
Extracting Statistical Loop-Level Parallelism using Hardware-Assisted Recovery

Steven A. Lieberman, Hongtao Zhong, and Scott A. Mahlke
Advanced Computer Architecture Laboratory

University of Michigan - Ann Arbor
{lieberm,hongtaoz,mahlke}@umich.edu

Abstract

Chip multiprocessors with multiple simpler cores are
gaining popularity because they have the potential to drive
future performance gains without exacerbating the problems
of power dissipation and hardware complexity. These de-
signs provide real benefits for server-class applications that
are explicitly multi-threaded. However, for desktop and other
systems, there is a large code base of single-thread appli-
cations that have yet to see any benefit from multicore sys-
tems. While these applications were designed for execu-
tion on a single processor, many regions of computation
have statistically suitable structure for extracting thread-
level parallelism. In this work, we examine automatic extrac-
tion of statistical loop-level parallelism from single-thread
applications. Our approach is to utilize simple hardware
mechanisms combined with intelligent compiler code gen-
eration to perform low-cost targeted thread-level specula-
tion. Our technique combines memory dependence profil-
ing to identify suitable loops, stylized code generation to un-
tangle register dependences between iterations, and a hybrid
compiler/hardware recovery mechanism to handle infrequent
memory dependences. We show that significant amounts of
statistical loop-level parallelism indeed exist in non-numeric
applications, and present the architectural extensions and
detailed compiler algorithms required to exploit it.

1 Introduction
For more than four decades, the semiconductor industry

has depended on Moore’s law to deliver consistent appli-
cation performance gains through the multiplicative effects
of increased transistor counts and higher clock frequencies.
However, power dissipation and thermal issues have emerged
as dominant design constraints and caused architects to shy
away from relying on increasing clock frequency to improve
performance. Exponential growth in transistor counts still
remains intact and a powerful tool to improve performance.
Semiconductor companies now put two to eight cores on a
chip, and this number is expected to continue growing.

One of the key challenges going forward is software:
if the number of devices per chip continues to grow con-
sistently with Moore’s law, can the available hardware re-
sources be converted into meaningful application perfor-
mance gains. In some regards, the embedded and domain-
specific communities have pulled ahead of the general-
purpose world in taking advantage of available parallelism,
as most system-on-chip designs have consisted of multiple
processors and hardware accelerators for some time. How-
ever, these system-on-chip designs are often deployed for
limited application spaces, requiring hand-generated assem-
bly and tedious programming models. The lack of necessary
compiler technology is increasingly apparent as the push to

run general-purpose software on multicore platforms is re-
quired.

In the scientific community, there is a long history of suc-
cessful parallelization efforts [15, 6, 3, 9, 14]. These tech-
niques target counted loops that manipulate array accesses
with affine indices, where memory dependence analysis can
be precisely performed. Loop-level and single-instruction
multiple-data parallelism are extracted to execute multiple
loop iterations or process multiple data items in parallel. Un-
fortunately, these techniques do not often translate well to
general-purpose applications. These applications are much
more complex than those typically seen in the scientific com-
puting domain, often utilizing pointers, recursive data struc-
tures, dynamic memory allocation, frequent branches, small
function bodies, and loops with small bodies and low trip
count. Explicit parallel programming is one potential solu-
tion to the problem. However, these systems may burden the
programmer with implementation details and can severely
restrict productivity and creativity. Further, there is a large
body of legacy sequential code that cannot be parallelized at
the source level.

A well-researched direction for parallelizing general-
purpose applications is thread-level speculation (TLS). With
TLS, the architecture allows optimistic execution of code re-
gions before all values are known [27, 22, 10, 29, 31, 2, 33,
13]. Hardware structures track register and memory accesses
to determine if any dependence violations occur. In such
cases, register and memory state are rolled back to a previous
correct state and sequential re-execution is initiated. With
TLS, the programmer or compiler can delineate regions of
code believed to be independent [4, 18, 7, 17]. Traditional
TLS techniques have two important weaknesses. First, TLS
architectures introduce a high amount of hardware complex-
ity and area overhead. The job of detecting dependence vi-
olations, rolling back processor and memory state, and ini-
tiating re-execution is all placed on the hardware, which in
the general case requires substantial complexity. Second, the
overhead of spawning and executing threads is high, thus its
crucial to identify large chunks of independent work [7, 17].
Conversely, general-purpose applications often contain fre-
quent branches and loops with small bodies and low average
trip counts.

For this paper, we take a different direction to TLS. A
compiler/hardware technique is proposed that combines low-
cost hardware that is explicitly managed in software and a
stylized compiler code generation strategy for targeting spe-
cific, high-rate-of-return speculation opportunities. We par-
tition the responsibilities between hardware and software.
Hardware is responsible detecting memory dependence vi-
olations and rollback of the memory state. Conversely, soft-
ware is responsible for managing all register dependences,
register rollback, and spawning threads. Recovery from mis-

speculation is jointly handled. By using a combined ap-
proach, the hardware cost and complexity of TLS can be
substantially reduced. Further, providing hardware structures
that are explicitly managed by the software enables more ef-
ficient thread spawning and recovery. In general purpose
applications where thread sizes are often modest, efficient
thread management is key to achieving performance gains.

Our technique targets automatic extraction of loop-level
parallelism (LLP). Loops with sets of completely indepen-
dent loop iterations, or DOALL loops, are identified and par-
allelized. However, sophisticated memory dependence anal-
ysis, such as points-to analysis [20], is generally ineffective
for uncovering DOALL loops in general-purpose applica-
tions. Thus, this work identifies loops that have statistically
independent iterations for parallelization. Memory depen-
dence profiling is used to gather statistics on memory de-
pendence patterns in candidate loops. Loops that are highly
unlikely to have cross-iteration dependences are selected
and split across multiple cores. In this manner, the mis-
speculation rate and recovery penalties are kept extremely
low.

One of the main challenges with exploiting statistical
DOALL parallelism across multiple cores is the compiler
code generation. Profiling can identify loops with unlikely
memory dependences, but often loops in general-purpose ap-
plications have complex register dependence patterns that
must be untangled in order to effectively parallelize itera-
tions. In particular, register live-ins and live-outs are pri-
vatized for each core. Further, induction and accumulator
variables must be replicated and separated for each group of
loop iterations that are executed together. Traditional tech-
niques, such as scalar expansion where scalar variables are
mapped to separate memory variables, are not effective due
to the overhead of accessing memory. Rather, all privatiza-
tion and expansion optimizations are performed at the regis-
ter level. Loops in general-purpose applications also tend to
have small bodies. Loop iterations are distributed to the cores
in chunks to reduce thread spawning overhead and make bet-
ter use of the data cache.

In the event of an unexpected memory dependence viola-
tion, the recovery responsibilities are split between the com-
piler and hardware. A lightweight transactional memory sys-
tem detects dependence violations and provides rollback ca-
pabilities of the memory state for each core. Register state is
rolled back by having compiler create a self-initializing block
on each core to reset all relevant register values to their initial
state and restart loop execution. By shifting a significant por-
tion of the TLS responsibilities to the software, unnecessary
hardware complexity can be eliminated and a more efficient
solution achieved.

2 Opportunities for Statistical LLP

2.1 Predictability of Memory Dependences

Although scientific applications often contain loops
whose memory access patterns can be identified and proven
by the compiler, existing compilers have difficulty prov-
ing the absence of cross-iteration memory dependences in
general purpose applications due to their extensive use of
pointers, recursive data structures, and complex control flow.
However, parallelization opportunities still exist in these ap-
plications; a significant fraction of loops show zero or few
cross-iteration memory dependences during execution.

