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Abstract

Suppose filesystems supported cloning of any subset of directories, even those containing gigabytes of data,
almost instantaneously, while guaranteeing isolation between the original copy and the cloned copy. We show
that this simple abstraction can greatly simplify many routine tasks, both for a single operating system and
for clusters of similar virtual machines in a virtual server farm. In this paper, we describe the design of
Prism, a file server that supports lightweight cloning and centralized file management of multiple filesystems.
Unlike copying in standard file systems or cloning operations on virtual disks, the Prism filesystem supports
high-level operations to create fast clones of any part of a filesystem. After cloning, each cloned file system
can evolve independently, providing similar read/write semantics as if the file systems were copied from each
other. This abstraction is useful for supporting virtual server farms. It is possible to create filesystems
for new wvirtual machines interactively, while protecting private home directories, log files, and password
files. Furthermore, when cloned systems have a high degree of similarity, Prism makes centralized scanning
operations (e.g., for malware checking) for multiple cloned file systems significantly faster than scanning each
file system individually. Prism’s capabilities are also applicable to individual operating systems. Prism can
help provide lightweight file system isolation between processes to prevent untrusted code from damaging the
filesystem.

Prism is currently implemented by extending the ext3 filesystem. On the Postmark benchmark and the
Apache build workload, Prism’s performance is comparable to that of a standard ext3 filesystem. For appli-
cations that require scanning or comparing multiple, cloned filesystems, Prism is significantly faster. This
paper describes the design and evaluation of the Prism filesystem.

1 INTRODUCTION

Many storage systems provides a powerful feature that allows them to create clones of a data storage.
Here, data storage refers to both block-level storages such as disk partition and volumes, and file-level storage
such as file systems. A clone is semantically similar to a copy of the parent storage. Once created, it is
independent of the parent storage. Subsequent changes to either one are not reflected in the other.

Conceptually, the cloning feature is great for any situation where testing or development occur, any
situation where progress is made by locking in incremental improvements, and any situation where there is
a desire to share data in changeable form without endangering the integrity of the original. We argue that
a successful cloning mechanism must have two characteristics: efficiency and flexibility.

By efficiency, we mean that the speed of creating clones must be fast. For example, imagine a situation
where a user wishes to test some downloaded software, but is not willing to risk damaging his or her filesystem.
The user could create a clone of the filesystem and test the software on the cloned copy. If the cloning is



immediate, the testing process can be repeated rapidly from clean copies. The same task could be done by
copying the filesystem, but this incurs substantial disk I/O operations and would probably be very slow,
taking minutes to hours. The time that users spend waiting for such tasks can significantly change users’
experience.

By flexibility, we mean a user should be able to selectively choose appropriate parts of the data storage
for cloning. In many scenarios, the ability to exclude certain files or directories from cloning is very useful.
For example, a user, say Ann, may have a working version of an operating system and applications (with
her filesystem mounted from the Prism server). Bob wants to use the same OS configuration, and Ann
is willing to allow Bob to copy her filesystem. But Ann wishes to exclude certain directories, such as her
home directory, /tmp directory, and /var/log directory, for privacy reasons. It is desirable for the cloning
mechanism to be able to exclude certain files or directories from cloning. Similarly, the ability of cloning
only a part of a filesystem is also useful. For example, with this capability, a user can only clone her home
directory at every login. As such, if her files are accidentally corrupted during the session, the user can
restore them from the clone. Because the rest directories are irrelevant to this purpose, they are not cloned.
This minimizes the performance impact caused by the cloning operation.

The cloning support can be implemented in various ways. The simplest solution is to copying data from the
parent storage to create the clone. For a file system, it is easy to specify the files to be copied, which meets the
requirement of flexibility. However, data copying incurs substantial disk I/O operations. It can take minutes
to hours to copy a file system, making this solution very inefficient. Some current virtual machine systems,
such as VMWare [25], support block-level cloning of virtual disks. They use a copy-on-write technique to
avoid duplicating disk blocks that are the same in a clone as in the parent virtual disk. Only when shared
blocks are modified do these systems create new copies of these blocks. The block-level cloning mechanism
is fast and guarantees isolation. However, it falls short in flexibility. The cloning mechanism operates at
block level and has no knowledge of file system semantics. This makes it difficult to selectively clone part of
data storage, virtual disks in this case.

In this paper, we describe the Prism file system which provides a file-level cloning mechanism. The
file-level cloning mechanism is similar to a copy operation in a standard file system, except much faster.
From an end-user perspective, cloning is completed almost instantaneously, irrespective of the size of the
cloned filesystem’s size (either in number of files, depth, or total number of bytes). The filesystem clone is
immediately ready for use without interrupting the access to the parent filesystem. Moreover, Prism allows
a user to clone any part of a filesystem, while excluding the rest files and directories.

In addition, Prism allows multiple domains to share identical parts of a single filesystem copy, while
keeping their modifications to the filesystem private to themselves. As such, Prism serves multiple domains
with a single filesystem copy, while preserving the illusion that each domain has a dedicated file system
copy. In contrast, most existing systems can either allow multiple domains to share a single file system copy
without isolation or have to maintain a copy for each domain to achieve isolation between domains.

Prism helps improve the efficiency of central operations on multiple cloned filesystems. In the example
with Ann and Bob, a system administrator may wish to periodically scan Ann’s and Bob’s filesystems for
viruses. With Prism, it is straightforward to write a scanning application that scans common, unmodified
files between the two systems only once. Similarly, comparing two filesystems, like diff -r on Unix, can
be made much faster in Prism than on copied filesystems. This would be useful in the case of untrusted
software testing scenario to determine if it has maliciously modified the filesystem.

Prism utilizes a copy-on-write technique that operates at both the file-level and the block-level to make
cloning very fast. Though the copy-on-write principle is simple, several complications arise when attempting
to make it fast for cloning large filesystems. In particular, our goal was to avoid traversing the filesystem
hierarchy before being able to respond to the user. At the same time, we wanted the semantics of cloning
to be identical to that of a copy at the time of the cloning operation. We explored several options for
implementing selective cloning. The first option was static cloning. It uses a copy-on-write technique to
avoid duplicating file data by making file clones share data blocks with the parent files. The static cloning
mechanism presents end users a usable file system clone after it establishes data sharing for all files. Though
this was considerably faster than a full copy of an entire filesystem, it still took approximately 104 seconds



for cloning the Fedora Core 4 distribution in an experiment conducted by us. We then improved on the
scheme and implemented a dynamic cloning method in which most of the data sharing is established at the
background and lazily on an as-needed basis. It provides the same semantic guarantees as static cloning,
but allows both filesystems to be usable immediately. The Prism cloning mechanism uses disk space very
efficiently. The parent and cloned filesystem share data of unchanged files, which usually occupy a large
portion of files. Prism only consumes additional space to store changes between the parent and clone. This
is a huge potential saving in dollars, space, and energy. In addition to all these benefits, clone have the
similar performance as a fully copied clone.

We measured performance of a Prism-based system on several workloads and compared it to solutions
based on the ext3 filesystem. On both the Postmark benchmark and an Apache-build workload on a cloned
filesystem, the performance was comparable to that of an ext3-based filesystem, with only a minor perfor-
mance penalty. The cloning operation itself was essentially an immediate operation from the perspective of
the end-user, irrespective of the size of the filesystem, taking only 0.18 seconds to complete. For scanning
multiple cloned filesystems, Prism outperformed an ext3-based solution significantly because it was able to
skip over files that had not been modified since cloning. The performance advantage of Prism over ext3
went up as the number of clones was increased. We also implemented a smartdiff program to compare a
filesystem and its clone that worked like a recursive diff program to compare two directories. The smartdiff
program outperformed a standard recursive diff program by more than an order of magnitude when the two
filesystems being compared shared many common files. In terms of disk space, a clone of a Fedora Core 4
distribution, consisting of over 170K files, took up about 1.3% of the space (77MB for the clone versus 6GB
for the parent filesystem).

