A Type System for Preventing Data Races and Deadlocks in the
Java Virtual Machine Language

Pratibha Permandla Chandrasekhar Boyapati

Electrical Engineering and Computer Science Department
University of Michigan, Ann Arbor, MI 48109

{pratibha,bchandra} @eecs.umich.edu

Abstract ure to correctly synchronize such operations can leathta races

In previous work onSafeJavave presented a type system exten- ©OF deadlocksA data race occurs when two thread concurrently ac-
sion to the Java source language that statically prevents data race§€SS the same shared data, at least one of the accesses is a write, and
and deadlocks in multithreaded programs. SafeJava is expressivénere is no synchronization to separate the accesses. A deadlock oc-
enough to support common programming patterns, its type check-Curs when there is a set of threads such that every thread in the set
ing is fast and scalable, and it requires little programming over- IS Waiting on a lock held by another thread in the set. Synchroniza-
head. SafeJava thus offers a promising approach for making mul-tion errors in multithreaded programs are timing-dependent, non-
tithreaded programs more reliable. This paper presents a corre-déterministic bugs, and are among the most difficult programming
sponding type system extension for the Java virtual machine lan- €7rs to detect, reproduce, and eliminate.

guage (JVML). We call the resulting languagafeJVML Well- In previous work orSafeJavds, 6, 9] we presented a static type
typed SafeJVML programs are guaranteed to be free of data racessystem for multithreaded programs. Well-typed SafeJava programs
and deadlocks. Designing a corresponding type system for JVML are guaranteed to be free of data races and deadlocks. The basic
is important because most Java code is shipped in the JVML for- jgea is as follows. When programmers write multithreaded pro-
mat. Designing a corresponding type system for JVML is nontrivial grams, they already have a locking discipline in mind. SafeJava
because of important differences between Java and JVML. In par- allows programmers to specify this locking discipline in their pro-
ticular, the absence of block structure in JVML programs and the grams in the form of type declarations. The type checker then stati-

fact that they do not use named local variables the way Java pro-cally verifies that a program is consistent with its type declarations.
grams do make the type systems for Java and JVML significantly

different. For example, verifying absence of races and deadlocks in The SafeJava type system also enforces object encapsulation [5, 7],
JVML programs requires performing an alias analysis, something Which is key to enable local reasoning in object oriented programs.
that was not necessary for verifying absence of races and deadlock&onsider, for example, @cack objects thatis implemented using a

in Java programs. This paper presents static and dynamic semanlinked list. Local reasoning about the correctness ofstheck im-

tics for SafeJVML. It also includes a proof that the SafeJVML type Plementation is possible if objects outsisielo not directly access
system is sound and that it prevents data races and deadlocks. Téhe list nodes, i.e., the list nodes amecapsulatevithin s. Safe-

the best of our knowledge, this is the first type system for JyML Java uses a variant of ownership types [13, 12, 3] to declare that

that statically ensures absence of synchronization errors. s ownsall the list nodes. The type system then statically ensures
that the list nodes are encapsulated witkirDbject encapsulation
Categories and Subject Descriptors is gseful for safe multithreading because the lock .that protects an
D.3.3 [Programming LanguagésLanguage Constructs object can also protect the objects encapsulated within that object.
D.2.4 [Software Engineerirjg Program Verification Our experience suggests that SafeJava is expressive enough to sup-
General Terms port common programming patterns, its type checking is fast and
Languages, Verification scalable, and it requires little programming overhead. In addition,

the type declarations in SafeJava programs serve as documentation
that lives with the code and is checked throughout the evolution of
code. The SafeJava type system thus provides significant software
. engineering benefits and offers a promising approach for improving
1. Introduction the reliability of multithreaded and object-oriented programs.

Multithreaded programming is becoming a mainstream program- rig paper presents a corresponding type system for (a subset of)
ming practice. But multithreaded programming is difficultand error 1o java virtual machine language (JVML). We call the resulting
prone. Multithreaded programs synchronize operations on SharedlanguageSafeJVMLWeII-typed SafeJVML programs are guaran-
mutable data to ensure that the operations execute atomically. Fail~aed tg be free of data races and deadlocks. Well-typed programs
are also guaranteed to enforce object encapsulation. This paper
presents the static and dynamic semantics of SafeJVML, and in-
cludes a proof that the SafeJVML type system is sound and that it
prevents data races and deadlocks and enforces encapsulation.

Keywords
SafeJava, Data Races, Deadlocks, Ownership Types

Designing a corresponding type system for JVML is important be-
cause it is the format of choice for shipping code. Systems that
download untrusted JVML programs first perform bytecode ver-
ification to ensure absence of memory errors before running the
programs. With our proposed extension to the JVML type sys-

class Account {
private int balance;
static void transfer(Account from, Account to, int x) {
synchronized (from) {
synchronized (to) {
to.balance += Xx;
from.balance -= x;
3
¥
}

O WO ~NOUPDWNF

-

Figure 1. A transfer method in Java

static void transfer(Account,Account,int);

1: 1load O 17: putfield #2; //balance:I
2: store 3 20: 1load O

3 load 3 21: 1load O

4: monitorenter 22: getfield #2; //balance:I
5 load 1 25: 1load 2

6 store 4 26: sub

7 load 4 27: putfield #2; //balance:I
9: monitorenter 30: load 4
10: load 1 32: monitorexit
11 load 1 44: 1load 3
12 getfield #2; //balance:1 45: monitorexit
15 load 2 56: return
16: add

Figure 2. The transfer method in Figure 1 in JVML (excluding ex-
ception handling)

tem, a bytecode verifier can also statically ensure the absence of

data races and deadlocks in a program before running it. More-
over, many code bases have a combination of Java source code an
JVML code. Verifying the absence of races and deadlocks in such a

code base requires corresponding race-free and deadlock-free type

systems for both Java and JVML.

Designing a corresponding type system argyatax-directedype
checker for JVML is nontrivial because of important differences be-
tween Java and JVML. In particular, the absence of block structure

world

-— /
thisThread thisThread 05 I~
O é 06 08O
ol 02 o 010
Q o7
03

Threadl Objects Thread2 Objects Potentially Shared Objects

Figure 3. An ownership relation

El.
E2.
E3.
R4.

The owner of an object does not change over time.
The ownership relation forms a tree rootestat1d.
If objectz ownsy butz ¥ x, thenz cannot accesg.

To safely access an object, a thread must hold the lock on the
root ownerof that object. ¢ is the root owner of an objeet
iff » = o andworld directly ownsr.)

Every thread implicitly holds the lock on its corresponding
thisThread owner. A thread can access objects owned by
its thisThread without synchronization.

D6. Every lock belongs to some lock level. The lock level of
a lock does not change over time. The lock levels form a
partial order.

. To acquire a new lock of lock levé| the levels of all the
locks held by the thread must be greater than

R5.

dD7

Figure 4. SafeJava properties

methods release all locks they acquire and no other lock [26, 23]—
and achieves what neither of these systems individually achieves.

in JVML programs and that they do not use named local variables We also note in passing that any type system that guarantees race
like Java programs make the type systems for Java and JVML sig- freedom also eliminates all the complex issues associated with the

nificantly different. For example, verifying absence of races and
deadlocks in JVML programs involves performing an alias analy-
sis, something we did not have to do for verifying Java programs.