To determine the viability of predicting which loops are

parallelizable based on profiling information, we performed
a study of the nature of cross-iteration memory dependences.
Register dependences are not considered because they are
obvious to the compiler. For all loops in a program, we pro-
file to identify cross-iteration memory dependences. (Details
on the profiler can be found in Section 4.1). If two memory
operations from different iterations access the same address,
and one is a store, there is a cross-iteration dependence. For
each loop, we can then obtain the fraction of iterations with a
cross-iteration dependence, we call this the dependence frac-
tion. Figure 1 shows histograms of how much time is spent
in loops with different dependence fractions across various
applications in the SPEC and MediaBench suites. The left
set of bars for each benchmark (gray bars) show the distribu-
tion of dependence fractions for a training input. The y-axis
represents how much serial execution time was spent in loops
with a particular dependence fraction; the percentage is out
of the total execution time spent in loops. The portion of the
benchmark spent within loops is shown at the top of each
graph in parenthesis after the benchmark name.

Examining this structure, we hypothesize that the loops
with zero dependences are unlikely to have dependences for
other input sets, and would be good candidates for paral-
lelization. To check this, we profiled only these loops using
an evaluation input for the benchmark; the result is also pre-
sented in Figure 1. The right set of bars (dark gray bars) show
the distribution of dependence fractions of the loops that we
expect to be zero (since they were zero in the training input).
For most benchmarks, the hypothesis is strongly supported.
One notable exception is 256.bzip2, where one loop repre-
senting 7% of the execution changes its memory dependence
behavior significantly with the larger input set.

One particular concern in systems that hardware to detect
such memory dependences (e.g., coherent caches) is false
sharing. The data in Figure 1 was consistent across cache
line sizes of 4 to 64 bytes. While this is not a comprehensive
study, we conclude that false sharing does not significantly
affect the identification of statistical DOALL loops. This
confirms the false sharing results presented in [29]. With
highly predictable memory dependences, these loops are
promising candidates for speculative parallelization; how-
ever, we have thus far ignored the feasibility of handling reg-
ister dependences.

2.2 Opportunities for Statistical DOALL Loops

We now consider a class of loops where loop-level paral-
lelism can be exploited by the compiler and the rate of spec-
ulation recovery is expected to be low. A statistical DOALL
loop is one where all register dependences can be removed
via compiler transformations, and the memory profile shows
that there are zero or very few cross-iteration memory depen-
dences.

Figure 2 illustrates two statistical DOALL loops taken
from SPEC applications. Figure 2(a) shows a loop from the
benchmark 256.bzip2. The compiler cannot prove this loop
is DOALL because the value of the variable a2update can-
not be determined at compile time. Hence, the statement
quadrant[a2update] = qVal could access the same
memory location in different iterations. However, an exe-
cution profile shows that iterations access different memory
locations at runtime, thus the loop is statistically likely a
DOALL. The loop can be parallelized to speed up the ex-
ecution if there exist mechanisms to detect potential cross-
iteration memory dependence violations and recover when

2

023.eqntott (100%)

0%

10%

20%

30%

40%

50%

60%

70%

80%

 =
 0

%

<
=

 1
0
%

<
=

 2
0
%

<
=

 3
0
%

<
=

 4
0
%

<
=

 5
0
%

<
=

 6
0
%

<
=

 7
0
%

<
=

 8
0
%

<
=

 9
0
%

<
=

 1
0
0
%

Fraction of Iterations with Cross-Iteration Dependences

F
ra

ct
io

n
 o

f
L
o
o
p
 E

xe
cu

ti
o
n
 T

im
e

072.sc (88%)

0%

5%

10%

15%

20%

25%

30%

 =
 0

%

<
=

 1
0
%

<
=

 2
0
%

<
=

 3
0
%

<
=

 4
0
%

<
=

 5
0
%

<
=

 6
0
%

<
=

 7
0
%

<
=

 8
0
%

<
=

 9
0
%

<
=

 1
0
0
%

Fraction of Iterations with Cross-Iteration Dependences

F
ra

ct
io

n
 o

f
L
o
o
p
 E

xe
cu

ti
o
n
 T

im
e

124.m88ksim (85%)

0%

5%

10%

15%

20%

25%

30%

35%

40%

 =
 0

%

<
=

 1
0
%

<
=

 2
0
%

<
=

 3
0
%

<
=

 4
0
%

<
=

 5
0
%

<
=

 6
0
%

<
=

 7
0
%

<
=

 8
0
%

<
=

 9
0
%

<
=

 1
0
0
%

Fraction of Iterations with Cross-Iteration Dependences

F
ra

ct
io

n
 o

f
L
o
o
p
 E

xe
cu

ti
o
n
 T

im
e

129.compress (100%)

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

 =
 0

%

<
=

 1
0
%

<
=

 2
0
%

<
=

 3
0
%

<
=

 4
0
%

<
=

 5
0
%

<
=

 6
0
%

<
=

 7
0
%

<
=

 8
0
%

<
=

 9
0
%

<
=

 1
0
0
%

Fraction of Iterations with Cross-Iteration Dependences

F
ra

ct
io

n
 o

f
L
o
o
p
 E

xe
cu

ti
o
n
 T

im
e

132.ijpeg (99%)

0%

10%

20%

30%

40%

50%

60%

70%

80%

 =
 0

%

<
=

 1
0
%

<
=

 2
0
%

<
=

 3
0
%

<
=

 4
0
%

<
=

 5
0
%

<
=

 6
0
%

<
=

 7
0
%

<
=

 8
0
%

<
=

 9
0
%

<
=

 1
0
0
%

Fraction of Iterations with Cross-Iteration Dependences

F
ra

ct
io

n
 o

f
L
o
o
p
 E

xe
cu

ti
o
n
 T

im
e

164.gzip (100%)

0%

5%

10%

15%

20%

25%

 =
 0

%

<
=

 1
0
%

<
=

 2
0
%

<
=

 3
0
%

<
=

 4
0
%

<
=

 5
0
%

<
=

 6
0
%

<
=

 7
0
%

<
=

 8
0
%

<
=

 9
0
%

<
=

 1
0
0
%

Fraction of Iterations with Cross-Iteration Dependences

F
ra

ct
io

n
 o

f
L
o
o
p
 E

xe
cu

ti
o
n
 T

im
e

254.gap (53%)

0%

10%

20%

30%

40%

50%

60%

 =
 0

%

<
=

 1
0
%

<
=

 2
0
%

<
=

 3
0
%

<
=

 4
0
%

<
=

 5
0
%

<
=

 6
0
%

<
=

 7
0
%

<
=

 8
0
%

<
=

 9
0
%

<
=

 1
0
0
%

Fraction of Iterations with Cross-Iteration Dependences

F
ra

ct
io

n
 o

f
L
o
o
p
 E

xe
cu

ti
o
n
 T

im
e

256.bzip2 (93%)

0%
2%
4%

6%
8%

10%
12%
14%
16%

18%
20%

 =
 0

%

<
=

 1
0
%

<
=

 2
0
%

<
=

 3
0
%

<
=

 4
0
%

<
=

 5
0
%

<
=

 6
0
%

<
=

 7
0
%

<
=

 8
0
%

<
=

 9
0
%

<
=

 1
0
0
%

Fraction of Iterations with Cross-Iteration Dependences

F
ra

ct
io

n
 o

f
L
o
o
p
 E

xe
cu

ti
o
n
 T

im
e

cjpeg (97%)

0%

10%

20%

30%

40%

50%

60%

 =
 0

%

<
=

 1
0
%

<
=

 2
0
%

<
=

 3
0
%

<
=

 4
0
%

<
=

 5
0
%

<
=

 6
0
%

<
=

 7
0
%

<
=

 8
0
%

<
=

 9
0
%

<
=

 1
0
0
%

Fraction of Iterations with Cross-Iteration Dependences

F
ra

ct
io

n
 o

f
L
o
o
p
 E

xe
cu

ti
o
n
 T

im
e

epic (100%)

