
merging pass is often small especially for instances where few mergers exist.

In Table 3, our ODC merging algorithm is run on benchmarks that were converted to AIGs and sim-
plified using FRAIGs in the synthesis package ABC [1]. The second column shows the number of gates
after applying functional reduction to AIGs. The third and fourth columns give the runtime of ABC and the
merging algorithm respectively. The last columns show the improvement achieved by doing ODC merging
on the optimized design. The results indicate similar reductions and times to Table 2 and that the optimiza-
tions done to construct FRAIGs are orthogonal to the ones done here. Also, performing ODC merging on
an AIG network results in only a minor increase in gate reduction over the results in Table 2. This shows
that we do not require a technology-independent representation like FRAIGs to find several node mergers.

In Table 4, we evaluate our ODC merging algorithm after synthesizing the circuit using local rewriting
through the resyn2 script defined in the synthesis package ABC [1, 14]. Because the rewriting strategy is
competitive to other synthesis tools [14] and does not explicitly compute don’t care information, we use
ABC as a platform to check for potential improvements from ODC mergers. The second and third columns
give the runtime of ABC and the merging algorithm respectively. The column, area reduct, gives an

CSE-TR-521-06: Node Mergers in the Presence of Don’t Cares 12

Table 4: Area reductions achieved by performing the ODC merging algorithm after the ABC rewriting
algorithm.

benchmarks abc(s) odc(s) #merge %area reduct

dalu 0 6 131 12.3%
C5315 0 2 8 1.0%
i2c 0 2 30 2.8%
s9234 0 5 10 1.1%
C7552 1 4 30 3.2%
pci spoci ctrl 0 3 106 9.7%
i10 1 9 39 1.6%
s13207 1 11 18 1.3%
alu4 1 37 479 23.2%
systemcdes 1 7 122 4.5%
spi 1 78 24 1.2%
s38417 2 189 34 0.7%
s38584 2 187 156 0.9%
tv80 3 785 639 7.3%
systemcaes 4 298 655 3.9%
ac97 ctrl 3 140 186 2.0%
mem ctrl 5 518 1557 16.5%
b17 6 U 336 1.9%
usb funct 5 471 192 1.2%
aes core 9 1330 2161 8.6%
pci bridge32 6 878 89 0.2%
wb conmax 19 U 2404 6.2%
des perf 50 U 3281 3.7%
ethernet 28 U 37 0.1%
average 4.8%

Table 5: Gate reductions and performance of the ODC merging algorithm performed on benchmarks syn-
thesized by running script.rugged in MVSIS.

benchmarks #gates mvsis(s) odc(s) %over #merge %gate reduct

dalu opt 215 12 6 50% 5 2.3%
i2c 282 7 3 42.9% 2 0.7%
pci spoci ctrl 292 4 5 125% 3 1.0%
C5315 opt 356 8 3 37.5% 0 0%
s9234 opt 526 19 6 31.6% 1 0.2%
C7552 opt 535 65 2 3.1% 2 0.4%
i10 opt 539 191 7 3.7% 3 0.6%
spi 722 244 26 10.7% 4 0.6%
systemcdes 803 30 14 46.7% 6 0.7%
alu4 opt 902 19 35 184.2% 108 12%
s13207 opt 1101 17 10 58.8% 2 0.2%
tv80 2065 6881 125 1.8% 53 2.6%
systemcaes 2109 7022 42 0.6% 8 0.4%
s38417 opt 3012 4455 43 1% 0 0%
ac97 ctrl 3106 567 31 5.5% 1 0%
s38584 opt 3127 448 42 9.4% 4 0.1%
usb funct 3937 331 72 21.8% 16 0.5%
pci bridge32 4995 3252 103 3.2% 5 0.6%
aes core 6078 379 197 52% 167 2.7%
des perf 28545 1159 786 67.8% 354 1.2%
average 37.9% 1.3%

