
Improving Resiliency of Overlay Networks for Streaming

Applications

Wenjie Wang, Ye Du, Sugih Jamin

{wenjiew,duye,jamin}@eecs.umich.edu

Abstract

Early deployment of peer-to-peer (P2P) streaming
network demonstrates its potential to deliver qual-
ity media streams to a large audience. However, P2P
streaming is vulnerable to node failures and malicious
attacks because of its high bandwidth demand and
stringent timing requirement. In this paper, we in-
vestigated several heuristics to improve an overlay’s
resilience to failures and attacks. We formalized the
overlay connectivity resilience as a graph theoretic
problem and proved that disjoint paths with variable
lengths are effective in increasing overlays’ connec-
tivity resilience. We proposed a distributed heuristic
called “MPath” that enables each peer to improve
its connectivity without global knowledge or coordi-
nation. We designed the MPath heuristic to work in
conjunction with existing overlay improvement mech-
anisms. Such integration not only speeds up overlay
convergence, but also significantly cuts down MPath’s
maintenance overhead. Our experiments showed that
MPath reduced the number of disconnected compo-
nents in an overlay by an order of magnitude when
20% of overlay nodes failed.

1 Introduction

Peer-to-peer (P2P) networks, especially P2P file
sharing networks, have been quickly adopted by large
Internet communities in the past few years. Re-
cently, the emergence of P2P streaming service, such
as conference broadcasting [1] and Internet TV [2],
demonstrates its potential to deliver high quality me-
dia streams to a large audience. In fact, there were
instances of Internet deployments of end-host multi-
cast for video/audio broadcasting. The technical pro-
grams of ACM SIGCOMM ’02 [3] and SIGCOMM ’04
[4] were broadcast live online with end-host multicast
protocols. There are also large scale audio service ex-

periment with end-host multicast that involves over
10,000 participants [5].

Compared to other widely used file-sharing net-
works, P2P video streaming applications place the
following unique requirements on the quality of ser-
vice provided by the underlying overlay networks.

• Reliability: Video streaming usually requires
high bandwidth. A large amount of data loss
could render the entire stream useless [6].

• Time Constraint: Streaming applications re-
quire their data to be delivered in a timely fash-
ion. Data that miss the deadline cannot be
played back.

• Resource Discovery: In P2P streaming, there
will be only a limited number of servers with
sufficient CPU power and adequate network ca-
pacity to serve a large number of peers. A peer—
usually a notebook or an office desktop—must
quickly locate one or more peers with enough
free capacity to serve the media.

• Membership Dynamics: The membership of an
overlay network is highly dynamic. The depar-
ture of peers should not interrupt the media
playback of the peers they were serving.

These QoS requirements and characteristics make
providing scalable, satisfying P2P streaming service
more challenging than providing traditional client-
server unicast delivery.

In this chapter, we focus on improving the re-
siliency of overlay networks to random failures and
targeted attacks. We call resiliency to random fail-
ures and targeted attacks connectivity resilience. An
overlay that is resilient to connectivity failures tends
to remain connected even if a large number of nodes
have failed. Nodes may become unavailable due to
membership churn, node or link failures, or targeted

1

attacks. A disconnected segment in an overlay pre-
vents all peers inside that segment from receiving
data from nodes in other segments. A disconnected
overlay also makes application layer features such as
routing recovery [7] and buffering less capable of re-
covering data lost during the overlay recovery time.

In an overlay network, one common reason for a
peer to suffer poor QoS is that it loses its connec-
tion to one or more of its upstream peers due to ei-
ther group dynamics or node failures. In order to
reduce the probability of such connectivity failures,
we conducted both empirical and theoretical analy-
ses to study factors that can affect the connectivity
probability between peers. We found the following
guidelines that can be used to improve the connec-
tivity resilience of overlays.

• A peer can increase its chances of remaining con-
nected to data sources either by reducing its dis-
tance to the data sources or by adding more dis-
joint paths. We prove that the latter is more
effective.

• When adding disjoint paths to data sources, vari-
able length paths are more effective than paths
with similar lengths in improving the chances of
keeping overlay nodes connected.

• Irregular graphs are more tolerant to node fail-
ures than regular graphs. Random links can im-
prove the resilience of an overlay to connectivity
failures.

• Data sources with high node degrees increase
the chances that overlay peers can form disjoint
paths.

Based on the above observations, we propose a dis-
tributed heuristic we call “MPath” that can effec-
tively improve the connectivity of the whole overlay
network. The basic idea of MPath is to provide peers
in an overlay with good alternative paths to the data
sources. MPath also enables individual peers to im-
prove their own connectivity as well as the overall
overlay connectivity without global knowledge or co-
ordination.

MPath can also be used on streaming overlays with
low degree nodes. Due to the limited number of
downstream peers one host can support, overlay links
have to be added carefully to avoid overloading the
hosts with slow Internet connections. The degree
constraints limit the number of disjoint paths a peer
can find. Due to the limited node degree each peer

has, streaming overlays tend to have long distances
among peers. This represents an opportunity for
MPath to select disjoint paths with variable lengths.

We design the MPath heuristic so that it can be
integrated with overlay improvement procedure used
by existing overlay protocols. Performance evalua-
tion shows that our heuristic greatly improves the
connectivity resilience of overlay protocols. More
importantly, it does not severely impact the perfor-
mance of overlays in terms of end-to-end latencies.
Our simulations confirm that MPath improves the
resilience of overlays to connectivity failures by 18%,
and reduces the chance of disconnected network seg-
ments by almost 10 times. In exchange for the in-
creased resilience, MPath increases average end-to-
end latencies by less than 5%.

The rest of the chapter is structured as follows:
We first formalize our overlay resilience problem and
present the general theoretical analysis. We inves-
tigate and derive several guidelines and heuristics
for overlay resilience improvement in Section 3. We
present our MPath heuristic in Section 4 and report
the performance evaluation result in Section 5. We
summarize this chapter in Section 7.

2 Problem Analysis and For-

malization

2.1 Assumptions

k-connected is widely used as a metric to indicate a
graph’s fault-tolerance. A graph is k-connected (k-
node connected, to be exact) if the graph remains
connected even after any k − 1 nodes are removed.
A k-regular graph, a graph in which all nodes have
degree k, can be k − 1 connected if carefully de-
signed. However, it is not possible for a graph to
be k-connected if any of its nodes has degree limit
less than k. In this chapter, we do not assume nodes
in an overlay to have the same degree limit. We as-
sign nodes (v) in our overlay network with different
out-degree limit D̂(v). The degree limit of a node is
based on the speed of its Internet connection. For
instance, a host with a 56 Kbps modem connection
will have a lower degree limit than a host with a 10
Mbps connection.

The bandwidth requirements of streaming video
and the limited available bandwidth of Internet hosts
make it hard to construct a k-connected overlay with-
out saturating the bandwidth of peers with slow con-

2

nections. For the same reason, existing approaches
[8][9] that build “regular” graphs with k connectivity
as their metric may not be applicable to the fault-
tolerance study of overlay networks.

2.2 Performance Metric and Failure

Model

Instead of k-connectivity, we define the largest con-
nected component size (LCCS) [10] as our primary
fault-tolerance metric. An overlay may be parti-
tioned into several connected components if a large
number of its nodes or edges fail. The LCCS is de-
fined as the size of the connected component with the
largest number of nodes. This metric is more practi-
cal than k-connectivity because it focuses on keeping
the “core” of an overlay connected, instead of wast-
ing efforts to maintain connectivity for nodes at the
edge of the overlay.