0%
10%
20%

30%
40%
50%
60%
70%
80%

90%
100%

 =
 0

%

<
=

 1
0
%

<
=

 2
0
%

<
=

 3
0
%

<
=

 4
0
%

<
=

 5
0
%

<
=

 6
0
%

<
=

 7
0
%

<
=

 8
0
%

<
=

 9
0
%

<
=

 1
0
0
%

Fraction of Iterations with Cross-Iteration Dependences

F
ra

ct
io

n
 o

f
L
o
o
p
 E

xe
cu

ti
o
n
 T

im
e

g721decode (89%)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

 =
 0

%

<
=

 1
0
%

<
=

 2
0
%

<
=

 3
0
%

<
=

 4
0
%

<
=

 5
0
%

<
=

 6
0
%

<
=

 7
0
%

<
=

 8
0
%

<
=

 9
0
%

<
=

 1
0
0
%

Fraction of Iterations with Cross-Iteration Dependences

F
ra

ct
io

n
 o

f
L
o
o
p
 E

xe
cu

ti
o
n
 T

im
e

mpeg2enc (100%)

0%

20%

40%

60%

80%

100%

120%

 =
 0

%

<
=

 1
0
%

<
=

 2
0
%

<
=

 3
0
%

<
=

 4
0
%

<
=

 5
0
%

<
=

 6
0
%

<
=

 7
0
%

<
=

 8
0
%

<
=

 9
0
%

<
=

 1
0
0
%

Fraction of Iterations with Cross-Iteration Dependences

F
ra

ct
io

n
 o

f
L
o
o
p
 E

xe
cu

ti
o
n
 T

im
e

mpeg2dec (100%)

0%
10%
20%
30%
40%
50%
60%

70%
80%
90%

100%

 =
 0

%

<
=

 1
0
%

<
=

 2
0
%

<
=

 3
0
%

<
=

 4
0
%

<
=

 5
0
%

<
=

 6
0
%

<
=

 7
0
%

<
=

 8
0
%

<
=

 9
0
%

<
=

 1
0
0
%

Fraction of Iterations with Cross-Iteration Dependences

F
ra

ct
io

n
 o

f
L
o
o
p
 E

xe
cu

ti
o
n
 T

im
e

pegwitenc (68%)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

 =
 0

%

<
=

 1
0
%

<
=

 2
0
%

<
=

 3
0
%

<
=

 4
0
%

<
=

 5
0
%

<
=

 6
0
%

<
=

 7
0
%

<
=

 8
0
%

<
=

 9
0
%

<
=

 1
0
0
%

Fraction of Iterations with Cross-Iteration Dependences

F
ra

ct
io

n
 o

f
L
o
o
p
 E

xe
cu

ti
o
n
 T

im
e

unepic (100%)

0%

10%

20%

30%

40%

50%

60%

 =
 0

%

<
=

 1
0
%

<
=

 2
0
%

<
=

 3
0
%

<
=

 4
0
%

<
=

 5
0
%

<
=

 6
0
%

<
=

 7
0
%

<
=

 8
0
%

<
=

 9
0
%

<
=

 1
0
0
%

Fraction of Iterations with Cross-Iteration Dependences

F
ra

ct
io

n
 o

f
L
o
o
p
 E

xe
cu

ti
o
n
 T

im
e

All Loops w/Training Input

Loops Selected During Training
w/Evaluation Input

All Loops w/Training Input

Loops Selected During Training
w/Evaluation Input

Figure 1: Distribution of execution time for loops with varying fractions of iterations with cross-iteration dependences. The left bar represents the breakdown of all
loops for a training input. The right bar represents the breakdown of the zero cross iteration dependence loops on the training input using a larger, evaluation input for
the benchmark.

3

for (j = 0; j < bbSize; j++) {
Int32 a2update = zptr[bbStart + j];
UInt16 qVal = (UInt16)(j >> shifts);
quadrant[a2update] = qVal;
if (a2update < NUM_OVERSHOOT_BYTES)

quadrant[a2update + last + 1] = qVal;
}

for(cnt = 0; cnt < TMPBRK; cnt++, bp++)
if(bp->code && ((bp->adr & ~0x3) == addr))

break;

/* later use of cnt */
/* later use of bp */

(b)(a)

Figure 2: Statistical DOALL loops: (a) Loop from 256.bzip2 is a DOALL-counted due to an unlikely memory dependence,
(b) Loop from 124.m88ksim is a DOALL-uncounted due to a cross-iteration control dependence.

a violation is detected. Because the number of iterations is
known when the execution enters the loop, this type of loop
is referred to as DOALL-counted.

Figure 2(b) shows a loop from 124.m88ksim. This loop
is not DOALL because of a cross-iteration control depen-
dence. The execution of later iterations depends on whether
any prior iteration executed the break statement. Aside from
the control dependence, the loop does not have any cross-
iteration dependences. If the loop executes many iterations
before exit, it is worth being parallelized. Since the num-
ber of iterations is unknown when the execution enters the
loop, this type of loop is referred to as DOALL-uncounted.
DOALL-uncounted loops require additional mechanisms to
handle discarding the side effects of unnecessary iterations.

To estimate the potential benefit of parallelizing statisti-
cal DOALL loops, several SPEC and MediaBench applica-
tions were manually examined with the help of profile infor-
mation. Figure 3 shows the fraction of serial runtime spent
in parallelizable loops (both provable and statistical) for the
benchmarks. The fraction of provable DOALL loops are es-
timated using the memory dependence analysis tool in the
OpenIMPACT compiler [21]. This figure shows the frac-
tion of execution time covered by three types of paralleliz-
able loops: provable DOALL, statistical DOALL-counted,
and statistical DOALL-uncounted.

As shown in the figure, the opportunity to parallelize
using DOALL loops varies across the benchmarks. Some
benchmarks, such as 023.eqntott, epic and mpeg2enc, have
more than 80% of their execution in DOALL loops, while
072.sc, 129.compress, 164.gzip, 254.gap and 256.bzip2
spend a more modest fraction of time (less than 20%)
in DOALL loops. The time spent on different types of
DOALL loops also varies across benchmarks. For exam-
ple, mpeg2dec has more than 30% of its execution time in
provable DOALL loops. Provable DOALL loops are gen-
erally restricted to loops that exclusively access arrays with
affine indices. Given the extensive use of pointers, prov-
able DOALL loops are not common in non-numeric appli-
cations. Even MediaBench applications often use pointers
and dynamic memory allocation, thereby making the loops
difficult to provably parallelize. However, a significant frac-
tion of loops are statistically DOALL. Epic has spends more
than 80% of its execution time in statistical DOALL-counted
loops, and more than 90% of the execution time for 023.eqn-
tott is spent in DOALL-uncounted loops.

Overall, the data shows that there are large number of par-

allelization opportunities using statistical DOALL loops for
many benchmarks. The rest of this paper studies low-cost
techniques to exploit these statistical parallelization opportu-
nities.

3 Architectural Support for Statistical LLP

This paper proposes mechanisms to exploit statistical loop
level parallelism with low hardware cost. The spirit is to
expose several generic architectural features to the compiler
and allow the compiler to manage speculative thread spawn-
ing and recovery. Hardware is used when the software al-
ternative is too costly. For example, hardware is used to
detect dynamic memory dependence conflicts. A number
of works [29, 27, 10] have proposed executing speculative
threads in environments where much of the burden is given
to hardware; these require complex hardware to fully support
TLS. By employing a hardware/software approach, our tech-
nique has a lower cost and overhead compared to hardware-
centric techniques. Admittedly, hardware-centric TLS tech-
niques can support speculative execution of both loops and
acyclic code, while we only considered using our approach
for loops in this work.

