
CEGAR-Based Formal Hardware Verification: A Case Study
Zaher S. Andraus, Mark H. Liffiton, Karem A. Sakallah
Department of Electrical Engineering and Computer Science

University of Michigan
Ann Arbor, MI 48109-2122

{zandrawi, liffiton, karem}@umich.edu
Abstract
We describe the application of the Reveal formal functional
verification system to six representative hardware test cases.
Reveal employs counterexample-guided abstraction refine-
ment, or CEGAR, and is suitable for verifying the complex
control logic of designs with wide datapaths. Reveal performs
automatic datapath abstraction yielding an approximation of
the original design with a much smaller state space. This
approximation is subsequently used to verify the correctness of
control logic interactions. If the approximation proves to be
too coarse, it is automatically refined based on the spurious
counterexample it generates. Such refinement can be viewed
as a form of on-demand “learning” similar in spirit to con-
flict-based learning in modern Boolean satisfiability solvers.
The abstraction/refinement process is iterated until the design
is shown to be correct or an actual design error is reported.
The Reveal system allows some user control over the abstrac-
tion and refinement steps. Using six representative bench-
marks as case studies, we examine the effect on Reveal’s
performance of the various available options for abstraction
and refinement. We also show examples of the types of
learned “facts” that Reveal discovers in the refinement step.
Based on our initial experience with this system, we believe
that automating the verification for a useful class of hardware
designs is now quite feasible.

1 Introduction
The paradigm of iterative abstraction and refinement has
gained momentum in recent years as a particularly effective
approach for the scalable verification of complex hardware
and software systems. Dubbed counterexample-guided
abstraction refinement (CEGAR), its power stems from the
elimination (i.e., abstraction) of details that are irrelevant to
the property being checked as well as from analyzing any
spurious counterexamples to pinpoint and add just those
details that are needed to refine the abstraction, i.e., to make
it more precise. This is sometimes referred to as lemma gen-
eration, with the whole process viewed as an iterative, on-
demand augmentation of an initial abstraction with lemmas
derived from counterexamples that violate the actual design.

Whereas such a verification paradigm is appealing at a
conceptual level, its success in practice hinges on effective
automation of the abstraction and refinement steps, as well
as various checking steps requiring sophisticated reasoning.
Examples of recent CEGAR-based verification tools include
[2, 3, 4, 5, 9, 10, 12, 13, 16, 17, 21]. Most of the literature on
CEGAR, however, focuses on its algorithmic framework and
reports summary data showcasing its ability to handle a
sampling of large benchmarks. Very little is reported on the
inner workings of the abstraction/refinement process and

how it is affected by the choices available for both abstrac-
tion and refinement. In this paper, we address this issue by
reporting the performance of Reveal, an automatic CEGAR-
based system for the verification of safety properties of com-
plex hardware designs, on six representative test cases. For
each test case:

we compare a number of methods to model and check the
desired properties on the abstract design, including the use
of a Satisfiability Modulo Theories (SMT) solver [11];
we study trade-offs between various refinement options;
we highlight the types of lemmas generated in the refine-
ment stage and analyze the idiosyncrasies leading to them;
and, finally, we compare the performance of Reveal against
a number of existing automatic tools that perform formal
verification for hardware, such as VCEGAR [16], BAT
[19], UCLID [7], and VIS [22];

To our knowledge, this is the first work that performs such a
comprehensive comparison for the formal verification of com-
plex hardware designs including memory systems and pipe-
lined microprocessors whose RTL descriptions have tens of
thousands of HDL source lines, thousands of signals, and
hundreds of thousands of state bits. Additionally, this paper
provides experimental evidence that demonstrates the impor-
tance of datapath abstraction for the scalability of formal
verification algorithms.

The rest of the paper is organized in five sections: Section
2 reviews Reveal’s CEGAR framework, Sections 3 through 8
describe six hardware verification case studies, and Section 9
summarizes the paper’s conclusions.

2 The Reveal Verification System
Figure 1 illustrates the architecture of the CEGAR-based
Reveal automated verification system. Reveal performs
checks of safety properties on hardware designs described in
the Verilog hardware description language (HDL). A typical
usage scenario involves providing two Verilog descriptions of
the same hardware design, such as a high-level specification
and a detailed implementation, and checking them for func-
tional equivalence. Reveal adopts the CEGAR-based
approach of Andraus et al. [2] which consists of the following
steps:

Abstraction to obtain a compact representation of the
design for which formal property checking is more likely to
terminate (i.e., to scale both in time and space) than if
applied directly on the original design.
Property Checking by formal reasoning to determine if the
abstracted design satisfies the specified property.
Refinement to determine if the abstraction was sufficient
to establish whether the property holds or fails on the
actual concrete design and, if otherwise, to provide one or

more succinct explanations that are used to refine the
abstraction for the next round of checking.

2.1 Abstraction
Reveal performs datapath abstraction [1, 7, 15], i.e., it
replaces the design’s datapath elements (registers and func-
tion units such as adders, shifters, etc.) with terms, uninter-
preted functions (UFs), and uninterpreted predicates (UPs).
This yields an abstract model of the design that maintains
the consistency of the removed datapath elements without
representing their detailed functionality and leads to a signif-
icant reduction in the size of the design’s state space. The
interactions among the control signals, however, are pre-
served, allowing meaningful verification of safety properties
on the design’s control logic.

Signals in the Verilog description are classified as datap-
ath or control based on their bit width [1]. This heuristic is
premised on the assumption that datapath elements typically
operate on multi-bit words and can, thus, be easily identified
in a Verilog model. However, misclassification of a control
signal as a datapath signal or vice versa does not compromise
the correctness of the approach. Specifically, a control signal
that is abstracted as part of the datapath will likely yield a
spurious counterexample and may cause an increase in the
number of refinement iterations. The less probable scenario
of misclassifying a datapath signal as control causes the
abstract model to be unnecessarily detailed and possibly
makes the property checking step intractable. That said,
adopting this heuristic ought to be backed up by empirical
experiments, as we will show in this paper.