Consider thetransfer method in Figure 1. Suppose there are
type annotations (not shown in the figure) that declare that every
Account object is protected by its own lock. A type checker can
then statically verify that theransfer method is race-free because
the accesses to thalance field of theto andfrom Account ob-
jects happen within the block of code where the locks ortthend
from Account objects are held. Now consider the corresponding
JVML code in Figure 2. To check that the JVML code is race-free,
one must use alias analysis to statically ensure thagéhéield
andputfield instructions operate on the same objects on which
the locks are obtained usingnitorenter. Moreover, one must
statically ensure thaletfield andputfield accesses happen af-
ter the correspondingonitorenter instructions and before the
correspondingnonitorexit instructions, something that is non-
trivial in general if the code is not block structured and uses gotos.

To the best of our knowledge, this is the first type system for JVML
that statically prevents data races, deadlocks and encapsulation vio
lations. This paper combines ideas from four different systems—i)
formalization of the JVML type system [4, 20, 29], ii) type systems

for preventing data races and deadlocks in Java programs [5, 9, 6,

16]) iii) ownership types for enforcing object encapsulation [1, 3,
7, 13], and iv) type systems for JVML for statically ensuring that

use of weak memory consistency models [28]. A detailed expla-
nation of this issue can be found in [2]. The rest of the paper is
organized as follows. Section 2 presents an overview of SafeJava.
Section 3 presents SafeJVML, including its dynamic and static se-
mantics and a soundness proof. Section 4 describes related work.

2. Overview of SafeJava

This section presents an overview of a core subset of SafeJava for
preventing data races [9] and deadlocks [6] and encapsulation vi-
olations [7]. The key to the type system is the concept of object
ownership. Every object has an owner. An object can be owned by
another object, by a special per-thread owner catletsThread,

or a global owner calledor1d. We use the notatiosy, > o, to de-

note thato; directly or transitively own- or o is the same ass.

The relation> is thus the reflexive transitive closure of themns
relation. If thisThread > o, theno is local to the corresponding
thread and cannot be accessed by any other thread. All other objects
are potentially shared between multiple threads. Figure 3 presents
an example ownership relation. We draw an arrow from objetot
objecty if x ownsy. Our type system statically verifies that a pro-

gram respects the properties shown in Figure 4. Properties E1-E3
ensure encapsulation. Properties R4 and R5 prevent races.

Figure 5 shows &Stack program in SafeJava. AStack is a
stack ofT objects. ATStack is implemented using a linked list.
A class definition in SafeJava is parameterized by a list of owners.

class TStack<thisOwner, TOwner> {
TNode<this, TOwner> head = null;

T<TOwner> pop() requires(this) {
if (head == null) return null;
T<TOwner> value = head.value;
return value;

head = head.next;

}

©00~NOODWN-

}

class TNode<thisOwner, TOwner> {
T<TOwner> value;
TNode<thisOwner, TOwner> next;

}

TStack<thisThread, thisThread> si;
TStack<thisThread, world> s2;
TStack<world, world>

Figure 5. Stack of T objects in SafeJava

world

thisThread

s2 head.value

sl.head.next.value M s2.head.next.value
m

s3.head.value

M s3.head.next.value
m

Figure 6. Ownership relation for TStacks s1,s2,s3

This parameterization helps programmers write generic code to im-
plement a class, then create different objects of the class that hav
different protection mechanisms. In Figure 5, tt8tack class is
parameterized byhisOwner andTOwner. thisOwner owns the
this TStack object andTOwner owns theT objects contained in
the TStack. In general, the first formal parameter of a class al-
ways owns thehis object. In case of1, the ownerthisThread

is used for both the parameters to instantiateT®eack class. It
means thaTStack s1 as well as all th& objects contained in the
TStack are local to the main thread. In cases®, the TStack is
local to the main thread but theobjects contained in theStack

are potentially shared between multiple threads. In case,dfoth

the TStack and theT objects contained in thEStack are poten-
tially shared between multiple threads. The ownership relation for
theTStack objectss1, s2, ands3 is depicted in Figure 6 (assuming

P
defn

defn*

class cn(formal+) extends € where constr*
{level* field* meth*}

cn{owner+) | Object (owner

formal | this | world:cn.|| thisThread

(owner > owne) | (owner % ownep

LockLevel | =new | LockLevel | < cn.I* > cn.l*

c
owner
constr

level

meth t mn(t*) requires (zo.) locks (cn.I*) {inst*}
field : tfd
methodref : |lc, mn{owner+), (t*), t, requires(zo.. k)| M
fieldref llc, fd, t]| #

t
formal
inst

c|int | ¢;,7isaninteger
f

push V| pop | store X | load X | add | ifeq L | new ¢ |
invokevirtual methodref| returnval | start |
getfield fieldref | putfield fieldref |

monitorenter | monitorexit

fd € field namesmn € method names:n € class namesf € owner names
x € variable namesM € methodref nameg- € fieldref namesv € Integers

Figure 7. SafeJVML grammar

Note that the complete SafeJava language is more expressive than
the core subset presented here, and supports most of the commonly
used synchronization patterns. It also supports safe region-based
memory management [10] and safe software upgrades [8]. A de-
tailed description can be found in [5] and [6, 7, 8, 9, 10].

3. SafeJVML

This section presents SafeJVML, an extension to the Java virtual
machine language (JVML) for statically preventing data races and
deadlocks as well as for statically enforcing object encapsulation.

°ro simplify the presentation of key ideas behind our approach, we

describe our system formally in the context of a core subset of
JVML. In particular, we avoid subroutines and object initialization
because they are orthogonal to preventing synchronization and en-
capsulation errors. However, they can be easily added to our system
using previous work on formalization of subroutines [11, 24, 30]
and object initialization [19] for JVML.

Figure 7 shows the grammar for SafeJVML. The grammar is similar
to the grammar for SafeJava [5] with respect to the class and method
signatures. But the SafeJVML instructions are different from those
of SafeJava. In particular, JVML programs are not block structured
and do not use named local variables. This makes it difficult to de-
sign a syntax-directed type checker for JVML that tracks the rela-

the stacks contain two elements each). In SafeJava, a method caiion between locks acquired and the objects they protect. To address

contain arequires clause that specifies the objects the method ac-

this problem we use indexed types [26], which statically guarantee

cesses that must be protected by externally acquired locks. Callersthat all variables with the same indexed tygeare aliases. In-

are required to hold the locks on theot owners(see Figure 4)
of the objects specified in theequires clause before they invoke
a method to avoid data races. Tphep method assumes that the
callers hold the lock on the root owner of thgtack object.

To prevent deadlocks, programmers partition all the locks in our
system into a fixed number of lock levels and specify a partial or-
der among the lock levels. The type checker statically verifies that

dexed types [26] were previously used to statically ensure that the
monitorenter andmonitorexit instructions are matched along
every program path. In this paper, we adopt the idea to ensure ab-
sence of races and deadlocks in JVML programs.