3.1 Requirements for Statistical DOALL Execu-
tion

Efficiently exploiting statistical loop-level parallelism re-
quires several mechanisms to facilitate speculative execution,
which can be implemented in hardware, software, or a com-
bination. System designers must decide how much of the
burden should be given to hardware, and how much to soft-
ware and the compiler. The following is a list of features
required to efficiently execute statistical DOALL loops.

Requirement 1: Detection of cross-core memory de-
pendences. If two memory operations access the same loca-
tion, and one is a store, a dependence exists between those
operations.1 Loops are parallelized if the profile indicates
that cross-iteration memory dependences are unlikely. At
runtime, accesses to the same memory location from differ-
ent cores must be detected and a recovery action initiated.

Requirement 2: Undo/rollback. If a memory depen-
dence violation is detected, the core executing the higher

1Note that in more complex systems, system designers may opt to elimi-
nate anti and output dependences via hardware, thus they would be invisible
to software and not treated as dependences.

4

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

0
2
3
.e

q
n
to

tt

0
7
2
.s

c

1
2
4
.m

8
8
k
si

m

1
2
9
.c

o
m

p
re

ss

1
3
2
.i
jp

e
g

1
6
4
.g

zi
p

2
5
4
.g

a
p

2
5
6
.b

zi
p
2

cj
p
e
g

e
p
ic

g
7
2
1
d
e
co

d
e

m
p
e
g
2
d
e
c

m
p
e
g
2
e
n
c

p
e
g
w

it
e
n
c

u
n
e
p
ic

F
ra

ct
io

n
 o

f
S
e
ri
a
l
E
x
e
cu

ti
o
n
 T

im
e

Profiled DOALL-uncounted

Profiled DOALL-counted

Provable DOALL

Figure 3: Loop-level parallelism available in SPEC INT and MediaBench [16] applications.

numbered iterations needs to abort and restart. The architec-
tural state on the aborted core, including registers and mem-
ory contents, must be rolled back to the state before the spec-
ulative execution started.

Requirement 3: Lightweight thread spawning. To ex-
ploit statistical loop level parallelism, multiple threads, each
consisting of one or more loop iterations, execute specula-
tively in parallel on multiple cores. A low latency mech-
anism to spawn threads is essential for the performance of
statistical DOALL loops, especially those with small bodies
and low trip counts.

Requirement 4: Inter-core scalar communication. Be-
fore the parallel execution of a loop, scalar register values are
passed to all cores to initialize live-in values. Similarly, after
the parallel execution, live-out scalar values of the loop are
passed from all cores to the users of the live-out scalars. A
low latency mechanism to pass scalar values between cores
is essential, especially for loops with low trip count.

Requirement 5: Instruction ordering between cores.
During the speculative execution of loop iterations, certain
actions must occur in order between cores. For example,
cores must commit their speculative results in the original
program order. This ordering is required for every loop, so
an efficient way to enforce ordering among cores is needed.

3.2 Target Architecture

Figure 4(a) shows the overall structure of the proposed
architecture for statistical DOALL execution. The archi-
tecture is a standard chip multiprocessor with two exten-
sions. First, hardware transactional memory [12, 24, 11]
is added to detect memory dependence violations and roll
back memory state. The rollback of registers is handled by
the compiler. Second, a scalar operand network, similar to
that in RAW [30], is added to allow direct communication of
scalars, support fast thread spawning, and enforce instruction
ordering between cores.

The system has four in-order cores. Each core has pri-
vate L1 instruction and coherent data caches. All four cores
share an L2 cache and main memory. The cores access a uni-
fied memory space; the coherence of caches is handled by a

bus-based snooping protocol. A scalar operand network con-
nects the cores in a 2-D mesh. Details about the transactional
memory and the scalar operand network are presented next.

Low-Cost Transactional Memory. The inter-core mem-
ory dependence detection and rollback of memory state are
supported by a transactional memory. A transaction is a seg-
ment of code running on one core, marked by the program-
mer or the compiler, that appears to execute atomically when
observed by other cores. Transactional memory supports par-
allel execution of transactions on multiple cores. The mem-
ory system monitors addresses accessed by each core (taking
advantage of cache coherence), and aborts and restarts one or
more transactions if the transactional semantics are violated.
Transactional memory is a good fit for statistical DOALL
execution because the iterations assigned to each core can
be viewed as a transaction; as long as the transactions are
committed in the correct order, the loop appears to execute
sequentially.

The low-cost transactional memory implementation used
here is inspired by early work on transactional memory [12].
There is a large body of research on using transactional
memory to support TLS; Garzarán et al. [8] provide a thor-
ough survey of techniques. This implementation falls on the
lowest-cost end of their spectrum (only one copy of each
memory location exists system-wide, and each core only ex-
ecutes one speculative transaction at a time). Three new in-
structions are needed in the ISA, as shown in the top por-
tion of Table 1. Each cache block’s state is augmented with
a speculative bit. A transaction begins with an XBEGIN in-
struction, which specifies an abort handler. Once the transac-
tion begins, the speculative bit will be set on any cache block
accessed (via a load or store). Note, previously dirty blocks
are flushed back to memory or to a write buffer upon XBE-
GIN. During a transaction, all loads and stores must appear
atomically to other processors. We detect the following sit-
uations via the coherence network, if one of these situations
occurs, at least one of the cores involved must be aborted:

• Any core that loads a value with its speculative bit set
in another core’s cache and was dirty

• Any core that stores a value with its speculative bit set

5

Register File

FU
Mem
FU

. . .

To northTo west

L1
Instruction Cache

L1 Data Cache with
Transactional

Memory Support

From Banked L2 To/From Banked L2

Instruction Fetch/Decode

Comm
FUCore 0 Core 1

Core 2 Core 3

Banked L2 Cache

Banked L2 Cache

(a) (b) (c)

Core

Comm FU

Routing

Logic

To west To north

To Register File

S
e
n
d
 Q

u
e
u
e

R
e
ce

iv
e
 Q

u
e
u
e

Figure 4: Block diagram of the target architecture: (a) 4-core system connected in a mesh topology, (b) Datapath of an
individual core, (c) Details of the inter-core communication function unit.

in another core’s cache

• Speculative cache capacity is exceeded: any cache
block is evicted from the data cache and any victim
caches

To decide which core should abort, we simply abort the
core with the higher core ID, since the compiler parallelizes
a loop using a template where higher iterations are always ex-
ecuted on a higher number core. Note, however, that systems
such as those that resolve such conflicts with timestamps [24]
or transaction IDs, would also suffice. The aborted proces-
sor will invalidate all blocks marked speculative and jump
to its abort handler. The compiler inserts code to roll back
register state in the abort handler. This will be discussed in
Section 4.4.1.

One particular concern is cache capacity overflow. As de-
scribed later (Section 4.4.1), the compiler can try to avoid
capacity overflow; however, there must be a mechanism to
ensure forward progress in case of overflow. In case of an
abort due to overflow, our architecture aborts all transactions
and serializes them. Other techniques that support arbitrar-
ily large transactions, such Unbounded Transactional Mem-
ory [1] and Virtualizing Transactional Memory [25], can also
be used to ensure forward progress.

Unlike other transactional memory implementations, the
transactional memory used here supports an ABORT instruc-
tion that allows a core to abort transactions on other cores. It
takes a core ID and an abort handler as source operands. Any
pending transactions on the specified core will be aborted and
the control on that core will jump to the address specified
by the abort handler. This is needed to parallelize DOALL-
uncounted loops; in these loops, if one iteration exits the
loop, it needs to stop the execution on all higher cores.