The rest of the paper is organized as follows. Section 2 discusses the advantages of the interactive cloning
abstraction provided by Prism from an end-user perspective. It gives several applications that benefit
from the availability of fast selective cloning. Section 3 describes the overall architecture and compoents
of the system. Section 4 outlines the design of Prism, including issues in making cloning operation usable
interactively. Section 5 presents performance results. Section 6 talks about related work. Section 7 concludes.

2 SELECTIVE CLONING APPLICATIONS

The selective cloning operation in Prism is conceptually simple. It provides similar semantics to creating
a new copy of a specified part of the filesystem. The crucial difference is that cloning operation is efficient,
even when the filesystem is large. Prism can work within a single operating system to allow cloning of any
directory. However, it is also designed to provide a central storage for multiple virtual machines. Cloning
can be used to rapidly instantiate new, customized filesystems from existing ones for new virtual machines.

This section presents several applications for use of Prism’s selective cloning support and show how, in
this settings, Prism offers same or better service than existing mechanisms such as virtual disks and network
file systems.

2.1 Selective Cloning to Enhance Security

Consider the following scenario. A developer, Ann, is using a virtual machine that has all the right
software installed. Another developer, Bob, wishes to avoid wasting time reinstalling the same software on
a fresh virtual machine. He asks Ann to provide a clone of her virtual machine’s filesystem. Ann would be
happy to do that but is concerned about the privacy of her files. Prism’s selective clone capability would
allow Ann to make a clone of her virtual disk, while excluding specified files or directories from the clone.
In Prism, the above task can be done from the administrative console very simply as:

% prism clonefs /annfs /bobfs -exclude /annfs/home/ann

Here, /annfs refers to the file system as seen by Ann’s virtual machine (Ann in her VM will see that
as her root file system). That file system is cloned into a new file system /bobfs. Ann’s home directory
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Figure 1: Prism File System Views

is excluded from cloning. Figure 1 shows the view of the file systems as seen by Ann, Bob, and by an
administrator on the console at the Prism server. The entire operation completes interactively, typically in
milliseconds, irrespective of the size of Ann’s file system. Both file systems are usable immediately after
cloning (the command usually returns back to the user in less than a second).

A more general version of clonefs allows the use of a template file as an argument. The template file
specifies a directory tree for cloning, but can list the set of files/directories that should be excluded from
cloning.

Let’s consider a few alternatives for accomplishing this task using standard solutions available today. Ann
could create a new filesystem partition for Bob, copy all the files that she is fine with sharing to the Bob’s
partition, and then provide the new partition to Bob’s virtual machine. This works, but is obviously a slow
process, which can take minutes to hours. We believe that the huge difference in elapsed time changes the
user’s experience substantially.

Another alternative would be for Ann to partition her filesystem a priori so that her private files and
non-private files are never on the same partition. If that is done, then the entire non-private partition could
be cloned using virtual disk cloning, as supported in VMWare and Xen. Prism does not require such a
decision to be made in advance and is thus more flexible. In fact, default partitions for most operating
systems, such as Fedora and Windows, do not create partitions with privacy as the deciding factor. Private
content can also be spread out in multiple places, such as /tmp and in log files, which often do not reside
on dedicated partitions. Prism requires no a priori decision to be made, separating the concerns of privacy
(semantic decision) from that of physical disk partitioning (usually driven by performance, reliability, and
backup considerations).

It is also possible for Ann to export certain directories for sharing with Bob via network file systems.
However, she still faces a dilemma. If the exported directories is shared in read-write mode, Ann’s VM can
be disrupted if Bob’s VM is compromised and the hacker change the executable files shared between Ann
and Bob. If the exported directory is shared in read-only mode, Ann must carefully relocate the files that
must be modified at runtime out of the directories to be shared. Otherwise, Bob’s VM cannot run normally.
In practice, such kind of files can scatter around the entire file system of Ann, making the relocation task
nontrivial.

2.2 Efficient Scans of Multiple Filesystems

Scanning a filesystem is a common operation for virus/spyware checking, building an initial search index
on a file system (e.g., as done by Google Desktop) and for file system backups.

Suppose a computer need to run multiple VMs whose software environments are similar with minor
difference. This is not a rare scenario in real world. For example, a website can run three VMs on a single
computer to implement the 3-tier web architecture: one VM as the frontend to process requests for static
webpages, one VM as application layer to run CGI programs and process dynamic web requests, and one
VM to provide services such as database. The NetTop system developed by the national security agency



(NSA) is another example. One can deploy multiple VMs with identical software environment but different
privileges so that applications with different security levels can run on a single computer.

Prism helps substantially reduce the time and overhead of deploying such kind of systems. A system
administrator can use the first VM’s software environment as a template to create multiple clones and then
customize them to meet different requirements.

With Prism, it is possible to scan above systems centrally for tasks such as malware detection, rather
than relying on each virtual machine (which is under user control) to do the scans. Central scanning has
two major advantages over scanning within each VM. First, the central scanner is independent of any other
VMs and cannot be compromised or bypassed, which is critical for virus checking. In contrast, virtual disks
provide no file-level knowledge. The central scanner has to understand all file systems that are deployed on
virtual disks in order to scan them centrally, making central scanning less practical. Virus scanners have to
run within each virtual machines and are more vulnerable to attacks.

Second, Prism can help central scanners to detect files that are shared by multiple clones and scan them
only once. This can significantly reduce the overhead of virus checking on multiple VMs. In contrast, with
virtual disks, each VM must run virus scanner in its guest OS. A virus scanner can only access to the virtual
disks of its own VM. Therefore, it cannot detect the data blocks shared by multiple VMs. The virus scanner
may have to read a same block multiple times, making the scanning procedure less efficient. Our performance
experiments show significant improvements over independent scans on each file system.

Network file systems can support central scanning as well. But as Section 2.1 shows, due to the lack of
isolation, VMs can be even more vulnerable to attacks if a sharing VM is malicious.

If a configuration file, such /etc/passwd, is cloned, then it is possible to take advantage of cloning to
modify it across all systems by changing a single copy on disk. We do not discuss this type of modification in
this paper as it breaks the standard isolation guarantees that Prism aims to provide. However, to assess the
feasibility, we have implemented an experimental administrative mechanism to update a file clone without
breaking the linkage between the clones. This may be a useful capability in the future if it is restricted to
central administrators who are managing multiple file systems. Users on individual systems (including root
users) still see a dedicated file system, except that the central administration is permitted to update the
files on their systems. We do not discuss this mechanism further in this paper and assume that writes on a
cloned filesystem are not shared with other clones.

2.3 Simplify IT operations

With Prism, it is possible to maintain multiple copies of production systems: live, development, test,
reporting, etc. This feature is useful to simplify IT operations. For example, imagine a situation where the
IT staff needs to make substantive changes to a production environment. The cost and risk of a mistake are
too high to do it on the production volume. Ideally, there would be an instant writable copy of the production
system available at minimal cost in terms of storage and service interruptions. By using Prism, the IT staff
gets just that: an instant point-in-time clone of the production data that is created transparently and uses
only enough space to hold the desired changes. They can then try out their upgrades using the Prism clone.
At every point that they make solid progress, they clone their working Prism clone to lock in the successes.
At any point where they get stuck, they just destroy the testing clone and go back to the point of their last
success. When everything is finally working just the way they like, they can split off the clone to replace
their current production system. The Prism’s cloning feature allows them to make the necessary changes to
their infrastructure without worrying about crashing their production systems or making untested changes
on the system under tight maintenance window deadlines. The results are less risk, less stress, and higher
levels of service for the IT customers.

2.4 Lightweight Snapshots

While Prism is not a versioning filesystem, it can be used to provide some of the benefits of a versioning
filesystem because clones behave like filesystem snapshots. In Prism, it is straightforward to provide a



command to the user, allowing him to create a read-only clone of the home directory at every login, on
demand, or periodically.