The SafeJVML instruction set closely resembles the JVML instruc-
tion set. The only difference is the format ofethodrefshown
in Figure 7. In SafeJVMLmethodrefalso includes aequires

whenever a thread holds more than one lock, the thread acquires th&lause which specifies the objects the method accesses that must be

locks in the descending order. A lock level is like a static field in

Java; a lock level is a per-class entity rather than a per-object en-

tity. But unlike static fields in Java, lock levels are used only for
compile-time type checking and are not preserved at runtime. Pro-
grammers can specify a partial order among the lock levels using
the < and> syntax in the lock level declarations. Since a program

protected by externally acquired locks. Eaghn requires(zo..x)
denotes the*” argument passed to the method. For examye,
quires(zo, x1) specifies that thehis object () and the first ar-
gument 1) must be protected by externally acquired locks.

3.1 Dynamic Semantics

has a fixed number of lock levels, our type checker can statically This section presents a small step operational semantics for Safe-
verify that the lock levels do indeed form a partial order. Proper- JVML. This is necessary to formally define the semantics of Safe-
ties D6 and D7 in Figure 4 prevent deadlocks. JVML programs, and well as to state and prove the type soundness

C = &;h ¢ (hyv) = int, if v is aninteger
P = TP|e ypelh,v) = t,if v € location andh[v] = (..)¢
T = (A
A = (M,pe, f,s,ls) Ale thisThread, if type(h, v) = cn{thisThread..)
h locati di=v;, gi=w;, level=cn’ .1y €{1--m}bie{1.n} lock(h,v) = v, if type(h, v) = en{ world:cn’.l..)
ocation — (fdi=vi, g;=wy, level=en’.l) , ;") lock(h, v"), if type(h,v) = cn(v’, ..)
Figure 8. SafeJVML execution state - en.l, if g = world:cn.{
9 level(h,g) = { 00, otherwise
theorems. We call the corresponding virtual machine SafeJVM. thisThread, if g = thisThread
The SafeJVM execution state is a configuration= ®; h, where RO(0,g) = world, if g = worldicn.l
. . ’ . 9 o, if g =this
® is a set of threads ankl is a memory heap. Each threddin h[o].g, otherwise

the thread se® has a stack of activation records. Each activation
record A consists of thanethodrefA/ of the method, the address
pc of the next instruction in the code array, a mafrom the set of
local variables to values, the operand stacknd a set of lockés. Figure 9. Auxiliary definitions for dynamic semantics

The heap is modeled as a partial functiomapping locations to

records. The definitions are shown in Figuref@l ..., denote the .))

fields in an object of typen(w:_.). The special fieldg, . track we assume there is a separate llntraprocedural type |nference phase
the runtime ownersy; _,, of the object. These fields are named after that infers the types of local varlable_s at every program point. This
the static formal owner parametess., of the corresponding class. ~ Paper only describes the type checking rules. Type inference can be
The special fieldevel stores the lock level of the lock associated Performed by solving the constraints generated by the type check-
with this object. We use the notatidr{o].fd to access the value ing rules. The advantage of separating type inference from type
of field fd from the instance at locationin heaph. To create a chegklng |s_that it reduces the size of t_he trusted computlng_base; a
new heap with a modified value for that field, we use the notation Pug in type inference cannot compromise a JVM, only a bug in type
hlo.fd — v]. The special field represents the lock associated with ~ checking can. Moreover, type checking becomes syntax directed.

each object. We assume that every object’s record has this field. ~We also assume the SafeJava to SafeJVML compiler generates pro-
grams according to the grammar in Figure 7. That is, the compiler

preserves the type annotations on class and method signatures.

fo . function mapping local variables to arbitrary values

Note that we includés for each method frame that belongs to a
thread instead of having a global lock set for a thread. The reason
is to simplify the type soundness proofs by maintaining close cor- The core of our type system is a set of rules for reasoning about the
respondence with static semantics where we have a separate statityPing judgmentP’, I, F', S, LS, Limin, i = M. P denotes the pro-

lock set for each method to enable modular checking of methods. 9ram that is being checked. It contains the information about class
ls for a method frame contains the locks that are acquired within definitions. The typing environmet tracks the owners and con-

the method and the locks that are specified iréguires clause. straints which are in scope. The typing environment contains the
The locks specified in theequires clause are externally acquired ~ declared owner parameters, the declared constraints among own-
locks; we check that these locks are indeed held by the thread be-€rs, and the declareétbcks clause in scope:

fore adding them to the current frame’s lock set. Therefore the lock
set held by a thread is the union of the lock sets held in the acti-
vation records of the thread. That iSecks(T) = Uiayer(ls € A).

We also maintain the lock levels even though they are unnecessary,
to maintain close correspondence with static semantics.

E:=0| E,ownerf | E, constr | E, locks(cn.l*)

F, S, LS, and L.,;» provide respectively the types of local vari-
ables, the types of stack slots, the locks that are statically known to
be held, and the sequence of minimum lock levels at every program
Figure 10 presents the dynamic semantics for SafeJVML and Fig- point. That is,F; is the map from local variables to typesit

ure 9 presents some auxiliary definition. The rules in Figure 10 instruction. S; is a sequence of types of the operand stackK’at
only include the components that participate in the transition. The instruction. LS, is a multi-set of indexed object types denoting the
transition however applies to every configuration that contains the locks held at instruction. L,:», iS a sequence df,;»’s. Recall

components using the following congruence rule. Beldw®, lock levels from Section 2. The definition bf,, is as follows:
and®; are sets of threads, adiécks[®] is the collection of objects .
locked by threads i. That is, Locks[®] = Urca) Locks[T). bmin := 00 [el | LUB(eny.Ly .. ene- L)
By h — Doy’ (Locks[®1] U Locks[®2]) N Locks[®] = ¢ By definition, LUB(cn1 .11 ... eng.lx) > eni.l; Vie1 . LUB(...) is not
D, UB h — Dy UD; B computed—it is an expression used as such for type checking. The

lock levelco denotes that the thread currently holds no locks.
Thenew instruction creates a new object and initializes its fields to

default values. It also initializes fields .., with runtime owners of X) h .
: : - : JVML. The full set of typing rules are in the appendix. The judg-
the object. To access the runtime owners, it uses aR@ghown mentP, B, F. 8. LS, Loin.i - M denotes that instructionsat-

in Figure 9, which takes an object and a static owner parameter and. - ! . th -
returns the corresponding runtime owner. Tdwart instruction isfies all type constraintsM [¢] denotes the ™ instruction of the
starts a new thread with the lock set that contains ohlysThread, method withmethodref?. We use the notation that for any type

because the new thread does not inherit any locks from its parentg'oxwlerstilol'tn nteﬁn:vit:ﬁ@hltﬁ) fAlrSrr?,T[O\l/\{r{ﬂr[@/rfin]”[tonrm/fnr@] .
thread. The control of the new thread is transferred tettsrt enotes the typ ch the Tormal owner parameters are re-

method. Figure 10 presents these and other rules formally. placed with actual owner parameters.