Our compiler technique allows us to use a transactional
memory in one of its simplest forms. Much of the work on
TLS [29, 17] assumes the memory system will resolve anti
and output dependences; however, this requires the memory
to keep track of the bytes, instead of the cache lines, that
are modified, which incurs significant hardware cost. Profile

data in Section 2 has shown that there plenty of statistical
loop level parallelism can be exploited without support for
removing anti and output dependences. Thus, hardware sav-
ings can be achieved by not designing hardware to catch the
infrequent dependence case, while still allowing exploitation
of loops with unlikely memory dependences.

Scalar Operand Network. Inter-core communication is
supported by a scalar operand network, similar to that in the
RAW processor [30]. The network allows cores to commu-
nicate scalar values between register files. Each core has a
communication function unit (Comm FU) that allows it to
access the network. As shown in Figure 4(c), the Comm FU
contains send and receive queues and simple routing logic
(XY routing is assumed). Two new instructions, SEND and
RECV, are added to the instruction set, as seen in the bottom
portion of Table 1. The SEND instruction has two source
operands, a register and a destination core ID. It reads the
value in the source register and sends it to the destination
core. The RECV instruction also takes two source operands,
a target register and a sender core ID. When a RECV is exe-
cuted, it looks in the incoming message queue in the core for
messages from the sender ID. If such a message is found, it
moves the value to the target register; otherwise, it stalls the
core and waits for the message. The scalar network allows
low latency communication of register values between cores.

SEND and RECV operations also provide a mechanism to
guarantee the ordering of instructions in different cores. For
example, if instruction A in core 0 should be executed before
instruction B in core 1, the compiler can insert a SEND after
A in core 0 and a RECV before B in core 1. The SEND
and RECV communicate a dummy value. Since the RECV
stalls the core if the corresponding data has not arrived, B is
guaranteed to execute after A.

The scalar operand network also provides a natural mech-
anism for lightweight thread spawning in a master/slave con-
figuration. The master core executes the main program.
When it wants to spawn a thread on a slave core, it sim-
ply sends a program counter (PC) value to that core. The
slave core then starts its execution from the received PC.

6

(a)

Instruction Behavior

XBEGIN abort handler Starts a transaction, specifying a program counter of an abort handler. All
loads and stores will now mark accessed cache blocks as speculative. If a
conflict occurs, marked lines will be invalidated and control will jump to the
abort handler.

XCOMMIT Commits a transaction. This clears the speculative markings from all cache
lines (thus making their values non-speculative).

ABORT core id, abort handler Causes a transaction abort on the specified core, control on the specified core
will jump to the abort handler.

(b)

SEND core id, src reg Takes the value from src reg and sends it via the network to core id. Stalls
if the send queue is full.

dest reg = RECV core id Retrieves the first queued value from core id and writes it to dest reg. Stalls
if the value is not available.

Table 1: Instructions needed to (a) control low-cost-transactional memory, and (b) utilize the scalar operand network.

Since the compiler explicitly controls thread spawning, the
live-in scalar values for the slave are explicitly passed from
the master using SEND/RECV instructions. When the slave
thread completes, live-out scalar values are explicitly com-
municated to the master thread, and the slave will enter a
sleep mode and wait for the next start PC. The master and
slave threads share the same stack frame, so the transac-
tional memory guarantees that the accesses to the shared
stack frame from multiple cores will not conflict, otherwise
the slave thread will be aborted. This spawning mechanism
is lightweight because it does not require any stack manipu-
lation, and software only copies the required register state.

Hardware/Software Breakdown of Requirements. The
proposed architecture, together with appropriate compiler
support, meets all five requirements listed in Section 3.1. Ta-
ble 2 shows how the burden of meeting those requirements is
divided between hardware and compiler. A low-cost transac-
tional memory is used to detect memory dependence viola-
tions and rollback memory state when necessary. For register
state, the hardware transfers control to the address specified
by abort handler when a memory dependence violation is
detected, the compiler is responsible for implementing the
abort handler and recovering the necessary register values
for re-execution. A scalar operand network in the hardware
is used to support fast thread spawning, low latency inter-
core scalar communication, and enforce instruction ordering.
The compiler must insert code to send PC and live-in scalar
values to spawn a thread, insert SEND/RECV instructions
to communication scalar values between cores, and insert
SEND/RECV instructions that communicate dummy values
to enforce ordering of instructions between cores. Details of
the compiler code generation are presented in the next sec-
tion.

4 Compilation for Statistical LLP
The goal of our compiler is to identify statistical DOALL

loops, select the loops that are profitable to parallelize, and
generate a parallel version of the code for selected loops to
achieve speedup. Our compiler can parallelize two types of
loops: statistical DOALL-counted and DOALL-uncounted.
Figure 5 shows the work flow of our compiler. It first
performs profiling on the program to collect memory de-

pendence information for all loops. Then, the loop classi-
fier identifies loops as not DOALL, DOALL-counted, and
DOALL-uncounted. A heuristic is used to select loops that
are profitable to parallelize. Finally, the selected loops are
transformed and assembly code is generated to parallelize the
loops. The following sections describe each of these steps.

4.1 Profiling
The compiler profiles the program to collect cross-

iteration memory dependence information. We profile mem-
ory accesses to find loops with no or very few cross iteration
memory dependences as candidates for parallelization. The
memory profiler emulates the program with a training input
set. Since a single instruction may be within multiple nested
loops, the profiler is cognizant of which iterations the exe-
cution is currently in for all loop nests. For each recently
accessed memory address, the profiler stores the last instruc-
tion to access it, and the loop iterations in all nest levels at the
time of last access. (We found that storing only the last 512k
recently accessed addresses was sufficient and kept profiling
runs generally under 10 minutes.) This allows the profiler
to identify if a dependence occurred across iterations. The
compiler also collects the execution frequency of every basic
block in the iteration profile to facilitate heuristic loop selec-
tion and other parts of the the compiler.

4.2 Loop Classification
The loop classifier classifies the loops into three cat-

egories: DOALL-counted, DOALL-uncounted, and not
DOALL. If a loop has no cross-iteration dependences, or
only contains removable cross-iteration dependences, it is
DOALL. We further categorize loops as either DOALL-
counted loops, where the number of iterations can be de-
termined upon loop entry, or as DOALL-uncounted loops,
which can have any loop termination condition. DOALL-
counted and DOALL-uncounted loops can be parallelized
using different compiler techniques.

The classifier first examines the profile for cross-iteration
memory dependences. If such dependences exist, the loop is
not DOALL. Theoretically, if the profile shows infrequent
cross-iteration memory dependences, the loop can still be
classified as statistical DOALL; this would require the loop

7

Requirement Hardware Support Compiler Support

1. Memory Dependence Detection Transactional memory. N/A
2. Rollback For memory: transactional memory. For memory: N/A

For register: jump to abort handler. For register: implement the abort han-
dler to roll back registers.

3. Lightweight Spawning Scalar operand network. Insert code to send PC and live-in scalar
values.

4. Scalar Communication Scalar operand network. Insert SEND/RECV to communicate
scalar values.

5. Instruction Ordering Scalar operand network. Insert dummy SEND/RECV to guaran-
tee instruction ordering.

Table 2: Breakdown of hardware/software responsibilities for efficient execution of statistical DOALL loops.