Another possibility is to modify programs like login/sshd to make a cloned copy of the file system at
every login. If subsequent malicious activity is suspected during a login session, then one can compare the
snapshots before the session and a snapshot after the session to determine which files were modified. This
comparison operation can be implemented much more efficiently as a user application in the Prism-based
filesystem because files that have not been modified at all will not require a content-comparison. More
important, the comparison provides human-readable information. It shows the different files instead of
blocks, making it easier for administrator to better use snapshots.

2.5 Executing Untrusted Code Within the Same OS

Consider a scenario where a professor wishes to execute the class projects of his or her students in the
computer security class for grading but is worried about side-effects. It is possible that a buggy or malicious
project could corrupt files on the system. With Prism, he or she could do the following;:

% prism clonefs / /gradecopy % chroot /gradecopy % compile/execute the project

Finally, from a shell that is outside the root jail, the results can be copied back to the parent filesystem
and the clone removed.

% prism rmclone /gradecopy

(This process can be repeated for other student projects.)

The student’s project will be able to access to the entire file system in the chroot environment, including
shared libraries, header files, etc, but will not affect the original file system as it will be working off of a
cloned copy.

The alternative method for guaranteeing a similar level of isolation within an operating system today is to
create separate user accounts for each grading session because the process isolation alone does not guarantee
isolation of file systems. Note that using a single account is not adequate because of potential side-effects
from one project on another. Without Prism’s cloning primitive, the permissions on relevant files in the
system would have to be carefully configured to guarantee that a userid used for the grading cannot tamper
with those files on the system. Prism provides a guarantee that the original filesystem remains intact even
if the filesystem permissions are configured incorrectly (as long as the root jail is secure).

For multi-layered security, cloning can be used in conjunction with running untrusted code with a
restricted-right userid. In that case, untrusted code has to break both the root jail as well as exploit
controls placed on the userid. For even further isolation guarantee, the untrusted code can be run in a guest
virtual machine created with a cloned filesystem. In that case, the untrusted code can even be given root
privileges on the guest VM.

2.6 Software Testing and Determining File System Impact

Consider the case where a user wishes to install third-party code on her system, but is not sure which
files the executable will modify. With fast cloning, it is possible to install the code on a cloned file system.
With Prism, one can then compute the difference of the original file system and its clone more efficiently
than comparing a file system and its copy as shown below:

% prism clonefs <parentfs> <childfs>

% chroot <childfs>

% install third-party software.

Then, from a different shell, run

% smartdiff -r <parenfs> <childfs>

The smartdiff is an application that we wrote to efficiently compute differences between a parent filesys-
tem and a cloned filesystem (or any two filesystems that are both managed by a single Prism server). It
works like a normal diff, with the exception of performance optimizations. It does not need to examine
the contents of files that have not been modified (usually, a vast majority of files will fall in this category)
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Figure 2: Prism File System Overview

because they will have the same inode value in both the parent and child filesystems. It also checks that

childfs is not mounted as a subdirectory of parentfs, in which case it skips over childfs when traversing

the directory tree of parentfs (and conversely). As a result, the following can be handled by smartdiff:
% prism clonefs / /testfs % smartdiff -r / /testfs

3 PRISM ARCHITECTURE OVERVIEW

As shown in Figure 2, a Prism system usually consists of one or more Prism clients accessing a common
Prism server. The clients and the server could reside on the same physical machine (e.g., each client in a
different virtual machine) or on different physical machines. At present, Prism only provides data storage
for virtual machines running in a single computer.

3.1 Prism Server

The Prism server uses the Prism ext3 file system (pext3) to manage physical files. The pext3 filesystem
shown in Figure 2 is the ext3 filesystem extended with Prism’s cloning support. The Prism server is able to
export one or more pext3 directories to remote clients using the NFSv3 protocol [15]. There is no technical
difficulties of using other network file system protocols like Samba [24]. A client’s Prism mounted filesystem
is essentially a pext3 directory at the server side.

The pext3 file system can clone any specified directory and export the clone as a file system to remote
clients. When creating a clone, the clonefs command takes a template file as its argument. The template
file specifies the parent directories to be cloned, the destination directory where the clones reside, and the
directories that should be excluded from cloning. Only a Prism directory can be cloned. All clones are
managed by the same Prism server, though they can be accessed by multiple clients. Once a filesystem clone
is created, it can be accessed as a normal filesystem and supports all file operations such as read, write, as
well as subsequent clone operations.

The pext3 file system is implemented as a kernel module. It does not change any system call interfaces
and can be access by existing applications without any modification. The cloning operation, however, is
unique to pext3 and cannot be invoked by standard file system calls. We therefore implemented a cloning
tool that invokes the cloning operation by talking to the pext3 kernel module via an ioctl channel. This is
a fairly standard alternative to adding a new system call.

3.2 Prism Client

The Prism clients present applications a virtual file system, through which guest applications can read
or write files, as if the files reside on a dedicated file system. The transparency is achieved with modest
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change to the guest operating system — a kernel module must be inserted into the guest operating system. No
modification is required for guest applications. The property of transparency causes the least incompatibility
with existing applications and procedures.

To transparently present application a virtual file system, a Prism client registers itself with the common
file system interface of the operating system to become a Prism file system handler. Most mainstream
operating systems offer such kind of common file system interface to plug in the drivers of new file systems.
For example, Linux systems use the virtual file system (VFS) interface [2], and Windows uses the Installable
File System Kit (IFS Kit) [4]. At present, Prism is only implemented on the Linux platform. But the Prism
design can be applied to the Windows platform. For the rest of this thesis, we use the Linux as an example
platform to describe the design of Prism. For brevity of description, we use the Linux term ”VFS” to refer
to the “common file system interface” in the Prism model.

A Prism client presents to guest applications a “virtual” file system whose physical data resides in the
Prism server rather in the local disks. An application accesses virtual files using standard system calls, such
as open, read, and write. When the system calls get passed down to the kernel, the VFS layer determines
whether the requested files reside within Prism and forwards the requests to the Prism client if necessary.
The Prism client then transfers the requests to the Prism server and waits for the server response. After the
client receives the server’s reply, it returns the results to the guest application, giving the calling applications
an illusion that the requests were processed locally.

4 Prism Cloning Mechanism

The cloning primitive has existed in block-level storage systems for many years. For example, VMWare [23]
and Xen [1] use a block-level copy-on-write technique efficiently clone virtual disks. The block-level copy-
on-write technique is simple but very efficient if the entire disk needs to be cloned. However, this block-level
cloning mechanism cannot selectively clone parts of a storage (disk partition, volumn, or filesystem). To do
this, one has to examine the directories/files structure, which is not exposed by block-level storage systems.
To meet Prism’s flexibility requirement, we must devise a file-level cloning mechanism.

4.1 Cloning Via File Sharing

The simplest way to clone a directory in a source filesystem is to copy it (cp -r srcdir destdir). How-
ever, this generates considerable disk I/O and consumes a lot of disk space, making many of the applications
we considered in Section 2 less impractical with this solution.

The key idea in implementing efficient cloning is to avoid duplicating file data during cloning as much as
possible. Based on this idea, Prism employs a copy-on-write technique to avoid copying files that are the
same in a clone as in the parent directory.

Basically, Prism clone directories and regular (non-directory) files in different ways. When cloning a file
system, Prism always starts from the parent file system’s root directory to traverse the entire directory
structure and clone all encountered file objects. For each directory, Prism creates a new directory at the



corresponding place in the clone. For a regular file, Prism creates a clone by hard linking to that file in the
clone. In the pext3 file system, all named files are hard links. The name associated with the file is simply a
label that refers the operating system to the actual data. As such, more than one name can be associated
with the same data. The clone and the original file can therefore share the file data. Copy-on-write is
performed to create a new private copy if either the clone or its parent attempts to change a shared file. All
subsequent modifications are applied to the new copy. As such, the isolation between the parent file system
and its clone is preserved.