Formally, abstraction, including datapath abstraction, can
be viewed as a relaxation of the system of constraints that
characterize the concrete design. Specifically, if we let
denote the constraint imposed on the set of design signals X
by component i, then the formula
characterizes the behavior of a design consisting of n compo-
nents. For instance, a Verilog assignment statement such as

, where the variables correspond to
32-bit registers in a register file, is modeled by the constraint

(1)

This constraint can be viewed as the consistency function for
the 32-bit addition operator: it evaluates to true for consis-
tent assignments to its arguments, and false otherwise.
Replacing the register variables with terms and the addition
operator with the UF add, yields the constraint

(2)
where T1, T2, and T3 correspond, respectively, to R[1], R[2],
and R[3]. Informally, the register variables and their corre-
sponding terms encode unsigned integers except that the
integer ranges of the register variables are bounded because
of their finite bit width. Thus, each term can be regarded as
an abstraction of the corresponding register variable, and the
consistency condition in (2) is similarly an abstraction of the
concrete consistency condition in (1).

Assuming that each concrete consistency constraint
 is relaxed to a corresponding abstract consistency

constraint , where and denote the concrete
design signals and their corresponding term abstractions, we
can now model the abstraction of the design by the formula

 and note that

(3)

In addition to abstracting datapaths, tractable verifica-
tion may require the abstraction of memory arrays. Applying
only datapath abstraction to an n-word by m-bit memory
yields an n-term abstraction. For memories of typical sizes in
current designs, n is on the order of thousands to millions of
words. Memory abstraction allows us to model an n-word
memory by a formula whose size is proportional to the num-
ber of write operations, K, rather than to n. Note that mem-
ory abstraction is distinct from datapath abstraction. A
useful mnemonic device is to think of datapath and memory
abstraction as being, respectively, “horizontal” and “verti-
cal;” they can be applied separately as well as jointly.

Reveal implements memory abstraction using lambda
expressions as described in [7]. In particular, the expression

(4)

describes the next state of a memory array M after a write
operation with address A and data D. Memory abstraction
can also be realized using a theory of arrays [20]; we compare
these two approaches experimentally in Sections 4 and 5.

2.2 Property Checking
Checking that the specified safety property holds on the
abstract design amounts to proving the validity of

(5)
where prop(T) denotes the desired property. In what follows,
the formula in (5) will be referred to as the abstract verifica-
tion condition, to distinguish it from the concrete verification
condition, i.e.

. (6)
In general, (5) is an instance of quantifier-free first order

logic for the theory of equality with uninterpreted functions
(EUF) [8]. Adding the limited form of integer arithmetic
referred to as counter arithmetic makes such formulas
instances of the so-called CLU logic [7] which is particularly
useful in datapath abstraction.

The Reveal system is essentially a bounded model check-
ing [6] verifier for safety properties with known sequential

Concrete

Design

Abstract the

Design

Abstract Model

Property

holds

Design isDesign is

CorrectCorrect

Abstract

BugBug

TraceTrace

learnrefine

Property User

Lemmas

Explain

Infeasibility

In
fe

a
s
ib

le

Lemmas

Database

Check

Property

Check

Feasibility

Refine the Abstraction

Figure 1: The Reveal Flow

Ci X()

() ()1conc ii nX C X≤ ≤∧

R 3[] <= R 1[] R 2[]+

C R 1[] R 2[] R 3[], ,() R 3[] R 1[] R 2[]+≡()

A T1 T2 T3, ,() T3 add T1 T2,()≡()

Ci X()
Ai T() X T

() ()1abst ii nT A T≤ ≤∧
conc X() abst T()→

M ′ X() λX.ITE X A= D M X(), ,()=

() ()abst propT T→

() ()conc propX X→
2

bounds. While this may seem to limit its utility, empirical
observation suggests that it has application in many situa-
tions where such bounds are known a priori or can be easily
derived from the particular structure of the designs being
verified. Furthermore, such bounds tend to be rather small,
often less than ten cycles. Examples include verification of
pipelined microprocessors, packet routers, network proces-
sors, and dataflow architectures common in filters, etc.

Given a cycle bound k, (5) is generated by unrolling the
abstract design’s transition relation k times. The formula is
then submitted to a checker to determine its validity. In the
Reveal system, the validity of the formula is checked using
the YICES Satisfiability Modulo Theories (SMT) solver [11].
Unlike earlier approaches [1, 2, 7], which convert such formu-
las to equi-satisfiable propositional formulas using suitable
encodings, SMT solvers operate on these formulas directly by
integrating specialized “theory” solvers within a backtrack
propositional solver. SMT solvers take advantage of the high-
level semantics of non-propositional constraints (e.g., integer
arithmetic, equality of uninterpreted functions) while at the
same time benefiting from the powerful reasoning capabilities
of modern propositional SAT solvers.

If the checker determines that the formula is valid, Reveal
exits indicating that the property holds on the design. This is
guaranteed by the soundness of the abstraction. If, alterna-
tively, the formula is found to be invalid, the checker pro-
duces an abstract counterexample that indicates how the
abstract model fails to satisfy the property.

2.3 Refinement
The refinement step is necessary to make the verification
flow complete because the violation reported by the checker
may be due to a poor abstraction rather than a real bug in
the design. Refinement consists of three stages [2]:

Explaining the violation by generalizing the abstract coun-
terexample. This is accomplished by replacing the specific
counterexample returned by the checker with a compact
set of constraints viol(T) that include the counterexample
as well as others that share its “profile” as far as the
abstraction is concerned.
Checking the feasibility of the violation on the concrete
model by checking, with YICES, the satisfiability of

(7)

If satisfiable, Reveal exits indicating that the property is
violated and returns a bug trace to help locate the error.
Explaining why the violation is spurious. If is
unsatisfiable, then the violation reported by the validity
checker is an artifact of the abstraction and not a real bug.
An explanation of its infeasibility on the concrete model is
obtained by deriving the minimal unsatisfiable subsets
(MUSes) of , using MUS extraction tools [18].
Negations of these MUSes are viewed as “lemmas” which
are added to a growing database of such “facts” and used
to refine the abstraction for the next iteration.