The second metric we employ is called disconnected
segments. A disconnected segment is a partitioned
component consisting of two or more nodes. When
a node loses its upstream nodes, it can reconnect to
other nodes. Nodes in a disconnected segment may
not be aware that the network has been partitioned.
The perceived QoS of these nodes will suffer if they
cannot reconnect to nodes in other segments quickly.
With a large number of disconnected segments, it is
likely that more overlay nodes may perceive bad QoS.

The LCCS and the number of disconnected seg-
ments can vary significantly with the removal of dif-
ferent sets of nodes. It is necessary to collect the
statistics based on several different node failure mod-
els. We define the following four failure models:

• Random node failure: Nodes are removed one by
one uniformly at random.

• Preferential node attack: Nodes are removed one
by one preferentially; the probability of a node
being removed is directly proportional to its de-
gree.

• Random edge failure: Edges are removed one by
one uniformly at random.

• Preferential edge attack: Edges are removed one
by one preferentially; the probability of an edge
being removed is directly proportional to the
product of its two end-point node degrees.

Since a node failure can be transformed to an edge
failure by converting a graph to its dual graph [11],

in this chapter, we only present the results obtained
from node failure and preferential node attack.

2.3 Formalization of Connectivity Re-

silience Problem

To improve the connectivity of an overlay, we first
need to understand the factors affecting its connec-
tivity, and among these factors, which one dominates
the overlay’s resilience in the face of failures. To an-
swer this question, we formalize the connectivity re-
silience problem in terms of a graph theoretic prob-
lem. The formalization provides us the variables and
the key elements that we should focus on.

To simplify our analysis, we assume the existence of
two groups of nodes,1 S and H . The first group (S) of
nodes represents the data sources in the group. They
connect to the Internet with fast connections. The
other group H are the clients, with varying Internet
connection speeds. For each node v in the overlay, we
define in-degree (D(v)) and out-degree (D̂(v)). The
out-degree of a node is limited by the node’s con-
nection bandwidth. We set a global maximum out-
degree of k. We do not impose a limit on a node’s
in-degree, i.e., a node can connect to any number of
hosts to receive data. However, for the whole overlay,
the total of all nodes’ out-degrees should be equal to
the sum of their in-degrees, i.e.,

∑

v∈V

D̂(v) =
∑

v∈V

D(v)

We assume a uniform failure probability p for all
nodes except the data sources S. We formalize the
reachability resilience problem as follows.

Definition 1 Given a set of nodes V = (S
⋃

H), for
any node v ∈ S

⋃
H, its out-degree limit is D̂(v) ≤

K, where K is a constant. A directed graph G =
(V, E) is m(K,S)-connected if G remains connected to
S with any node set M removed from V (|M | = m

and M
⋂

S = ∅). G is connected to S if there is at
least one directed path from v to node s ∈ S for any
v ∈ V − M − S.

Definition 2 Given a set of nodes V = (S
⋃

H), for
any node v ∈ S

⋃
H, its out-degree limit is D̂(v) ≤ K,

where K is a constant. A directed graph G = (V, E) is
m(K,S,P)-connected if G remains connected to S with

1In our discussion, when referring to overlays, we use node

in place of host, and distance in place of latency to be consis-
tent with standard graph theory vocabulary.

3

probability P when any node set M is removed from
V (|M | = m and M

⋂
S = ∅). G is connected to

S with probability P if the probability that there is at
least one directed path from v (v ∈ V − M − S) to
node s ∈ S is at least P .

Definition 1 defines a directed graph that remains
connected if a set of nodes are removed according
to our failure models. Definition 2 defines a directed
graph that remains connected with a high probability
after the node removal. If the requirement in defini-
tion 2 is met, the CCS of the graph should be no less
than |V | ∗ P on average.

We first need to understand the complexity to
construct a m(K,S)-connected or m(K,S,P)-connected
graph. The m(K,S)-connected problem is similar
to the minimum k-connected spanning subgraph [12]
and minimum k-outconnected spanning subgraph [13]
problems in graph theory. The minimum k-connected
spanning subgraph problem has been proven to be
NP-hard, and there is a 2k-approximation algorithm
[14][15]. There are efforts in the literature that
provide several approximation algorithms for the k-
connected spanning subgraph problem with uniform
weights on the edges of the graph [16][17]. However,
these approximate solutions do not assume any node
degree constraint. They assume global knowledge
and global cooperation that are not feasible in large
distributed systems. It is also difficult to integrate
these theoretical algorithms with overlay construc-
tion and improvement procedures. As for definition
2, the introduction of the additional probability re-
quirement makes it even more complex than the k-
connected spanning subgraph problem.

In this chapter, instead of studying the connectiv-
ity problem on the whole graph, which leads us to a
NP-complete problem [18], we analyze the problem
from the point of view of an individual peer. Intu-
itively, if all peers in the overlay are highly connected
with the others, the probability that the whole graph
being partitioned will be low. We provide a general
theorem for the reachability probability introduced
in definition 2.

2.3.1 Connectivity Probability: General

Case

Assume a node v that is h hops from a random data
source s ∈ S. With uniform node failure probability
p, there are two main factors that affect the prob-
ability that v remains connected to s: the number

of paths and the length of these paths. In this sec-
tion, we intend to answer this question: If there are
t paths from v to s with lengths h1, h2, ..., ht, what
is the probability that v will remain connected to s

given the uniform node failure probability of p?
We call node v reachable from data source s if there

is a path between v and s in the overlay. The failure
of any node in a path from v to s makes v unreachable
from s via that path.

We use P (path(v, s)) to represent the probabil-
ity that v is reachable from s, in which path(v, s)
stands for the paths between v and s. We also use
path(v, s, h) to represent all the paths between v and
s with length h. For example, if v and s are directly
connected, this direct path is in path(v, s, 1).

For any v in V , the length of paths from v to s

varies from 1 to N − 1, where N = |V |. For each
path from v to s, its failure probability is determined
by the failure possibility of the nodes it traverses. We
use P ′(A) to stand for the failure probability of path
A, and P (A) to represent the probability that path
A remains connected. Clearly, P (A) + P ′(A) = 1.
Since we assume the failure of an individual node
is independent from the failure of other nodes, the
failure of one path (A) from v to s is not mutually
exclusive of another (B). In fact, if path A and B are
node-disjoint paths, their failures are independent of
each other. Therefore, the probability that both of
them fail would be P ′(A) × P ′(B). If path A and
B are not node disjoint, the probability that both of
them fail would be larger than P ′(A) × P ′(B).

Based on the above observation, we have the fol-
lowing theorem. The proof is available in Appendix
A.

Theorem 3 ∀v ∈ V, v 6= s, P (path(v, s)) ≤ 1 −
N−1∏
h=1

∏
u∈V −{s,v}

(1−P (path(v, u, 1))×P (path(u, s, h−

1))).

Although the above theorem provides an upper
bound on the probability that v is still reachable
from s, it does not tell which parameter dominates
this reachability probability. However, it is clear that
the number of paths from v to s and the lengths of
these paths are the two factors controlling the reach-
ability from v to s. In the next section, we study
the above problem from a different angle, such that
it can provide us with effective heuristics to improve
the connectivity probability. Basically, we answer the
following two questions:

4

• Which approach is more likely to increase a
node’s reachability probability, shortening the
existing paths or adding more paths?

• For a node with k paths to a data source, which
of the following cases will result in better LCCS
for a graph, paths with highly variable lengths
or comparable lengths?