CSE-TR-521-06: Node Mergers in the Presence of Don’t Cares 13

Table 6: Gate reductions and performance of the ODC merging algorithm performed on benchmarks syn-
thesized by running high effort compilation in DesignCompiler. The ODC merging algorithm runtime for
each benchmark is constrained to 1/3 of the corresponding runtime of DesignCompiler.

benchmarks #gates DC(s) odc(s) %over #merge %gate reduct

pci spoci ctrl 281 15 0 0% 5 2.5%
dalu 315 11 2 18.2% 3 1.0%
s9234 375 23 1 4.3% 0 0.5%
systemcdes 437 33 0 0% 9 2.5%
s13207 487 44 1 2.3% 3 1.0%
i2c 544 17 1 5.9% 8 1.8%
alu4 806 18 6 33.3% 23 4.1%
spi 821 44 2 4.5% 4 0.7%
C5315 828 14 2 14.3% 6 0.7%
C7552 1046 17 2 11.8% 24 2.4%
i10 1185 18 4 22.2% 17 1.5%
aes core 1758 293 3 1% 29 1.8%
tv80 1953 135 15 11.1% 16 1.1%
pci bridge32 2079 488 23 4.7% 18 1.0%
ac97 ctrl 2119 284 12 4.2% 35 1.7%
systemcaes 2175 135 10 7.4% 10 0.6%
mem ctrl 2560 258 23 8.9% 19 0.8%
s38417 2578 236 36 15.3% 28 1.2%
s38584 3922 207 20 9.7% 69 1.8%
ethernet 4163 3053 47 1.5% 25 0.6%
usb funct 4718 293 44 15% 36 0.8%
wb conmax 9833 885 203 22.9% 122 1.3%
b17 11133 1041 343 33.0% 87 0.8%
des perf 12685 4719 216 4.6% 255 2.1%
average 10.7% 1.4%

estimated area reduction for ODC merging when technology mapping is performed after the rewriting and
merging. Despite the quality of rewriting, we see that benchmarks can still be optimized with improvement
over 10% in a few cases. These results indicate that ODC mergers can enhance successful synthesis flows.

Table 5 shows results of performing the ODC merging algorithm on a netlist generated MVSIS [8] using
script.rugged. Several benchmarks were too large and could not complete on MVSIS and were therefore
omitted from the table. Also, complete don’t-care (CDC) computation [16] is done by MVSIS. Despite the
use of CDCs, several mergers are still possible in the benchmarks. In addition, because the circuits have
been reduced in size, the runtime has decreased accordingly. The column %over shows the percentage of
overhead that is involved in calling the ODC merging algorithm. It is interesting to note, that the merging
algorithm tends to be much faster than MVSIS. This indicates that ODC merging could be an efficient
post-synthesis optimization. There are some benchmarks that achieve very few mergers. However, these
instances have trivial runtime because the signatures are able to effectively eliminate several false candidates
and minimize the computation required.

Table 6 gives results of performing the ODC merging algorithm on a netlist generated by Synopsys
Design Compiler [25]. The benchmarks were synthesized with high effort and the result was mapped using
the generic GTECH library. The results indicate that the simplifications done in Design Compiler also do
not take advantage of all ODC information. One exception is b17 where more computation time is required
however gains are still found in this case within the timeout. Notice that the average overhead involved in
ODC merging on a synthesized design is only 10.7%.