Note that the steps of explaining the violation and its infea-
sibility can be replaced, without compromising completeness,
by simply negating the counterexample. However, this refine-
ment is generally too weak, causing the number of refinement
iterations to be too high for the approach to be practical.

2.4 Implementation and Experimental Setup
The Reveal system is written in C++ and employs four
major modules: a formula generator, a solver, an MUS
extractor, and a refinement module.
The Formula Generator creates equation (5) by flattening
the Verilog model, calculating the transition relation for its
state variables, and unrolling it to a user-defined depth.
The Solver Module is responsible for determining the valid-
ity of the FOL formula (5) and the satisfiability of formulas
(6) and (7). It interfaces with the YICES SMT solver via a
C++ API [24]. This module can determine, for example,
whether (5) is valid in the EUF or CLU logics, or whether
(7) is satisfiable in the bit vector (BV) logic.
The MUS Extractor is responsible for identifying MUSes
from an unsatisfiable formula. Unlike [2], we use a modified
version of the CAMUS MUS extraction algorithm [18] that
works directly with the YICES solver. This eliminates the
need to generate a propositional encoding of the abstract for-
mula and leads to significant speedup in MUS generation.
Given an unsatisfiable formula, CAMUS can be run in two
modes: single- or multiple-MUS extraction.
The Refinement Module manages the lemma database and
updates the abstraction for the next iteration. This module
can accept user-supplied lemmas and can maintain a persis-
tent lemma database that can be accessed across invocations.

In the following sections we will classify the various runs
of Reveal by a one-, two-, or three-letter code that indicates
the abstraction and refinement options used. Abstraction
options will be labeled B (bit-level, i.e., no abstraction), C
(CLU abstraction), and E (EUF abstraction). Refinement
options will be labeled V (negating the violation) and L
(refinement with lemmas). For lemma refinement, S will
denote refinement with one lemma per iteration, while M will
denote refinement with multiple lemmas. For example, the
label CLM means CLU abstraction and refinement with mul-
tiple lemmas, whereas EV means EUF abstraction and
refinement with the negation of the violation.

Our empirical case study compares the performance of
Reveal against the following four verification systems:

UCLID [7, 31] which allows modeling of the datapath with
abstract terms, and memories with Lambda expressions.
Since UCLID does not accept Verilog, we use VAPOR [1]
to produce UCLID models.
BAT [19, 30] which models memories with set and get
functions for reads and writes, respectively, but models the
datapath with finite-length bit-vectors. We are unaware of
a convertor from Verilog to BAT’s custom language.
VCEGAR [16, 32] which performs word-level predicate
abstraction on the Verilog input, but does not abstract
memory arrays.
VIS [22, 33] which, by default, uses bit-level reachability
analysis to verify invariants. It can also be used in two spe-
cial modes: one that performs bounded model checking of
safety properties, and another that performs invariant
checking with a CEGAR algorithm based on hiding regis-
ters [23]. We will denote the default mode by VIS, the
BMC mode by VIS(BMC), and the last mode by VIS(AR).

In what follows, we present our case studies on the bench-
marks summarized in Table 1. All experiments were con-
ducted on a 2.2 GHz AMD Opteron processor with 8GB of

T*

viol X() conc X()∧

viol conc∧

viol conc∧
3

RAM running Linux. VCEGAR, BAT, and UCLID use the
zChaff SAT solver [34] and the SMV model checker [35].

3 Sorter Case Study
The Sorter design implements two versions of an algorithm
that sorts four bit-vectors. It makes use of a Sort2 sub-unit
that sorts two bit-vectors. In the first version, five Sort2 sub-
units are instantiated and connected serially. The inputs are
introduced to the first two sub-units, and the calculation
propagates serially towards the outputs. The computation
advances through 3 layers of registers, thus requiring three
cycles to complete. The second version is based on just two
Sort2 sub-units and a controller that uses them to carry out
the sorting computation in three cycles as well.

The property we verified is the equality between corre-
sponding outputs in the two versions. All the bit-vectors in
the two units, including the inputs and the outputs, are of
bit-width W, which we vary from 2 to 64 to see the effect of
the datapath width on the scalability of each tool. Figure 2
shows the runtime of each of the verification tools as a func-
tion of W, and Table 2 shows the number of bits in the con-
crete verification condition (i.e., formula (6)) and statistics
about the number of the nodes in the abstract verification
condition (i.e., formula (5)). The last column, labeled by R,
shows the ratio between the number of bits and the number
of nodes. The results demonstrate the following trends:

The effect of datapath abstraction is evident from the per-
formance of Reveal(C) and UCLID, which are oblivious to
W. In both cases the abstract model is unaltered when
changing the datapath bit width; thus the time needed to
verify the abstract model is constant. Furthermore, the
only interaction between the datapath and the control
involves bit vector inequalities, allowing the CLU logic to
prove the property without any refinement.
BAT’s performance degrades when increasing W, since the

datapath is unabstracted. Nonetheless, BAT’s reduction to
CNF appears to play an important role in keeping the
runtime low.
VCEGAR takes 6.1 seconds to prove the property for
W=2 as it incrementally discovers between 33 and 40 pred-
icates within 58 to 130 iterations. Additionally, the
runtime grows exponentially with the width of the datap-
ath. We suspect that the reason behind this is the expense
of simulating the abstract counterexample on the concrete
design in each refinement iteration, as well as the repeated
generation of the abstract model each time a new predicate
is added.
The runtimes of Reveal(B), VIS, and VIS(BMC) degrade
rapidly as the bit width is increased. The runtimes of
VIS(AR) are similar to VIS and were removed from the
graph to avoid clutter.