3 Resilience Improvement

Heuristics

Our goal is not to calculate the reachability probabil-
ity among peers, but to find specific guidelines to im-
prove overlay connectivity. We obtain these resilience
improvement guidelines using both theoretical anal-
ysis and empirical experiments. For theoretical anal-
ysis, we simplify our assumptions from previous sec-
tions, and investigate what kinds of alternative path
peers should use. With empirical experiments, we
compare graphs with different degree and connectiv-
ity characteristics to observe which kinds of graph are
more resilient to connectivity failures.

We have observed the following guidelines that can
help improve the resilience of overlays to connectivity
failures.

• Add more disjoint paths to the data source.

• Increase variance in the length of these disjoint
paths.

• Build irregular overlays or random overlays.

• Build overlays with diversified node degree and
random links.

3.1 Shorter Paths or More Paths

To simplify the calculation of reachability probability
from v to s, we only consider node-disjoint paths from
v to s. We assume there are t node-disjoint paths
from v to s with lengths h1, h2, ..., ht.

Obviously the smaller h is, the more likely v will
remain reachable from s, and the larger t is, the more
likely v will remain connected to s. We call these the
“shorter path” heuristic and “more paths” heuristic
respectively. For P2P streaming overlays, it is dif-
ficult to keep all hi’s small because of the limited
resources contributed by each node. Similarly, t can
not be arbitrarily large either. The key question is:

Should a peer focus on maximizing t or minimizing
h?

If there is only a single path A from v to s with
length h, the probability that v is reachable from s is
(1 − p)h. If there are t node-disjoint paths from v to

s, the probability is P̄ = 1−
t∏

i=1

(1− (1−p)hi), where

hi represents the length of each path Ai from v to s.
Now we recalculate the reachability probability P̄

shown above after we make the following changes to
path(v, s). We call them heuristic C1 and heuristic
C2 respectively.

• C1: reducing the length of all paths in path(v, s)
by 1, or

• C2: adding a new disjoint path to path(v, s).

Since it is infeasible for us to make meaningful ob-
servations with O(t) variables in P̄ , we assume that
all paths in path(v, s) have the same length, i.e.,
h = h1 = h2 = ... = ht. With this assumption,
we have P̄ = 1− (1− (1− p)h)t). We will discuss the
effect of various path lengths in the next section.

With heuristic C1, the new reachability probability
after reducing the length of all paths by 1 is P̄c1 =
1− (1− (1−p)h−1)t, with the corresponding increase
in reachability probability of

∆c1 = P̄c1 − P̄

= (1 − (1 − p)h)t − (1 − (1 − p)h−1)t. (1)

As for heuristic C2, the new reachability prob-
ability after adding a new disjoint path is P̄c1 =
1− (1− (1−p)h)t+1, with the corresponding increase
in reachability probability of

∆c2 = P̄c2 − P̄

= (1 − (1 − p)h)t − (1 − (1 − p)h)t+1

= (1 − (1 − p)h)t(1 − p)h. (2)

Now, we compare ∆c1 and ∆c2.

R =
∆c1

∆c2
=

1

(1 − p)h
(1 −

1 − (1 − p)h−1

1 − (1 − p)h
)t

=
1

(1 − p)h
(
(1 − p)h−1 − (1 − p)h

1 − (1 − p)h
)t

=
1

p̂h
(
p̂h−1 − p̂h

1 − p̂h
)t (3)

In Equation 3, we replace (1 − p) with p̂.
There are three variables in Equation 3, p̂, h, and

t. Fig. 1 shows their contribution to the value of ∆c1

∆c2

.

5

2 4 6 8 10 12 14 16 18 20
Path Length 4

8
12

16
20

Number of Paths

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Ratio

a. Node failure probability p = 0.01

2 4 6 8 10 12 14 16 18 20
Path Length 4

8
12

16
20

Number of Paths

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Ratio

b. Node failure probability p = 0.20

0
200

400
600

800
1000

Path Length 0
200

400
600

800
1000

Number of Paths

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Ratio

c. Node failure probability p = 0.20, 1000

paths.

Figure 1: Value of R: with two or more disjoint paths, adding a new disjoint path always contributes more to
a peer’s reachability probability. The flat plane with ratio value close to 0 indicates that ∆c1 (improvement
contributed by “shorter paths”) is negligibly small compared with ∆c2 (improvement contributed by “more
paths”). The only exception is the case where there is only one path from v to s (the front left corner of
the figures), which means when there is only one short path between v and s, shortening the path path can
effectively increase the reachability probability, but the amount increased is still more than 30% lower than
that of the heuristic “more paths”.

6

If the value of Equation 3 is less than 1, heuristic C2
contributes more to the improvement of v’s reacha-
bility probability.

The flat plane with ratio value close to 0 in Fig. 1.a
to Fig. 1.c indicates that ∆c1 (improvement con-
tributed by “shorter paths”) is negligibly small com-
pared with ∆c2 (improvement contributed by “more
paths”). It is clear that with node failure probabili-
ties of 0.01 and 0.2, heuristic C2 always contributes
significantly more to v’s reachability. The only excep-
tion is the case where there is only one path from v

to s (the front left corner of the figures). This means
that with one path from v to s, if the path length is
short, shortening the path is relatively effective in in-
creasing the reachability probability, but the amount
increased is still more than 30% lower than that of
the “more paths” heuristic.

Figure 1.a and 1.b only plot the results for 20
disjoint paths with a maximum path length of 20.
However, as shown in Figure 1.c, the conclusion we
arrived at is applicable to longer path lengths and
larger number of disjoint paths. Meanwhile, in over-
lay networks, h and t will not be arbitrary values. For
example, in an overlay with about 1000 nodes with
average node degree of 10, t should be less than 10.
Then h would be less than 100. Figure 1.c indicates
that even though v can reduce each of its 1000 dis-
joint paths to s by one hop, in terms of reachability
probability, it is still far less effective than adding one
more disjoint path.

For streaming overlays, the node degree limits con-
strain both the number of disjoint paths and the
length of these disjoint paths a peer can find, espe-
cially if the data sources have low degrees. If peers
close to the data sources reach their node limit, it is
difficult to shorten the lengths of all paths. However,
the limitation on the number of disjoint paths can be
eased by having high degree data sources and high
degree peers near the sources.

We can see that adding additional disjoint path
among peers is an effective way to increase the con-
nectivity among peers. Our next question is: When a
peer selects a disjoint path, what kind of path should
it select? Does the length of the disjoint path matter?

3.2 Lengths of Paths

In the previous section we concluded that creating
more disjoint paths is more helpful in increasing the
connectivity among peers, with the assumption that
all the disjoint paths have the same path length. In

this section, we study the effect of paths lengths. Par-
ticularly, given t disjoint paths from node v to s, do
we want these paths to have similar path lengths or
do we want them to have variable path lengths?

We continue to use hi to represent the length of
path Ai from v to s and p̂ for (1−p). With t disjoint
paths from v to s, the probability that v is reachable

from s is P̄ = 1 −
t∏

i=1

(1 − p̂hi). We assume t > 1.

Our first step is to study the trend of P̄ , i.e., how
P̄ changes with different sets of hi values. To make
a fair comparison among different groups of disjoint
paths, we assume the sum of the length of disjoint
paths to be a constant T (

∑t

i=1 hi = T).
We first study the trend of function f .

f = 1 − P̄ =

t∏

i=1

(1 − p̂hi)

Since
∑t

i=1 hi = T , we have
t∏

i=1

p̂hi = p̂T .

