
Automated Classification and Analysis of Internet Malware

Michael Bailey,* Jon Oberheide,* Jon Andersen,* Z. Morley Mao,*

Farnam Jahanian,*† Jose Nazario †

*Electrical Engineering and Computer Science Department
University of Michigan

{mibailey, jonojono, janderse, zmao, farnam}@umich.edu
†Arbor Networks

{farnam, jose}@arbor.net

April 26, 2007

Abstract

Numerous attacks, such as worms, phishing, and botnets, threaten the availability of the Internet,
the integrity of its hosts, and the privacy of its users. A core element of defense against these attacks is
anti-virus(AV)–a service that detects, removes, and characterizes these threats. The ability of these prod-
ucts to successfully characterize these threats has far-reaching effects—from facilitating sharing across
organizations, to detecting the emergence of new threats, and assessing risk in quarantine and cleanup.
In this paper, we examine the ability of existing host-based anti-virus products to provide semantically
meaningful information about the malicious software and tools (or malware) used by attackers. Using a
large, recent collection of malware that spans a variety of attack vectors (e.g., spyware, worms, spam), we
show that different AV products characterize malware in ways that are inconsistent across AV products,
incomplete across malware, and that fail to be concise in their semantics. To address these limitations, we
propose a new classification technique that describes malware behavior in terms of system state changes
(e.g., files written, processes created) rather than in sequences or patterns of system calls. To address
the sheer volume of malware and diversity of its behavior, we provide a method for automatically catego-
rizing these profiles of malware into groups that reflect similar classes of behaviors and demonstrate how
behavior-based clustering provides a more direct and effective way of classifying and analyzing Internet
malware.

1 Introduction

Many of the most visible and serious problems facing the Internet today depend on a vast ecosystem of
malicious software and tools. Spam, phishing, denial of service attacks, botnets, and worms largely depend on
some form of malicious code, commonly referred to as malware. Malware is often used to infect the computers
of unsuspecting victims by exploiting software vulnerabilities or tricking users into running malicious code.
Understanding this process and how attackers use the backdoors, key loggers, password stealers and other
malware functions is becoming an increasingly difficult and important problem.

Unfortunately, the complexity of modern malware is making this problem more difficult. For example,
Agobot [3], has been observed to have more than 580 variants since its initial release in 2002. Modern Agobot
variants have the ability to perform denial of service attacks, steal bank passwords and account details,
propagate over the network using a diverse set of remote exploits, use polymorphism to evade detection
and disassembly, and even patch vulnerabilities and remove competing malware from an infected system [3].
Making the problem even more challenging is the increase in the number and diversity of Internet malware.
A recent Microsoft survey found more than 43,000 new variants of backdoor trojans and bots during the
first half of 2006 [22]. Automated and robust approaches to understanding malware are required in order to
successfully stem the tide.

1



Dataset Date Number of Number of Unique Labels
Name Collected Unique MD5s McAfee F-Prot ClamAV Trend Symantec
legacy 01 Jan 2004 - 31 Dec 2004 3,637 116 1216 590 416 57
small 03 Sep 2006 - 22 Oct 2006 893 112 379 253 246 90
large 03 Sep 2006 - 18 Mar 2007 3,698 310 1,544 1,102 2,035 50

Table 1: The datasets used in this paper: A large collection of legacy binaries from 2004, a small 6 week
collection from 2006, and a large 6 month collection of malware from 2006/2007. The number of unique
labels provided by 5 AV systems is listed for each dataset.

Previous efforts to automatically classify and analyze malware (e.g., AV, IDS) focused primarily on
content-based signatures. Unfortunately, content-based signatures are inherently susceptible to inaccuracies
due to polymorphic and metamorphic techniques. In addition, the signatures used by these systems often
focus on a specific exploit behavior–an approach increasingly complicated by the emergence of multi-vector
attacks. As a result, IDS and AV products characterize malware in ways that are inconsistent across products,
incomplete across malware, and that fail to be concise in their semantics. This creates an environment in
which defenders are limited in their ability to share intelligence across organizations, to detect the emergence
of new threats, and to assess risk in quarantine and cleanup of infections.

To address the limitations of existing automated classification and analysis tools, we have developed
and evaluated a dynamic analysis approach based on the execution of malware in virtualized environments
and the causal tracing of the operating system objects created as a result of the malware’s execution. The
reduced collection of these user visible system state changes (e.g., files written, processes created) is used
to create a fingerprint of the malware’s behavior. These fingerprints are more invariant and directly useful
than abstract code sequences representing programmatic behavior and can be directly used in assessing
the potential damage incurred, enabling detection and classification of new threats, and assisting in the risk
assessment of these threats in mitigation and clean up. To address the shear volume of malware and diversity
of its behavior, we provide a method for automatically categorizing these profiles of malware into groups
that reflect similar classes of behaviors. These methods are thoroughly evaluated in the context of a malware
dataset that is large, recent, and diverse in the set of attack vectors it represents (e.g., spam, worms, bots,
spyware).

This paper is organized as follows: Section 2 describes the shortcomings of existing AV software and
enumerates requirements for effective malware classification. We present our behavior-based fingerprint
extraction and fingerprint clustering algorithm in Section 3. Our detailed evaluation is shown in Section 4.
We present existing work in Section 5, offer limitations and future directions in Section 6, and conclude in
Section 7.

2 Anti-virus clustering of malware

Host-based AV systems detect and remove malicious threats from end systems. As a normal part of this
process these AV programs provide a description for the malware they detected. The ability of these products
to successfully characterize these threats has far-reaching effects—from facilitating sharing across organiza-
tions, to detecting the emergence of new threats, and assessing risk in quarantine and cleanup. However,
for this information to be effective, the descriptions provided by these systems must be meaningful. In this
section, we evaluate the ability of host-based AV to provide meaningful intelligence on Internet malware.