While the basic idea is conceptually simple, two challenges must be addressed in designing the selective
cloning mechanism:

1. How to ensure that a clone provides the same semantics as a fully copied file system? As we will see
later, cloning via file sharing can change the file access semantics. It is important to avoid such issue.

2. How to ensure that a clone has similar performance as a normal file system? In Prism, a clone
shares files with its parent. If one attempts to modify a shared file, copy-on-write must be performed.
However, it is nontrivial to minimize the performance impact of the copy-on-write operation.

4.1.1 Preserving File System Semantics

As we point out earlier, Prism clones regular files using hard links. It does not need to create a new inode
for the cloned file and thus minimize the disk I/O. However, this can change the file system semantics if the
parent file system has hard links.

Figure 3 shows an example that helps illustrate this issue. Suppose a user clones a file system FS1 to a
new filesystem FS2. Note that a exportable file system in pext3 is essentially a pext3 directory. We refer
to FS1 as the “parent” filesystem and FS2 as the “child” filesystem. In FS1, the file /a/b and /x/y are two
hard links pointing to the same file. As illustrated in Figure 3, Prism creates two hard links in FS2 for /a/b
and /x/y, respectively.

Now suppose the file /a/b is modified in the parent filesystem. According to the standard UNIX file
system semantics, though hard links have different names, data changes made through any hard link will
affect the actual data and are immediately visible to other hard links pointing to the same inode. Therefore,
one should be able to see new data by reading the file /x/y in FS1. On the other hand, according to the
cloning semantics, any modification made in one file system should be transparent to the other file system.
The files /a/b and /x/y in FS2 should still contain old data.

In order to preserve isolation between FS1 and FS2, upon modification to file /a/b, Prism must perform
a copy-on-write to create a new inode and data block to apply changes. However, the files /a/b and /x/y
in FS1 point to different inodes and contain different contents, which breaks the semantics of hard links. To
address this problem, Prism must make the hard link /x/y point to the new inode as well. However, given
an inode, there is no efficient way to find all hard links pointing to this inode. Prism must traverse the FS1’s
entire directory structure to find these hard links, making the file modification very slow.

To determine whether hard links are a real issue, we analyzed one of the Linux installations at a depart-
mental server, and found that over 6000 files had multiple hard links to them. Other file systems, such as
NTFS, also support hard links. We therefore concluded that it is desirable to maintain support for them if
at all possible, since some applications and users clearly rely on them.

Our solution to this problem is based on the following observations. There are over 170K files on our
experimental machine. Even though around 6K files were found to have multiple hard links, they only occupy
a small proportion of the entire file system. We assume that the files with multiple hard links are relatively
a small fraction of the total number of files in most file systems.

Based on this assumption, we decided to use a different way to clone regular files with multiple hard links.
For simplicity of description, we call an inode’s hard links in a local file system as internal links, and call its
hard links in other local file systems as external links. When cloning a filesystem, if an inode has multiple
internal links, we replicate it so that the clone has a private inode. Next, we insert the original inode number
and the new inode number into a radix tree for fast searching. During the following cloning procedure, if a
different file has the same inode number, we will create a hard link pointing to the corresponding new inode.
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We impose the following restriction on the cloning procedure:

An inode that has more than one internal links in a filesystem cannot be shared by another
filesystem via external hard links (it must be replicated).

According to this restriction, Prism clones regular files as shown in Figure 4. On the left side of the figure,
the inode has multiple hard links (indicated by the value of i_nlink) in the file system FS1. If one wants to
clone FS1 to FS2, Prism must replicate the inode to FS2 and rebuild the hard link structure. On the right
side, the inode only has one hard link in FS1. When FS1 is cloned to FS2, Prism can directly create a new
hard link to this inode in FS2 (indicated by i_nclone = 2).

When implementing the Prism system, we always try to reuse the existing Linux and ext3 file system
code to expedite the development and avoid incompatibility issues. Like most file systems that support hard
links use reference counting, the ext3 file system maintains an integer value as the i_nlink field in each file’s
inode that describes the file attributes and data blocks associated with the file. This integer represents the
total number of links that have been created to point to the data. When a new link is created, this value
is increased by one. When a link is removed, the value is decreased by one. The maintenance of this value
assists users in preventing data loss. It is also the simplest way for the file system to track the use of a given
area of storage, as zero values indicate free space and nonzero values indicate used space.

Unfortunately, the i_nlink field alone is insufficient for Prism to tell whether an inode has multiple links
within the parent filesystem. An inode may have no more than one hard link in a local file system even if
the i_nlink field is greater than one. For example, in the right side of Figure 4, after FS2 clones FS1, the
inode’s i_nlink field is equal to two. But this inode has no hard link in any local file system. If FS1 is
cloned to FS3, the inode can still be directly hard linked without replication.

In order to tell whether an inode has more than one internal hard links, we add a field i_nclone to the
inode structure. This field is initialized to one and indicates the number of clones that share the file. The
above restriction ensures that Prism always holds the following invariant:

An inode’s i_nclone value is always equal to i_nlink value unless the i_nclone value is equal
to 1.

With the i_nclone field, it is simple to determine whether an inode has more than one internal hard
links: an inode have internal hard links if and only if the inode’s i_nclone field is equal to one and the
i_nlink field is greater than one.

To clone a filesystem FS1 to FS2, Prism traverses the parent filesystem’s directory and recursively clones
each encountered filesystem object:

e For a directory, create a directory with the same name at the corresponding place in the cloned file
system.

e For a file whose inode only has one internal hard link in FS1, uses the standard ext3’s hard link function
to create a new hard link to the inode, and increases the inode’s i_nclone by one. This step only
involves an update to the original inode and no data copy is required.
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Figure 5: Example of a parent and child fileystems after cloning

e For a file whose inode has more than one internal hard links, Prism replicates this inode to FS2, and
records both the original inode number and the new inode number. In the following cloning procedure,
if the other hard links of the original inode are encountered, Prism creates a standard ext3’s hard link
to the new inode so that the hard link structure can be rebuilt. Note that Prism does not increase the
i_nclone field.

Figure 5 shows an example of a directory tree that is cloned, where one of the files has multiple internal
hard links to it, prior to cloning and after cloning.

Prism processes reads to a cloned filesystem as standard ext3 filesystem. However it takes different steps
to deal with writes to a pext3 file:

1. If the inode’s i_nclone value is equal to one, this inode is not shared by shared by other filesystems.
The file is the same as in a normal ext3 file system. Prism can safely change this file in place, as
standard ext3 filesystem does. Neither standard hard link semantics nor cloning semantics will be
broken.

2. If the inode’s i_nclone value is greater than one, this inode is cloned and shared by more than one
local filesystems. Prism replicates the inode to a new one. Next, Prism updates the file entry to point
to the new inode in the local filesystem from which the file is to be modified. Beyond this point, the
original inode is not shared by the parent filesystem and its clone. All subsequent changes are made
to the new file and are transparent to other local filesystems, which keeping the cloning semantics.
It is interesting to note that the i_nclone must be equal to i_nlink in this case. The file cannot
be pointed by more than one internal hard links in any sharing filesystems. Therefore, no hard link
semantics will be broken.

It is interesting to describe how Prism deals with the 1n command on a file shared by multiple filesystems.
This command attempts to create a new internal hard link to the file. Because the file is shared by multiple
filesystems, Prism replicates it and point the new hard link to the new copy. Moreover, to preserve the
standard hard link semantics, the original file entry must be changed to point to the new inode as well. In
practice, Prism does not need to scan the entire filesystem to locate the original file entry, because the 1n
command specifies the source path which is just the original file entry.