Figures 11 presents the static semantics for the instructions in Safe-

Figure 12 illustrates the types at every program point fottens-
3.2 Static Semantics fer method shown in Figure 2. We use this example to explain few
This section describes the static semantics of SafeJVML. Following of our typing rules. Like we mentioned before, we use indexed
standard practice in JVML type system formalizations [20, 26, 30], types to keep track of aliases. The indexed typés the type of

M[pc] = push v Mpc] = pop M[pc]= ifeq L Ml[pc]= ifeq L

V] = V2 V1 7£ V2
((M,pc, f,s,1s).A); h — ((M, pc, f,v.s,1s).A); h — ((M, pe, f,v1.v2.8,1s).A);h — (M, pc, f,v1.v2.5,1s). A); h —
(M, pc+1, f,v.s,ls).A); h (M, pc+1, f,s,ls).A); h (M, L, f,s,ls).A); h (M, pc+1, f,s,ls).A); h
M[pc]= add Mipc] = getfield |[cn(f1..n), fd, tllr Mipc] = putfield |lcn(fi.n), fd,tllr
((M, pc, f,vi.v2.5,l8).A);h — ((M, pc, f,o0.5,ls).A); h — ((M, pc, f,v.0.5,ls).A); h —

(M, pe+1, f, (vi+va).s, ls). A h - (M, pet1, £, (hlo].len{f1.n), fd, t|r)-5,1s). A); b ((M,pc+1, f,s,1s).A); hlo.[len(f1.n), fd, tl|p > v]

M[pc] = start M[pc]= load = M[pc] = monitorenter
o € Dom(h) hlo].l =0
(M. pe, F, 0.5, 1) A) h = (M, pe, 7, 1) A); h = (M, pc, 7, 0.5, Is) . A) h —

((Mstart, 1, fo[0 — o], e,thisThread)).((M, pc+1, f, s,ls).A); h (M, pc+1, f, flz].s,ls).A); h (M, pc+1, f,s,ls U {o}).A); hlo.l — 1]

M[pc] = returnval Ml[pc] = store = M[pc] = monitorenter
M = |[en(o1..n), MN{Ont1..m), &, ¥, requires(zo..k)|l ar hlo].l = n, (n > 0)
(M, pc, f,v.s,ls). (M, pc’, f7,s",1s").A); h — (M, pc, f,v.s,1s).A); h — (M, pc, f,o0.s,ls).A); h —
(M, pc, fv.s",1s").A); h (M, pc+1, flx — v],s,ls).A); h (M, pc+1, f,s,ls).A); hlo.l — n+1]
MIpc] = new cn(o1..n) M[pc] = monitorexit
o & Dom(h) hlo].l=1
class en{gi. n) ... € P
((M, pc, f,s,ls).A);h — ((M, pc, f,o0.s,lsU{o})A); h —
(M, pc+1, f,0.5,ls).A); h[o — Defaults(cn)][o.level — level(h, 01)][0.gi — RO(f[0], 0i)]lvie1..n (M, pc+1, f,s,ls).A); hlo.l — 0]
Mlpc] = invokevirtual |[en(fi..n), mn, a, vy,requires(zo. k)|~ M[pc] = monitorexit
|| = |s1] hlo]l.l=mn,(n > 1)
Vi € {0..k}, lock(h, (0.51)[i]) € ls
((M, pc, f, s1.(0.s),ls).A); h — (M, pe, f,o0.s,ls)A); h —
({N,1, fo[0 — o, 1..|a| — s1], €, {thisThread U (U;co..klock(h, (0.51)[i]))}).(M, pc, f,s,ls).A); h (M, pc+1, f,s,ls).A); hlo.l — n — 1]

Figure 10. Dynamic semantics for SafeJVML

variables whose value of typewas first copied at'” instruction. for getfield in Figure 11 checks that the class declares or inherits
In a well-typed program, all variables that have the same ¢ypee the field and that the type on the top of the stack matches the type
guaranteed to be aliases. Consider the ruleéaid in Figure 11. of the class in which the field is declared. It also checks that the

If it is the first copy of the value, then its type is changed; the type thread holds the lock on theot owner(see Figure 4) of the object.
of the object is tagged with the program point at whichthed is
performed. For example, in Figure 12, one of e ount object’s
type is tagged witlPC 1, the instruction at which the object is first
copied on to the stack. The oth&tcount object’s type is tagged
with PC 5. Successive copies preserve the type of the first copy.

Going back to our example in Figure 12, the thread acquires the
lock on Account; and Accounts objects before accessing their
balance fields. By consistently acquiring the lock on an object
before accessing its fields, the potential for data races is avoided.
There are two points to note in this example. One is that the type
We define an indexing operation over typet® mark types when system statically tracks that thenitorenter operations are per-
variables are copied. Lef, where: is an integer, be the following: formed on the same objects whose fields are accessed kgthe
L field instructions. The second point is to note that the type system
g T ically tracks that i tion is performed aft
cs, if £ =c (first copy of the variable changes the type) statically tracks that eacgetfield operation is performed after
é, if t = ¢ (successive copies keep the type of the first copy) the correspondingonitorenter operation and before the corre-
spondingnonitorexit operation on the same object.

-
oo
([

We also definéndexandTypeas partial functions from types to in-
tegers and types respectively. The notatiolenotes indexed types. The rule for invoking a method usinigivokevirtual in Figure 11
checks that the arguments are of right type and that the thread holds

Index[c;] = i, andIndex isundefined otherwise . . .
Type[e;] = ¢ andType[t] = ¢ otherwise the locks on the root owners of all the expressions in the requires
. ”] R clause. The rule ensures tHat;,,, which is the topmost value in
Before we proceed, we explain the auxiliary functibock (t) (for- the L., Sequence is greater than all the levels specified in the

mally defined in the appendix). A lock is an object directly owned |ocks clause of the method. The rule appropriately renames the
by world. Lock(t) denotes the lock that protects an object with in- expressions and types used outside their declared context. Figure 11
dexed type. If the owner of an object is a formal owner parameter, presents the rules for these and other instructions formally. The
then we cannot determine the root owner of the object from within appendix contains the rest of the type checking rules.

the static scope of the enclosing class. In that case, we define the

root owner of the object with indexed typeo be L(Z). Note that 3.3 Soundness

L(t) is not computed—it s used as such for type checking. This section provides a proof that the SafeJVML type system is

The rule for acquiring a new lock usingpnitorenter in Fig- sound and that well-typed SafeJVML programs do not have data
ure 11 checks that the top of the stack is a lock of some lock level races or deadlocks or encapsulation errors. We first define a good
cn’.l that is less tham,.;,. The rule also ensures that after the in- machine state configuration. We use the notatfor- h wt to
struction,cn’.l is stored on the top afmin,,, Sequence. Therule denote that the healp is well-typed. The rules for mapping run-

M[i]= pushwv
P,EF int.S; <: Si41
PEF F; <: Fii1
P,EF LS; = LS; 1
Pt Lmin; = Limin;
i+ 1€ Dom(M)
P, E,F,S,LS, Limin,i b M

min; = Lmin;

i+ 1€ Dom(M)

P,E,F,S,LS, Lyin,t = M

M[i] = add
P,EF S; <:int.int.p
P, E - int.f <: Sj41

PEFF; <: Fi41
P,EVF LS; = LSi41
Pt Lyin; = Lmin;

i+ 1€ Dom(M)