2.1 Understanding anti-virus malware labeling

In order to accurately characterize the ability of AV to provide meaningful labels for malware, we first need
to acquire representative datasets. In this paper, we use three datasets from two sources as shown in Table 1.
One dataset, legacy, is taken from a network security community malware collection and consists of randomly
sampled binaries from those posted to the community’s FTP server in 2004. In addition, we use a large,
recent 6-month collection of malware and a 6-week subset of that collection at the beginning of the dataset
collection period. The small and large datasets are a part of the Arbor Malware Library (AML). Created
by Arbor Networks, Inc. [24] the AML consists of binaries collected by a variety of techniques including Web

2



Label Software Vendor Version Signature File
McAfee Virus Scan McAfee, Inc. v4900 20 Nov 2006

v5100 31 Mar 2007
F-Prot F-Prot Anti-virus FRISK Software 4.6.6 20 Nov 2006

International 6.0.6.3 31 Mar 2007
ClamAV Clam Anti-virus Tomasz Kojm and 0.88.6 20 Nov 2006

the ClamAV Team 0.90.1 31 Mar 2007
Trend PC-cillin Internet Trend Micro, Inc. 8.000-1001 20 Nov 2006

Security 2007 8.32.1003 31 Mar 2007
Symantec Norton Anti-virus Symantec 14.0.0.89 20 Nov 2006

2007 Corporation 14.0.3.3 31 Mar 2007

Table 2: Anti-virus software, vendors, versions, and signature files used in this paper. The small and legacy
datasets were evaluated with a version of these systems in November of 2006 and both small and large were
evaluated again with a version of these systems in March of 2007

page crawling [32], spam traps [28], and honeypot-based vulnerability emulation [2]. Since each of these
methods collects binaries that are installed on the target system without the user’s permission, the binaries
collected are highly likely to be malicious. Almost 3,700 unique binaries were collected over a 6-month period
in late 2006 and early 2007.

After collecting the binaries, we analyzed them using the AV scanners shown in Table 2. Each of the
scanners was the most recent available from each vendor at the time of the analysis. The virus definitions
and engines were updated uniformly on November 20th, 2006, and then again on March 31st, 2007. Note
that the first update was over a year after the legacy collection ended and one month after the end of the
small set collection. The second update was 13 days after the end of the large set collection.

AV systems rarely use the exact same labels for a threat and users of these systems have come to
expect simple naming differences (e.g., W32Lovsan.worm.a versus Lovsan versus WORM MSBLAST.A)
across vendors. It has always been assumed, however, that there existed a simple mapping from one system’s
name space to another and recently investigators have begun creating projects to unify these name spaces [4].
Unfortunately, the task appears daunting. Consider, for example, the number of unique labels created by
various systems. The result in Table 1 is striking–there is a substantial difference in the number of unique
labels created by each AV system. While one might expect small differences, it is clear that AV vendors
disagree not only on what to label a piece of malware, but also on how many unique labels exist for malware
in general.

One simple explanation of these differences in the number of labels is that some of these AV systems
provide a finer level of detail into the threat landscape than the others. For example, the greater number
of unique labels in Table 1 for F-Prot may be the result of F-Prot’s ability to more effectively differentiate
small variations in a family of malware. To investigate this conjecture, we examined the labels of the legacy
dataset produced by the AV systems and, using a collection of simple heuristics for the labels, we created a
pool of malware classified by F-Prot, McAfee, and ClamAV as SDBot [21]. We then examined the percentage
of time each of the three AV systems classified these malware samples as part of the same family. The result
of this analysis can be seen in Figure 1. Each AV classifies a number of samples as SDBot yet the intersection
of these different SDBot families is not clean, since there are many samples that are classified as SDBot by
one AV and as something else by the others. It is clear that these differences go beyond simple differences
in labeling—anti-virus products assign distinct semantics to differing pieces of malware.

2.2 Properties of a Labeling System

Our previous analysis has provided a great deal of evidence indicating that labeling across AV systems does
not operate in a way that is useful to researchers, operators, and end users. Before we evaluate these systems
any further, it is important to precisely define the properties an ideal labeling system should have. We have
identified three key design goals for such a labeling system:

• Consistency. Similar items must be assigned the same label.

• Completeness. A label should be generated for as many items as possible.

3



Figure 1: A Venn diagram of malware labeled as SDBot variants by three AV products in the legacy dataset.
The classification of SDBot is ambiguous.

legacy small
McAfee F-Prot ClamAV Trend Symantec McAfee F-Prot ClamAV Trend Symantec

McAfee 100 13 27 39 59 100 25 54 38 17
F-Prot 50 100 96 41 61 45 100 57 35 18
ClamAV 62 57 100 34 68 39 23 100 32 13
Trend 67 18 25 100 55 45 23 52 100 16
Symantec 27 7 13 14 100 42 25 46 33 100

Table 3: The percentage of time two binaries classified as the same by one AV are classified the same by
other AV systems. Malware is inconsistently classified across AV vendors.

• Conciseness. The label should reflect a specific meaning; either embedded in the label itself or by
reference.

2.3 Limitations of anti-virus

Having identified consistency, completeness, and conciseness as the design goals of a labeling system, we are
now prepared to investigate the ability of AV systems to meet these goals.

2.3.1 Consistency

In order to investigate consistency, we grouped malware into categories based on the labels provided by one of
the AV vendors. For each pair of distinct malware labeled as same by a particular system, we compared the
percentage of time the same pair was classified by each of the other AV systems as the same. For example,
two binaries in our legacy dataset, with different MD5 checksums, were labeled as W32-Blaster-worm-a by
McAfee. These two binaries were labeled consistently by F-Prot (both as msblast), and Trend (both as
msblast), but inconsistently by Symantec (one blaster and one not detected) and ClamAV (one blaster, one
dcom.exploit). We then selected each system in turn and used their classification as the base. For example,
table 3 shows that malware classified by McAfee the same was only classified the same by F-Prot 13% of the
time. However, malware classified by F-Prot as the same, was only classified as the same by McAfee 50% of

4



Dataset AV Updated Percentage of Malware Samples Detected
Name McAfee F-Prot ClamAV Trend Symantec
legacy 20 Nov 2006 100 99.8 94.8 93.73 97.4
small 20 Nov 2006 48.7 61.0 38.4 54.0 76.9
small 31 Mar 2007 67.4 68.0 55.5 86.8 52.4
large 31 Mar 2007 54.6 76.4 60.1 80.0 51.5

Table 4: The percentage of malware samples detected across datasets and AV vendors. AV does not provide
a complete categorization of the datasets.