In general, more ODC-equivalences can be found in the designs by performing multiple topological
traversals of the network. Also, we have observed that traversing the network in different orders greatly

CSE-TR-521-06: Node Mergers in the Presence of Don’t Cares 14

Table 7: Statistics for the ODC merging algorithm on unsynthesized benchmarks that show the success rate
of finding equivalences and number of false-candidates pruned by use of dynamic simulation vectors.

benchmarks #merge #SAT %equiv #dyn-sim #prune

i2c 39 206 18.9% 167 36960
pci spoci ctrl 170 472 36% 302 34345
alu4 697 1306 53.4% 609 273497
dalu 636 1040 61.2% 404 25808
i10 257 580 44.3% 323 22029
spi 112 557 20.1% 445 78721
systemcdes 255 287 88.9% 32 153
C5315 161 192 83.9% 31 194
C7552 340 524 64.9% 184 107665
s9234 821 1959 41.9% 1138 514875
tv80 658 1781 36.9% 1117 832861
systemcaes 658 750 87.7% 88 8852
s13207 300 1007 29.8% 707 2208345
ac97 ctrl 80 256 31.3% 176 26803
mem ctrl 2758 4356 63.3% 1580 2710618
usb funct 246 1739 14.1% 1493 1206172
pci bridge32 158 1189 13.3% 1031 2951017
s38584 2253 3610 62.4% 1357 3487613
aes core 2072 2317 89.4% 245 2205
s38417 636 2416 26.3% 1780 11544973
wb conmax 2313 5068 45.6% 2755 441002
b17 614 3588 17.1% 2974 21984143
ethernet 370 2084 17.8% 1509 2979472
des perf 2505 2614 95.8% 109 1198
average 47.7%

effects the number of mergers possible. Our strategy of topological traversal achieved the best results out of
the strategies that we considered.

6.3 ODC Framework Analysis
In this section, we assess the quality of the ODC framework by providing statistics about the efficiency of the
signatures in identifying ODC-equivalences. In Table 7, statistics are given for running the ODC merging
algorithm on unoptimized benchmarks. The second column is the number of mergers performed. The third
column is the number of times that the SAT solver is called. When the ODC equivalence candidates are
found, the SAT solver is called and runs until the merger is validated, invalidated, or times out. The fourth
column is the percentage of SAT calls that prove an ODC-equivalence. The fifth column reports the number
of dynamic simulation vectors added when an ODC-equivalence candidate is proven false. The final column
shows how many SAT calls are eliminated by adding the dynamic vectors.

The results indicate that, on average, around 50% of the SAT calls result in ODC merging. Also, the
number of SAT calls pruned from dynamic simulation greatly effects this percentage. Reducing the number
of SAT calls is integral, as we observe that SAT calls contribute to most of the runtime. Some benchmarks,
like mem ctrl, eliminated SAT calls by orders of magnitude. The number of vectors added is typically much
smaller than the number of false positives due to the initial simulation that are pruned.

CSE-TR-521-06: Node Mergers in the Presence of Don’t Cares 15

7 Conclusions

Modern industrial-grade synthesis tools integrate a plethora of logic optimizations. To this end, we show
how to handle don’t cares in simulation-guided synthesis environments, such as the FRAIG data structure
[15]. In particular, our results indicate that ODC-equivalences and hence merging optimizations are available
in realistic circuits even after extensive optimization by existing techniques. On circuits synthesized by the
FRAIG-based ABC package from UC Berkeley [1], we achieve 5% average area reduction after rewriting.
Moreover, our techniques never make area worse, and when few mergers are available, the runtime is small.
We believe that our techniques may be able to replace slower, unscalable don’t care algorithms in existing
commercial tools.

A key insight in our work is to avoid the unnecessary computation of ODCs. This is accomplished
through the use of simulation-based signatures and on-demand SAT-based equivalence checking which con-
siders only as much downstream logic as necessary. To minimize the number of SAT calls, we reuse fresh
counterexamples by adding them to the pool of simulation vectors.

Our techniques have a number of applications not explored in this paper. In particular, they could facili-
tate efficient handling of don’t cares in post-placement rewiring [4]. By performing simulation on a placed
design, a relaxed form of equivalence checking can be performed to enable more rewiring opportunities to
reduce wirelength. Because generating signatures is generally inexpensive, the computation can be focused
on particular areas of the design that require optimizations and other spurious don’t care information can be
ignored. The ODC framework also lends itself to future work involving sequential ODCs by considering a
circuit that is unrolled several times.