P,E,F,S,LS, Lpin,t = M

MIi]= Load x M[i] = Store z MIi] = ifeq L
x € Dom(F;) x € Dom(F;) P,EES; <ttp
P,E’*Fl[l]: S; =t.p P,EFﬁ<'Si+1
P,EF Fi[z — t;] <: Fip1 PEF B <:Sit1 PEFF; <: Fijy
P,EF t;.8; <: Siy1 PEF Filz — t] <t Fip1 P,E+ LS; = LS;11
P,EF LS; = LS;41 P,E+ LS; = LS;41 Pt Linin, = Luming 4,
Ve € Si. i # Index|[c] PF Lmin; = Lmin; 4 P,EFpB<:SL
Vy € Dom[F]. i # Index[F;[y]] i+1 € Dom(M) P EFF; < Fp
Ve € LS;. i # Index[c] P E,F,S, LS, Lypin,i - M P,E\ LS; = LSy
P+ Lmini = Lm,ini_'_l P+ Lmini = LminL
i+ 1€ Dom(M) i+ 1,L € Dom(M)

P,E,F,S,LS, Lypin,t = M P,E,F,S,LS, Lymin,t =M

M[i] = monitorenter MIi] = monitorexit
P,EF F; <: Figq P EV F; <: Fiqq
P,EF S; <: cn(world : en’.l,..).S;41 P,EF S; <: cn{world : ecn’.1,..).S;+1
P,E + {cn{world : ecn'.l..)} ¢ LS, P,E + {ch(world: cn’.l,..)} € LS,
P,EF LS;41 = LS; U {cn{world : cn’.l..)} P,EF LS;41 = LS; — {cn{world : ecn'.l,..)}
Lmnﬂni = lmin-G' P+ Lwnini = (Cn/~l)-L7nini+1
Pren' < lmin i+ 1€ Dom(M)
P LminiJrl = (en’.).lmin.B P,E,F,S, LS, Lyin,t =M
i+ 1€ Dom(M)
P, E,F,S,LS, Lyin,i b M

M[i] = start M[i] = newcn(o1..n) M[i] = returnval
P E Type[f] : Thread P+ en(f1..n) whereconstrsx v # void
P,EFS’i<:t"‘Si+1 P,Eto0; = o1 P, EF S, <:v.B
P,E+ F; <: Fitq P, E Fowner 0i P,EFLS; = LS
P,EF LS; = LS;41 P,E constr[o1/ f1]..[0n/ fn) P,Et Lmin; = Lming
Pt Lin; = Liming 4 P,E + cn([o1/ f1]--[on/fn]).Si <: Sita P E,F,S, LS, Linin,i F M
i+ 1€ Dom(M) P, EF F; <: Figq
P, E, F, 5, LS, Lyin,i F M P EF LS; = LSiy1

PE Lmin; = Lmin;
i+ 1€ Dom(M)
P,E,F,S, LS, Lypin,t = M

M[i] = geftfield |[cn(f1..n),fd, t|| F M[i] = putfield |[en(f1..n),fd, t|| 7

P (tfd) € en(fi..n) P (tfd) € en(fi..n)
P,EFS; <:ch(o1.n).B P, Et S; <:tlo1/f1]-.[on/ fr]lcn(o1. n)/this].ch(o1..n).B
Typelenior)] = en{or) Typelenior)] = enfor n)
P, E & Lock(cn{oi..n)) € LS; P, E + Lock(cn(o1..n)) € LS;
P,E + tlo1/f1]..[on/ fn][cn{o1..n)/this].} <: Sit1 P,EtF B<:Sit1
P.E" F; <: Fiy1 PEFF; <: Fy41
P,EFLS; = LS;41 P,EF LS; = LS;y1
P+ Lwnini = Lm,in,H_l P Lmini = Lmini+1
i+ 1€ Dom(M) i+ 1€ Dom(M)

P,E,F,S,LS, Lmin,1 = M P, E,F,S, LS, Lyin,i F M

M[i] = invokevirtual |[cn(fi..n), mn, o, v, requires(zo. 1)l m

P (mn,a, v, requires(zg. 1), locks(cn’.1*)) € en{f1..n)
P,EF F; <: Fi41

Renamed(c) def alo1/f1]...[on/ fn]lcn(o1..n)/this]
P,E F S; <:Renamedd).cn(o1..»).0 P, E + Rename@y).3 <: S;41
Vj € [0..K]. P, E + Lock((cn{o1..,).Renameda))[j]) € LS; PF LS;41 = LS;
Lming; = lmin.8' Vengdy € en/ 1" P F enily < lmin PtE Lmin;; = Lmin,;
i+ 1€ Dom(M)
P E,F.5. LS, Lmin, i F P M

Figure 11. Static semantics for SafeJVML instructions

[PCT Instrucion [Fio] [F[O] [FERI] FB | FM4] Si [LS;

1 load 0 Account Account int — — e | @

2 store 3 Account Account int — — Account)

3 load 3 Account Account int Accountq — €| ¢

4 monitorenter | Account; Account int Accountq — Accountq ¢

5 load 1 Account; Account int Accounty — € Account

6 store 4 Account; Accountp int Accounty — Accounts Account;

7 load 4 Account Accountp int Account; Accounts € Account;

9 monitorenter Account; Accountp int Account; Accounts Accounts Account;

10 load 1 Account; Accountp int Account Accountsy € Account;,Accounts
11 load 1 Account; Accountp int Accounty Accounts Accounts Accountj,Accounts
12 getfield Account; Accountp int Account; Accounts Accounts.Accounts Account;,Accounts
15 load 2 Account; Accountsy int Account; Accounts int.Accounts Account;,Accounts
16 add Account; | Accounts int Account; | Accounts int.int.Accounts | Accountj,Accounts
17 putfield Account; Accountp int Account; Accountsy int.Accounts Account;,Accounts
20 load O Account; Accountp int Accounty Accounts € Accountq,Accounts
21 load O Account Accountp int Account; Accounts Accountq Account;,Accounts
22 getfield Account; Accountsy int Account; Accounts Account;.Account; Accounti,Accounts
25 load 2 Account; Accountp int Account; Accounts int.Account Account;,Accounts
26 sub Account Accounts int Account; | Accounts int.int.Accounty Accountq,Accounts
27 putfield Account Accountp int Accounty Accounts int.Account; Accountj,Accountsy
30 load 4 Account Accounts int Account; | Accounts € | Accounti,Accounts
32 monitorexit Account Accountp int Account; Accounts Accounts Account;,Accounts
44 load 3 Account Accounts int Accountq Accounts € | Account;

45 monitorexit Account Accounts int Account Accounts Accounty Account;

56 return Account Accounts int Account; | Accounts e | ¢

Figure 12. Static types for thetransfer method in Figure 2

time values in the heap to types are given at the end of appendix.Coming back to thgetfield instruction, the only condition that is

GoodConfiguratio(P, ®, h) states that given prograi and heap
h, the thread se® is well-typed iff for every activation record
(M, pe, f,s,ls) € threadT included in the thread sdt, the con-

ditions in Figure 13 hold with respect to the static type information

F, S, and LS for the method\M/, and whereE provides the infor-
mation regarding owners, constraints, and locks clause in scope.

We now formally state and prove the theorems.

Theorem 1 (SafeJVML Preservation)

SupposeP - wt. Then,V &, &', h, k', if P+ h wt and Good-
ConfiguratiofP, ®,) and P - ®&;h — ®'; h’, then P + b’ wt
and GoodConfiguratioP, ®', h').