4 Instruction Cache RAM Case Study
The Instruction Cache RAM (ICRAM) test case is obtained
from the publicly available Verilog description of the Sun
PicoJava II Microprocessor [26]. This unit includes a memory
array of 16K 8-bit words, 32-bit input and output data
ports, and single-bit control signals to trigger certain opera-
tions in the cache such as reading, writing, BIST testing, and
switching to “power down” mode. The ICRAM interacts
with the Instruction Cache Unit [25] which manages the
instructions tags and buffers for the entire microprocessor.

The address space of the ICRAM is divided into two
“banks,” distinguished by a single bit in the address register.
A write operation takes an address signal adr[13:3], a data
signal di[31:0], and control signals selecting the destination
bank . The memory update for write(adr, di, b) is:

mem[{adr,b,00}]<=di[31:24]
mem[{adr,b,01}]<=di[23:16]
mem[{adr,b,10}]<=di[15:8]
mem[{adr,b,11}]<=di[7:0]

The ICRAM has been formally verified by VCEGAR [16]
and BAT [19]. The property verified is that given an arbi-
trary initial memory array, performing a write(adr,di,0),
then performing a read from address {adr,001}, will yield a
value that is equal to di[23:16].

We verified this example with Reveal(C), Reveal(B),
BAT, and UCLID. The runtimes are 30ms, 38ms, 50ms, and
92ms, respectively. This result is counterintuitive given that
the original design has state bits. The efficiency of these
methods stems primarily from the reduction obtained by
memory abstraction; as shown in Table 2, both the concrete
and the abstract verification conditions are very small
despite the large state space. Moreover, due to the simple

Table 1: Benchmark statistics

Name Verilog
Lines

Verilog
Signals

State
Bits

Sorter 79 30 35 to 1027
ICRAM 153 13
OMU 400 to 10K 40 to 260
DLX 399
Risc16F84 169
X86

1.3 105×
1 106×

2.4 103× 1 1011×
1.2 103× 1 105×
1.3 104× 1 103× 5.8 103×

Figure 2: Runtime graphs for Sorter

0.01

0.1

1

10

100

1000

2 8 14 20 26 32 38 44 50 56 62

Datapath Bit Width

V
e

ri
fi

c
a

ti
o

n
 t

im
e

,
s

e
c

.

VIS

Reveal(B)

VCEGAR

VIS(BMC)

UCLID

BAT

Reveal(C)

Table 2: Verification conditions for Sorter, ICRAM, & OMU

Test R

Bits Terms Bools UFs UPs Total
Sorter, W=8 127 14 12 0 0 25 5.08
Sorter, W=16 249 14 12 0 0 25 9.96
Sorter, W=32 473 14 12 0 0 25 18.9
Sorter, W=64 921 14 12 0 0 25 36.8
ICRAM 287 31 48 9 2 90 3.12
OMU, K=16 1346 67 275 2 0 344 3.91
OMU, K=32 3154 131 1059 2 0 1192 2.65
OMU, K=64 8306 259 4163 2 0 4423 1.88
OMU, K=128 25K 515 17K 2 0 17K 1.47

conc prop→ abst prop→

b {0,1}∈

217
4

interaction between the control and datapath, the abstrac-
tion in UCLID and Reveal(C) is sound and complete. There-
fore, refinement is not triggered.

Left unabstracted, the memory array causes VCEGAR
and VIS to encounter “vertical” state explosion. VCEGAR’s
runtime was shown in [16] and [19] to grow exponentially
with the memory size. Likewise, VIS times out for this exam-
ple. In particular, the verification in VIS begins with con-
verting any n-word by m-bit memory into single-bit
registers regardless of the property being verified. “Flatten-
ing” the memory in this way also leads to loss of the struc-
tural correlation between the memory registers, which can
otherwise be used by the model checker during verification.

5 Out-of-Order Memory Updates Case Study
The Out-of-Order Memory Updates example (OMU) has
been previously introduced in [19] to demonstrate the effec-
tiveness of memory abstraction for RTL verification. The
design instantiates an array of 65K 16-bit words, which can
be read from or written to via designated signals.

The design is verified by simulating two sequences of
write operations on the memory array. The initial memory M
is modified by a sequence of K writes to locations A,
A+1,A+2,...,A+K-1, with the data words D1,D2,...,DK,
respectively, resulting in memory M1. Independently, a sec-
ond sequence of writes is performed on M in locations A+K-
1, A+K-2,...,A, with the data words, DK,DK-1,...,D1, respec-
tively, resulting in memory M2. Since the addresses for the
write operations are mutually distinct, the ordering of the
writes does not affect the final state of the memory. In par-
ticular, the content of location A in both M1 and M2 is
equal. A second, more generic, property is verified by simu-
lating a similar sequence of writes to distinct locations
A1,A2,...,AK. In other words, we allow the addresses to be
arbitrary, albeit mutually disequal.

We compared Reveal(C), Reveal(B), BAT, and UCLID on
these two properties, while varying K over {16,32,64,128}.
The runtimes are plotted in Figure 3 on a logarithmic scale.
Similarly to the ICRAM case, the effect of modeling the
memory is evident in this example. In particular,

Reveal(C) scales well on both properties, taking less than
3 seconds for all the values of K. This is attributed to the
memory abstraction via Lambda expressions [7]. Refine-
ment was not triggered since the datapath/control
interactions are exclusive to (dis-) equalities.

BAT appears to be sensitive to the pattern of memory
writes; proving the property for arbitrary addresses is two
orders of magnitude slower than for consecutive addresses.
UCLID is two orders of magnitude slower than BAT and
Reveal(C) on both properties. Despite its memory and
datapath abstractions, its reduction to CNF [7] is signifi-
cantly slower in proving the property on the abstract
model.
Reveal(B) clearly demonstrates the state explosion prob-
lem, as the runtime rapidly worsens when increasing K.
As with the ICRAM case, VCEGAR’s runtime was shown
in [19] to grow exponentially in the number of writes to
memory. VIS times out on this example for any number of
writes. The lack of memory abstraction hinders both.