AV Number of Pages
0 1-10 11-99 100+

McAfee 2 32 62 15
F-Prot 100 0 0 0
ClamAV 100 0 0 0
Trend 82 9 7 2
Symantec 2 7 71 20

Table 5: The percentage of malware labels that returned 0, 1-10, 11-99, or 100+ pages when searched on
the AV vendor’s web-site. AV labels provide too little information or too much.

the time. Not only do AV systems place malware into different categories, these categories do not hold the
same meaning across systems.

2.3.2 Completeness

As discussed earlier, the design goal for completeness is to provide a label for each and every item to be
classified. For each of the datasets and AV systems, we examined the percentage of time the AV systems
detected a given piece of malware (and hence provided a label). A small percentage of malware samples
are still undetected a year after the collection of the legacy datasets (table 4). The results for more recent
samples are even more profound, with almost half the samples undetected in small and one quarter in large.
The one quarter undetected for the large set is likely an overestimate of the ability of the AV, as many of
the binaries labeled at that point were many months old (e.g., compare the improvement over time in the
two labeling instances of small). Thus, AV systems do not provide a complete labeling system.

2.3.3 Conciseness

Conciseness refers to the ability of the labeling system to provide a meaningful label to a given item. A label
which carries either too much or too little meaning has minimal value. In Table 5 examines the ability of
AV systems to provide conciseness. Because most AV labels do not carry significant meaning in themselves,
many vendors provide additional details of a threat by reference. Using the unique labels provided by each
AV system for the small dataset, we searched the AV vendor’s website for additional information about
the threat encountered. In many cases, the vendors provided no information about the threat (0 pages), or
simply too much information (100s of pages). McAfee performed the best with 31% of its queries yielding
a manageable number of search results. The numbers for ClamAV reflect that the project does not provide
meaning to any of its labels. Trend Micro provides a separate “virus encyclopedia” which matches each
malware with a single page 95% of the time. Unfortunately, the vast majority of these matches simply parse
the name to extract a category, and provide only a description of a general idea such as “trojan” or “worm”,
and not any specifics of the threat. AV systems do not provide concise representations of malware.

3 Behavior-based malware clustering

As we described in the previous section, any meaningful labeling system must achieve consistency, com-
pleteness, and conciseness and existing approaches, such as anti-virus, fail to perform well on these metrics.
To address these limitations, we propose an approach based on the actual execution of malware samples
and observation of their persistent state changes. These state changes taken together make a behavioral

5



New processes
directs.exe
Modified files
/WINDOWS/avserve2.exe
/WINDOWS/system32/directs.exe
/WINDOWS/system32/directs.exeopen
Modified registry keys
HKCU/Software/Microsoft/Windows/CurrentVersion/Ru1n/directs.exe
HKLM/SOFTWARE/Microsoft/Windows/CurrentVersion/Run/avserve2.exe
Network access
scans port 445
connects to port 445

Table 6: An example of behavioral profile for a malware sample labeled as W32-Bagle-q by McAfee.

Label MD5 P/F/R/N McAfee Trend
A 71b99714cddd66181e54194c44ba59df 8/13/27/0 Not detected W32/Backdoor.QWO
B be5f889d12fe608e48be11e883379b7a 8/13/27/0 Not detected W32/Backdoor.QWO
C df1cda05aab2d366e626eb25b9cba229 1/1/6/1 W32/Mytob.gen@MM W32/IRCBot-based!Maximus
D 5bf169aba400f20cbe1b237741eff090 1/1/6/2 W32/Mytob.gen@MM Not detected
E eef804714ab4f89ac847357f3174aa1d 1/2/8/3 PWS-Banker.gen.i W32/Bancos.IQK
F 80f64d342fddcc980ae81d7f8456641e 2/11/28/1 IRC/Flood.gen.b W32/Backdoor.AHJJ
G 12586ef09abc1520c1ba3e998baec457 1/4/3/1 W32/Pate.b W32/Parite.B
H ff0f3c170ea69ed266b8690e13daf1a6 1/2/8/1 Not detected W32/Bancos.IJG
I 36f6008760bd8dc057ddb1cf99c0b4d7 3/22/29/3 IRC/Generic Flooder IRC/Zapchast.AK@bd
J c13f3448119220d006e93608c5ba3e58 5/32/28/1 Generic BackDoor.f W32/VB-Backdoor!Maximus

Table 7: Ten unique malware samples. For each sample, the number of process, file, registry, and network
behaviors observed and the classifications given by various AV vendors are listed.

fingerprint, which can then be clustered with other fingerprints to define classes and subclasses of malware
that exhibit similar state change behaviors. In this section, we discuss our definition and generation of these
behavioral fingerprints and the techniques for clustering them.

3.1 Defining and generating malware behaviors

Previous work in behavioral signatures has been based at the abstraction level of low-level system events
such as individual system calls. In our system, the intent is to capture what the malware actually does on
the system. Such information is more invariant and directly useful to assess the potential damage incurred.
Individual system calls may be at a level that is too low for abstracting semantically meaningful information:
a higher abstraction level is needed to effectively describe the behavior of malware. We define the behavior
of malware in terms of non-transient state changes that the malware causes on the system. State changes are
a higher level abstraction than individual system calls, and avoid many common obfuscation techniques that
foil static analysis as well as low-level signatures, such as encrypted binaries and non-deterministic event
ordering. In particular, we extract simple descriptions of state changes from the raw event logs obtained
from malware execution. Spawned process names, modified registry keys, modified file names, and network
connection attempts are extracted from the logs and the list of such state changes becomes a behavioral
profile of a sample of malware. An example of this can be seen in table 6.

Observing the malware behavior requires actually executing the binaries. We execute each binary indi-
vidually inside a virtual machine [31] with Windows XP installed. The virtual machine is partially firewalled
so that the external impact of any immediate attack behaviors (e.g., scanning, DDoS, and spam) is min-
imized during the limited execution period. The system events are captured and exported to an external
server using the Backtracker system [14]. In addition to exporting system events, the Backtracker system
provides a means of building causal dependency graphs of these events. The benefit of this approach is that
we can validate that changes we observe are a direct result of the malware, and not of some normal system
operation.

