
Efficient Software Model Checking of Soundness of Type Systems

Michael Roberson Melanie Agnew Paul T. Darga Chandrasekhar Boyapati
Electrical Engineering and Computer Science Department

University of Michigan, Ann Arbor, MI 48109
{roberme,melagnew,pdarga,bchandra}@eecs.umich.edu

Abstract
This paper presents novel techniques for checking the sound-
ness of a type system automatically using a software model
checker. Our idea is to systematically generate every
type correct intermediate program state (within some fi-
nite bounds), execute the program one step forward if pos-
sible using its small step operational semantics, and then
check that the resulting intermediate program state is also
type correct—but do so efficiently by detecting similarities
in this search space and pruning away large portions of the
search space. Thus, given only a specification of type cor-
rectness and the small step operational semantics for a lan-
guage, our system automatically checks type soundness by
checking that the progress and preservation theorems hold
for the language (albeit for program states of at most some
finite size). Our preliminary experimental results on sev-
eral languages—including a language of integer and boolean
expressions, a simple imperative programming language, an
object-oriented language which is a subset of Java, and a
language with ownership types—indicate that our approach
is feasible and that our search space pruning techniques do
indeed significantly reduce what is otherwise an extremely
large search space. Our paper thus makes contributions both
in the area of checking soundness of type systems, and in the
area of reducing the state space of a software model checker.

1. Introduction
Type systems provide significant software engineering ben-
efits. Types can enforce a wide variety of program invari-
ants at compile time and catch programming errors early
in the software development process. Types serve as docu-
mentation that lives with the code and is checked through-
out the evolution of code. Types also require little pro-
gramming overhead and type checking is fast and scalable.
For these reasons, type systems are the most successful and
widely used formal methods for detecting programming er-
rors. Types are written, read, and checked routinely as part
of the software development process. However, the type sys-
tems in languages such as Java, ML, or Haskell have limited
descriptive power and only perform compliance checking of
certain simple program properties. But it is clear that a
lot more is possible. There is therefore plenty of recent re-
search interest on type systems for preventing various kinds
of programming errors [5, 13, 23, 32, 33, 41].

A formal proof of type soundness lends credibility that a
type system does indeed prevent the errors that it claims to
prevent, and is a crucial tool in the design of a type system.
At present, type soundness proofs are mostly done by hand,
if at all. These proofs are usually long, tedious, and con-

sequently error-prone. Small mistakes or overlooked cases
in a proof can invalidate large amounts of work. There is
therefore a growing interest [1] in machine checkable proofs
of type soundness. However, both the above approaches—
proofs done by hand (e.g., [14]) or machine checkable proofs
(e.g., [34])—require significant manual effort.

This paper presents an alternate approach for checking the
soundness of a type system automatically using a software
model checker, requiring minimal manual effort. Our idea
is to systematically generate every type correct intermedi-
ate program state (within some finite bounds), execute the
program one step forward if possible using its small step
operational semantics, and then check that the resulting in-
termediate program state is also type correct—but do so
efficiently by detecting similarities in this search space and
pruning away large portions of the search space. Thus, given
only a specification of type correctness and the small step
operational semantics for a language, our system automat-
ically checks type soundness by checking that the progress
and preservation theorems [37] hold for the language (albeit
for program states of at most some finite size).

Our experimental results on several languages—including
the language of integer and boolean expressions from [37,
Chapters 3 & 8], a typed version of the imperative lan-
guage IMP from [42, Chapter 2], an object-oriented language
which is a subset of Java, and a language with ownership
types [10]—indicate that our approach is feasible and that
our search space pruning techniques do indeed significantly
reduce what is otherwise an extremely large search space.
This paper thus offers a promising approach for checking
type soundness automatically, thereby enabling the design of
novel type systems. In particular, this can enormously help
language designers in debugging language specifications.

Note that checking the progress and preservation theorems
on all programs states up to a finite size does not prove that
the type system is sound, because the theorems might not
hold on larger unchecked program states. However, in prac-
tice, we expect that all type system errors will be revealed by
small sized program states. This conjecture, known as the
small scope hypothesis [28], has been experimentally verified
in several domains. Our preliminary experiments using mu-
tation testing [36, 29] suggest that the conjecture also holds
for checking type soundness. We also examined all the type
soundness errors we came across in literature and found that
in each case, there is a small program state that exposes the
error. Thus, exhaustively checking type soundness on all
programs states up to a finite size does at least generate a
high degree of confidence that the type system is sound.