4.2 Dynamic Cloning

While the clone-by-sharing technique significantly reduces the overhead of cloning a filesystem, the file
level cloning mechanism is still slower than block-level cloning. The main reason is that the file-level cloning
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needs to traverse the filesystems and examine each encountered object. In contrast, most block-level cloning
only build a block mapping table without interpretation. While scanning each filesystem object is necessary
to provide users more flexibility in cloning, it does incur substantial overhead. To better understand the
impact of the filesystem traversal on the cloning performance, we conducted an experiment to clone a Fedora
Core 4 system. The filesystem contains around 170K files and 19K directories. The total size is around 6G
bytes. Prism spent approximately 54 seconds to finish the cloning task. More than 70% of the cloning time
is devoted to directory traversal. While this latency is acceptable in some scenarios, such as an administrator
wishing to create new clones for distribution, it is not good enough for many of the applications such as
testing untrusted applications. From the perspective of end users, they always hope to get a usable filesystem
as quick as possible. Aiming at this goal, we developed a dynamic cloning mechanism for Prism. For easy
comparison, we call the cloning mechanism described in previous section ”static cloning”.

The dynamic cloning mechanism provides the same cloning semantics as the static cloning mechanism,
but is able to create a usable parent and cloned filesystem within a few seconds (less than 1 second in all
experiments we have conducted). It presents an illusion that the entire directory hierarchy is completely
replicated, as in static cloning, but the replication actually occurs at background using a kernel thread.
The background thread traverse the parent filesystem starting from the root to clone the directory tree, but
also aggressively processes an inode if it is accessed by the parent or the clone prior to the completion of
the filesystem traversal. Eventually, the final state of the directory hierarchies in the fully cloned system is
identical to that produced by static cloning.

While the dynamic cloning scheme is conceptually simple, it is substantially complicated to enable users
to access files during cloning. In particular, the dynamic cloning mechanism must properly address the
following two situations:

1. A user may access a file in the cloned filesystem that has not been cloned. As the dynamic cloning
mechanism has presented the user an illusion that the cloning has been done, Prism should be able to
quickly respond to the file request, rather than blocking the user until the file is eventually encountered
and cloned by the background thread.

2. A user may attempt to modify a file in the parent filesystem that has not been cloned. Suppose
the modification is made before the file is cloned. When the background thread clones this file, it
will actually clone a file whose content is different from the snapshot when clone command returned.
However, from a user perspective, it is reasonable to think that the cloning is complete when the clone
command returns. Users would expect that the content of the cloned file is same as the one presented
when the cloning task is finished. The parent and clone system are supposed to behave like isolated
systems from that point. Therefore, the dynamic cloning mechanism must ensure that a file in the
parent filesystem is cloned before being modified.

4.2.1 On-Demand Cloning

To address the first problem, the cloning mechanism must dynamically adjust the cloning order on demand.
We develop a function, pext3_expand_dir, that expands a directory at a time. Note that we use the term
“expand” instead of “clone”, because this function does not recursively go down a directory to clone all
filesystem objects. Given a source directory, the pext3_expand_dir function only clones the filesystem
objects that are directly under this directory. The function clones regular files with the steps described
in Section 4.1. However, it clones a subdirectory by creating an empty subdirectory at the corresponding
location in the clone. In other words, this function only clones one level of directory hierarchy, and will not go
deeper into subdirectories. A subdirectory cloned in this way is flagged as “UNEXPANDED” and associated
with the corresponding source directory’s inode number. We added two fields, i_expanding_flags and
i_srcino, to each pext3 inode. For a regular file, these two fields are not used. For a directory, these
two fields indicate whether the directory is expanded or not. After a directory is expanded, it is flagged as
“EXPANDED?”. All subdirectories are empty and marked as “unexpanded”.

We extend the ext3 permission function to implement the dynamic VM cloning. When a process attempts
to access a directory, pext3 file system always calls the permission function to check that the process has
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sufficient right to access the directory. In the permission function, Prism determines whether the directory is
expanded or not by checking the directory’s expanding_flags field. If the expanding_flags field is equal to
TRUE, the directory is already expanded. The permission function quickly jumps to the normal permission
checking routine. Otherwise, the directory is not expanded yet. Prims calls the pext3_expand_dir function
to expand the directory.

Based on this design, Prism uses a kernel thread to clone a filesystem at background. When a user
request to clone a filesystem, Prism simply expands the parent filesystem’s root directory and mark the root
directory as “UNEXPANDED?” in the cloned filesystem. Next, Prism starts the background cloning thread
and then returns, presenting the user an illusion that the cloning task is complete. Therefore, the cloning
latency sensible to users is only the time used to clone the entries under the parent filesystem’s root directory.
Usually, it is less than one second. The background thread is essentially a directory walker that starts from
the root directory to traverse the entire filesystem. For each directory, the directory walker emulates to
lookup a file under that directory. The only purpose of the lookup operation is to trigger the permission
checking function to expand the directory if it is not expanded. If a user attempts to access a file that is
not cloned, the pext3 filesystem must walk along the specified pathname to locate this file first. After the
cloning thread recursively traverse the cloned filesystem, the permission checking function will be triggered
to expand all directories, which accomplishes the dynamic cloning task.

Another merit of this design is that on-demand cloning can be easily supported. Suppose a user attempts
to access a file /a/b/c, but only the root directory / has been expanded. Prism will behave as a normal

filesystem to walk through the path
[—[a— [a/b— [a/b/c

to get the file /a/b/c’s inode for accessing. This is essentially a walking thread parallel to the background
cloning thread. Prism can seamlessly adjust the cloning order to aggressively clone the directories needed
for the file request. This easily realizes the on-demand cloning feature.

4.2.2 Preserving Cloning Semantics

If a user issues a clone command and instantly gets a shell prompt, it is reasonable for this user to believe
that the filesystem cloning is finished. According to the cloning semantics, any modification made to a
filesystem (parent or clone) beyond that point should be transparent to the other. For static cloning, it is
easy to meet this requirement. Because the parent and clone are suspended before the entire cloning job is
done. However, with the dynamic cloning mechanism, a user will get a usable filesystem before the cloning
is finished. A user can change a file in the parent file system before the file is cloned. This can break the
cloning semantics if no synchronization mechanism is applied.

Prism employs an aggressive cloning mechanism to deal with this situation. If a process attempts to write
a file in the parent file system that has not been cloned, Prism blocks this modification request, aggressively
clones the file, and then processes the modification request. An important step in the above procedure is
to tell whether the file is cloned or not. There are two major challenges in identifying a file’s clone status:
efficiency and limited space. Prism must efficiently tell whether a file is cloned or not, because this is critical
to the filesystem performance. A naive way to keep tracking of the cloning status is to keep a list of the files
that have been cloned. By looking up the list, Prism can determine a file’s clone status before modifying
the file. However, this solution can be slow when the file list is large. It would be more efficient if Prism
can determine a file’s cloning status with the information associated with the file. However, there comes the
second challenge: pext3 stores a file’s metatdata in its inode. But there is only small spare room in an inode.

To address this problem, Prism maintains a global logical timestamp to record the occurrence time of
cloning events. The logical timestamp is an 32-bit unsigned integer and is initialized to zero. This logical
timestamp is incremented at the beginning of each clone task. In addition, Prism adds a 4-byte field,
i_lastclomne, to the pext3 inode structure. This field stores the logical timestamp, indicating when is
the last time the inode is cloned. Note that an inode pointed by multiple internal links is not regarded as
“cloned” until the entire hard link strucuture are rebuilt in the clone. In addition, each local file system is
associated with a clone_start timestamp. The clone_start timestamp is normally equal to zero. When
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Figure 6: Clone procedure

Prism starts to clone a filesystem F'S1 to F'S2, it sets the clone_start timestamp is set to current global
logical timestamp value. When the entire cloning task is finished, Prism resets the clone_start timestamp
back to zero.