6



A B C D E F G H I J
A 0.06 0.07 0.84 0.84 0.82 0.73 0.80 0.82 0.68 0.77
B 0.07 0.06 0.84 0.85 0.82 0.73 0.80 0.82 0.68 0.77
C 0.84 0.84 0.04 0.22 0.45 0.77 0.64 0.45 0.84 0.86
D 0.85 0.85 0.23 0.05 0.45 0.76 0.62 0.43 0.83 0.86
E 0.83 0.83 0.48 0.47 0.03 0.72 0.38 0.09 0.80 0.85
F 0.71 0.71 0.77 0.76 0.72 0.05 0.77 0.72 0.37 0.54
G 0.80 0.80 0.65 0.62 0.38 0.78 0.04 0.35 0.78 0.86
H 0.83 0.83 0.48 0.46 0.09 0.73 0.36 0.04 0.80 0.85
I 0.67 0.67 0.83 0.82 0.79 0.38 0.77 0.79 0.05 0.53
J 0.75 0.75 0.86 0.85 0.83 0.52 0.85 0.83 0.52 0.08

Table 8: A matrix of the NCD between each of the ten malware in our example.

3.2 Clustering of malware

While the choice of abstraction and generation of behaviors provides useful information to users, operators,
and security personnel, the sheer volume of malware makes manual analysis of each new malware intractable.
Our malware source observed 3,700 samples in a 6-month period–over 20 new pieces per day. Each generated
fingerprint, in turn, can exhibit many thousands of individual state changes (e.g., infecting every .exe on
a Windows host). For example, consider the tiny subset of malware in table 7. The 10 distinct pieces
of malware generate from 10 to 66 different behaviors with a variety of different labels including disjoint
families, variants, and undetected malware. While some items obviously belong together in spite of their
differences (e.g., C and D), even the composition of labels across AV systems can not provide a complete
grouping of the malware. Obviously, for these new behavioral fingerprints to be effective, similar behaviors
need to be grouped and appropriate meanings assigned.

Our approach to generating meaningful labels is achieved through clustering of the behavioral fingerprints.
In the following subsections we introduce this approach and the various issues associated with effective
clustering including how to compare fingerprints, combine them based on their similarity, and determine
which are the most meaningful groups of behaviors.

3.2.1 Comparing individual malware behaviors

While examining individual behavioral profiles provides useful information on particular malware samples,
our goal is to classify malware and give them meaningful labels. Thus malware samples must be grouped.
One way to group the profiles is to create a distance metric that measures the difference between any two
profiles, and use the metric for clustering. Our initial naive approach to defining similarity was based on the
concept of edit distance [8]. In this approach each behavior is treated as an atomic unit and we measure
the number of inserts of deletes of these atomic behaviors required to transform one behavioral fingerprint
into another. The method is fairly intuitive and straightforward to implement (think the Unix command
diff here), however, it suffers from two major drawbacks:

• Overemphasizing size When the size of the number of behaviors is large, edit distance is effectively
equivalent to clustering based on the length of the feature set. This overemphasizes differences over
similarities.

• Behavioral polymorphism Many of the clusters we observed had few exact matches for behaviors.
This is because the state changes made by malware may contain simple behavioral polymorphism (e.g.,
random file names).

To solve these shortcomings we turned to normalized compression distance (NCD). NCD is a way to
provide approximation of information content, and it has been successfully applied in a number of areas [27,
33]. NCD is defined as:

NCD(x, y) =
C(x + y)−min(C(x), C(y))

max(C(x), C(y))

where ”x + y” is the concatenation of x and y, and C(x) is the zlib-compressed length of x. Intuitively, NCD
represents the overlap in information between two samples. As a result, behaviors that are similar, but not

7



c1

A Bc2

E H

c3

C D

c4

G c5

F I

c6

c7

J

c8

c9

Figure 2: A tree consisting of the malware from table 7 has been clustered via a hierarchical clustering
algorithm whose distance function is normalized compression distance.

identical, are viewed as close (e.g., two registry entries with different values, random file names in the same
locations). Normalization, of course, then addresses the issue of differing information content. Table 8 shows
the normalized compression distance matrix for the malware described in Table 7.

3.2.2 Constructing relationships between malware

Once we know the information content shared between two sets of behavioral fingerprints, we can combine
various pieces of malware based on their similarity. In our approach we construct a tree structure based on
the well-known hierarchical clustering algorithm [12]. In particular, we use pairwise single-linkage clustering
which defines the distance between two clusters as the minimum distance between any two members of the
clusters. We output the hierarchical cluster results as a tree graph in graphviz’s dot format [16]. Figure 2
shows the generated tree for the malware in table 7.

3.2.3 Extracting meaningful groups

While the tree-based output of the hierarchical clustering algorithm does show the relationships between
the information content of behavioral fingerprints, it does not focus attention on areas of the tree in which
the similarities (or lack thereof) indicate a important group of malware. Therefore, we need a mechanism
to extract meaningful groups from the tree. A naive approach to this problem would be to set a single
threshold of the differences between two nodes in the tree. However, this can be problematic as a single
uniform distance does not accurately represent the distance between various subtrees. For example consider
the dendrogram in figure 3. The height of many U-shaped lines connecting objects in a hierarchical tree
illustrates the distance between the two objects being connected. As the figure shows, the difference between
the information content of subtrees can be substantial. Therefore, we require an automated means of
discovering where the most important changes occur.

To address this limitation, we adopt an “inconsistency” measure that is used to compute the difference
in magnitude between distances of clusters so that the tree can be cut into distinct clusters. Clusters
are constructed from the tree by first calculating the inconsistency coefficient of each cluster, and then
thresholding based on the coefficient. The inconsistency coefficient characterizes each link in a cluster tree
by comparing its length with the average length of other links at the same level of the hierarchy. The
higher the value of this coefficient, the less similar are the objects connected by the link. The inconsistency
coefficient calculation has one parameter, which is the depth below the level of the current link to consider

8



A B F I J C D E H G

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 3: A dendrogram illustrating the distance between various subtrees.