Proof: We sketch the proof fogetfield ||cn{fi..n), fd,t||z in-

affected by it is Condition 4 which states thath - s : RunTime-
Typ€ s, Spe+1). From the static type checking rule fgetfield
instruction, we haveP, E + ¢.S,. <: ¢h(01..n).Spe+1 fOr somet
andcén{o1..»). SinceP, h - 0.s’ : RunTimeTyp@.s’, Spc), P, h -

o : RunTimeTyp@, cn{o1..»)), andP, h F v : RunTimeTyp, t),
we can conclude thaP,h + v.s’ : RunTimeTyp@.s’, Spet1)-
ThusP,h F s : RunTimeTyp@, Spc+1). Therefore the execution
of getfield preserves all the invariants in Figure 13.

Theorem 2 (SafeJVML Progress)

Let P - wtandV &, h, P+ h wt andGoodConfiguratioP, @, h).
Then either:

i) 39’ h'. P+ ®; h — &' : b’ (progress)or

i) (VT € ®).(T = (A)A A = €) (normal termination)or

struction to motivate the structure of the invariants. First, we show liiy 3T € @, s.t.T"s nextinstruction is a null pointer dereference.

that the execution ofetfield ||cn(fi..n), fd, t|| instruction in
a machine configuratiof®; h, whereP + h wt and GoodConfig-

Proof: We prove this by showing that i - h wt andGoodConfig-
uration(P, ®, h) hold, then either the program is in stuck a deadlock
uration(P, @, h), yields a new well-typed heap. Fgetfield, this state, or at least one thread is stuck attempting to dereference a null
is trivial to show sinceh is not modified. In general, the heap up- pointer, or at least one thread can make progress, or the activation
dates respect three properties: the types of records never changeecord stack for every thread is empty. We later prove in Theorem 5
values written into heap records have the same types as the overthat a deadlock state is not possible because well-typed programs in
written values, and any new records introduced by allocation are SafeJVML are free of deadlocks. Thus, the above theorem holds.
well-typed records. If an instruction changes a hkap s’ accord- The details of the proof are similar to the details of the proof of
ing to these rules, thel' will be well-typed. Theorem 1 presented above.

Next we show that the executiongétfield instruction preserves
all the GoodConfigurationnvariants listed in Figure 13. Suppose a
getfield instruction moves the virtual machine froff\, pe, f,-

Theorem 3 (SafeJVML Encapsulation)
An objectx can access an object owneddgnly if (o > x).

0.5,18).A);h to ((M,pc + 1, f, v.s,ls).A); h wherev = h[o].-
len{fi..n), fd,t|| ». Further suppose thdt, F', S and LS com-
prise the type information used to show tfatF, F', S, LS, Lynin -

pc B M. We proceed by showing that all the conditions in Fig-

ure 13 hold. All conditions except C4 hold trivially since thet-

field instruction does not affect these invariants. In fact, the only

instruction that affects Condition C1 is thew instruction. It is

Proof: Recall that the notatioro(> z) denotes thab directly or
transitively ownsx or o is same ag. Also, note that the owner
of an object does not change over time &dodConfiguration
judgment holds before every instruction. Consider the cathess
C(f,..){... T{o,...) y ...}. Variabley of typeT'(o, ...) is declared
within the static scope of’. Ownero can therefore be either 1)
this, or 2)world, or a 3) a formal class parameter. We show that

easy to show thaiew preserves this invariant—every object has a in each case, the constraint¥ this) holds. In the first two cases,
unique owner and the ownership relation forms a tree before the ex-the constraint holds trivially. In the last case, X f) and (f =
ecution ofnew, therefore adding a child to one of the nodes of the this), so the constraint holds. Therefore an objedf a classC'

tree duringnew’s execution preserves the tree structure.

can access an objegtowned byo only if (o > z).

C1. The ownership relation in the program forms a tree.

Recall that the owner of an objests stored ink[0].go, where
go denotes the first formal parameteras class.

C2. The owners of every object satisfy the owner constraints

specified in object’s class.

That is, the runtime owneri|o].g1, ..,h[0].g» Of an ob-
ject o satisfy the constraints declared in its class definition.
Note thaten(h[o].g1, .., h[0].gn) gives the runtime type of
an objecto whose static type isn{g:...). We useRunTime-
Typ€v, t) to denote the runtime type of a valuevhose static
type ist. RunTimeType, t) = ¢ if ¢ is an integerRunTime-

Typev, t) = cn(h[v].g1, .., h[v].gn)) if t = cn(gi..n).

pc € Dom(M)

The stacks have values of the expected types.

That is,s=v1..vi, implies Spc=t1..tx, and P, h F v; : Run-
TimeTypév;, t;). In short,P, h I s : RunTimeTypg, Spe).
The local variables contain values of the expected types.
That is,Yye Dom(Fpe), (Fpe[y]=t) = P,h + f[y] : Run-
TimeTypéf[y], t).

The static and dynamic lock sets are consistent.

(@) {o;} € lso implies P,h - o; : RunTimeTyp@;, ¢)
and{t} € LSo.

(b) {o;} € ls, implies P, h I 0; : RunTimeTyp@;, £) and
{(k — k").t} € LSpe, wherek = hfo;].l at program
pointpc andk’ = hlo;].l at program poing.

lso denotes the locks that are specified in the requires clause.

Ca3.
CA4.

C5.

C6.

C7. Two variables with the same indexed type must be aliases.
Let,
(@) o= f(zx), whenF,.[z] = { or R
0 = vy, whens = V1..Vk, Spc =t1..tk andtj =t
(b) o = f(y), whenFy.[y] = i’ or
o = Vjr, whens = vy..vg, Spe = t1..tk andtj/ =
If { = #,theno = o’. Furthermore, if € LS,., theno € Is.

C8. The static and dynamic lock levels of the locks are consistent.

If P,hto:cn{or:1,02.n),thenho].level =1

Figure 13. Properties of a good machine state configuration

Theorem 4 (SafeJVML DataRaceFreedom)
Well-typed programs in SafeJVML are free of data races.

Proof: The type checking rules for SafeJVML ensure that every
thread holds the lock protecting an object in its static locklsgt
before accessing the object. TB®odConfiguratiojudgment en-

sures consistency between dynamic and static entities. Together,

they ensure that every thread holds the lock protecting an object
in its dynamic lock sets before accessing the object. Well-typed
SafeJVML programs are thus race free.

Theorem 5 (SafeJVML DeadlLockFreedom)
Well-typed programs in SafeJVML are free of deadlocks.

Proof: The typing rules for SafeJVML ensure that the lock levels
in the program form a partial order and that the locks are acquired
in the decreasing order of their lock levels. The type checking rule
for acquiring a new lock checks that the level of the lock being ac-
quired is less thaf,,.», which is the topmost value in the,,;,, se-

quence; the type checking rules guaranteelthat is the minimum

level among the levels of all the locks already held in the static lock
setLS. The typing rules along witsoodConfiguratiojudgment,
which ensures the consistency between dynamic and static lock sets
held by the thread, prove that the level of the lock acquired is less
than the levels of the locks in dynamic lock et Thus, well-typed
programs in SafeJVML are free of deadlocks.