Prism is able to determine whether an inode is cloned or not by comparing the parent filesystem’s
clone_start timestamp with the inode’s i_lastclone field. Suppose Prism is cloning a filesystem F'S1
to F'S2, and a process attempts to modify a file in the parent filesystem F'S1. If the file’s inode has an

i_lastclone field that is less than F'S1’s clone_start value, the inode is not cloned yet. The file modi-
fication request should be blocked until the inode is cloned to the child filesystem F'S2. It is important to
note that Prism only allows one dynamic clone task at a time. Supporting multiple cloning tasks on a single
filesystem has a lot of synchronous issues and is not currently supported.

The above design can be complicated by one exception. Suppose an inode is pointed by three internal
hard links (for example, /a, /b, and /c)in a filesystem F'S1, which is being cloned to a new filesystem
FS2. Suppose Prism has cloned /a, but has not rebuild the hard link structure for /b and /c. Now a
process attempts to remove file /b. If the inode’s i_lastclone field is updated to F'S1’s clone_start value
when /a is cloned, then Prism will mistakenly believe that the inode has been fully cloned and delete /b.
Unfortunately, this is wrong because the file /b has not been cloned to F'S2 properly. Therefore, Prism must
delay updating an inode’s i_lastclone field until all its hard links are rebuilt in the cloned filesystem. In
the above case, Prism does not need to block the writing process until all three hard links are rebuilt. In
fact, it could take long time for the background thread to process the file /c if this file locates far away
from the first two hard links. Prism can process the file deletion as long as it will not change the cloning
semantics. In this case, once Prism aggressively rebuilds the hard link for the file /b, it can safely delete this
file in F'ST.

It is possible that the cloning thread will never be able to fully rebuild the hard link structure of an
inode. In the above example, if the hard link /c is excluded from cloning by the administrator, Prism cannot
rebuild the entire hard link structure. Fortunately, this will not affect the normal running of the cloning
mechanism. Once the filesystem is cloned, Prism sets the filesystem’s i_lastclone back to zero and cleans
up the in-memory structures used to rebuild the hard link structure. Subsequent changes to the inode in
the parent filesystem will not be affected then.

In summary, the above mechanism helps Prism to efficiently determine whether an inode has been properly
cloned or not. Then, this mechanism can aggressively resolve the conflict between filesystem cloning and
accessing. This enables a process to safely access a file in either parent or cloned filesystem even if the entire
cloning task is not complete.

An example shown in Figure 6 helps illustrated the dynamics in filesystem cloning. In this example, the
/private directory is excluded from cloning. All timestamps are initially set to be 0 in this example. Upon
a clone request, the Prism server increments the global timestamp to one and sets the clone_start value
for the parent and child filesystems to 1. Then, a background thread starts to perform cloning. Control is
returned to the user at this point. The background thread maintains a queue of inodes to clone next. In the
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situation shown in Figure 6, the following inodes have been processed: /, /b, and /b/d. The cloning thread
has updated their i_lastclone values to 1. When the dynamic process completes, all inodes, except those
under /private, will have a i_lastclone value of 1. The clone_start of the filesystem will be set back
to 0.

From the performance perspective, Prism avoids blocks a writing process for a long time by aggressively
resolving conflicts between cloning and accessing. For example, in Figure 6, a process attempts to write the
file g. Prism blocks this request and actively clones the filesystem objects along the path from the root the
file g. In this example, Prism actively clones directory c¢ and its children files £ and g. As such, the clone of
file g is effectively prioritized. After that, Prism can safely unblock the writing process and write file g.

n interesting situation is where a process attempts to update a file that is excluded from cloning, for
example, /private/a in Figure 6. This request will be blocked because this file’s i_lastclone value is 0
and is less than the filesystem’s clone_start value. The file /private/a is then added to the prioritized
queue. But the cloning function is able to find that the file /private/a is not subject to cloning. It then
updates the file’s i_lastclone value to the filesystem’s clone_start) value, indicating that the file is free
to modify. Note that any other files under /private need not be added to the queue and will continue to
have a cloneTimstamp of 0.

The one restriction we place during cloning is that we do not cross mount-points. Note that each clone
is considered as a filesystem in Prism and can be mounted by clients. Suppose that a user has a filesystem
F'S1 on which a filesystem F'S2 is mounted at a directory in F'S1. If FS1 is cloned, we will not recursively
clone F'S2, even if it is managed by Prism. This restriction is currently necessary to make dynamic cloning
fast. The Prism clonefs command uses its first argument to determine the parent filesystem and updates
the filesystem’s clone_start to ensure a consistent snapshot. To support recursive cloning, we will need
to identify all filesystems that are mounted within the parent filesystem and ensure that they also undergo
dynamic cloning, prior to returning control back to the user. Our current implementation does not do this,
though it could be a future extension of the system.

Overall, dynamic cloning has the advantage that both the parent filesystem and the cloned filesystem are
usable immediately without requiring a traversal of the directory structure. However, the access performance
can be lower than normal if one attempts to access a file that is not cloned. We found that the delay was
not really significant for all practical purposes because of the queue prioritization, and much better than the
alternatives of copying the filesystem (which could take minutes to hours for a large filesystem) or freezing
the filesystem and doing static cloning (which could take seconds to minutes for a large filesystem). After
the cloning task is done by the background thread, filesystem access speed will resume to normal.

4.3 Lazy Cloning

Prism also provides another cloning mode called lazy cloning. In lazy cloning, the background cloning
thread only processes inodes on-demand. In other words, an inode is cloned only if it is accessed by a
process. The major advantage of this mode is that it only consume little system disk and CPU resources.
The system does not need to pay overhead to clone files that are never accessed. This is particularly useful
for applications that only need a ephemeral filesystems. Software testing is a good example. Users often
tend to destroy the clone after they test an application. It is often unnecessary to clone the entire filesystem
for such an ephemeral system. Moreover, users can choose to preserve cloning semantics or not. If a user
choose not to keep the cloning semantics, the cloning overhead can be further reduced, as Prism does not
need to aggressively clone a file when it is only accessed in the parent filesystem.

The lazy cloning mode is also useful for evaluating the access performance of a dynamically cloned filesys-
tem. It gives a worst-case performance bound because the lazy cloning maximizes the waiting time of file
requests.

4.4 Additional Optimization: Block-level Copy-on-write

As described in Section 4.1, Prism allows a clone to share the unchanged files with its parent. However,
if either one attempts to modify a shared file, copy-on-write must be performed to create a new copy so
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Figure 7: Prism’s Two-level Sharing Mechanism
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Figure 8: Two-level File Sharing

that subsequent modifications can be made to the new copy. As such, Prism preserves the isolation property
between VMs. Conceptually, we can think copy-on-write and replication in the above cloning procedure as
the same as copying a file entirely, including the inode and associated data blocks. However, it is impractical
to implement copy-on-write and inode replication this way, as this could be very inefficient for some file
operations. For example, suppose one issues the chmod command to change a file attributes. Because the
attributes are only stored in the file’s inode, Prism does not change the data blocks at all. However, with a
naive copy-on-write mechanism, Prism would have to replicate the file’s inode as well as data blocks, which
can be slow for large files. Therefore, an efficient copy-on-write mechanism is needed.

Ideally, the copy-on-write mechanism should only copy the modified part to the new copy and still share
the unmodified part. This would require to break a file into multiple parts and allow each part to be
individually shared. To avoid loss of data, appropriate mechanism must be devised to track the reference
count of each part.

In Prism, a file consists of two parts: inode and data blocks. The inode describes the file’s attributes and
data block numbers, while the data blocks store the file content. As shown in Figure 7, Prism allows two
filesystems to share data at two levels: the inode level and the data block level. The inode level sharing is
also abbreviated as inode sharing. As shown in Figure 7(a), if two filesystem objects share a same inode,
they essentially share everything described by the inode, including file attributes and content. The block
level sharing, however, is different. As shown in Figure 7(b), two inodes can contain different attributes.
But their associated data blocks can be partially or fully shared/overlapped. This sharing mode ensembles
block level sharing and is also referred to as block sharing.