Letting xi = p̂hi and C = p̂T , function f can be
expressed in the following equation,

f = (1 − x1)(1 − x2) · · · (1 − xt)

where x1x2 · · ·xt = C and 0 < x1, x2, · · · , xt < 1.
Given that x1x2...xt = C, we can get

f = (1 − x1)(1 − x2)...(1 − xt)

= (1 − x1)(1 − x2)...(1 −
C

x1x2...xt−1
)

Then we have

∂f

∂xi

=
∏

j 6=i

(1 − xj)[
xt

xi

− 1]

and
∂2f

∂2xi

=
∏

j 6=i

(1 − xj)
−xt

x2
i

It is obvious that when x1 = x2 = ... = xn,

∀i, ∂f
∂xi

= 0 and ∂2f
∂2xi

< 0, which means when x1 =
x2 = ... = xt, the function f will achieve its max-

imum value. With 0 < x1, x2, · · · , xt < 1, ∂2f
∂2xi

is
always less than 0 and function f has only one ex-
treme value.

Since function f = 1 − P̄ , then P̄ has only one
minimal value in the range of 0 < x1, x2, · · · , xt <

1. P̄ is monotonically increasing when x1, x2, · · · , xt

7

get further away from the minimal point where x1 =
x2 = ... = xn.

Based on the observation of function P̄ , we know
that the reachability probability from v to s will be
high if we have different lengths of disjoint paths from
v to s. In other words, a peer can increase its con-
nectivity by adding more disjoint paths with different
lengths.

3.3 k-Regular Graph vs. Irregular

Graph

We have studied, from the point of view of a sin-
gle node, how to improve its connectivity to data
sources. However, we have not investigated, in gen-
eral, what characteristics make a graph resilient to
failures. Such macro-level knowledge can provide us
with general guidelines for overlay construction. In
this section, we look at the resilience of regular graphs
and irregular graphs constructed by overlay proto-
cols.

We already know from existing efforts that the con-
nectivity of a graph depends on both the node degree
distribution and the way nodes are interconnected.
Here, we first assume peers are randomly intercon-
nected such that we can focus on the effect of degree
distribution. We investigate the effect of different
node interconnects in the next section.

To study the impact of the regularity on overlay
connectivity, we create a 4-regular graph and com-
pare it with TMesh, which builds an irregular over-
lay or unstructured overlay. Note that a 4-regular
graph uses 42% more links than that of TMesh. We
also build a 6-regular graph, which uses about 2.1
times the number of links as TMesh. Then we com-
pare the resilience of these two regular graphs with
TMesh. The results for random node removal and
preferential node removal are shown in Figs. 2 and
3 respectively. The ratios reported on the y-axis are
normalized to the group size after node removal. For
example, in this experiment, we use a group of 1000
nodes, after removing 200 nodes, the LCCS for the
ideal case where the overlay remains connected is 800
nodes. We report the ratio of LCCS to group size as
1 (800/800) in the figures2.

Intuitively the more links an overlay uses, the more
tolerant it is to failures because the extra links tend
to keep the overlay connected. However, from Figs. 2
and 3, it is obvious that the 4-regular graph shows

2The details of the experimental setup are available in Sec-
tion 5.1

very little resilience to node failures. Random node
removal and preferential node removal remove similar
sets of nodes in a regular graph since all nodes in a
regular graph share the same node degree (the node
degree in TMesh varies from one to ten). The figures
tell us that even though a regular graph uses a larger
number of links, its connectivity resilience is not as
good as an irregular graph in terms of LCCS.

Even with 6-regular graph, the graph starts to fall
apart rapidly after 7% of nodes fail or leave. The
LCCS of a 6-regular graph gets worse than that of
TMesh after 8% nodes are randomly removed. Con-
sidering that the average node degree of TMesh is
only 2.8, nodes in the TMesh overlay are more tightly
connected with each other than these regular graphs.

The performance metric we adopt—LCCS—is
quite different from the connectivity metric used in
fault-tolerance study of graph theory. For instance, a
4-regular graph is 4-connected, which means that re-
moving any set of 3 nodes leaves the graph connected.
The TMesh overlay we built is not even a 2-connected
graph. However, it is more tolerant to node failures if
our objective is to achieve high LCCS, as opposed to
keeping all nodes connected under all circumstances.
A regular graph reduces to several partitioned com-
ponents with similar sizes after a number of node
failures.

In practice, building regular graphs on the Inter-
net is not realistic because of varied CPU power and
connection speed of Internet hosts. Fortunately, it
turned out irregular graphs are more suitable for
overlay streaming on the Internet.

3.4 Effect of Node Degree and Node

Interconnection

One key difference between TMesh and 4-regular
graphs is their node degree distributions. Nodes in
the TMesh overlay have node degree varying from
one to ten. In this section, we study the role of node
degree distribution and the effect of different inter-
connection schemes on the failure resilience of over-
lays.

It has been shown that in power-law graphs, node
degree distribution has limited correlation with con-
nectivity [19]. We need to confirm whether this con-
clusion can also be applied to small-degree graphs like
the streaming overlay. More importantly, we are in-
terested in whether graphs with certain node degree
distributions are more likely to tolerate connectivity
failures.

8

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.05 0.1 0.15 0.2

R
at

io
 o

f L
ar

ge
st

 C
C

S

Percentage of Nodes Removed

6-Regular
TMesh

4-Regular

Figure 2: Ratio of the largest connected
component size to graph size after uniform
random node removal

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.05 0.1 0.15 0.2

R
at

io
 o

f L
ar

ge
st

 C
C

S

Percentage of Nodes Removed

6-Regular
TMesh

4-Regular

Figure 3: Ratio of the largest connected
component size to graph size after prefer-
ential node removal

We construct two regular graphs that use the same
number of links as the 4-regular graph but with dif-
ferent node degree distribution. We name them “two-
degree” and “three-degree” graphs. We construct
these two graphs as follows.

• two-degree: We first assign a degree limit of two
to all nodes and connect them in a circle. We
then uniformly pick k nodes at random and in-
crease their node degree limit to 10 so that the
sum of all nodes’ degrees is the same as that of
the 4-regular graph. Links are then randomly
added to the graph so that all nodes reach their
designated degree limit.

• three-degree: Similar to “two-degree” graph, all
nodes are first connected in a circle. Then k′

nodes are randomly selected to have degree limit
of 6 and another k′ nodes are randomly selected
to have degree limit of 8.

Fig. 6 summarizes the node degree distribution of
these graphs. Figs. 4 and 5 show their resilience to
node failures. It is clear that with the same num-
ber of links as the 4-regular graph, two-degree and
three-degree graphs have much improved resilience to
failures. We can observe the trend that graphs with
higher diversities in node degrees are more resilient
to node failures.

We notice that high degree nodes in these two reg-
ular graphs do not effectively improve the resilience
of these graphs to node failures. Even though two-
degree and three-degree graphs have a significantly

larger number of high degree nodes than that of
TMesh (Fig. 6), their resilience to connectivity fail-
ure is not significantly better. We believe that this
is caused by the way high degree nodes are inter-
connected. To confirm this speculation, we construct
“two-degree” and “three-degree” graphs in a way we
call high-degree node clustered. Instead of randomly
picking k nodes to increase their degree limit, we pick
k consecutive nodes along the initial circle and in-
crease their degree. We show the results for pref-
erential node removal in Fig. 7. Comparing Figs. 5
and 7, we can see that having high degree nodes
clustered together significantly lowers the resilience
of a graph to connectivity failures. This means that
for a content provider, it is better to distribute their
high bandwidth servers to different places in stream-
ing overlays. Keeping these servers closely connected
together reduces the reliability of the services in the
face of malicious attacks.