4. Related Work

This section presents work on related type systems. Our type sys-
tem for checking JVML instructions is based on a formalization
of the JVML type system developed in [20]. Their work covers a
large subset of JVML but does not handle multithreaded programs.
[4] and [29] provide detailed semantics for JVML but also do not
handle multithreaded programs. Other formalizations of the JVML
type system have focused on subroutines [24, 30, 11] and object
initialization[19]. The type systems in [26, 23] statically verify
that every method releases all the locks it acquires and no other
locks. Currently, while this property holds for all well-typed Java
programs, it does not hold for all well-typed JVML programs that
pass the bytecode verification. JVMs use runtime checking to en-
sure this property. The type system in [26] is designed for JVML
programs that are compiled from Java source programs, whereas
the type system in [23] is more general and supports JVML pro-
grams produced from other sources well. We used ideas from [26]
to track aliases in our system.

None of the previously proposed type systems for JVML handle

data races, deadlocks, or encapsulation. The main contribution of
our paper is that, to the best of our knowledge, this is the first type

system for JVML that statically prevents data races, deadlocks, and
encapsulation violations.

Our type system extension to JVML is based on a corresponding

type system extension to Java that we previously developed called
SafeJava [5, 6, 7, 9]. The SafeJava type system for preventing data
races is most closely related to [2, 16, 22]. The SafeJava type sys-
tem for enforcing object encapsulation uses a variant of ownership

types [1, 12, 13, 25]. A detailed comparison of the SafeJava type

system with related type systems and other approaches for prevent-
ing synchronization errors and encapsulation errors can be found
in[5] and [6, 7, 9].

References
[1] Jonathan Aldrich, Valentin Kostadinov, and Craig Chambers. Alias
annotations for program understandingQhject-Oriented
Programming, Systems, Languages, and Applications (OOPSLA)
November 2002.

David F. Bacon, Robert E. Strom, and Ashis Tarafdar. Guava: A
dialect of Java without data races.@Mject-Oriented Programming,
Systems, Languages, and Applications (OOPSO&jober 2000.

[3] Anindya Banerjee and David A. Naumann. Representation
independence, confinement, and access contrélrihtiples of
Programming Languages (POPL)anuary 2002.

Peter Bertelsen. Dynamic semantics of Java bytecodéloifkshop
on Principles of Abstract Maching$998.

Chandrasekhar Boyapati. SafeJava: A unified type system for safe
programming. Ph.D. thesis, Massachusetts Institute of Technology,
February 2004.

Chandrasekhar Boyapati, Robert Lee, and Martin Rinard. Ownership
types for safe programming: Preventing data races and deadlocks. In
Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLANovember 2002.

Chandrasekhar Boyapati, Barbara Liskov, and Liuba Shrira.
Ownership types for object encapsulationPirinciples of

Programming Languages (POPL)anuary 2003.

(2]

(4]

5

[6

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

(18]

[29]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]

[29]

[30]

Chandrasekhar Boyapati, Barbara Liskov, Liuba Shrira, Chuang-Hue
Moh, and Steven Richman. Lazy modular upgrades in persistent
object stores. Ii©Dbject-Oriented Programming, Systems, Languages,
and Applications (OOPSLAPctober 2003.

Chandrasekhar Boyapati and Martin Rinard. A parameterized type
system for race-free Java programsObject-Oriented

Programming, Systems, Languages, and Applications (OORSLA)
October 2001.

Chandrasekhar Boyapati, Alexandru Salcianu, William Beebee, Jr.,
and Martin Rinard. Ownership types for safe region-based memory
management in Real-Time Java.Rrogramming Language Design
and Implementation (PLDJPune 2003.

Robert O’ Callahan. A simple, comprehensive type system for Java
bytecode subroutines. Principles of Programming Languages
(POPL), 1999.

David G. Clarke and Sophia Drossopoulou. Ownership, encapsulation

and disjointness of type and effect. @bject-Oriented Programming,
Systems, Languages, and Applications (OOPSNAyember 2002.

David G. Clarke, John M. Potter, and James Noble. Ownership types
for flexible alias protection. Ibject-Oriented Programming,
Systems, Languages, and Applications (OOPSOAjober 1998.

Cormac Flanagan and Martin Abadi. Object types against races. In
Conference on Concurrent Theory (CONCURY)igust 1999.

Cormac Flanagan and Martin Abadi. Types for safe locking. In
European Symposium on Programming (ESQ¥3rch 1999.

Appendix
A. Rules for Type Checking

This section presents the SafeJVML type system. The SafeJVML
grammar is shown in Figure 7. We first define a number of predi-
cates used in the type system. These are based on similar predicates
from[17, 16, 5]. We refer the reader to those papers for their precise

formulation.

[Predicate [Meaning |
WFClasses(P) There are no cycles in the class hierarchy
ClassOnce(P) No class is declared twice iR
FieldsOnce(P) No class contains two fields, declared or inherite

with same name
MethodsOncePerClass(P) No class contains two methods with same name
OverridesOK(P) Overriding methods have the same return type 4
parameter types as the methods being overridden.
Therequires andlocks clauses of an
overriding method must be superseded by thosg
the overridden methods
LockLevelsOK(P) There are no cycles in the lock levels

d,

nd
n

of

We define the typing environment as follows. The typing environ-

ment contains the declared types of variables, the declared
parameters, the declared constraints among owners, and

Cormac Flanagan and Stephen N. Freund. Type-based race detection clared locks clause.

for Java. InProgramming Language Design and Implementation
(PLDI), June 2000.

Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen.
Classes and mixins. IRrinciples of Programming Languages
(POPL), January 1998.

Stephen N. Freund. Type systems for object-oriented intermediate
languages. Ph.D. thesis, Stanford University, 2000.

Stephen N. Freund and John C. Mitchell. A type system for object
initialization in the Java bytecode languageAGM Transactions on
Programming Languages and Systefdevember 1999.

Stephen N. Freund and John C. Mitchell. A formal framework for
Java bytecode language and verifierObject-Oriented
Programming, Systems, Languages, and Applications (OORSLA)
October 1998.

James Gosling, Bill Joy, and Guy Ste€léie Java Language
SpecificationAddison-Wesley, 1996.

Dan Grossman. Type-safe multithreading in Cyclon&Vbrkshop on
Types in Language Design and Implementation (T|.Ddphuary
2003.

Futoshi lwama and Naoki Kobayashi. A new type system for JVM
lock primitives. INASIAN Symposium on Partial Evaluation and
Semantics-Based Program Manipulation(ASIA-PEPMay 2002.

Gerwin Klein and Martin Wildmoser. Verified bytecode subroutines.
Journal of Automated Reasonirnzp03.

Neel Krishnaswamy and Jonathan Aldrich. Permission based
ownership: Encapsulating state in higher order typed languages. In
Programming Language Design and Implementation (PLDipe
2005.

Cosimo Laneve and Gaetano Bigliardi. A type system for JVM
threads. InThe Third ACM SIGPLAN Workshop on Types in
Compilation (TIC) September 2000.

Tim Lindholm and Frank YellinThe Java Virtual Machine
SpecificationAddison-Wesley, 1997.

William Pugh. Fixing the Java memory model. ACM Java Grande
ConferenceJune 1999.

Zhenyu Qian. A formal specification of Java virtual machine
instructions for objects, methods and subrountine§ohmal Syntax
and Semantics of Jaypages 271-312, 1999.

Raymie Stata and Martin Abadi. A type system for Java bytecode
subroutines. IfPrinciples of Programming Languages (POPL)
January 1998.