An example shown in Figure 8 shows how the two-level sharing mechanism helps improve Prism’s copy-
on-write performance. Suppose F'S1, F'So, and F'Ss initially share inodel with inode sharing mode. When
F'S3 requests change the file permission, Prism replicates inodel to inode2, but making inode2 share the
same data blocks with inodel. Then, Prism changes file attributes on inode2. As such, F'Ss owns its own
file attributes while still sharing the identical file content with other filesystems. In this example, F'S; and
F'S; shares inodel, which is inode sharing. inodel and inode2 share the same data blocks, which is block

16



Hardware

CPU 3.00GHz Pentium IV
Memory 512MB(Dom0) 512MB(DomU)
Disk Maxtor 7200RPM EIDE
Software
VMM Xen 3.0.2
Domain0 OS Linux 2.6.16-xen0
DomainU OS Linux 2.6.16-xenU
Linux Distribution Fedora Core 4
Postmark version 1.5
Tar version 1.15.1
GNU gce version 4.0.2
GNU 1d version 2.15.94.0.2.2
GNU Autoconf version 2.59
GNU automake version 1.9.5

Table 1: Experimental platform

sharing.
4.5 Tracking Reference Counts of Shared Objects

Based on the two-level sharing model, a file’s inode and data blocks can be shared separately. It is crucial
to track the reference counts of each sharable component to avoid loss of data.

Prism uses an inode’s i_nlink field to track the inode’s reference count. If an inode’s i_nlink value is
equal to zero, this inode can be freed and its associated data blocks will not be referred to this inode. Note
that the data blocks can still be shared by other inodes.

To track the reference count of data blocks, Prism deploys a block reference count table. Each table
entry is one byte long, and corresponds to a 4KB data block. A data block’s reference count records the
number of inodes that shares this block. For a 30GB disk partition, its reference count table will be around
15MB, occupying 0.05% of disk space. Each block can be shared by at most 255 inodes, which is sufficient
in most scenarios. If an inode’s i_nlink value is reduced to zero, Prism will remove this inode and reduce
the reference counts of all data block associated with the inode by one. If a data block’s reference count is
reduced to zero, Prism will free this data block and reclaim the disk space.

It is possible that more than 255 inodes attempt to share a same data block. Because each block reference
count is only one byte long, it cannot handle this situation. Prism currently addresses this problem by
performing copy-on-write operations if a block’s reference count will exceed 255. While this solution incurs
additional data copying overhead, it will not substantially impact the overall performance because reference
count overflow is rare in a real world system.

5 PERFORMANCE EVALUATION

Table 1 describes our development platform. To facilitate a quick restoration of the operating system state
to a consistent point for all experiments, we ran all the experiments in a domainU Xen virtual machine,
running a Fedora Core 4 distribution of Linux. We compared the performance of pext3 (Prism-enabled ext3
kernel module) with the native ext3 installation. Both systems were accessed locally from test applications.
The results reported are averages from multiple runs of the experiments. Generally, we found the results to
be very consistent across the runs, with low standard deviation as compared to the average values.
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Figure 9: Performance of Apache build workload. “Ext3” stands for standard Ext3 file system;“PExt3”
stands for Prism modified Ext3 file system

5.1 Static and Dynamic Cloning Latency

We first evaluated the performance of static and dynamic cloning. For the parent filesystem, we used a
filesystem consisting of the entire Fedora Core 4 system with standard software packages, including around
170K files and over 17K directories.

We first compared the cost of full copying versus static cloning. The full copy of the file system took over
10 minutes (630 seconds), while static cloning took 54 seconds, including rebuilding the hard link structure
and establish block sharing.

With the dynamic VM cloning mechanism, the cloning activity largely occurred in the background; Prism
instantly presented the users with an accessible file system. The observed latency was 0.18 seconds.

5.2 Performance on the Apache Workload

To evaluate the penalty of dynamic cloning, we used an Apache build task as a representative of typical
workloads on a normal development machine. To get the worst-case performance for Prism’s dynamic
cloning mechanism, we used the “lazy” cloning mode — Prism only clones file on-demand and does not
run background thread to clone the unvisited files. As another comparison point, to get the best-case
performance for Prism, we allowed the background cloning to complete (which takes approximately 54
seconds). We compared ext3, Prism lazily-cloned, and Prism fully-cloned on the workload.

We used Apache 2.0.58 as the benchmark object. The Apache archive includes 2339 files scattered in 188
directories. The total size of the archive is 6.13MB before being decompressed. After being decompressed,
the total size of the Apache directory is 32.9MB. The benchmark first unpacks the archive of Apache 2.0.58
into a source directory. Next, it runs configure to build the source code dependency, which involves lots
of small data read and file lookup operations. During the third phase, it builds the Apache binaries from
the source files, which is a CPU intensive task, but also generates a lot of object files and temporary files.
Finally, it removes all Apache files including the Apache source tree, generated configuration files, object
files, and Apache executable binaries.

Note that the benchmark needs to use some system tools and libraries such as tar, gunzip, and gcc. In
our experiments, the benchmark process used the tools on the cloned file system. For the pext3 experiments,
We guaranteed that by using “chroot” [12] to the cloned file system before running the benchmark. As
a result, all input and output files needed for the benchmark are accessed from the cloned file system. To
avoid warm cache effects caused by previous runs, we always ran the experiments right after the file system
was mounted.
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Central scan of multiple VMs (emulate central virus scanner)
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Figure 10: Performance of central scanning 8 VMs. “Ext3” stands for fully copied file systems. “PExt3
(group by VM, dup detection)” stands for cloned file system.

In Figure 9, each bar group shows a phase of the Apache build benchmark, while the “Total” group rep-
resents the total time consumed in the four phases of the benchmark. Overall, the Apache build benchmark
running on a lazily cloned filesystem was 4.6% slower than on a full copied file system. With a fully cloned
filesystem, the performance difference with ext3 was negligible.

5.3 Postmark Benchmark

We also ran the Postmark (version 1.5) benchmark on a lazily cloned Fedora Core 4 file system. The
Postmark benchmark first created 10000 files whose size varied from 512 bytes to 40K bytes. Next, the
benchmark performed 20000 transactions consisting of file reads, writes, creates, deletes, and finally it
removed all files. The experimental results showed that the Postmark benchmark took 54 seconds on a fully
copied ext3 file system on the guest and 55 seconds on a lazily cloned file system. The lazy cloning penalty
is surprisingly low, because the Postmark benchmark mainly operates on newly created files in one parent
directory. Once the parent directory is replicated (some delay due to lazy cloning), the Prism filesystem
behaved largely like an ext3 filesystem. Any files created within the parent directory are local to the clone,
and thus do not incur any additional delay.

5.4 Central Scan of Multiple Clones

Prism is designed to improve the manageability of multiple cloned filesystems. One of the applications
that we suggested in Section 2 was central scanning of multiple clones, for virus checking as one example.
To see if Prism could provide performance advantages, we cloned the parent system up to 8 times.

We then scanned n cloned systems and compared the performance with scanning n copied filesystems,
both sequentially (in ext3). Both the fully copied file system and the cloned file system have 170K files and
17K directories. The Prism central scanning tool maintained a list of scanned inodes (retrieved via the Linux
stat () call) in a hashtable. If it encountered the same inode again from another filesystem and the inode
has the same modification time as the recorded value, it did not rescan the file content because the inode
was not modified. This guaranteed that any file that was not modified in any of the clones was scanned only
once.

Figure 10 shows the central scanning performance on both pext3 and ext3 filesystems. For n = 1, ext3
outperformed pext3 as every file had to be scanned in both systems. A cloned system is not expected to
perform as well as a fully-copied system because it may have less spatial locality on the disk. For larger
values of n, scanning cloned systems outperformed scanning copied systems by a significant factor. For
pext3, there is still some increase in time with n because the directory structure still has to be traversed n
times, but the slope is significantly lower.
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5.5 Smartdiff: comparing two cloned filesystems

If a user runs an untrusted application on a cloned filesystem, he or she might want to know what files
are modified by this application. In a standard Ext3 file system, the user can run command “diff -r” to
compare the cloned file system with the parent file system. With Prism, we are able to write a smartdiff
program to do the same task more efficiently. The smartdiff program compares two filesystems like the
standard diff tool. But it detect files that are not changed since being cloned by comparing their inode
numbers. These files can be skipped without further checking.