Considering the way we constructed the new “two-
degree” and “three-degree” graph, we conclude that
by increasing the diversity in node degrees and ran-
domizing the link selection of a graph, we can improve
a graph’s connectivity resilience. Adding randomized
links can connect two nodes that are far from each
other together. Intuitively, these links increase the
number of disjoint path from a node to a data source.
This is consistent with the “more paths” heuristic we
have from the theoretical analysis in Section 3.2.

However, randomized link selection normally de-
grades the end-to-end latencies, which may result in

9

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.05 0.1 0.15 0.2

R
at

io
 o

f L
ar

ge
st

 C
C

S

Percentage of Nodes Removed

TMesh
three-degree

two-degree
4-Regular

Figure 4: Ratio of the largest connected
component size after uniformly random
node removal

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.05 0.1 0.15 0.2

R
at

io
 o

f L
ar

ge
st

 C
C

S

Percentage of Nodes Removed

TMesh
three-degree

two-degree
4-Regular

Figure 5: Ratio of the largest connected
component size after preferential node re-
moval

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10 11

P
D

F

Node Degree

TMesh
three-degree

two-degree
4-Regular

Figure 6: Node degree distribution of
4-Regular, two-degree and three-degree
graphs, and TMesh.

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.05 0.1 0.15 0.2

R
at

io
 o

f L
ar

ge
st

 C
C

S

Percentage of Nodes Removed

TMesh
three-degree clustered

two-degree clustered
4-Regular

Figure 7: Ratio of LCCS after preferential
node removal for overlays with high degree
nodes clustered

10

inefficient overlay networks and cause high overhead.
In the next section, we design an overlay improve-
ment heuristic that can effectively improve the con-
nectivity resilience of overlays without compromising
their efficiency.

4 Overlay Link Selection with

MPath

We have observed the following guidelines that can
help improve the resilience of overlays to connectivity
failures: add more disjoint paths to the data source
with different lengths and build irregular overlays or
random overlays with diversified node degrees and
random links.

We now need a heuristic that can enable a peer
in an overlay to independently select its downstream
or upstream peers such that the overlay can achieve
good connectivity resilience overall. To design such
a heuristic, we should take into account how to gen-
erate random graphs, how to calculate node-disjoint
paths, and how to increase the variance in the length
of disjoint paths in a distributed fashion.

Most unstructured overlay networks, such as e*
[20], HMTP [21], Narada [22], and TMesh [23], build
irregular graphs. For our heuristic design, we focus
on increasing the number of disjoint paths with var-
ious lengths among peers in these irregular overlays.

4.1 Calculation of Disjoint Paths

With root-path information [24], the calculation of
node-disjoint paths is straightforward. A peer A

sends a query to peer B for B’s root-path. By
comparing B’s root-path with its own root-path, A

knows whether adding a new link to B will create a
node-disjoint path to the root. For overlay protocols
that do not maintain root-path information, such as
Narada, routing tables can be used to calculate node-
disjoint paths. For example, peers in Narada main-
tain path vector routing tables. Peer A can access B’s
routing table and decide whether B is a candidate for
a node-disjoint path.

4.2 Variance in Disjoint Path Length

As stated earlier, it is preferable to have a greater
variance in the length of disjoint paths. To increase
the variance in path lengths, a peer should connect to

other peers that meet the following criterion: candi-
date peers create paths to the data source with high
δ value, where δ is the difference in the length of the
paths. For example, a peer p with root-path length
of r, would prefer peers that have root-path of length
r − δ and r + δ where δ should be maximized.

It is not feasible for a peer to query all other peers
for various disjoint paths, but it is possible for a peer
to randomly query a certain number of peers before
finding a qualified peer. The searching procedure can
be slow. There are several ways to speed up the pro-
cess. First, a peer can query the data source or peers
near the data source for their connected neighbors,
and check whether these neighbors qualify for node-
disjoint paths. This approach does not scale well be-
cause it adds extra workload to peers near the data
source. Second, an overlay can distribute the connec-
tivity information of all its peers to the whole group.
Peer A broadcasts its root-path or connectivity in-
formation such that others peers know whether peer
A can provide them with node disjoint paths. This
approach generates high overhead.

We take a third approach in our heuristic. Since
most overlay networks have their own overlay im-
provement procedure, it would be very efficient to
integrate the disjoint path search into the overlay im-
provement process. For example, in Narada, a peer
randomly picks other peers and calculates the “util-
ity” metric based on the routing information. If the
“utility” is above a threshold, a new link is added. In
TMesh, extra shortcut links are added based on ei-
ther relative delay penalty (RDP) or end-to-end de-
lay gain. We only need to conduct one additional
path check during these link selection procedures. We
check whether the peer will provide a node-disjoint
path, and if so, what is the difference in the distance
to the data source. If the difference δ in the path
length is high, this link should be added. We call this
link selection heuristic “MPath”. The integration of
MPath with the overlay improvement procedure sig-
nificantly reduces the overhead incurred for overlay
resilience.

In the guidelines presented in previous sections,
three out of the four guidelines are related to ran-
domizing the properties of the overlay built. It is
possible that adding random links into the overlay
will help the fault-tolerance of the overlay. We inves-
tigate the effect of random links in our performance
evaluation.

11

Table 1: Hosts with different bandwidths
Connection speed Max degree % of hosts

below 100 Kbps 2 10%
100 Kbps - 2 Mbps 4 30%
2 Mbps - 10 Mbps 6 40%

above 10 Mbps 10 20%

5 Performance Evaluation

The evaluation of heuristic MPath consists of two
parts. We first demonstrate that MPath can effec-
tively improve the connectivity resilience of overlay
networks. Then, we show that the use of MPath
does not compromise the performance of the over-
lay network. Before we delve into the details of our
evaluation, we discuss our experiment setup. This
setup also applies to the experiments we conducted
in previous sections.

5.1 Experiment Setup

In our experiment, we employ a transit-stub topol-
ogy of 4,400 nodes generated by the GT-ITM topol-
ogy generator [25], in which we randomly pick 1000
nodes to participate in the overlay network. We use a
realistic node degree setting rather than uniform de-
gree distribution. Saroiu et al. [26] studied the speed
of Internet connections of hosts in P2P file-sharing
networks. They found that in the Gnutella network,
about 10% of hosts had connection speed less than
100 Kbps, 30% between 100 Kbps and 2 Mbps, 40%
between 2Mbps and 10 Mbps, and the remaining 20%
had connection speed higher than 10 Mbps. In our
experiments, we assume a similar bandwidth distri-
bution among hosts in our overlays. We simulate
the network capacity of a host by appropriately lim-
iting its maximum node degree (see Table 1). For
instance, a host with connection speed less than 100
Kbps would have a maximum node degree of two.
Note that the maximum degree is not set propor-
tional to its connection speed because having higher
node degree or serving more clients will consume in-
creasingly more CPU cycles, which are important for
applications with high data rate. We limit the max-
imum node degree to ten.

In the experiments, we first constructed an over-
lay using a given overlay protocol. Then a cer-
tain number of nodes or edges are removed from the
constructed overlay according to the failure scenario
used. For each overlay scheme, we repeat our ex-

periment 100 times for a given failure scenario and a
certain percent of failed nodes or edges.

5.2 Heuristic MPath

In addition to the MPath heuristic we presented in
the last section, we add a variant of MPath named
“MPath Greedy”. With MPath Greedy, instead of
integrating the node-disjoint path searching with the
overlay improvement process, a peer completely fo-
cuses on adding disjoint paths to other peers. With
the original MPath heuristic, we limit each peer to
have at most three disjoint paths to the data source.
MPath Greedy has no limits on the number of dis-
joint paths each peer can have, but it obeys the same
node degree limits as the original MPath heuristic.
To make the comparison fair, we also force MPath
Greedy to use the same number of links as the origi-
nal MPath.