Cluster Elements Overlap Example
c1 C, D 67.86% scans 25
c2 A, B 97.96% installs a cygwin rootkit
c3 E, G, H 56.60% disables AV
c4 F, I, J 53.59% IRC

Table 9: The clusters generated via our technique for the malware listed in table 7.

in the calculation. All the links at the current level in the hierarchy, as well as links down to the given depth
below the current level, are used in the inconsistency calculation.

In table 9 we see the result of the application of this approach to the example malware in table 7. The
ten unique pieces of malware generate four unique clusters. Each cluster shows the elements in that cluster,
the average number of unique behaviors in common between the clusters, and an example of a high-level
behavior in common between each binary in the cluster. For example, cluster one consists of C and D and
represents two unique behaviors of mytob, a mass mailing scanning worm. Five of the behaviors observed
for C and D are identical (e.g., scans port 25), but several other exhibit some behavioral polymorphism
(e.g., different run on reboot registry entries). The other three clusters exhibit similar expected results, with
cluster two representing the cygwin backdoors, cluster three the bancos variants, and cluster four a class of
IRC backdoors.

4 Evaluation

To demonstrate the effectiveness of behavioral clustering, we evaluate our technique on the large dataset
discussed in section 2. We demonstrate the runtime performance and the effect of various parameters on the
system, show the completeness, conciseness, and consistency of the generated clusters, and by illustrate the
utility of the clusters by answering relevant questions about the malware samples.

9



0 100 200 300 400 500 600
Number of Malware to Cluster

0

5e+07

1e+08

1.5e+08

2e+08

2.5e+08

3e+08

B
y
te

s

Inconsistency-based Tree Cutting

Normalized Compression Distance

Single-Linkage Hierarchical Clustering

Figure 4: The memory required for performing clustering based on the number of malware clustered (for a
variety of different sized malware behavior)

4.1 Performance and parametrization

In this section we examine the memory usage and the execution time for the hierarchical clustering algorithm
we have chosen. To obtain these statistics, we take random sub-samples of length between 1 to 526 samples
from the small dataset. For each sub-sample, we analyze its run time and memory consumption by running
ten trials for each. The experiments were performed on a Dell PowerEdge 4600 with two Intel Xeon MP
CPUs (3.00GHz), 4 GB of DDR ECC RAM, 146G Cheetah Seagate drive with an Adaptec 3960D Ultra160
SCSI adapter, running Fedora Core Linux.

We first decompose the entire execution process into these logical steps: (1) trace collection, (2) state
change extraction, (3) NCD distance matrix computation: an O(N2) operation, (4) clustering the distance
matrix into a tree, (5) cutting the tree into clusters. We focus on the latter three operations specific to our
algorithm for performance evaluation. Figure 4 shows the memory usage for those three steps. As expected,
computing NCD requires most memory with exponential growth with increasing number of malware for
clustering. However, clustering 500 malware samples requires less than 300MB of memory. The memory
usage for the other two components grows at a much slower rate. Examining the run-time in Figure 5
indicates that all three components can complete within hundreds of seconds for clustering several hundred
malware samples.

The tree cutting algorithm has two parameters: the inconsistency measure and the depth value. Figure 6
illustrates their effects on the number of clusters produced for the small dataset for various look ahead
depths and inconsistency metrics. Values of between 4-6 appear at the knee of many of the curves. To
evaluate the effect of inconsistency, we fixed our look ahead depth to 4 and evaluated the number of clusters
versus the average size of the clusters for various inconsistency values in the large dataset. Intuitively, larger
inconsistency measures lead to fewer clusters and larger depth values for computing inconsistency result in
more clusters. The results of this analysis, shown in figure 7 show a smooth trade-off until an inconsistency
value of 2.3, where the clusters quickly collapse into a single cluster.

10



0 100 200 300 400 500 600
Number of Malware to Cluster

0.0001

0.001

0.01

0.1

1

10

100

S
ec

o
n

d
s

Inconsistency-based Tree Cutting

Normalized Compression Distance

Single-Linkage Hierarchical Clustering

Figure 5: The runtime required for performing clustering based on the number of malware clustered (for a
variety of different sized malware behavior)

Conciseness Completeness Consistency
AV Families Variants Singleton Detected Detected Not Detected % Identical Behavior

Variants Labeled Identically
McAfee 309 309 166 2018 1680 54.6% 47.2%
F-Prot 194 1544 1464 2958 740 80.0% 31.1%

ClamAV 119 1102 889 2244 1454 60.7% 34.9%
Trend 137 2034 1908 2960 738 80.0% 44.2%

Symantec 107 125 65 1904 1794 51.5% 68.2%
Behavior 403 403 206 3387 311 91.6% 100%

Table 10: The Conciseness, Completeness, and Consistency of the clusters created with out algorithm on
the large dataset as compared to various AV vendors.

4.2 Measuring the Conciseness, Completeness, and Consistency of the clusters

Table 10 summarizes the clusters created using behavioral clustering on the large dataset from section 2.
Our algorithm created 403 clusters from the 3,698 individual pieces of malware. While it is infeasible to list
all the clusters here, a list of the clusters, the malware and behaviors in each cluster, and their AV labels are
available at http://www.eecs.umich.edu/ mibailey/malware/. In addition to a hand analysis of the clusters,
we evaluated the clusters for our stated goals. Table 10 show the results of this analysis.

4.2.1 Completeness

In order to measure completeness we examined the number of times we created a meaningful label for a
binary and compared this to the detection rates of the various AV products. For AV software, “not detected”
means no signature matched, despite the up-to-date signature information. For behavioral clustering, “not
detected” means that we identified no behavior. Roughly 311 binaries exhibited no behavior that we were
able to measure. The root cause of these errors include unsuccessful unpacking or crashing during execution,
corrupted binaries, and pop-up windows that required user interaction. In at least one case, we also observed
behaviors that were visible on a non-virtualized host but were not visible in the VMware environment. A
striking observation from the Table is that many AV software systems provide detection rate as low as 33%

11



0 1 2 3 4
Inconsistency Threshold

0

25

50

75

100

125

150

175

200

225

250

275

300

325

N
u

m
b

er
 o

f 
C

lu
st

er
s

1
2
4
6
8
10
12
14

Depth

Figure 6: The number of clusters generated for various values of the inconsistency parameter and depth.

compared to around 91% using behavioral clustering.