6 DLX Case Study
DLX is a 32-bit RISC microprocessor [14]. Its salient features
include a 32-bit address space with separate instruction and
data memories, a 32-word register file with two read ports
and one write port, and 38 op-codes for arithmetic, logical,
and control operations.

Our case study involved comparing two versions of DLX,
both written in Verilog 95 [28]. The first version, which we
will refer to as DLXSpec, is a single-cycle implementation of
the instruction set architecture (ISA) and serves as the archi-
tectural specification of the microprocessor. The second ver-
sion, labeled DLXImpl, is a standard 5-stage pipelined design
consisting of instruction fetch, instruction decode, instruc-
tion execute, memory access, and write-back stages.

Starting DLXSpec and DLXImpl from their reset states,
the property we checked for was equivalence of corresponding
state elements (register and memory locations) after a
bounded number of execution cycles. Specifically, let and

 denote the values of two corresponding state elements
from the specification and implementation after i and j
cycles from reset, respectively. These two elements would,
then, be considered equivalent if:

To compare the various abstraction and refinement
options in Reveal and to demonstrate its ability to (dis-
)prove properties, we verified a number of (buggy and bug-
free) variations of the design. We focus on here,
but similar verification can be used for other state elements.
The buggy versions were obtained by injecting errors in the
RTL of DLXImpl. These variations are described in Table 3
in rows D1, D2, and D3. Following the description of each
version, the columns labeled A.C. (C.C.) show the number of
nodes (bits) in the abstract (concrete) verification condition.
The column labeled R shows the ratio of bits to nodes. The
remaining columns contain statistics for each mode of
Reveal. Columns labeled T, I, and L, describe, respectively,
runtime (seconds), number of iterations, and total number of
refinement lemmas (when applicable). The columns labeled
A show the ratio of the runtime of verifying the abstract
model to the total runtime as a percentage. Finally, the
smallest runtime is emphasized in each row; there can be
multiple in each row when the difference is insignificant.

The performance of the various options in Reveal demon-
strate the role of automatic refinement. Since the control and
the datapath in this design are intermixed, refinement is
needed to “recover” facts that were lost in the course of the

n m·

Figure 3: Runtime graphs for OMU. Dashed and solid lines
correspond to the first and second properties, respectively.

VIS and VCEGAR were omitted to avoid clutter.

0.01

0.1

1

10

100

1000

0 16 32 48 64 80 96 112 128 144

of Write Operations

V
e

ri
fi

c
a

ti
o

n
 T

im
e

,
s

e
c

.

UCLID BAT Reveal(C) Reveal(B)

Ei
S

Ej
I

E1
S E1

I=() E1
S E2

I=() … E1
S E5

I=()∨ ∨ ∨

E PC
5

abstraction, yet are relevant to (dis-)proving the property. To
shed some light on the types of lemmas discovered during
this process, we traced the source of these lemmas back to
the original Verilog code. Most of these lemmas were related
to the pipeline registers and control logic in DLXImpl. For
instance, the lemma ,
which states that it’s not possible to extract a non-zero field
from a zero bit vector, was traced to the following code seg-
ment involving IR3:

define BEQ 4
define op 31:26
initial IR3 = 32’d0;
case IR3[‘op] ‘BEQ: ...

In this case, the initial abstraction lost the fact that
IR3[31:26] can not be equal to 4, and it found a spurious
counterexample that executed the BEQ instruction.

Upon closer examination, we found that DLXImpl con-
sists mainly of a datapath that is responsible for computing
values for the PC and memory to be committed, and control
logic that orchestrates the pipeline. Furthermore, the datap-
ath in DLXImpl is very similar, and in most cases identical,
to the datapath in DLXSpec. As a result, refinement only
affects those portions of the design involving interactions
between the datapath and control logic in DLXImpl.

Table 3 also shows that the use of lemmas for refinement
(modes ELS, CLS, ELM, and CLM) is far superior to using
the violation (mode CV). Also, using multiple lemmas in
each refinement (modes CLM and ELM) outperforms refine-
ment with a single lemma at a time (modes ELS and CLS).

Surprisingly, Reveal(B) is able to terminate on the buggy
versions of the design. This is attributed to the ability of the
BV solver in YICES to efficiently find a satisfying assign-
ment to equation (6). The rest of the case studies in this
paper confirm that proving the unsatisfiability of this equa-
tion is intractable with Reveal(B), while proving its satisfi-
ability may be tractable in some cases, though not all.

In order to compare the performance of YICES and
UCLID in solving the abstract formula, we generate the
expression: , which represents the
final “refined” verification condition created in Reveal. This
expression is dumped as a Verilog word-level combinational
circuit, and VAPOR is then used to generate its correspond-
ing UCLID model. UCLID spends two orders of magnitude
more time than the time spent by Reveal in solving the

abstract formula. We observed a similar trend in the rest of
the test cases.

Finally, we ran VIS and VCEGAR on this design. VIS
was unable to create a netlist due to what we believe is an
internal error in the tool. Regardless, we do not think that
VIS could verify this design due to its large memory arrays.
VCEGAR processed the input but timed out at 600 seconds.

7 Risc16F84 Case Study
This design is an implementation of the Risc16F84 microcon-
troller [29]. It has a 213x14-bit instruction memory, a 29x8-
bit data memory, 34 op-codes, and a 4-stage pipeline.

Similarly to the DLX case, we denote the implementation
and specification by OCImpl and OCSpec respectively. OCI-
mpl processes one instruction every four cycles, while
OCSpec needs one cycle to process each instruction. The
equivalence criterion in this case is:

where and denote the state of the jth state element in
OCImpl and OCSpec, respectively, after i cycles of execution.
In essence, this is an inductive criterion: given equal state
elements in the current cycle, it requires equal state elements
after processing a single instruction. Note that unlike the
DLX case, where the verification starts from the rest state,
here we start from an arbitrary “matching” state.

Reveal was able to discover a genuine bug in this design.
The following Verilog code in OCImpl uses a floating signal
c_in as the carry-in bit to a 8-bit addition operation.