We apply the MPath and MPath Greedy heuristics
to the TMesh protocol and present resilience result
in Figs. 8 and 9. We can see that both MPath ver-
sions greatly improve the resilience of TMesh to con-
nectivity failures. With 20% of high degree nodes
removed, the original TMesh overlay is broken into
pieces where the largest piece consists of less than
78% of the nodes. With the MPath heuristic inte-
grated, the ratio is increased to 96%.

In Fig. 10, we show the number of disconnected
segments of TMesh overlay after preferential node re-
moval. Remember that a disconnected segment is a
partitioned component with two or more nodes and
it is more detrimental to the recovery of the overlay
than a disconnected node. Fig. 10 shows that MPath
can significantly reduce the number of disconnected
segments. With 20% of high degree nodes removed,
the average number of disconnected segments is less
than 4, almost 10 times less than that of the original
TMesh.

Fig. 11 shows the average end-to-end latency of the
overlays built by the MPath heuristic. We vary the
group size from 50 nodes to 1000 nodes. The metric
we use is Average Relative Delay Penalty (ARDP)
defined in TMesh [23]. RDP is the ratio of the latency
D′

i,j between a node pair i and j on the overlay to the
latency Di,j between them on the physical network.
ARDP is then the average RDP between all node
pairs in the overlay. We can see that MPath performs
almost as well as the original TMesh.

In Fig. 8 to Fig. 10, we include the HMTP overlay

12

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 0.05 0.1 0.15 0.2

R
at

io
 o

f L
ar

ge
st

 C
C

S

Percentage of Nodes Removed

TMesh Original
TMesh/MPath
TMesh/Random
TMesh/MPath Greedy

Figure 8: Ratio of the LCCS to group size
after uniformly random node removal

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 0.05 0.1 0.15 0.2

R
at

io
 o

f L
ar

ge
st

 C
C

S

Percentage of Nodes Removed

TMesh Original
TMesh/MPath
TMesh/Random
TMesh/MPath Greedy

Figure 9: Ratio of the LCCS to group size
after preferential node removal

 0

 5

 10

 15

 20

 25

 30

 35

 0 0.05 0.1 0.15 0.2

N
um

be
r

of
 D

is
co

nn
ec

te
d

S
eg

m
en

ts

Percentage of Nodes Removed

TMesh Original
TMesh/MPath
TMesh/Random
TMesh/MPath Greedy

Figure 10: Number of disconnected seg-
ments after preferential node removal

 2

 2.5

 3

 3.5

 4

 0 100 200 300 400 500 600 700 800 900 1000

A
R

D
P

Group Size

TMesh/Rand
TMesh/MPath
TMesh Original

Figure 11: Average end-to-end latency per-
formance of MPath heuristic

13

with random extra links (HMTP/Rand)3. We can
see that HMTP with random extra links shows good
resilience to node failures. However, random links
introduce higher end-to-end latency. With the same
number of links, HMTP with random extra links per-
form 11% worse than that of the MPath heuristic
(Fig. 11).

5.3 Effect of Random Links

The good performance of random links in terms of
connectivity resiliency agrees with the observation we
had during our study on the effect of path lengths and
node degree distributions. That is, random links tend
to create paths with various lengths and nodes with
random degrees.

To confirm this conjecture, we show the path
length distribution and node degree distribution of
the random graph in Figs. 12 and 13. For path length
distribution, we first find all disjoint paths of a node
to the data source, then calculate the difference be-
tween the length of these disjoint paths and the short-
est path to the data source. We report the CDF of
these length difference in Fig. 12. From Figs. 12 and
13, we can clearly see the similarity in the path length
distribution and node degree distribution in the over-
lay with random links and MPath links, which ex-
plains the good connectivity resilience contributed by
adding extra random links.

6 Related Work

Fault-tolerant networking has been widely studied
and investigated in graph theory and network prac-
tice. A large amount of research effort has been de-
voted to creating fault-tolerant networks in the con-
text of parallel computing [27][8][28] [29][30] and data
communication networks [31][32][33] [34][35][36][37].
Most of these efforts are based on some graph-
theoretic models of fault-tolerance [38]. The basic
idea is to add redundancy to the network—which is
viewed as a graph—such that after the removal of a
certain number of nodes, the remaining graph is still
connected. Another approach used in parallel com-
puting is to utilize the remaining part of the network
to simulate the whole system so that failure can be

3The TMesh overlay we used here is based on HMTP proto-
col. The difference between TMesh and HMTP/Rand is that
TMesh employs extra links that are selected to reduce end-to-
end latencies

concealed [27][8]. These approaches normally cause
significant degradation in system performance.

The unique characteristics of overlay networks, in-
cluding limited network resources and group dynam-
ics, make their fault-tolerance improvement solutions
different from that of parallel computing or com-
munication networks. The limited network resource
of each individual peer constrains its node degree,
i.e., the number of peers it can support. The fault-
tolerance techniques adopted must not overload over-
lay nodes that come with various hardware and soft-
ware configurations. Compared to CPUs in a par-
allel computer or routers on the Internet, a node in
an overlay network has a much higher failure proba-
bility. The churn in overlay networks may make the
approaches that result in instability and high network
overhead [27][8] inapplicable.

Meanwhile, the unique characteristics of overlays
provide more flexibility in connectivity resilience im-
provement. Since links in overlay networks are actu-
ally virtual links (TCP connections or UDP sessions),
new overlay links can be added promptly with fairly
low cost. This is usually not possible for parallel com-
puters or communication networks. An overlay can
be easily adjusted over time based on the dynamics
of the overlay network. For example, a node in an
overlay can monitor the number of alternative paths
in the overlay to the media source. If the number is
too small, it can start to add new links to other nodes
in the group to ensure the existence of an alternative
path in case the current path to the sender fails.

Recent deployment of overlay multicast has at-
tracted efforts to improve fault-tolerance of overlay
networks. Dual-Tree [39], kTree [40], RITA[41], and
RON [7] are typical examples. The basic ideas of
Dual-Tree and kTree are similar. Multiple tree struc-
tures are constructed to provide redundancy in the
connectivity among peers. kTree constructs multiple
minimum spanning trees, which incur high overhead.
Dual-Tree creates an extra tree structure among a
subset of the peers, which may be suitable for IP mul-
ticast networks, but not sufficient for overlay stream-
ing networks due to the high failure probability of
overlay nodes. In RITA, a peer initiates new links
when its perceived QoS drops below a threshold.
With multiple node failures that partition the net-
work, a peer may not be able to recover from such fail-
ures. Resilient overlay network (RON) implements
an overlay in which nodes monitor the quality of the
overlay links among themselves. In case the link be-
tween two nodes fails or becomes congested, RON’s

14

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35

C
D

F

Length of Disjointed Paths

TMesh/Random
TMesh/MPath

Figure 12: The distribution of path length
difference of overlays with random and
MPath heuristics

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8 9 10

C
D

F

Node Degree

TMesh/Random
TMesh/MPath

Figure 13: Node degree distribution of over-
lays with random and MPath heuristics

routing algorithm will find an alternative path for
these two nodes. Compared to kTree and Dual-Tree,
one apparent benefit of alternative paths is that it
does not require additional overhead to maintain the
extra tree structures.

The low degree limit in streaming overlays distin-
guishes overlay networks from networks with power-
law properties. Studies have shown that power-law
graphs are vulnerable to attacks on high degree nodes
[19]. This is not necessarily the case in overlay net-
works. Low degree graphs present quite different
properties from power-law networks in terms of de-
gree distribution and fault-tolerance.