1

t ::= true | false | if t then t else t | 0 | succ t | pred t | iszero t

constant constant conditional constant successor predecessor zero test
true false zero

Figure 1. Abstract syntax of the language of integer and boolean expressions from [37, Chapters 3 & 8].

t1

t1’

if

falsetrueiszero

0

if

falsetruetrue

succpred

0 0

succpred

0 0

t2

t2’

if

iszero

0

if

true

t3

t3’

if

falseifiszero

0

if

falseiftrue

false false true

false false true

Figure 2. Three abstract syntax trees (ASTs) for the language in Figure 1, before and after a small step evaluation.

The tree path touched by the evaluation is highlighted in each case. Note that the tree path is the same in all three

cases. Once our system checks the progress and preservation theorems on the AST t1, it determines that it is redundant

to check the theorems on ASTs t2 and t3.

This paper also makes contributions in improving the state
of art in software model checking [2, 3, 7, 11, 15, 20, 40,
24, 31]. Model checking is a formal verification technique
that exhaustively tests a circuit/program on all possible in-
puts (sometimes up to a given size) to handle input non-
determinism and on all possible nondeterministic schedules
to handle scheduling nondeterminism. For hardware, model
checkers have been successfully used to verify fairly complex
finite state control circuits with up to a few hundred bits
of state information; but not circuits in general that have
large data paths or memories. Similarly, for software, model
checkers have been primarily used to verify control-oriented
programs (with scheduling nondeterminism) with respect to
temporal properties; but not much work has been done to
verify data-oriented programs (with input nondeterminism)
with respect to complex data-dependent properties.

Thus, while there is much research on state space reduc-
tion techniques for software model checkers such as partial
order reduction [18, 20] and tools based on predicate ab-
straction [21] such as Slam [2], Blast [24], or Magic [7], none
of these techniques seem to be effective in reducing the state
space when checking the soundness of a type system—where
one must deal with input nondeterminism (to check every
input program state) and data-dependent properties (type
correctness properties that depend on input program states).
In fact, because of input nondeterminism, it is difficult to
even formulate the problem of automatically checking type
soundness in the context of most software model checkers.

This paper describes techniques for efficiently checking the
soundness of a type system automatically using a software
model checker by significantly reducing the state space of the

model checker. It thus contributes to improving the state
of art in software model checking. This paper builds on
our recent work on model checking properties of data struc-
tures [12]. This paper improves on the techniques in [12] (c.f.
Section 6) and applies them to checking type soundness.

Finally, this paper also presents an approach for efficiently
model checking the soundness of a type system extension,
assuming that the base type system is sound. The approach
exploits the above assumption to detect and prune signif-
icantly more redundant program states. Our experiments
with several type qualifier [19] extensions show that check-
ing the soundness of a type system extension using this ap-
proach is far more efficient than checking the soundness of
the extended type system without assuming that the base
type system is sound. We expect this approach to be valu-
able because researchers often design extensions to existing
type systems rather than design a type system from scratch.

The rest of this paper is organized as follows. Section 2
illustrates our approach with an example. Section 3 de-
scribes the architecture of our software model checker for
checking soundness of type systems. Section 4 describes
our approach for checking soundness of type system exten-
sions. Section 5 presents preliminary experimental results.
Section 6 discusses related work and Section 7 concludes.

2. Example

This section illustrates our approach with an example. Con-
sider the language of integer and boolean expressions in [37,
Chapters 3 & 8]. The syntax of the language is shown in
Figure 1. The small step operational semantics and the type