References
[1] Berkeley Logic Synthesis and Verification Group, “ABC: a system for sequential synthesis and verification”,

http://www.eecs.berkeley.edu/˜alanmi/abc/.
[2] D. Brand, “Verification of large synthesized designs”, ICCAD ’93, pp. 534-537.
[3] R. Bryant, “Graph based algorithms for Boolean function manipulation”, IEEE Trans. Comp ’86, pp. 677-691.
[4] K. H. Chang, I. Markov, and V. Bertacco, “Post-placement rewiring and rebuffering by exhaustive search for functional

symmetries”, ICCAD ’05, pp. 56-63.
[5] G. DeMicheli and M. Damiani, “Synthesis and optimization of digital circuits”, McGraw-Hill ’94.
[6] N. Een and N. Sorensson, “An extensible SAT-solver”, SAT ’03, http://www.cs.chalmers.se/˜een/Satzoo.
[7] Z. Fu, Y. Yu, and S. Malik, “Considering circuit observability don’t cares in cnf satisfiability”, DATE ’05, pp. 1108-1113.
[8] M. Gao, J. Jiang, Y. Jiang, Y. Li, S. Singha, and R. K. Brayton. MVSIS. IWLS ’01.

http://embedded.eecs.berkeley.edu/Respep/ Research/mvsis/
[9] E. Goldberg, M. Prasad, and R. Brayton, “Using SAT for combinational equivalence checking”, DATE ’01, pp. 114-121.

[10] L. Kannan, P. Suaris, and H. Fang, “A methodology and algorithms for post-placement delay optimization”, DAC ’94, pp.
327-332.

[11] V. Kravets and P. Kudva, “Implicit enumeration of structural changes in circuit optimization”, DAC ’04, pp. 438-441.
[12] A. Kuehlmann, V. Paruthi, F. Krohm, and M. Ganai, “Robust Boolean reasoning for equivalence checking and functional

property verification”, IEEE Trans. CAD ’02, pp. 1377-1394.
[13] K. McMillan, “Applying SAT methods in unbounded symbolic model checking”, CAV ’02, pp. 250-264.
[14] A. Mischenko, S. Chatterjee, and R. Brayton, “DAG-aware AIG rewriting: A fresh look at combinational logic synthesis”,

DAC ’06.
[15] A. Mischenko, S. Chatterjee, R. Jiang, and R. Brayton, “FRAIGs: A unifying representation for logic synthesis and verifica-

tion”, ERL Technical Report, Berkeley. http://www.eecs.berkeley.edu/ alanmi/abc/.
[16] A. Mischenko and R. Brayton, “SAT-based complete don’t care computation for network optimization”, DATE ’05, pp.

412-417.
[17] A. Mischenko et al, “Using simulation and satisfiability to compute flexibilities in Boolean networks”, TCAD ’06.

CSE-TR-521-06: Node Mergers in the Presence of Don’t Cares 16

[18] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik, “Chaff: engineering an efficient SAT solver”, DAC ’01, pp.
530-535.

[19] N. Saluja and S. Khatri, “A robust algorithm for approximate compatible observability don’t care computation”, DAC ’04,
pp. 422-427.

[20] H. Savoj and R. Brayton, “The use of observability and external dont-cares for the simplification of multi-level networks”,
DAC ’90, pp. 297-301.

[21] E. Sentovich et al, “SIS: A system for sequential circuit synthesis”, ERL Technical Report ’92, Berkeley.
[22] J. Marques-Silva and K. Sakallah, “GRASP: A search algorithm for propositional satisfiability”, IEEE Trans. Comp ’99, pp.

506-521.
[23] J. Marques-Silva and K. Sakallah, “Boolean satisfiability in electronic design automation”, DAC ’00, pp. 675-680.
[24] http://iwls.org/iwls2005/benchmarks.html.
[25] Synopsys. Design Compiler. http://www.synopsys.com.