For streaming networks, where there are usually
limited numbers of data sources per overlay, it is pos-
sible that the data sources will be under denial of
service (DoS) attack. With the data source brought
offline, it is not as important any more to keep the
remaining part of the overlay connected. There are
existing efforts on protecting the data sources from
DoS attacks [42][43]. This topic, however, is not the
focus of this chapter.

7 Conclusion and Future Work

In this chapter, we have investigated a heuristic to
improve the connectivity resilience of streaming over-
lays. It is important for streaming overlays to main-
tain connectivity in case of membership churn, node
failures, and malicious attacks. We employed both
theoretical analysis and empirical methods to study

the factors affecting resiliency of overlays in the face
of connectivity failures. Our study shows that adding
disjoint paths always helps to increase the chances
of keeping nodes connected. Paths created with
varied lengths can further improve these chances.
Overlays with randomly added links and diversified
node degrees also tend to be more robust to failures.
Based on these observations, we designed the heuris-
tic MPath, which effectively increases the resilience of
streaming overlays. Furthermore, we integrated the
MPath heuristic with the overlay improvement pro-
cedure such that it does not generate much overhead.

In addition to building overlays that are resilient
to failures, for streaming overlays with a single or
limited number of sources, protecting sources from
DDoS attacks becomes an important and challenging
issue. With the data sources brought offline, keep-
ing the overlay connected does not help improve the
streaming quality. Designing an overlay that can pro-
tect the data sources from DDoS attacks will be an
interesting topic to explore in future work.

A Appendix

For a given graph G = (V, E), assuming data source
S ∈ V (G), we will analyze the upper bound of the
probability P that v is reachable from S if each node
v ∈ V has a failure probability of p. Note that
∀d1, d2 ∈ V (G), Path(S, d1) and Path(S, d2) are cor-
related but not mutually exclusive. This observation
makes the analysis of P ’s upper bound possible.

15

Definition 4 For ∀D ∈ V (G), D 6= S, Path(S, D)
means there is a simple path between S and D. Ex-
cept node D, all nodes on Path(S,D) have a failure
probability of p. The probability of Path(S, D) equals
the probably that S is reachable from D.

Definition 5 For ∀D ∈ V (G), D 6= S, Path(S, D, i)
means that there is a simple path between S and D

with length i.

Definition 6 For ∀D ∈ V (G), D 6= S, R ∈
N(S), CP (S, R, 1, R, D, i − 1) indicates that there is
a simple path between S and D with length i. The
next node on the path is R.

Note that we only consider simple paths in the
above definitions. This is because the existence of
simple path (S, D) is the necessary condition for S

to be reachable from D. To consider the case where
S is reachable from D, considering the existence of a
simple path is sufficient.

Lemma 7 For ∀D ∈ V (G), D 6= S,

P (Path(S, D) ≤ 1 −
N−1∏
i=1

P (Path(S, D, i)).

Proof:

P (Path(S, D)) = 1 − P (

N−1∏

i=1

Path(S, D, i))

= 1 − P (Path(S, D, N − 1)|

N−2∏

i=1

Path(S, D, i))

×P (
N−2∏

i=1

Path(S, D, i))

≤ 1 − P (Path(S, D, N − 1) × P (

N−2∏

i=1

Path(S, D, i))

.

≤ 1 −

N−1∏

i=1

P (Path(S, D, i))

Lemma 8 For ∀D ∈ V (G), D 6= S, R ∈ V (G) −
{S, D},

P (
∏

R∈V (G)−{S,D}

CP (S, R, 1, R, D, i− 1))

≥
∏

R∈V (G)−{S,D}

P (CP (S, R, 1, R, D, i− 1)).

Proof:

P (
∏

R∈V (G)−{S,D}

CP (S, R, 1, R, D, i− 1))

= P (CP (S, v, 1, v, D, i − 1)|
∏

R∈V (G)−{S,D,v}

CP (S, R, 1, R, D, i− 1))

×P (
∏

R∈V (G)−{S,D,v}

CP (S, R, 1, R, D, i− 1))

≥ P (CP (S, v, 1, v, D, i − 1))

×P (
∏

R∈V (G)−{S,D,v}

CP (S, R, 1, R, D, i− 1))

.

≥
∏

R∈V (G)−{S,D}

P (CP (S, R, 1, R, D, i− 1))

Theorem 9 For ∀D ∈ V (G), D 6= S,

P (Path(S, D)) ≤ 1 −
N−1∏

i=1

∏

R∈V (G)−{S,D}

(1 − P (Path(S, R, 1)) × P (Path(R, D, i− 1))).

Proof:

P (Path(S, D) ≤ 1 −
N−1∏

i=1

P (Path(S, D, i))

= 1 −

N−1∏

i=1

P (
∏

R∈V (G)−{S,D}

CP (S, R, 1, R, D, i− 1))

≤ 1 −

N−1∏

i=1

∏

R∈V (G)−{S,D}

P (CP (S, R, 1, R, D, i− 1))

= 1 −
N−1∏

i=1

∏

R∈V (G)−{S,D}

(1 − P (CP (S, R, 1, R, D, i− 1))

= 1 −

N−1∏

i=1

∏

R∈V (G)−{S,D}

(1 − P (Path(S, R, 1)

×P (Path(R, D, i− 1)))

References

[1] Y. Chu, S. Rao, S. Seshan, and H. Zhang. Enabling
Conferencing Applications on the Internet using an

16

Overlay Multicast Architecture. In Proc. of ACM
SIGCOMM ’01, San Diego, CA, USA, Aug. 2001.

[2] X. Zhang, J. Liu, B. Li, and T.-S. P. Yum. Cool-
Streaming/DONet: A Data-driven Overlay Network
for Live Media Streaming. In Proc. of IEEE INFO-
COM ’05, Miami, FL, USA, Mar. 2005.

[3] ACM SIGCOMM 2002 Conference.
http://www.acm.org/sigcomm/sigcomm2002/.

[4] ACM SIGCOMM 2004 Web-
cast Statistics. Available from
http://warriors.eecs.umich.edu/tmesh/sigcommstat/.

[5] K. Sripanidkulchai, A. Ganjam, B. Maggs, and
H. Zhang. The Feasibility of Supporting Large-Scale
Live Streaming Applications with Dynamic Applica-
tion End-Points. In Proc. of ACM SIGCOMM ’04,
Portland, OR, USA, Aug. 2004.

[6] S. Shenker. Fundamental Design Issues for the Fu-
ture Internet. IEEE Journal on Selected Areas in
Communication, 13(7), Sep. 1995.

[7] D. Andersen, H. Balakrishnan, M. Kaashoek, and
R. Morris. Resilient Overlay Networks. In Proc. of
ACM Symposium on Operating Systems Principles,
Banff, Canada, Oct. 2001.

[8] F.T. Leighton, B. M. Maggs, and R. K. Sitaraman.
On the Fault Tolerance of Some Popular Bounded-
Degree Networks. SIAM Journal on Computing,
27(5):1303–1333, 1998.

[9] J.W. Mao and C.B. Yang. Shortest Path Routing
and Fault-Tolerant Routing on de Bruijn Networks.
Networks, 35(3):207–215, Apr. 2000.

[10] Steve S. Skiena. The Algorithm Design Manual.
Springer; 1 Edition, 1998.

[11] F. Harary. Graph Theory. Addison Wesley Publish-
ing, 1995.