// risc16f84_lite.v
reg c_in; // line 223
{add_node,temp} <= {1’b0,aluinp1_reg,1’b1}+

{1’b0,aluinp2_reg,c_in}; // line 519

OCSpec, on the other hand, performs addition without any
carry-in bit. Reveal thus produces a counterexample showing
the deviation, with c_in assigned to 1. The unit designer
acknowledged this problem, and asserted that the simulation
carried out for this design assumed c_in=0.

Table 3 contains results for three versions of this design.
R1 is a bug-free version, R2 has the aforementioned bug, and
R3 was obtained by injecting a stuck-at-1 bug in the signal
aluout_zero_node. In these results we observe the following:

Refinement with lemmas is superior to refinement with the
violation. Furthermore, the use of multiple lemmas for
refinement is crucial for verifying version R1.

Table 3: Verification results for the X86, DLX, and Risc16F84 variations

Test Case/Version A.C. C.C. R Reveal(CV) Reveal(ELS) Reveal(CLS) Reveal(ELM) Reveal(CLM) Reveal(B)

T I T I T I T A I L T A I L T
D1 Bug-free DLXSpec and DLXImpl 3945 22K 5.58 >600 >1507 1.92 9 1.8 8 0.6 39 4 8 1.0 27 6 12 >600

D2 Pipeline “Stall” control stuck at 1 522 3552 6.8 0.11 1 0.15 1 0.12 1 0.11 3 1 0 0.1 7 1 0 0.21

D3 Address of jump instruction cal-
culated incorrectly 3915 22K 5.62 3.16 45 2.22 11 1.16 5 1.13 23 3 5 1.1 25 4 8 6.7

R1 Bug-free OCSpec and OCImpl 2904 7286 2.54 >600 >1767 >600 >1204 >600 >1085 257 .7 93 185 148 .8 68 170 209

R2 Floating “carry-in” signal for
addition 2928 7376 2.52 0.79 8 56 20 >600 >1881 72 1 44 13 40 1.1 33 39 15.2

R3 “aluout_zero_node” is stuck-at-1
in OCImpl 2849 7224 2.54 115 654 50 123 121 311 2.6 .6 5 15 27.3 0.2 40 73 11.6

X1 Bug-free X86 design and property 70K 153K 2.19 >600 >388 >600 >1158 >600 >945 36.5 31 40 104 60.4 59 19 96 >600

X2 The property swaps the signals
enInteger and enFloatingPoint

67K 153K 2.28 >600 >461 >600 >1062 >600 >1046 30.5 32 78 161 103 63 24 86 >600

X3 The FSM transits from state 000
to state 011 instead of 010 2646 2764 1.04 1.98 2 1.95 2 1.96 2 2.0 6 2 6 2.1 6 1 0 2.72

X4 The opcode for CMP activates
the Floating Point unit 67K 153K 2.28 >600 >308 >600 >847 >600 >1252 23 48 12 41 58.7 74 7 43 >600

IR3 32'd0=() IR3 31:26[] 6'd4≠()→

i(conc prop) lemma
i

→ ∨∨

0 0 4 1() ()j j j j

j j
I S I S= → =∧ ∧

Ii
j Si

j

6

Unlike the DLX case (and the X86 to follow), the verifica-
tion condition here is relatively small despite the huge
memory embedded in the Risc16F84 design. This is attrib-
uted to memory abstraction discussed in previous sections.
Unlike the DLX case, where the verification of the bug-free
version (D1) with Reveal(B) times-out, the verification of
the bug-free version (R1) with Reveal(B) terminates after
209 seconds. It also terminates rapidly on the 2 buggy ver-
sions. This makes its performance comparable with
Reveal(C) and Reveal(E). As we saw in previous sections,
the runtime of Reveal(B) grows exponentially with the
number of bits in the concrete verification condition. On
the other hand, the performance of Reveal(C) and
Reveal(E) depends on the number of nodes in the verifica-
tion condition as well as the control/datapath intermix. If
we denote the number of bits in the concrete verification
condition as b, we can extrapolate that the performance of
Reveal(B) is comparable with Reveal(C) and Reveal(E)
when

b is “small enough”, i.e. b<bmax for some bmax, and

 is “small enough”, i.e. R<Rmax for some Rmax.

If we choose bmax=4000 and Rmax=3, then the above cri-
terion predicts the performance of Reveal(B) for 15 out of
the 18 variations of the test cases in this paper. For the
RISC16F84, R is approximately 2.5, i.e. the bit vectors in
the verification condition are on average 2 to 3 bits wide.
The R2 case shows an interesting outlier, in which
Reveal(CV) is significantly faster than any version that
refines with lemmas. This is due to the heuristic nature of
the satisfiability search for finding a bug. Any search,
regardless of the refinement used, could “get lucky” and
reach a bug early in this way, though only rarely.

An analysis of the lemmas discovered in all variations of this
test case reveals that most of the spurious counterexamples
are due to the variable opcode width feature, wherein the
opcode field can be k-bits wide for any

. For instance, the opcode of
the goto instruction is IR[13:11]=3’b101, while the opcode
for addlw is IR[13:9]=5’b11111. The encoding guarantees
that only one opcode is active at any given time. This infor-
mation is lost when abstracting the bit vector extraction
operation. This results in the occurrence of lemmas of the
form for values
and distinct indices .

On this example, UCLID timed-out after 600 seconds for
R1, and is two orders of magnitude slower than YICES on
R2 and R3. VCEGAR runs out of memory after 370 seconds,
and VIS was not able to process this design since it does not
support blocking assignments, which are used throughout the
Verilog description. We believe that VIS would otherwise
encounter an additional obstacle with the large memories.