4.2.2 Conciseness

Conciseness represented the ability of the label to embed or refer to a specific detailed piece of information
that describes the threat. By design our approach always provides such a description for any detected
binary. However, simply providing the label is insufficient if we succeed in only creating a detailed list of
behaviors per binary, as the number of such descriptions will become too great to manage. To investigate
the number and type of descriptions created, we compared the number of families, variants and singletons
in our approach with those of the AV vendors. A variant is defined based on the label provided by the
AV software (e.g, W32-Sdbot.AC, Sdbot.42). Family is a generalized label heuristically extracted from the
variant label based on the portion that is intended to be human-readable (e.g., the labels above would be
in the “sdbot” family). Singletons are variants or families which contain only one sample. Typically an
excessive number of singleton families or variants indicates that the classification algorithm is not effective
at identifying commonalities across malware instances. We note that, although we have more clusters than
families for the AV systems, the number of clusters compared to the number of variants is quite small. In
addition, the number of singletons is greatly reduced as well.

4.2.3 Consistency

Consistency referred to the ability of our clusters to label or cluster in a way such that the meaning of the
label is not obscured. In our system we measure sameness as performing the same or similar behaviors. In
order to measure the completeness of the system, we examined the binaries that exhibited exactly identical
behavior. In the large sample roughly 2,200 binaries exhibited identical behaviors. These binaries created
267 groups of identical behavior. We compared the percentage of time the clusters were identified as the same
through our approach as well as the various AV system. As expected, our system placed all the identical
behaviors in the same clusters, while the AV systems failed to do so.

12



0 0.5 1 1.5 2 2.5 3
Inconsistency

0.1

1

10

100

1000

10000

Average Cluster Size

Number of Clusters

Figure 7: The trade-off between the number of clusters, the average cluster size, and the inconsistency value.

4.3 Application of clustering and behavior signatures

In this subsection we look at several applications of this technique in the context of the clusters created by
our algorithm from the large dataset.

4.3.1 Classifying emerging threats

Behavioral classification can be effective in characterizing emerging threats not yet known or not detected
by AV signatures. For example, cluster c156 consists of three malware samples which exhibit malicious bot-
related behavior including IRC command and control activities. Each of the 75 behaviors observed in the
cluster is shared with other samples of the group 96.92% on average, meaning the malware samples within
the cluster have almost identical behavior. However, none of the AV vendors detect the samples in this
cluster except for F-Prot, which only detects one of the samples. It is clear that our behavioral classification
would assist in identifying these samples as emerging threats through their extensive malicious behavioral
profile.

4.3.2 Resisting binary polymorphism

Along similar lines to the previous example, behavioral classification can also assist in grouping an undetected
outlier sample, due to polymorphism or some other deficiency in the AV signatures, together with a common
family that it shares significant behaviors with. For example, cluster c80 consists of three samples that share
identical behaviors with distinctive strings ”bling.exe” and ”m0rgan.org”. The samples in this cluster are
consistently labeled as a malicious bot across the AV vendors except Symantec which fails to identify one of
the samples. In order to maintain completeness, this outlier sample should be labeled similar to the other
samples based on its behavioral profile despite the AV detection failure.

4.3.3 Examining the malware behaviors

Clearly one of the values of any type of automated security system is not to simply provide detailed infor-
mation on individual malware and their behaviors, but also to provide broad analysis on future directions of

13



Network Process Files Registry
connects to 80 cmd.exe winhlp32.dat use wininet.dll
connects to 25 IEXPLORE.EXE tasklist32.exe use PRNG
connects to 6667 regedit.exe change.log modify registered applications
connects to 587 tasklist32.exe mirc.ini modify proxy settings
scans port 80 svchost.exe svchost.exe modify mounted drives

Table 11: The top five behaviors observed by type.

malware. Using the behavioral signatures created by our system, we extracted the most prevalent behaviors
for each the various categories of behaviors we monitor. The top five such behaviors in each category are
shown in table 11.

The network behavior seems to conform with agreed notions of how the tasks being performed by most
malware today. Two of the top five network behaviors involve the use of mail ports, presumably for spam.
Port 6667 is a common IRC port and is often used for remote control of the malware. Two of the ports are
HTTP ports used by systems to check for jailed environments, download code via the web, or tunnel command
and control over what is often an unfiltered port. The process behaviors are interesting in that many
process executables are named like common Windows utilities to avoid arousing suspicion (e.g., svchost.exe,
tasklist32.exe). In addition, some malware uses IEXPLORE.EXE directly to launch popup ads and redirect
users to potential phishing sites. This use of existing programs and libraries will make simple anomaly
detection techniques more difficult. The file writes show common executable names and data files written
to the filesystem by malware. For example, the winhlp32.dat file is a data file common to many of bancos
trojans. Registry keys are also fairly interesting indications of behavior and the prevalence of wininet.dll
keys shows heavy use of existing libraries for network support. The writing to PRNG keys indicates a heavy
use of randomization as the seed is updated every time a PRNG-related function is used. As expected the
malware does examine and modify the registered application on a machine, the TCP/IP proxy settings (in
part to avoid AV), and queries mounted drives.

5 Related Work

Our work is the first to apply automated clustering to understand malware behavior using resulting state
changes on the host to identify various malware families. Related work in malware collection, analysis, and
signature generation has primarily explored static and byte-level signatures [25, 19] focusing on invariant
content. Content-based signatures are insufficient to cope with emerging threats due to intentional evasion.
Behavioral analysis has been proposed as a solution to deal with polymorphism and metamorphism, where
malware changes its visible instruction sequence (typically the decryptor routine) as it spreads. For example
Jordan [13] argues that metamorphism can be overcome through emulating malware executables and then
coalescing higher-level actions. These higher-level actions, or behaviors, are what we attempt to use to
overcome metamorphism in this work. Similar to our work, emulating malware to discover spyware behavior
by using anti-spyware tools has been used in measurements studies [23].