2

Field Domain

n0 {true, false, if, 0, succ, pred, iszero, unused}
n1 {true, false, if, 0, succ, pred, iszero, unused}
n2 {true, false, if, 0, succ, pred, iszero, unused}
n3 {true, false, if, 0, succ, pred, iszero, unused}
n4 {true, false, if, 0, succ, pred, iszero, unused}
n5 {true, false, if, 0, succ, pred, iszero, unused}
n6 {true, false, if, 0, succ, pred, iszero, unused}
n7 {true, false, if, 0, succ, pred, iszero, unused}
n8 {true, false, if, 0, succ, pred, iszero, unused}
n9 {true, false, if, 0, succ, pred, iszero, unused}
n10 {true, false, if, 0, succ, pred, iszero, unused}
n11 {true, false, if, 0, succ, pred, iszero, unused}
n12 {true, false, if, 0, succ, pred, iszero, unused}

n1

n4 n5 n6 n7 n8

n2

n9 n10 n11

n3

n12

n0

Figure 3. Search space for the language in Figure 1 with

ASTs of height at most 3.

checking rules for this language are in [37]. To check type
soundness, our system systematically generates and checks
the progress and preservation theorems on every type correct
program state within some finite bounds.

Figure 2 shows three abstract syntax trees (ASTs) t1, t2,
and t3. AST t1 represents the term ‘if (iszero 0) then
true else false’. AST t2 represents the term ‘if (is-
zero 0) then (pred 0) else (succ 0)’. AST t3 repre-
sents the term ‘if (iszero 0) then (if false then fa-
lse else true) else false’. Figure 2 shows the ASTs
before and after a small step evaluation according to the
small step operational semantics of the language.

A simplified version of our state space reduction technique
works as follows. As our system checks the progress and
preservation theorems on t1, it detects that the small step
evaluation of t1 touches only a small number of AST nodes
along a tree path in the AST. These nodes are highlighted
in the figure. This means that as long as these nodes remain
unchanged, the small step evaluation will behave similarly on
all ASTs such as t2 and t3. Our system determines that it is
redundant to check the progress and preservation theorems
on ASTs such as t2 and t3 once it checks the theorems on
t1. Our system safely prunes those program states from
its search space, while still achieving complete test coverage
within the bounded domain. The above technique thus ends
up checking the progress and preservation theorems on every
unique tree path (and some nearby nodes) rather than on
every unique AST. Note that the number of unique ASTs of
a given maximum height h is exponential in n, where n =
3h, but the number of unique tree paths is only polynomial
in n. This leads to significant reduction in the size of the
search space and makes our approach feasible.

Our complete state space reduction technique does even bet-
ter. It detects that in the above example, only the nodes in
the redex ‘iszero 0’ matter, as long as that is the next re-
dex to be reduced. It therefore prunes all program states
where those nodes remain the same and that is the next re-
dex to be reduced. This leads to even greater speedups. In

1 void search(ConfigurationSpace f, Finitization f) {
2 S = Set of all elements of configuration space c

within the finite bounds specified by f
3 while (S is not empty) {
4 t = Any configuration in S
5 Check t
6 T = Set of all configurations similar to t including t
7 S = S - T
8 }
9 }

Figure 4. Pseudo-code for the search algorithm.

the above example, our system thus ends up checking only
O(n) number of program states.

3. Model Checking Type Soundness
While the basic idea presented in Section 2 is simple, one
has to overcome several technical challenges to make it work
well in practice. This section describes our approach.

3.1 Specifying Language Semantics
To check type soundness, language designers only need to
specify the the small step operational semantics of the lan-
guage, rules for checking type correctness of intermediate
program states, and finite bounds on the size of intermedi-
ate program states. The operational semantics can be speci-
fied either in an executable language (in our current system,
Java) or in a declarative language (in our current system, a
language similar to Ott [39]), as long as the declarative spec-
ifications can be automatically translated into executable
code. The type system, however, must be specified only
in the declarative style because that facilitates our static
analysis (c.f. Section 3.6). The type system is also auto-
matically translated into executable code to facilitate our
dynamic analysis (c.f. Section 3.5). We omit more details
due to lack of space, but the model checking techniques we
describe in this paper (which are our main contributions)
are not tied to our above choice of specification languages
and are general enough to work with other languages.