8 X86 Case Study
The X86 design is an open source RTL Verilog model devel-
oped at IIT, Madras that implements Intel’s IA-32 ISA [27].
The design contains four high-level modules. The Decoder
module, which is the main focus of our verification effort, is
responsible for fetching an instruction prefix from the mem-
ory, finding the total length of the instruction, fetching and
decoding the rest of the instruction, and providing the result
to the Control module. The top module of the Decoder

instantiates the fetching unit, the instruction length find
unit, and six decoding units, which correspond to six instruc-
tion types that exist in the x86 architecture and its exten-
sions, namely Integer, Floating Point, MMX, SSE, SSE2, and
SSE3. Each decoding unit has an enable signal that orches-
trates its operation with the Decoder top module.

Upon reset, the Decoder fetches the PC and the corre-
sponding instruction from memory. We verified the property
that the Decoder activates the corresponding decode unit
when the instruction is confined to a set of 6 Integer and
Floating Point op-codes as follows:

When the verification was invoked in Reveal, the tool was
able to discover a coding problem in the design. In particu-
lar, the RTL description includes the code

// sse3Decoder.v
op2 = 32’d0; // line 55
if (...) // line 185
op2[16:0] = instrSeq[31:16]; // line 188

which uses a blocking assignment to initialize the signal op2,
and then extracts a 16-bit displacement value from the
instruction stream and assigns it to a 17-bit register. Most
synthesis tools will zero-extend the RHS expression to make
the sizes consistent, in which case the resulting model is still
correct. Nonetheless, such an error may indicate additional
problems in other units of the design. We have notified the
unit designers about this problem, and we modified the Ver-
ilog to eliminate the problem for the later experiments.

Similarly to the previous two test cases, we compared the
performance of Reveal on two buggy versions and one bug-
free version and included the results in Table 3. These results
reassert the importance of refinement with multiple lemmas.

A notable phenomenon in this case is that Reveal(C) con-
verges significantly faster than Reveal(E) in terms of refine-
ment iterations. This is attributed to the heavy use of
counters in the FSM of the X86 decoder. Along these lines,
note that the number of lemmas accumulated in Reveal(C) is
much smaller than in Reveal(E). On the other hand,
Reveal(C) spends more time verifying the abstract model,
almost twice as much as Reveal(E), despite Reveal(C)’s
smaller number of refinement iterations.

To further assess the effect of lemmas on the convergence
of the algorithm, we ran Reveal(C) on a version that com-
bines the three bugs present in X2, X3 and X4. This was an
iterative session, in which Reveal was re-invoked after cor-
recting each reported bug. We tested Reveal in two modes: a
mode in which learned lemmas are discarded after each run
and a mode in which learned lemmas are saved and used
across runs. The total runtime for the first mode was 232 sec-
onds, whereas the runtime in the second mode was 166 sec-
onds, a 40% improvement in speed. This confirmed our
conjecture that lemmas discovered in one verification run can
be profitably used in subsequent runs. The verification of
real-life designs involves tens to hundreds of invocations of
the tool, thus a significantly larger speedup could be seen in
practice.

R b
N
----=

k K∈ 2 3 4 5 6 7 14, , , , , ,{ }=

IR 13:k1[] v1=() IR 13:k2[] v2≠()→ v1 v2≠
k1 k2, K∈

opcode CMP JMP MOV FADD FCMOV FINIT, , , , ,{ }∈()→

opcode CMP JMP MOV, ,{ }∈() enInteger↔() ∧

opcode FADD FCMOV FINIT, ,{ }∈() enFloatingPoint↔()
7

UCLID exhausts available memory during its CNF encod-
ing stage on most of the variations of this design after
approximately 250s. VIS cannot process the input Verilog
due to blocking assignments, and VCEGAR halted due to an
internal error after parsing.

9 Conclusions
This paper reported on six case studies of automatic formal
verification of safety properties, with emphasis on equiva-
lence, using the CEGAR-based Reveal system. This system
is particularly suited for the verification of designs that con-
sist of wide datapaths whose operation is orchestrated by
complex control logic. Abstraction of the datapath allows the
verification system to focus on the control interactions and
enables it to scale to much larger designs than is possible if it
had to operate at the bit level. All aspects of the Reveal sys-
tem are automated, making it quite easy to use. In particu-
lar, its demand-based lemma generation capability eliminates
one of the obstacles that had complicated the deployment of
formal verification tools in the past. Finally, its support of
Verilog allows it to be directly used by designers.

Based on the experiments in the previous sections we
draw the following unified conclusions:

The performance of many verification tools such as Reveal,
BAT, and UCLID depends on the size of the verification
condition. This size is determined by the design as well as
the property, and can be immensely reduced by applying
memory abstraction. Memory abstraction is, thus, essen-
tial for the practical verification of hardware models, and
it gives these tools an edge over approaches that do not
abstract memory such as VCEGAR and VIS.
Datapath abstraction and counterexample-guided refine-
ment is scalable for various types of designs, including
those where datapath and control interleave intensively.
The refinement loop converges much quicker when multi-
ple refinement lemmas are used per iteration. Although
most of the lemmas detected in Reveal are fairly simple, it
is infeasible to “predict” relevant ones a priori. Succinct
lemmas have two main advantages: they eliminate signifi-
cant spurious behavior from the abstract model, and they
are human-friendly ‘empirical data’ that gives the verifica-
tion engineer insight into the abstraction/refinement
process for the particular design at hand. The high-level
nature of the lemmas also allows them to be re-used. In
contrast, propositional clauses often stored (via conflict
learning) and re-used in incremental SAT solving cannot
be used across verification sessions since they become obso-
lete when the design is altered, even slightly, for the
purpose of fixing bugs or modifying assumptions.
The performance of methods that leave the datapath
unabstracted, such as BAT, Reveal(B), and VIS, is com-
parable to CEGAR-based tools on relatively small
verification conditions. This suggests that an optimal
approach might incorporate techniques from both realms.
The advantage of counting arithmetic does not always
reflect positively on the total runtime, as there is a trade-
off between the number of refinement iterations and the
time spent on solving the abstract formula.
While predicate abstraction has been shown to be scalable
for model checking in general [16], we conjecture that the
need for a large number of predicates is a common occur-
rence when verifying designs with large memories and for
equivalence properties that were the focus of this paper.