Profiling
Loop

Classification
Loop

Selection

Loop Body
replication

Variable
Renaming

Accumulator
Expansion

Iteration
Chunking

Live-out
Collection

Transaction
Formation

Scheduling &
Register Allocation

Parallel Code Generation

Compiler
IR

Assembly

Figure 5: Parallelization flow

selection heuristic to accurately estimate the cost of these
rare dependence violations. For this paper, we focus on the
loops show no cross-iteration dependences during profiling,
and leave loops with infrequent memory dependences for fu-
ture work.

Next, the classifier examines all cross-iteration register
dependences and determines if they can be eliminated via
compiler transformations. All output dependences and anti-
dependences can be eliminated, as well as some flow (true)
dependences, such as accumulator operations and induction
variables.

The cross-iteration register dependences that can be re-
moved are:

• Local variables are variables that are always defined
before being used in the loop body. In the loop shown in
Figure 2(a), both a2update and qVal are local vari-
ables. Cross-iteration anti-dependences exist for local
variables. These dependences can be removed by re-
naming the local variable for each core.

• Write-only variables are defined in the loop body but
not used in the loop body. They are live-out of the
loop, so there are cross-iteration output dependences
for write-only variables. These dependences can be re-
moved by renaming the variables for each core, and
recording whether the variables were written on that
core, so that the last written value can be used upon loop
exit.

• Induction variables are variables that are updated by
the same increment on every loop iteration, such as the
variable j in Figure 2(a). The value of an induction
variable in any iteration can be calculated from its initial
value, the increment, and the iteration number.

• Reduction variables, such as accumulators or variables
used to find the maximum or minimum value, causes
cross-iteration flow (true) dependences. An example
of accumulator variable is in sum = sum + a[i],
where sum is an accumulator variable. These depen-
dences can be removed by creating a local accumulator
(or min/max variable) for each core, and accumulating
the local accumulators (or finding the global min/max
among local min/max) after the loop exit.

If a loop has no other cross-iteration dependences, the
loop is DOALL. The test for counted loops is then applied.
For a loop to be counted, the number of iterations to be ex-
ecuted in the loop must be known when the loop execution
starts. It requires that all conditional branches that exit the
loop are (a) based on the induction variable, (b) have the
same comparison condition, and (c) compare it to the same
loop-invariant value. Loops that pass this test are DOALL-
counted, and all others are DOALL-uncounted.

4.3 Heuristic Loop Selection

Simply parallelizing every DOALL loop can sometimes
reduce overall application performance because of the paral-
lelization overhead. This overhead includes the extra instruc-
tions to remove register dependences, chunk loop iterations,
supply live-in values, and fix up live-out values. If the paral-
lelization overhead outweighs the potential time savings, the
loop should not be parallelized.

A heuristic is employed that estimates the overall speedup
possible by parallelizing the loop. First, serial runtime is
estimated using profile information. Then, the paralleliza-
tion overhead required to divide the work amongst multiple
cores is estimated. This is done by evaluating the loop to see

8

spawn

init

reset

loop body

consolidation

init

reset

loop body

consolidation

init

reset

loop body

consolidation

sleep sleep

loop body

pc pc

Figure 6: Parallelizing a loop for a 3-core system. The loop
body is replicated, and initialization blocks, reset blocks, and
consolidation blocks are added as detailed in Section 4.4.1.
Dashed lines represent inter-core data communication.

what cross-iteration dependences need to be removed, and
estimating the additional instructions required to handle each
dependence. Costs are specified in terms of number of oper-
ations, but send/receive pairs are counted as three operations
to estimate communication overhead. These parallelization
operations are executed once per loop invocation, and the
total is called the parallelization overhead. Third, we de-
termine c, the average number of parallel chunks of work. If
the average number of iterations is higher than the number of
cores, c is simply the number of cores; otherwise, it is the av-
erage number of iterations. The parallel runtime (excluding
overhead) is optimistically estimated as the serial runtime di-
vided by c. Finally, from the serial runtime, parallel runtime,
and parallelization overhead, we compute the estimated
speedup. The loop is parallelized if the estimated speedup is
higher than a threshold; in this work, 1.15 is used since our
estimate is optimistic.

4.4 Code Generation

Once loops have been identified as good candidates for
parallelization, the compiler must divide the loops’ work
across multiple cores. For all loops, the compiler must repli-
cate the loop body for each core, insert setup and cleanup
code, and remove register dependences. First, Section 4.4.1
discusses code generation for DOALL-counted loops, and
then Section 4.4.2 shows how the compiler techniques can
be extended to handle DOALL-uncounted loops.

4.4.1 Code generation for DOALL-counted loops

To parallelize DOALL-counted loops, the compiler performs
the six parallel code generation steps shown in Figure 5. The
first three steps create the framework for parallelization, and
the next three untangle additional dependences within this
framework.

The loop body is first replicated. The original copy of the
loop is deemed the copy for core0, and an additional copy of
all basic blocks in the loop is made for each additional core.
Figure 6 shows how the loop body is replicated across the
cores. (The additional blocks shown in the figure have not
been inserted yet.)

Second, iteration chunking is performed. For cache local-
ity, it is usually desirable to place contiguous iterations on

the same core. To divide the iterations between cores, induc-
tion variables are privatized for each core. New operations
are inserted in a new preheader block, the initialization block
(as seen in Figure 6), to compute the initial, final, and incre-
ment values for each core. For simplicity, this computation is
done on core0 and communicated to other cores.2 Secondary
induction variables, which have initial but no final values, are
treated similarly; their initial values are computed based on
those of the primary.

The third step is transaction formation: the compiler must
explicitly manage speculative register state, as well as ensure
that speculative memory state is committed correctly. The
compiler forms a framework to allow undo/rollback of regis-
ter states and to commit transactions in order. Two new basic
blocks are created for each core: a reset block and a consol-
idation block. A reset block is created before the loop (as
shown in Figure 6) to allow transactions to restart; register
values can be reset without re-executing the inter-core com-
munication in the initialization block. The reset block begins
the transaction with an XBEGIN instruction and specifies its
own PC as the abort handler. Then, instructions in the reset
block duplicate any live-in values that will be modified in the
loop body into new registers, so that their original values can
be restored should the transaction restart. As dependences
are untangled in later stages, any operations that should be re-
executed if the transaction restarts are inserted into the restart
block.

Figure 7 provides a more detailed picture using a loop
from 256.bzip: iteration chunking instructions have been in-
serted in the initialization blocks, and XBEGIN and MOVE
instructions have been inserted in the reset blocks.

A consolidation block is inserted after the loop; it is re-
sponsible for both committing the transactions and consoli-
dating any register values live after loop termination. Trans-
actions must be committed in order, so SEND and RECV
instructions are inserted, as illustrated in Figure 7. The con-
solidation block on the first core contains an XCOMMIT fol-
lowed by a SEND of some dummy value to the second core.
The second core contains a corresponding RECV, followed
by an XCOMMIT, and finally a SEND to the third core.
This scheme enforces the order of the iterations because the
RECV will stall the core if the SEND hasn’t been executed.
Conceptually, chunks of iterations are being committed as
atomic updates.

The fourth step in parallel code generation is variable re-
naming. Local variables can be renamed, removing anti-
dependences. Values that are live-in, but never modified, can
be replicated; a local copy is made for each core, and com-
municated from core0 in the initialization block.

Fifth, accumulator operations are expanded to local accu-
mulators. Local accumulators are created for each core and
initialized in the reset block (so they are reset if an abort oc-
curs). The local accumulator is communicated back to core0
in the consolidation block (after transaction commit), and
core0 performs the final reduction operation.

Finally, output dependeces for live-out variables are un-
tangled. Since live-out values may be conditionally updated,
the compiler creates a predicate on each core for each live-
out register. The predicate is initialized to False in the reset
block, and is set to True when the register has been set on
that core. In the example of Figure 7, assume that qVal is

2This typically takes approximately 14 arithmetic operations for each
core, but when loop count information is statically available, global classic
optimizations in later phases of the compiler eliminate these operations.