3.2 Search Space
Traditional software model checkers [2, 7, 15, 20, 40, 24,
31] explore a state space by starting from the initial state
and systematically generating and checking every successor
state. While this approach works well to check software with
scheduling nondeterminism, it is not convenient to check
software with input nondeterminism. In fact, it is difficult
to even formulate the problem of checking type soundness in
the context of most software model checkers. Instead, our
model checker organizes its search space as follows. Consider
the language of integer and boolean expressions in Figure 1.
Suppose our system must check the type soundness theorems
on all ASTs up to a maximum height h=3. Figure 3 shows
the corresponding search space. The search space consists of
all possible assignments to the fields, where each field gets
a value from its corresponding domain. Every element of
this space is an AST. For example, Figure 5 corresponds
to an AST representing the term ‘if (iszero 0) then (if
false false true) else false’. In Figure 3, there are
thirteen fields with eight elements in each of their domains,
so the size of this search space is 813. In general, when check-
ing the integer and boolean language on ASTs of height at

3

n0

if

n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12

iszero if false 0 unused unused unused unusedfalse false trueunused

Figure 5. A type correct element of the search space in Figure 3 representing the term ‘if (iszero 0) then (if false

false true) else false’.

n0 n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12

unused unused unused unusedunusediszero false unusedunusedunused unusedunusedunused

Figure 6. A type incorrect element of the search space in Figure 3 representing the term ‘iszero false’.

most h, the size of the search space is 8
3h−1

2 . Note that
many elements of this search space are not type correct or
even syntactically correct. For example, the AST in Figure 6
is not type correct because iszero cannot be invoked on the
boolean constant false.

In general, the intermediate state of a program (the con-
figuration space of the operational semantics) can include
other components besides an AST, such as a dynamically
allocated heap. Our system appropriately constructs a fi-
nite search space that includes all such components.

3.3 Search Algorithm
Our search algorithm is simple. Given a language to check
for type soundness and some finite bounds on the size of
intermediate program states, our system first initializes the
search space as we described above. It then systematically
explores this space by repeatedly selecting a program state t
from the space, checking that the progress and preservation
theorems hold on t, running its analyses to identify other
program states similar to t, and pruning t and the similar
(and therefore redundant) program states from the search
space. Figure 4 presents the pseudo-code for the search.

3.4 Search Space Representation
Consider the search space of the language in Figure 1, with
ASTs of height at most h=8. The size of this search space
is about 29841. Of these, about 22523 ASTs are type cor-
rect. However, as our experiments show, our system checks
the progress and preservation theorems explicitly only on 41
ASTs. (Our analyses determine that it is redundant to check
the theorems on the remaining elements of the search space.)
Thus, if we are not careful, then search space management
itself could take exponential time and negate the benefits
of our search space pruning techniques. We avoid this by
using a compact representation of the search space (that is,
the set of intermediate program states). We explored two
different approaches for representing the search space: (i)
using a reduced ordered binary decision diagram [6] or BDD
(as in our previous work [12]), and (ii) using an incremental
SAT solver, MiniSat [16]. In our experiments, we found that
the SAT-based approach performs much better, especially on
languages with non-tree-based type constraints (that is, on
languages whose program states include components other
than ASTs). Because of lack of space, we therefore discuss
only our SAT-based approach in the rest of this paper.

Our SAT-based approach works as follows. We represent
a set of program states as a boolean formula. For exam-
ple, for the search space in Figure 3, the formula (n0=if
∧ n1=iszero ∧ n4=0) represents the set of all the terms of
the form ‘if (iszero 0) then x1 else x2’, where x1 and
x2 are any two terms. This includes the terms represented
by ASTs t1, t2, and t3 in Figure 2. Every satisfying assign-
ment of the formula represents a member of the set. If the
formula is unsatisfiable, then the set of empty. We use an
incremental SAT solver to find satisfying assignments of the
formula. With this approach, Line 7 in Figure 4, computing
the difference of two sets, takes time linear in the size of the
formula, because it simply injects clauses into the incremen-
tal SAT solver. But Line 3, checking if a set is empty, and
Line 4, choosing an element from a non-empty set, could be
expensive operations because they invoke the SAT solver.

3.5 Dynamic Analysis
This section presents our dynamic analyses that are key to
making our model checker efficient. It first presents the basic
analysis and then describes several additional optimizations.

3.5.1 Monitoring Fields Read

Consider the language in Figure 1. Given an AST, our sys-
tem first checks if it is type correct. If so, our system checks
if the progress and preservation theorems hold for that AST.