To compare the performance of these two mechanisms, we set up a parent file system Fj,s. containing the
standard Fedora Core 4 distribution. Then, we fully copied this file system to create a new file system Fi,,,.
Next, we cloned Fp,se to create a cloned file system Fijone. On each of the three file systems, we unpacked
the Apache 2.0.58 package to emulate an untrusted program.

We then ran the following commands to compare the performance.

Aiff -T Fhase Fropy
and
smartdiff -r Fpuse Frione

The diff program took 31 minutes, while smartdiff took only 3 minutes, providing over 10 times
improvement.

6 RELATED WORK

The capability of data cloning and isolation have been developed in some existing block-level storage
systems and file-level storage systems. We first discuss the block-level storage systems. Then, we examine
the file-level storage systems. Finally, we discuss the possibility of combining a block-level scheme with a
file-level scheme to provide these features.

6.1 Block-level Storage Systems

Most virtual machine systems today, e.g., Xen [1, 28] and VMWare [26], support an abstraction of a
virtual disk. The virtual machine monitor (VMM) layer manages the physical storage device, partitioning
it into blocks. It maps a virtual disk to a set of underlying blocks on the physical device. The virtual disk
appears like a regular physical disk to a guest virtual machine.

Full cloning of the virtual disk for the purpose of snapshots is relatively easy to provide in this architecture.
The VMM layer can clone a new virtual disk from an existing virtual disk by mapping the clone’s blocks and
the existing disk’s blocks to the same physical blocks. The only cost is updating the reference counts of all
the physical blocks and initializing a new map (the cost is not insignificant, but reasonable). To guarantee
isolation, copy-on-write at the physical block-level is used whenever a block has multiple references to it.
VMware [26, 23] and Parallax [27] use this model to support quick snapshots. Outside of the virtual machine
world, some business storage products like Net App’s Data ONTAPT™ [9] also support cloning disks or storage
volumes by sharing data at block level. These systems share the same advantages and disadvantages with
virtual disks.

One advantage of virtual disk cloning over the Prism model is that the virtual disk cloning can be file-
system agnostic. It is possible to clone an arbitrary virtual disk, irrespective of the type of file system that
resides on it. On the other hand, Prism’s cloning model has advantages in terms of rapidly cloning any part
of a file system. Virtual disks must be cloned in their entirety. It is difficult to exclude certain files that
the user considers private from being cloned, because the block-level storage systems have no file system
knowledge.

In contrast, Prism uses copy-on-write in the filesystem at the file-level. When files or inodes are modified,
block-level copy-on-write is also used. This allows central data management such as virus scanning on multi-
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ple overlapping clones to be implemented efficiently. As far as we know, current virtual disk implementations
do not provide such a capability.

6.2 Network File Systems

Network file systems, such as NFS [15], AFS [8], and Samba [24], can be shared among multiple operating
systems without cloning. Collective[3, 19, 20], for example, suggested to use this architecture to provide
a shared, read-only software environment for client machines interconnected over the network. But these
systems do not provide the same semantics as a cloned filesystem. If a filesystem is shared in read-only mode,
it guarantees isolation, but does not provide users with the ability to write to the system. If it is shared
in read-write mode, it does not provide isolation guarantees. Prism provides the performance of sharing a
common filesystem, but the semantics of an isolated filesystem for each user.

6.3 File Systems for Virtual Machines

The Ventana[l7] system extends distributed file systems to improve VM manageability and flexibility.
Ventana manages a VM'’s file system as a collection of directory branches, with the branch type being either
public or private. A public branch can be modified by any sharing VM. The modifications immediately
become visible to all sharing VMs. A private branch can be read by multiple VMs, but can only be modified
by the owner VM.

Prism differs from Ventana in that it provides a very efficient cloning operation. The Ventana paper
mentioned that a file system branch is created by copying an existing branch, but it does not discuss the
details on how to efficiently copy a branch.

The data management architectures of Prism and Ventana are different. Prism manages data under the
standard file system framework, Therefore, it can take advantage of heavily optimized file system facilities
such as the metadata cache and the page cache to improve system performance. Ventana uses object-based
storage. Performance optimization may require additional efforts, which are not discussed in the Ventana
paper.

The VMFS [25] file system, shipped with the VMware ESX Server, is designed as a high-performance
cluster file system that provides storage virtualization. ZFS [13] for Solaris 10 is designed to provide a similar
capability to that of VMFS. They both provide fast cloning support at the block level. But, as far as we can
tell, neither claims to provide selective cloning or is able to efficiently compare clones with each other.

6.4 Versioning File Systems

Some file systems provide a data versioning feature. Examples include Cedar [6], Elephant [18], CVFS [21,
22], 3DFS [10], VersionF'S [14], Clotho [5], WAFS [7], and Ext3COW [16]. The versioning techniques can be
potentially extended to provide efficient cloning. For example, Ext3COW allows a file’s multiple versions to
share identical data blocks.

Prism differs from versioning file systems in several aspects. First, Prism is able to provide users multiple
mutable filesystems. After the clone command returns, both the parent filesystem and the clone can be
accessed as two independent filesystems. Each clone can be changed without affecting other clones. This
requires the support of synchronization and isolation between two filesystems. In contrast, versioning file
systems only allow users to modify current version of files. Past versions of files are read-only. Second, Prism
provides a simpler interface to the user. Users see the same familiar namespace of a standard filesystem and
cloning is conceptually similar to copying a filesystem, except much faster. Third, Prism is not designed as
a versioning file system. Although each clone can be treated as a version, Prism does not provide a version
retaining mechanism to determine when a version can be removed to reclaim disk space. Finally, there are
obvious differences in terms of inode structure (Prism’s changes are modest), naming (Prism is simpler since
clones appear to users like directories), and details like reference count management.

Alcatraz [11] is a system that allows multiple users to share a file system in read-only mode. If a user
needs to change a shared file, Alcatraz produces a new copy of this file with the copy-on-write technique.
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The new copy is stored in this user’s private space. Alcatraz maintains a mapping table to help the user to
locate the private copy. By manipulating the mapping in file system name space, Alcatraz can potentially
achieve data sharing and isolation. Alcatraz maintains the name-to-file mapping in memory, which is only
good for a small and temporary system. Prism is more flexible as it allows cloned filesystems to be also
cloned themselves. They are managed just like the parent filesystem. It is also more efficient in terms of
using copy-on-write at multiple levels and supporting hard links.

7 CONCLUSION

This paper presented the design of Prism, a filesystem that allows selective cloning of any part of the
directory structure and provides isolation between the original copy and the cloned copy. Prism utilizes a
dynamic cloning scheme and is implemented as a kernel module on Linux by modifying ext3. When cloning
filesystems, even containing hundreds of thousands of files such as the Fedora distribution, both the parent
and the child filesystems are usable within a few hundred milliseconds.

We showed that a selective cloning operation can be highly desirable in filesystems for many important
tasks, such as preventing untrusted code from damaging the filesystem and creating new filesystems for virtual
machines from existing ones, while protecting home directories and other private content. Furthermore,
when cloned systems have a high degree of similarity, Prism helps make centralized scanning or comparison
operations for multiple cloned file systems significantly faster than scanning or comparing each file system
individually.

On the Postmark benchmark and the Apache build workload, Prism’s performance is comparable to
that of a standard ext3 filesystem. For applications that require scanning or comparing multiple cloned
filesystems, Prism was found to be significantly faster. On a workload of comparing two filesystems, Prism
provided over 10 times of performance improvement.
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