[12] A. Czumaj and A. Lingas. On Approximability of
the Minimum-Cost k-Connected Spanning Subgraph
Problem. In Proc. of ACM-SIAM Symposium on
Discrete Algorithms (A Conference on Theoretical
and Experimental Analysis of Discrete Algorithms),
Baltimore, MD, USA, Jan. 1999.

[13] V. Auletta, Y. Dinitz, Z. Nutov, and D. Parente.
A 2-Approximation Algorithm for Finding an Op-
timum 3-Vertex-Connected Spanning Subgraph. J.
Algorithms, 32(1):21–30, 1999.

[14] J. Cheriyan and R. Thurimella. Approximating
Minimum-Size k-Connected Spanning Subgraphs via
Matching. IEEE Symposium on Foundations of
Computer Science, 30(2):528–560, 2000.

[15] G. Kortsarz and Z. Nutov. Approximating Node
Connectivity Problems via Set Covers. In Proc. of
the Third International Workshop on Approximation

Algorithms for Combinatorial Optimization, Saarbr-
cken, Germany, Sep. 2000.

[16] J. Cheriyan, T. Jordn, and Zeev Nutov. On
Rooted Node-Connectivity Problems. Algorithmica,
30(3):353–375, 2001.

[17] H. N. Gabow. A Representation for Crossing Set
Families with Applications to Submodular Flow
Problems. In Proc. of the Fourth Annual ACM-
SIAM Symposium on Discrete Algorithms, Austin,
TX, USA, Jan. 1993.

[18] D. Karger. Randomization in Graph Optimization
Problems: A Survey. Optima, 58:1–11, 1998.

[19] R. Albert, H. Jeong, and A.-L. Barabasi. Attack and
Error Tolerance of Complex Networks. Nature, 406,
2000.

[20] W. Wang, C. Jin, and S. Jamin. Network Overlay
Construction under Limited End-to-End Reachabil-
ity. In Proc. of IEEE INFOCOM ’05, Miami, FL,
USA, Mar. 2005.

[21] B. Zhang, S. Jamin, and L. Zhang. Host Multicast:
A Framework Delivering Multicast To End Users. In
Proc. of IEEE INFOCOM ’02, New York, NY, USA,
Jun. 2002.

[22] Y. Chu, S. Rao, and H. Zhang. A Case For End
System Multicast. In Proc. of ACM SIGMETRICS
’00, Santa Clara, CA, USA, Jun. 2000.

[23] W. Wang, D. Helder, S. Jamin, and L. Zhang. Over-
lay Optimizations for End-host Multicast. In Proc. of
the Fourth International Workshop on Networked
Group Communications, Boston, MA, USA, Oct.
2002.

[24] P. Francis. Yoid: Extending the Internet Multi-
cast Architecture. Unrefereed report, Apr. 2000.
http://www.aciri.org/yoid.

[25] K. Calvert, M. Doar, and E. Zegura. Modelling Inter-
net Topology. In IEEE Communications Magazine,
Jun. 1997.

[26] S. Saroiu, P.K. Gummadi, and S.D. Gribble. A Mea-
surement Study of Peer-to-Peer File Sharing Sys-
tems. In Proc. of Multimedia Computing and Net-
working 2002 (MMCN ’02), San Jose, CA, USA, Jan.
2002.

[27] J. Bruck, R. Cypher, and D. Soroker. Tolerating
Faults in Hypercubes Using Subcube Partitioning.
IEEE Transactions on Computers, 41(5):599–605,
May 1992.

[28] B.A. Izadi and F. zgner. Enhanced Cluster k-Ary
n-Cube, A Fault-Tolerant Multiprocessor. IEEE
Trans. Computers, 52(11):1443–1453, 2003.

[29] L. Zhang. Fault Tolerant Networks with Small De-
gree. In Proc. of ACM Symposium on Parallel Al-
gorithms and Architectures, Barcelona, Spain, Jun.
2000.

17

[30] C.T. Ho and L. J. Stockmeyer. A New Approach
to Fault-Tolerant Wormhole Routing for Mesh-
Connected Parallel Computers. IEEE Trans. Com-
puters, 53(4):427–439, 2004.

[31] N.A. Nordbotten, M.E. Gmez, J. Flich, P. Lpez,
A. Robles, T. Skeie, O. Lysne, and J. Duato. A
Fully Adaptive Fault-Tolerant Routing Methodology
Based on Intermediate Nodes. In Proc. of IFIP Inter-
national Conference on Network and Parallel Com-
puting, Wuhan, China, Oct. 2004.

[32] E. Ayanoglu, C. Gitlin, and J. Mazo. Diversity Cod-
ing for Transparent Self-healing and Fault-tolerant
Communication Networks. IEEE Transactions on
Communications, 41(11):1677–1686, Nov. 1993.

[33] Z. Ye, S. V. Krishnamurthy, and S. K. Tripathi.
A Routing Framework for Providing Robustness to
Node Failures in Mobile Ad Hoc Networks. Ad Hoc
Networks Journal, 2(1):87–107, 2004.

[34] M.D. Schroeder, A.D. Birrell, M. Burrows, H. Mur-
ray, R. M. Needham, and T. L. Rodeheffer. Autonet:
A High-speed, Self-Configuring Local Area Network
Using Point-to-Point Links. IEEE Journal on Se-
lected Areas in Communications, 9(8), Oct. 1991.

[35] R. Casado, A. Bermdez, F. J. Quiles, J. L. Snchez,
and J. Duato. Performance Evaluation of Dynamic
Reconfiguration in High-Speed Local Area Networks.
In Proc. of the Sixth International Symposium on
High-Performance Computer Architecture, Toulouse,
France, Jan. 2000.

[36] O. Lysne and J. Duato. Fast Dynamic Reconfigura-
tion in Irregular Networks. In Proc. of International
Conference on Parallel Processing, Toronto, Canada,
Aug. 2000.

[37] D. Avresky, N. Natchev, and V. Shurbanov. Dy-
namic Reconfiguration in High-Speed Computer
Clusters. In Proc. of the 3rd IEEE International
Conference on Cluster Computing, Newport Beach,
CA, USA, Oct. 2001.

[38] J.P. Hayes. A Graph Model for Fault-tolerant Com-
puting Systems. IEEE Transactions on Computers,
C-25(9):875–884, 1976.

[39] A. Fei, J. Cui, M. Gerla, and D. Cavendish. A
”Dual-Tree” Scheme for Fault-Tolerant Multicast. In
Proc. of International Conference on Communica-
tions, Helsinki, Finland, Jun. 2001.

[40] A. Young, J. Chen, Z. Ma, A. Krishnamurthy, L. Pe-
terson, and R. Y. Wang. Overlay Mesh Construction
Using Interleaved Spanning Trees. In Proc. of IEEE
INFOCOM ’04, Hong Kong, China, Mar. 2004.

[41] Z. Xu, C. Tang, S. Banerjee, and S. Lee. RITA:
Receiver Initiated Just-in-Time Tree Adaptation for

Rich Media Distribution. In Proc. of the Int’l Work-
shop on Network and Operating Systems Support for
Digital Audio and Video’03, Monterey, CA, USA,
Jun. 2003.

[42] A. Keromytis, V. Misra, and D. Rubenstein. SOS:
Secure Overlay Services. In Proc. of ACM SIG-
COMM ’02, Pittsburgh, PA, USA, Aug. 2002.

[43] W. Wang, Y. Xiong, Q. Zhang, and S. Jamin.
Ripple-Stream: Safeguarding P2P Streaming
Against DoS Attacks. In Proc. of 2006 International
Conference on Multimedia and Expo, Toronto,
Canada, Jul. 2006.

18