9

for (; j < j_end0; j++) {
Int32 a2update = zptr[bbStart + j];
UInt16 qVal = (UInt16)(j >> shifts);
qVal_changed = true
quadrant[a2update] = qVal;
if (a2update < NUM_OVERSHOOT_BYTES)

quadrant[a2update + last + 1] = qVal;
}

Compute j_start1, j_start2
Compute j_end0, j_end1

SEND j_start1, core1
SEND j_start2, core2
SEND j_end1, core1
SEND bbSize, core2
SEND bbStart, core1, core2
SEND shifts, core1, core2
SEND last, core1, core2

for (; j < j_end1; j++) {
Int32 a2update1 = zptr[bbStart1 + j];
UInt16 qVal1 = (UInt16)(j >> shifts1);
qVal_changed1 = true
quadrant[a2update1] = qVal;
if (a2update1 < NUM_OVERSHOOT_BYTES)

quadrant[a2update1 + last1 + 1] = qVal;
}

j_start1 = RECV core0
j_end1 = RECV core0
bbStart1 = RECV core0
shifts1 = RECV core0
last1 = RECV core0

for (; j < bbSize2; j++) {
Int32 a2update2 = zptr[bbStart2 + j];
UInt16 qVal2 = (UInt16)(j >> shifts2);
qVal_changed2 = true
quadrant[a2update2] = qVal;
if (a2update2 < NUM_OVERSHOOT_BYTES)

quadrant[a2update2 + last2 + 1] = qVal;
}

j_start2 = RECV core0
bbSize2 = RECV core0
bbStart2 = RECV core0
shifts2 = RECV core0
last2 = RECV core0

XBEGIN
j = 0

XBEGIN
qVal_changed1 = false
j = j_start1

XBEGIN
qVal_changed2 = false
j = j_start2

Reset blocks are also the abort handlers

Initialization blocks perform communication.

Consolidation blocks commit memory and determine live outs.

dummy_val = RECV core0
XCOMMIT
SEND dummy_val, core2
SEND qVal_changed1, core0
SEND qVal1, core0

XCOMMIT
SEND dummy_val, core1
qVal_changed1 = RECV core1
qVal1 = RECV core1
qVal = qVal1 if (qVal_changed1)
qVal_changed2 = RECV core2
qVal = qVal2 if (qVal_changed2)

dummy_val = RECV core1
XCOMMIT
SEND qVal_changed2, core0
SEND qVal2, core0

core0 core1 core2

Figure 7: Parallelized code for a DOALL-counted loop in 256.bzip2 for three cores.

live-out for illustration purposes. The compiler then create
a new predicate qVal changed. Operations are added to
set the predicate to True in all basic blocks that update the
live-out register. Then, each live-out register can be renamed
to a local live-out. The predicates and local live-out values
are communicated back to core0 in the consolidation block.
The block on core0 has a sequence of MOVE operations that
move the received values back into the original live-out regis-
ter based on the received predicates, as detailed in the figure.
Live out variables are generally the most expensive depen-
dence to untangle, but the heuristic step already accounts for
this.

This completes the parallel code generation. One remain-
ing concern is the underlying architectural capacity for spec-
ulative state. Transactional memories have a limited capac-
ity. Our architecture guarantees forward progress by abort-
ing all transactions and serializes them. Overflow can also
be prevented by dividing the loop into smaller chunks if a
loop is determined to access a large number of memory ad-
dresses via profile information. An outer loop can be created
to iterate through the sets of smaller chunks.

4.4.2 Code generation for DOALL-uncounted loops

Additional transformations are necessary for DOALL-
uncounted loops, where the exact number of iterations is not
known. Our approach divides the iteration space into fixed
size chunks. Chunks can be executed in parallel across cores.
An outer while-loop is created to iterate through the chunks.
If an iteration meets the exit condition, the execution in all

higher cores are aborted, and a predicate is set to terminate
the outer while-loop.

Figure 8(a) shows a DOALL-uncounted loop in in
300.twolf, and Figure 8(c) provides a high-level picture of
the transformation for this loop. The inner loop in the figure
contains num cores fixed size chunks. The profile informa-
tion is used to decide an appropriate chunk size for the loop
based on the average number of iterations. The inner loop
is treated as a DOALL-counted loop. Local variables, live-
in values, live-out values, and accumulators are handled in a
similar manner to DOALL-counted loops. The communica-
tion of live-in values can be done outside the newly-created
outer loop. Live out values and accumulators are communi-
cated within the outer loop (but outside the inner loop); this
allows updating the live out register state when transactions
are committed. If any iteration in the inner loop takes the
early exit, all execution in higher cores should be aborted.
The compiler inserts ABORT instructions before loop early
exits to stop execution on higher cores.

An outer loop is created to iterate the chunks. The com-
piler creates a new predicate, called exited, as the exit con-
dition for the outer loop. The predicate is initialized to False
outside the outer loop. The predicate exited becomes True
if any iteration in the inner loop takes the early exit. A local
predicate exitedi is created for each core i, An instruction is
inserted before each loop early exit branch that sets exitedi

to True whenever the branch would be taken. exited is com-
puted as a logical OR of all exitedis.

10

initial = 0;
do {

STATISTICAL_DOALL
for (row0 = initial; row < initial + chunk_size*num_cores; row++) {

if (rowsptr [row] == 0) {
exitedi = true;
abort higher cores;
break;

}
}
END_STATISTICAL_DOALL
initial = initial + chunk_size*num_cores;
exited = OR (of all exitedi)

} while (!exited);

min = row;

for (row = 0; rowsptr[row] == 0; row++) ;

min = row;

for (row = 0; ; row++) {
if (rowsptr[row] == 0) {

break;
}

}

min = row;

(a)

(b)
(c)

Figure 8: (a) A statistical DOALL-uncounted loop in 300.twolf (b) An equivalent version of the same loop that more closely
resembles matches assembly code. (c) The loop structured for parallelization as a DOALL-uncounted.

5 Related Work
The LRPD Test [26] and variants [19] speculatively par-

alellize DOALL loops that access arrays, and perform run-
time detection of memory dependences. These techniques
work well for codes that access arrays with known bounds,
but not general single-thread programs, and they show
speedup on specific loops in scientific codes.

Previous work on Thread-Level Speculation (TLS) [22]
and Thread-Level Data Speculation (TLDS) [29, 28] pro-
poses the execution of threads with architectural support.
Those works propose programmer identification of regions
of code that can form transactions, and also discuss specula-
tion on loops. Oplinger et al. [22] in particular identify dif-
ferent styles of loops. This work extends those ideas with
compiler techniques for loop identification, selection, and
automatic code generation.

Several works have also proposed full compiler sys-
tems [17, 7, 2] that target loop-level parallelism (and some-
times method-level parallelism). However, there are two key
differences between these compilers and our own. First,
these compilers rely on a more complex memory system to
untangle anti and output dependences, whereas our work will
attempt to handle such dependences in software, if they can
be promoted to registers. Second, our work uses profiling to
test all loop nests simultaneously, and replicates code only
when necessary to achieve iteration chunking, rather than
relying on ILP-targeted unrolling. The JPRM [5] compiler
framework does profile all loop nests simultaneously, but
does so using hardware, and it also relies on a more com-
plex memory system.

Multiscalar architectures [27] also support thread-level
speculation, and prior work [32] has studied graph partition-
ing algorithms to extract multiple threads; however, this does
not eliminate unnecessary dependences in the same way this
work does.