Case Where AST is not type correct: Consider checking
the program state in Figure 6. As our system type checks
the AST, it monitors the fields of the AST that the type
checker reads. In this case, the type checker reads n0 and
n1 and returns false (because iszero cannot be invoked on
a boolean). That means, regardless of the values of the
remaining fields, the type checker will always return false
if n0 and n1 do not change. Our system therefore prunes all
elements of the search space where n0=iszero and n1=false.

Case Where AST is type correct: Consider checking the
program state in Figure 5. The AST is type correct this
time. As our system evaluates the AST a small step forward,
it once again monitors the fields that small step evaluator
reads. In this case, it reads n0, n1, and n4. That means,
regardless of the values of the remaining fields, the small
step evaluator will still behave similarly if the values of n0,
n1, and n4 do not change. Our system then determines that
regardless of the values of the remaining fields, if the AST
is type correct before the small step evaluation, then the

4

Field Domain

n0.kind {true, false, if, getf, putf, ...}
n1.kind {true, false, if, getf, putf, ...}
n2.kind {true, false, if, getf, putf, ...}
n0.value {o0, o1, o2, o3, null}
n1.value {o0, o1, o2, o3, null}
n2.value {o0, o1, o2, o3, null}
o0.value {o0, o1, o2, o3, null}
o1.value {o0, o1, o2, o3, null}
o2.value {o0, o1, o2, o3, null}
o3.value {o0, o1, o2, o3, null}

n1 n2

AST

n0

Heap

o0

o1

o2

o3

Figure 7. Search space for a language whose intermediate

states include an AST and a heap.

AST will be type correct after the small step evaluation.
Our system therefore prunes all elements of the search space
where n0=if, n1=iszero, and n4=0. This is the basic idea
that makes our approach of using exhaustive testing within
an extremely large but finite domain feasible. (We discuss
correctness issues later in Section 3.6.)

3.5.2 Pruning States With the Same Redex

To optimize further, our system detects that in the above
example, only the nodes n1 and n4 (corresponding to redex
‘iszero 0’) matter, as long as that is the next redex to be
reduced. Our system therefore prunes all program states
where those nodes remain the same and that is the next re-
dex to be reduced. To make this technique work, our system
adds extra bits of information per AST node that indicate
whether the node represents a value (and therefore cannot
be reduced further), and if not, in what order the node and
its children must be reduced. These bits guide the small
step evaluator to the appropriate redex, without the eval-
uator having to read the entire content of the nodes in the
path from the root of the AST to the redex. While these bits
increase the size of the search space, they end up making the
search more efficient by allowing more states to be pruned.
Our experimental results indicate that for the above exam-
ple, our system can scale to check ASTs of up to height 7
in under 3 seconds, and exhaustively cover this space. Note
that ASTs of height 7 can contain more than 1000 nodes, and
thus can represent expressions of length more than 1000. We
do not know of any other model checker that can exhaustively
cover such a large search space for checking such properties.

3.5.3 Pruning Isomorphic States

The intermediate program states of the language in Figure 1
we have been considering so far includes only an AST. Con-
sider a language whose intermediate program states include
an AST as well as a dynamically allocated heap. Figure 7
presents an example of such a search space, where every
AST node and every object contains one pointer, the AST
has height at most 2, and there are at most 4 heap objects.

Now consider the two elements of the above search space de-

kind

getf

value

o0 ... o1

kind value

... null

kind value
n1

kind

getf

value

o1 ... o0

kind value

... null

kind value
n0 n1 n2

n0 n2

null

value
o0

null

value
o0

null

value
o1

null

value
o1

value

null

value
o2

o2

null

value
o3

null

value
o3

null

Figure 8. Two isomorphic elements of the search space

in Figure 7.

picted in Figure 8. Clearly, these two elements are isomor-
phic, because o0 and o1 are equivalent memory locations.
Therefore, once we check the progress and preservation the-
orems on the first element, it is redundant to check the theo-
rems on the second element. Our system avoids checking iso-
morphic structures as follows. Suppose the small step eval-
uator reads only n0.kind, n0.value, and n1.value when
evaluating the first element. Our dynamic analysis con-
cludes that all states with n0.kind=getf, n0.value=o0, and
n1.value=o1 can be pruned. Our isomorphism analysis then
determines that all structures that satisfy the following for-
mula can also be pruned: n0.kind=getf ∧ (n0.value 6=o0/-
null ∨ (n0.value=o0 ∧ n1.value 6=o0/o1/null)). In gen-
eral, to construct the formula, our isomorphism analysis tra-
verses all the relevant fields of a state s. Each time it en-
counters a fresh object o that a field points to, it includes
(in the formula) all other states s′ where the fields read by
the small step evaluator so far have the same values except
that instead of o in s there is another fresh object o′ of the
same type in s′. Our system then prunes all states denoted
by the formula by injecting the negation of the formula into
the incremental SAT solver.