There are several abstraction layers at which behavioral profiles can be created. Previous work has
focused on lower layers, such as individual system calls [17, 11, 1], instruction-based code templates [6], the
initial code run on malware infection (shellcode) [20], and network connection and session behavior [34].
Such behavior needs to be effectively elicited. For example, recent work by Royal et al. [29] automates
hidden-code extraction of unpack-executing malware. In our work, we chose a higher abstraction layer for
several reasons. In considering the actions of malware, it is not the individual system calls that define the
significant actions that a piece of malware inflicts upon the infected host, rather, it is the resulting changes
in state of the host. Also, although lower levels may allow signatures that differentiate malware, they do
not provide semantic value in explaining what behaviors are exhibited by a malware variant or family. In
our work, we define malware by what it actually does, and thereby build in more semantic meanings to the
profiles and clusters generated. This influenced our choice of a high abstraction layer at which to create
behavioral profiles.

Various aspects of high-level behavior could be included in the definition of a behavioral profile. Network
behavior may be indicative of malware and has been used to detect malware infections. For example, Ellis

14



et al. [10] extracted network-level features such as similar data being sent from one machine to the next, a
tree-like communication pattern, and a server becoming a client. Singh et al. [30] automatically generated
network-level signatures for malware by finding common byte sequences sent from many sources to many
destinations, which is characteristic of worm propagation. In our work, we focus on individual host behavior,
including network connection information but not the data transmitted over the network. Thus we focus
more on the malware behavior on individual host systems instead of the pattern across a network, as behavior
on individual hosts is the basic building block for understanding the overall network behavior.

Recently, Kolter and Maloof [15] studied applying machine learning to classify malicious executables
using n-grams of byte codes. Our use of hierarchical clustering based on normalized compression distance is
a first step at examining how statistical techniques are useful in classifying malware, but the features used
are the resulting state changes on the host to be more resistant to evasion and inaccuracies. Normalized
information distance was proposed by Li et al. [18] as an optimal similarity metric to approximate all other
effective similarity metrics. It was used to cluster various kinds of data to discover families or groups, and
has been applied to domains such as gene expression [27], languages, literature, music, handwritten digits,
and astronomy [7]. In previous work [33] NCD was applied to worm executables directly and the network
traffic generated by worms. Our work applies NCD at a different layer of abstraction. Rather than applying
NCD to the literal malware executables, we apply NCD to the malware behavior. Previous work can capture
similarities in the initial decryption routines of packed or encrypted executables, but may not differentiate
behavioral features that are obscured in the encrypted payload. By emulating the executable, we capture
behavioral features that are not otherwise available.

6 Limitations and Future Work

Our system is not without limitations and shares common weaknesses associated with malware execution
within virtual machine environments. Since the malware samples were executed within VMware, samples that
employ anti-VM evasion techniques may not exhibit their malicious behavior. To mitigate this limitation,
the samples could be run on a real, non-virtualized system, which would be restored to a clean state after
each simulation.

Another limitation is the time period in which behaviors are collected from the malware execution. In
our experiments, each binary was able to run for five minutes before the virtual machine was terminated.
It is possible that certain behaviors were not observed within this period due to time-dependent or delayed
activities. Previous research has been done to detect such time-dependent triggers [9]. A similar limitation
is malware that depends on user input, such as responding to a popup message box, before exhibiting further
malicious behavior as mentioned in [23].

The capabilities and environment of our virtualized system stayed static throughout our experiments
for consistency. However, varying the execution environment by using multiple operating system versions,
including other memory resident programs such as anti-virus protection engines, and varying network con-
nectivity and reachability may yield interesting behaviors not observed in our existing results.

Our choice of a high level of abstraction may limit fine-grained visibility into each of the observed behav-
iors in our system. A path for future work could include low-level details of each state change to supplement
the high-level behavior description. For example, the actual contents of disk writes and transmitted network
packets could be included in a sample’s behavioral profile.

We plan to evaluate the integration of other high-level behavioral reports from existing systems such
as Norman [26] and CWSandbox [5] in the future. We will also investigate further clustering and machine
learning techniques that may better suit these other types of behavioral profiles.

7 Conclusion

In this paper we demonstrated that existing host-based techniques (e.g., anti-virus) fail to provide useful
labels to the malware they encounter. We showed that anti-virus is incomplete in that it fails to detect or
provide labels for between 20 to 62 percent of the malware samples. We noted that when these systems
do provide labels, these labels do not have consistent meanings across families and variants within a single
naming convention as well as across multiple vendors and conventions. Finally, we demonstrated that these

15



systems lack conciseness in that the provide too little or in some cases, too much information about a specific
piece of malware.

To address these important limitations we proposed a novel approach to the problem of automated mal-
ware classification and analysis. Our dynamic approach executed the malware in a virtualized environment
and creates a behavioral fingerprint of the malware’s activity. This fingerprint is the set of all the state
changes that are a casual result of the infection including file modified, processes created, and network con-
nections. In order to compare these fingerprints and combine them into meaning group of behaviors, we
applied single-linkage hierarchical clustering of the fingerprints using normalized compress distance as a dis-
tance metric. We demonstrated the usefulness of this technique by applying it to the automated classification
and analysis of 3,700 malware samples collected over the last six months.

References

[1] Debin Gao andDesiree Beck, Julie Connolly” Michael K. Reiter, and Dawn Xiaodong Song. Behavioral
distance measurement using hidden markov models. In RAID, pages 19–40, 2006.

[2] Paul Baecher, Markus Koetter, Thorsten Holz, Maximillian Dornseif, and Felix Freiling. The nepenthes
platform: An efficient approach to collect malware. In 9th International Symposium On Recent Advances
In Intrusion Detection. Springer-Verlag, 2006.

[3] Paul Barford and Vinod Yagneswaran. An inside look at botnets. In To appear in Series: Advances in
Information Security. Springer, 2006.

[4] Desiree Beck and Julie Connolly. The Common Malware Enumeration Initiative. In Virus Bulletin
Conference, October 2006.

[5] Carsten Willems and Thorsten Holz. Cwsandbox. http://www.cwsandbox.org/, 2007.