Decoupled software pipelining (DSWP) [23] presents an-
other technique for (non-speculative) thread extraction on
loops with pointer-chasing cross-iteration dependences. The
loops amenable to DSWP are disjoint from the loops studied
here, so their techniques are orthogonal to this work.

6 Conclusion
This paper has shown that there is significant potential for

statistical loop-level parallelism in many single thread appli-

cations. Compiler techniques were presented that show gen-
eral code generation strategies for these important classes of
loops that are applicable to many architectures with memory
speculation support.

It is important to remember that these techniques only fo-
cus on a certain class of loops. Even though in our system
we executed all non-loop code on a single core, there is still
plenty of potential for parallelism in that code. By combining
an arsenal of techniques for different styles of code regions,
we believe automatic extraction of speculative threads has a
promising future.

References
[1] C. S. Ananian, K. Asanović, B. C. Kuszmaul, C. E. Leiserson, and

S. Lie. Unbounded transactional memory. In Proc. of the 11th In-
ternational Symposium on High-Performance Computer Architecture,
pages 316–327, Feb. 2005.

[2] A. Bhowmik and M. Franklin. A general compiler framework for spec-
ulative multithreading. In SPAA ’02: 14th Annual ACM Symposium on
Parallel Algorithms and Architectures, pages 99–108, 2002.

[3] W. Blume et al. Parallel programming with Polaris. IEEE Computer,
29(12):78–82, Dec. 1996.

[4] M. K. Chen and K. Olukotun. Exploiting method-level parallelism in
single-threaded Java programs. In Proc. of the 7th International Con-
ference on Parallel Architectures and Compilation Techniques, page
176, Oct. 1998.

[5] M. K. Chen and K. Olukotun. The Jrpm system for dynamically par-
allelizing Java programs. In Proc. of the 30th Annual International
Symposium on Computer Architecture, pages 434–446, 2003.

[6] K. Cooper et al. The ParaScope parallel programming environment.
Proceedings of the IEEE, 81(2):244–263, Feb. 1993.

[7] Z.-H. Du, C.-C. Lim, X.-F. Li, C. Yang, Q. Zhao, and T.-F. Ngai. A
cost-driven compilation framework for speculative parallelization of
sequential programs. In Proc. of the SIGPLAN ’04 Conference on Pro-
gramming Language Design and Implementation, pages 71–81, 2004.

[8] M. J. Garzarán, M. Prvulovic, J. M. Llaberı́a, V. Vinals, L. Rauchw-
erger, and J. Torrellas. Tradeoffs in buffering speculative memory state
for thread-level speculation in multiprocessors. ACM Transactions on
Architecture and Code Optimization, 2(3):247–279, 2005.

[9] M. Hall et al. Maximizing multiprocessor performance with the SUIF
compiler. IEEE Computer, 29(12):84–89, Dec. 1996.

[10] L. Hammond, M. Willey, and K. Olukotun. Data speculation sup-
port for a chip multiprocessor. In Eighth International Conference
on Architectural Support for Programming Languages and Operating
Systems, pages 58–69, Oct. 1998.

[11] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis,
B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis, and K. Oluko-
tun. Transactional memory coherence and consistency. In Proc. of the
31st Annual International Symposium on Computer Architecture, page
102, June 2004.

11

[12] M. Herlihy and J. E. B. Moss. Transactional memory: Architectural
support for lock-free data structures. In Proc. of the 20th Annual Inter-
national Symposium on Computer Architecture, pages 289–300, May
1993.

[13] T. A. Johnson, R. Eigenmann, and T. N. Vijaykumar. Min-cut program
decomposition for thread-level speculation. In Proc. of the SIGPLAN
’04 Conference on Programming Language Design and Implementa-
tion, pages 59–70, June 2004.

[14] K. Kennedy and J. R. Allen. Optimizing compilers for modern archi-
tectures: A dependence-based approach. Morgan Kaufmann Publish-
ers Inc., 2002.

[15] D. J. Kuck. The Structure of Computers and Computations. John
Wiley and Sons, New York, NY, 1978.

[16] C. Lee, M. Potkonjak, and W. Mangione-Smith. MediaBench: A tool
for evaluating and synthesizing multimedia and communications sys-
tems. In Proc. of the 30th Annual International Symposium on Mi-
croarchitecture, pages 330–335, 1997.

[17] W. Liu et al. POSH: A TLS compiler that exploits program structure.
In Proc. of the 11th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pages 158–167, Apr. 2006.

[18] P. Marcuello and A. Gonzalez. Thread-spawning schemes for specu-
lative multithreading. In Proc. of the 8th International Symposium on
High-Performance Computer Architecture, page 55, Feb. 2002.

[19] S. Moon, B. So, and M. W. Hall. Evaluating automatic parallelization
in SUIF. Journal of Parallel and Distributed Computing, 11(1):36–49,
2000.

[20] E. Nystrom, H.-S. Kim, and W. Hwu. Bottom-up and top-down
context-sensitive summary-based pointer analysis. In Proc. of the 11th
Static Analysis Symposium, pages 165–180, Aug. 2004.

[21] OpenIMPACT. The OpenIMPACT IA-64 compiler, 2005.
http://gelato.uiuc.edu/.

[22] J. Oplinger, D. Heine, S.-W. Liao, B. A. Nayfeh, M. S. Lam, and
K. Olukotun. Software and hardware for exploiting speculative par-
allelism with a multiprocessor. Technical Report CSL-TR-97-715,
Stanford University, Feb. 1997.

[23] G. Ottoni, R. Rangan, A. Stoler, and D. I. August. Automatic thread
extraction with decoupled software pipelining. In Proc. of the 38th An-
nual International Symposium on Microarchitecture, pages 105–118,
2005.

[24] R. Rajwar and J. R. Goodman. Transactional lock-free execution of
lock-based programs. In Tenth International Conference on Architec-
tural Support for Programming Languages and Operating Systems,
pages 5–17, Oct. 2002.

[25] R. Rajwar, M. Herlihy, and K. Lai. Virtualizing transactional memory.
In Proc. of the 32nd Annual International Symposium on Computer
Architecture, pages 494–505, June 2005.

[26] L. Rauchwerger and D. A. Padua. The LRPD test: Speculative run-
time parallelization of loops with privatization and reduction paral-
lelization. IEEE Transactions on Parallel and Distributed Systems,
10(2):160, 1999.

[27] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar. Multiscalar processors.
In Proc. of the 22nd Annual International Symposium on Computer
Architecture, pages 414–425, 1995.

[28] J. G. Steffan, C. Colohan, A. Zhai, and T. C. Mowry. The STAMPede
approach to thread-level speculation. ACM Transactions on Computer
Systems, 23(3):253–300, 2005.

[29] J. G. Steffan and T. C. Mowry. The potential for using thread-level
data speculation to facilitate automatic parallelization. In Proc. of the
4th International Symposium on High-Performance Computer Archi-
tecture, pages 2–13, 1998.

[30] M. Taylor, W. Lee, S. Amarasinghe, and A. Agarwal. Scalar operand
networks: On-chip interconnect for ILP in partitioned architectures. In
Proc. of the 9th International Symposium on High-Performance Com-
puter Architecture, pages 341–353, Feb. 2003.

[31] J. Tsai et al. The superthreaded processor architecture. IEEE Trans-
actions on Computers, 48(9):881–902, Sept. 1999.

[32] T. N. Vijaykumar and G. S. Sohi. Task selection for a multiscalar
processor. In Proc. of the 31st Annual International Symposium on
Microarchitecture, pages 81–92, Dec. 1998.

[33] C. Zilles and G. Sohi. Master/slave speculative parallelization. In
Proc. of the 35th Annual International Symposium on Microarchitec-
ture, pages 85–96, Nov. 2002.

12