References
[1] Z. Andraus and K. Sakallah, “Automatic Abstraction and Veri-

fication of Verilog Models,” Proc. DAC, pp. 218-223, 2004.
[2] Z. Andraus, M. Liffiton and K. Sakallah, “Refinement Strate-

gies for Verification Methods Based on Datapath Abstraction,”
Proc. ASPDAC, pp. 19-24, Jan. 2006.

[3] F. Balarin, and A. Sangiovanni-Vincentelli. “An Iterative
Approach to Language Containment,” In Proc. CAV, LNCS
vol. 697, pp. 29-40, 1993.

[4] T. Ball, and S. K. Rajamani. “The Slam Project: Debugging
System Software via Static Analysis,” In Proc. POPL, pp. 1-3,
Jan. 2002.

[5] T. Ball, and S. K. Rajamani. “Boolean Programs: A Model and
Process for Software Analysis,” Technical Report 2000-14,
Microsoft Research, 2000.

[6] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. “Symbolic Model
Checking without BDDs,” Proc. TACAS, LNCS, Springer-Ver-
lag, pp. 193-207, 1999.

[7] R. E. Bryant, S. K. Lahiri, and S. A. Seshia. “Modeling and
Verifying Systems Using a Logic of Counter Arithmetic with
Lambda Expressions and Uninterpreted Functions,” In Proc.
CAV, LNCS vol. 2404, July 2002.

[8] J. R. Burch, and D. L. Dill. “Automatic Verification of Pipe-
lined Microprocessor Control,” In Proc. CAV, LNCS vol. 818,
pp. 68-80, 1994.

[9] E. Clarke, O. Grumberg. S. Jha, Y. Lu and H. Veith. “Counter-
example-Guided Abstraction Refinement,” In Proc. CAV,
LNCS vol. 1855, pp. 154-169, 2000.

[10] S. Das, and D. Dill. “Successive Approximation of Abstract
Transition Relations,” In 16th Annual IEEE Symposium on
Logic in Computer Science, pp. 51, 2001.

[11] B. Dutertre and L. de Moura. “A Fast Linear Arithmetic Solver
for DPLL(T),” In Proc. CAV, LNCS vol. 4144, pp. 81-94, 2006.

[12] S. Govindaraju, and D. Dill. “Counterexample-Guided Choice
of Projections in Approximate Symbolic Model Checking,” In
Proc. ICCAD, November 2000.

[13] S. Graf, and H. Saidi. “Construction of Abstract State Graphs
with PVS,” In Proc. CAV, LNCS vol. 1254, pp. 72-83, 1997.

[14] J. L. Hensessy, and D. J. Patterson. Computer Architecture: A
Quantitative Approach.: 2nd edition. Morgan Kaufman, 1996.

[15] R. Hojati, and R. K. Brayton. “Automatic Datapath
Abstraction of Hardware Systems,” In Proc. CAV,
LNCS vol. 939, pp. 98-113, June 1995.

[16] H. Jain, D. Kroening, N. Sharygina, and E. Clarke. “Word
Level Predicate Abstraction and Refinement for Verifying RTL
Verilog,” In Proc. DAC, pp. 445-450, June 2005.

[17] R. Kurshan. Computer-Aided Verification of Coordinating Pro-
cesses: The Automata-Theoritic Approach. Princeton University
Press, 1999.

[18] M. H. Liffiton, M. D. Moffitt, M. E. Pollack, and K. A. Sakal-
lah. “Identifying Conflicts in Overconstrained Temporal Prob-
lems,” In Proc. IJCAI, August 2005.

[19] P. Manolios, S. K. Srinivasan, and D. Vroon, “Automatic Mem-
ory Reductions for RTL Model Verification,” In Proc. of
ICCAD, November 2006.

[20] G. Nelson and D. C. Oppen. “Simplification by cooperating
decision procedures.” ACM Transactions on Programming Lan-
guages and Systems (TOPLAS), 2(1):245-257, 1979.

[21] A. Pardo, and G. Hachtel. “Incremental CTL Model Checking
using BDD Subsetting,” In Proc. of DAC, pp. 457-462, 1998.

[22] “VIS: A System for Verfication and Synthesis”, The VIS
Group, In Proc. CAV, LNCS vol. 1102, pp. 428-432, July 1996.

[23] F. Wang, B. Li, H. Jin, G. D. Hachtel, and F. Somenzi,
“Improving Ariadne’s Bundle by Following Multiple Threads in
Abstraction Refinement,” ICCAD 2003, pp. 408-415.

[24] YICES v1.0.3, http://yices.csl.sri.com/
[25] “picoJava-II Microarchitecture Guide”
[26] http://www.sun.com/processors/technologies.html
[27] http://vlsi.cs.iitm.ernet.in/x86_proj/x86Homepage.html
8

[28] http://www.eecs.umich.edu/vips/stresstest.html
[29] http://www.opencores.org
[30] http://www-static.cc.gatech.edu/fac/Pete.Manolios/bat/
[31] UCLID v1.0, http://www.cs.cmu.edu/~uclid/

[32] VCEGAR v1.1, http://www.cs.cmu.edu/~modelcheck/vcegar/
[33] VIS v2.1, http://vlsi.colorado.edu/~vis/
[34] zChaff v2007.3.12_64bit, http://www.princeton.edu/~chaff/
[35] Cadence SMV v2.4.2-2, http://www.kenmcmil.com/smv.html
9

	Table 1: Benchmark statistics
	Table 2: Verification conditions for Sorter, ICRAM, & OMU
	Table 3: Verification results for the X86, DLX, and Risc16F84 variations
	Zaher S. Andraus, Mark H. Liffiton, Karem A. Sakallah
	Department of Electrical Engineering and Computer Science University of Michigan Ann Arbor, MI 48109-2122
	{zandrawi, liffiton, karem}@umich.edu

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