[6] Mihai Christodorescu, Somesh Jha, Sanjit A. Seshia, Dawn Song, and Randal E. Bryant. Semantics-
aware malware detection. In Proceedings of the 2005 IEEE Symposium on Security and Privacy (Oakland
2005), pages 32–46, Oakland, CA, USA, May 2005. ACM Press.

[7] Rudi Cilibrasi and Paul M. B. Vitányi. Clustering by compression. In Information Theory, IEEE
Transactions on, volume 51, pages 1523–1545, 2005.

[8] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algo-
rithms. The MIT Press, Cambridge, MA, 1990.

[9] Jedidiah R. Crandall, Gary Wassermann, Daniela A.S̃. de Oliveira, Zhendong Su, S.F̃elix Wu, and
Frederic T. Chong. Temporal Search: Detecting Hidden Malware Timebombs with Virtual Machines. In
Proceedings of the 12th International Conference on Architectural Support for Programming Languages
and Operating Systems, San Jose, CA, October 2006. ACM Press New York, NY, USA.

[10] Dan Ellis, John Aiken, Kira Attwood, and Scott Tenaglia. A Behavioral Approach to Worm Detection.
In Proceedings of the ACM Workshop on Rapid Malcode (WORM04), October 2004.

[11] Debin Gao, Michael K. Reiter, and Dawn Xiaodong Song. Behavioral distance for intrusion detection. In
Alfonso Valdes and Diego Zamboni, editors, RAID, volume 3858 of Lecture Notes in Computer Science,
pages 63–81. Springer, 2005.

[12] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer, 2001.

[13] Myles Jordan. Anti-virus research - dealing with metamorphism. Virus Bulletin Magazine, October
2002.

[14] Samuel T. King and Peter M. Chen. Backtracking intrusions. In Proceedings of the 19th ACM Symposium
on Operating Systems Principles (SOSP’03), pages 223–236, Bolton Landing, NY, USA, October 2003.
ACM.

16



[15] J. Zico Kolter and Marcus A. Maloof. Learning to Detect and Classify Malicious Executables in the
Wild. Journal of Machine Learning Research, 2007.

[16] Eleftherios Koutsofios and Stephen C. North. Drawing graphs with dot. Technical report, AT&T Bell
Laboratories, Murray Hill, NJ, 8 October 1993.

[17] Tony Lee and Jigar J. Mody. Behavioral classification. In Proceedings of EICAR 2006, April 2006.

[18] Ming Li, Xin Chen, Xin Li, Bin Ma, and Paul Vitányi. The similarity metric. In SODA ’03: Proceedings
of the fourteenth annual ACM-SIAM symposium on Discrete algorithms, pages 863–872, Philadelphia,
PA, USA, 2003. Society for Industrial and Applied Mathematics.

[19] Z. Li, M. Sanghi, Y. Chen, M. Kao, and B. Chavez. Hamsa: Fast Signature Generation for Zero-day
Polymorphic Worms with Provable Attack Resilience. In Proc. of IEEE Symposium on Security and
Privacy, 2006.

[20] Justin Ma, John Dunagan, Helen Wang, Stefan Savage, and Geoffrey Voelker. Finding Diversity in
Remote Code Injection Exploits. Proceedings of the USENIX/ACM Internet Measurement Conference,
October 2006.

[21] McAfee. W32/Sdbot.worm. http://vil.nai.com/vil/content/v 100454.htm, April 2003.

[22] Microsoft. Microsoft security intelligence report: January-june 2006.
http://www.microsoft.com/technet/security/default.mspx, October 2006.

[23] Alex Moshchuk, Tanya Bragin, Steven D. Gribble, and Henry M. Levy. A Crawler-based Study of
Spyware in the Web. In Proceedings of the Network and Distributed System Security Symposium (NDSS),
San Diego, CA, 2006.

[24] Arbor Networks. Arbor malware library (AML). http://www.arbornetworks.com/, 2006.

[25] James Newsome, Brad Karp, and Dawn Song. Polygraph: Automatically generating signatures for
polymorphic worms. Proceedings 2005 IEEE Symposium on Security and Privacy, Oakland, CA, USA,
May 8–11, 2005, 2005.

[26] Norman Solutions. Norman sandbox whitepaper. http://www.norman.no/, 2003.

[27] Matti Nykter, Olli Yli-Harja, and Ilya Shmulevich. Normalized compression distance for gene expression
analysis. In Workshop on Genomic Signal Processing and Statistics (GENSIPS), May 2005.

[28] Matthew B. Prince, Benjamin M. Dahl, Lee Holloway, Arthur M. Keller, and Eric Langheinrich. Un-
derstanding how spammers steal your e-mail address: An analysis of the first six months of data from
project honey pot. In Second Conference on Email and Anti-Spam (CEAS 2005), July 2005.

[29] Paul Royal, Mitch Halpin, David Dagon, Robert Edmonds, and Wenke Lee. PolyUnpack: Automating
the Hidden-Code Extraction of Unpack-Executing Malware. In The 22th Annual Computer Security
Applications Conference (ACSAC 2006), Miami Beach, FL, December 2006.

[30] Sumeet Singh, Cristian Estan, George Varghese, and Stefan Savage. Automated worm fingerprinting.
In 6th Symposium on Operating Systems Design and Implementation (OSDI ’04), pages 45–60, San
Francisco, CA, December 6–8 2004.

[31] Brian Walters. VMware virtual platform. j-LINUX-J, 63, Jul. 1999.

[32] Yi-Min Wang, Doug Beck, Xuxian Jiang, Roussi Roussev, Chad Verbowski, Shuo Chen, and Samuel T.
King. Automated web patrol with strider honeymonkeys: Finding web sites that exploit browser vul-
nerabilities. In Proceedings of the Network and Distributed System Security Symposium, NDSS 2006,
San Diego, California, USA, 2006.

[33] Stephanie Wehner. Analyzing worms and network traffic using compression. Technical report, CWI,
Amsterdam, 2005.

17



[34] Vinod Yegneswaran, Jonathon T. Giffin, Paul Barford, and Somesh Jha. An Architecture for Generating
Semantics-Aware Signatures. In Proceedings of the 14th USENIX Security Symposium, pages 97–112,
Baltimore, MD, USA, August 2005.

18