E :=0| E,ownerf | E, constr| E, locksclause

We define a minimum lock level as follows:

lmin =00 | en.l | LUB(eny .1y ... cng.lg)

owner
the de-

By definition, LUB(cn1 .11 ... eng.lx) > eni.l; Vie1 . LUB(...) is not
computed—it is an expressions used as such for type checking. The

lock levelco denotes that the thread currently holds no locks.

We define the type system using the following judgments.

We

present the typing rules for these judgments after that, except that

the typing rules for instructions in methods are given in Figur
[Judgment [Meaning |
FP ProgramP is well defined
P - defn defnis a well-formed class
P; E Fownero o is an owner
P; E constr constraintconstris satisfied
P,EFt t is a well-formed type
P,EFt) <:to t1 is a subtype ot
P,EF-wf typing environment® is well-formed
Pfielde ¢ classc declares/inheritfield
P F methe ¢ classc declares/inheritseth
P Fevel cn.l cn.l is a well-formed lock level

Ptcnydy < cno.ls cny.ly is less tharensg.lo in the partial
order formed by lock levels

cn.lis less thar,, ;. in the partial order
formed by lock levels

7 is the lock that protects an object of type
Given programP, environmentk, types

of local variablesF’, types of stack slots§,
static lock setl S, and sequence of minimun
lock levelsL,,», executing the instructions
in M does not cause a type error

PrEcend <lmin

P, EF Lock(ﬂ =r
P,E,F,S,LS, Linin F M

ell.

h

[PROG] [CLASS]
WFClasses(P) ClassOnce(P) FieldsOnce(P) MethodsOncePerClass(P) OverridesOK(P) LockLevelsOK(P) E=ownerfy o, f; = f1.constrsx

P=defny, n Ptdefn; P,E-uwf P, E ¢! P, B+ field; P, EF meth;
P P I class cn(f1.) extends ¢’ where constr+ {levelx field+ meth+}

[CONSTR ENV] [OWNER =] [WORLD >] [REFL >1] [TRANS >] [OWNER WORLD] [OWNER THIS]
P; E Fownero P E (o3 = 03)
E=Eq,constr, By P,EFe:cn{oy n) P leyel -l P; E Fownero P, EF (0 = 07) P Fleyelcn-l E = Eq, cthis, Eg
P, EF constr P, EtF (o1 = e) P; E F (worldicn.l = o) P,EF (o> o) P, Et (o3 = 07) P; E Fownerworldicn.l P; E Fownerthis

[OWNER THREAD] [OWNER FORMAL] [ENV 0] [ENV OWNER] [ENV CONSTR] [ENV LOCKSCLAUSE]
constr=(o = o)V constr=(o ¥ o)
P,E+wf P;E Fownero, o

f ¢ Dom(E) E' = E, constr locksclause = locks(...)
E = Eq, ownerf, Eo P,EFwf Bzy (PiE' Fyr=a)AN(P;E'Fy¥x) P.E-uwf
P; E FownerthisThread P; E Fowner f P0-wf P; E,ownerf - wf P, E,constr-wf P, E,locksclause - w f

P; E FownerotherThread

EFt) <:tg

[TYPE INT] [TYPE OBJ] [TYPE C] [SUBTYPE C] [SUBTYPE TRANS] [SUBTYPE REFL]
P+ class cn(f].) - where constr ...
P; E Fownero; P EFo; = o PiEFcnoy, . pn) P EF ty <:tg
P; E Fownero P, EF constrloy/f1l..lon/fnl P b class cn (fq.) extends cn’ (f1 0%) ... PiEF ty <:ts P.EFt
P;E Fint “P;EF Object(o) P;EFcn(oy, .n) PiEFcn(o1, p) <ien’(fy ox)[o1/f1]-lon/ fnl PiEF t] <:t3 PEFt<:t

Preny.ly < cng.lg
[LEVEL] [LEVEL <] [LEVEL >]
P class cn... {... LockLevell ...} P I class cnq... {... LockLevell; < .cng.lp.} Pt class cng... {... Locklevelly >.cny.ly..}
P Fleyel cnu-l Precny.ly < cng.ly PrFeny.ly <eng.la
Prend<lpmin
[LEVEL < INFTY] [LEVEL < LUB] [LEVEL < CN.L] [LEVEL TRANS]
Limim =00 Umin =LUB(.. cn.l..) lmin = cn’ .1’ Pren'.l/ <lpin
P Fleyelcn.l P Flevel © Precn.d<cn'.l/ Plcn.d<cn'.l/
PFenl<lmin PFend<lmin Prenl<lmin Prenl<lmin
P, E + Lock(f)=r
[LOCK THISTHREAD] [LOCK OTHERTHREAD] [LOCK WORLD] [LOCK FORMAL] [LOCK THIS]
N P; EFTypdi]=cn(oy, . n) R
P E - Typgf] = cn (thisThread o) P; E - Typdt] = cn (otherThread o) P; E + Typd{] = cn (worldicn’ .1’ ox) E=Ejp, ownero, Eo P; E F Typdf] = cn (this 0og)
P; E+ Lock(%)=thisThread P; E F Lock (%)= otherThread P,EF Lock(?)=1 P; E+ Lock(t)=L(t) P; E+ Lock(t)= Lock(F1[0]
Pt field € ¢ P+ meth € c
[FIELD DECLARED] [FIELD INHERITED] [METHOD DECLARED] [METHOD INHERITED]
Pt field € cn{f1. .n) Pt meth € cn(f1 p)
Pk classen(fy, p). {.. field .} P I-class cn’ (g1,) extends cn(oq _ n).- P class cn(f] pn)-{.. meth..} P class en’ (g1) extends cn(oq. p).
PF field € cn(f1..n) Pt field[o1/f1].-lon/fnl € cn’ (g1 m) P meth €cn(fi n) Pt methloy/f1l..lon/fnl € cn’(g1. .m)
P,E,F,S5,LS Lyy;n kM
[VERIFICATION] [INFERENCE]
M = || en(f1..p), mn, a, v, requires(xq_ 1)l A
Pt class cn{fy p) .. constrs . P - vy mn(a)requires (zg_) locks (cn’.Ix) .. € cn(fy p)
E = Eqp,ownerfy ,,constrx, locks(cn’.1%) EFwf
P;EF Fgl0 = cen(f1, p)s 1.l = o] <: Fy S1=c¢ Ve, € zg, p PiEbax; : t/
V(z; t') € mg, j (F1li] = t'_; A Lock(t'_;) € LSy) Lomin, =LUB(en’.1x)
Vi € Dom(M)P,E, F,S,LS, Lyyin,i+ M 3F, 5, LS, Lymin- P, B, F,5 LS Lyin - M
P, E,F, 5, LS, L T F M P, EFM

min>

The above rules define when a JVML program is well-typed. We also define that a heap is well-typed if every record in the heap is well-typed
and the runtime state is consistent with the static type information. The furigiie(h, v) used below is defined in Figure 9.

[HEAP]

i€{l..m},je{l..n}

- P— . P . /
hlo] = (fd; = vi, g5 = wy,level=cn 'l>cn<w1 "

Vi€ {1.m}.P F (t; fd;) € en{f1..n) Vi€ {1.m}.P+ type(h,v;) <: t;
PR F o:cn(wi. n)

10