Note that some model checkers also prune isomorphs using
heap canonicalization [30]. The difference is, in heap canon-
icalization, once a checker visits a state, it canonicalizes the
state and checks if the state has been previously visited. In
our isomorphism pruning, once our checker checks a state s,
it computes a compact formula F denoting (often an expo-
nentially large number of) states isomorphic to s, and prunes
F from the search space. Our checker never visits (the often
exponentially many) F’s states.

3.5.4 Monitoring Information Flow

The basic analysis in Section 3.5.1 conservatively assumes
that a function (such as a type checker or a small step eval-
uator) depends on all the fields it reads. This is not always
true. Consider the following example for an illustration.

1 class ExpressionLanguage {
2 public boolean typeCheck() {
3 if (n0.kind == IF) {
4 Type t1 = n1.type;
5 Type t2 = n2.type;
6 Type t3 = n3.type;
7 if (n1.type != BOOLEAN) return false;
8 if (n2.type != n3.type) return false;
9 if (n2.type != n0.type) return false;
10 return true;
11 }
12 ...
13 }
14 ...
15 }

5

Suppose the function typeCheck returns false on Line 7 be-
cause n1.type!=BOOLEAN. The above analysis assumes that
because typeCheck already read n2.type and n3.type, the
return value depends on those fields too—even though it
depends only on n0.kind and n1.type.

To make our analysis more precise, we use dynamic infor-
mation flow tracking. Consider the search space in Figure 3.
There are thirteen input fields. For every value v that a
function computes, our system also computes a thirteen-bit
shadow value v′ that tracks the input fields from which there
is an information flow to v. Note that information flow anal-
ysis [32] is different from dynamic slicing [43], as the follow-
ing example shows.

1 class InfoFlowDemo {
2 private boolean b;
3 public boolean typeCheck() {
4 boolean x = false; if (b) x = true; return x;
5 }}

There is information flow from b to x above. But if b is
false, then x is not control or data dependent on b because
the branch is not taken. If we use dynamic slicing, then
on running typeCheck with b=false we would incorrectly
conclude that typeCheck does not depend on b and always
returns false. To avoid that, our analysis conservatively as-
sumes that after any join point in the control flow graph, all
variables depend on the corresponding branch conditional.
Thus the return value x above depends on b.

3.6 Static Analysis
The dynamic analyses described above in effect detect don’t
care fields in a state s, and suggest that all states s′ that
differ with s only at the don’t care fields can potentially be
pruned from the search space. The goal of the static anal-
ysis is to prove that it is indeed safe to prune those states.
To see why the static analysis is necessary, consider the fol-
lowing simple but artificial example, where typeCheck re-
turns true iff a implies b. Suppose we invoke smallStep
on a=false and b=true. typeCheck returns true before
and after the execution of smallStep. smallStep reads
only a while b is a don’t care. Our dynamic analysis sug-
gests that the progress and preservation theorems might
verify on all states where a=false (and therefore those el-
ements be pruned from the search space). But the sug-
gestion is incorrect because smallStep does not verify on
a=false and b=false. typeCheck holds before the evalua-
tion of smallStep but not after.

1 class StaticAnalysisDemo {
2 private boolean a, b;
3 public boolean typeCheck() { return !a || b; }
4 public void smallStep() { a = !a; }
5 }

Our static analysis works as follows. Consider checking the
progress and preservation theorems on a state s. Suppose
our dynamic analysis identifies fields f1..k as don’t cares
with respect to the small step evaluation of s. Let v de-
note the values of the remaining fields in s, and v′ in the
state s′ obtained after the evaluation of a small step. The
static analysis partially evaluates the type checking func-
tion, say typeCheck, with respect to v and v′ respectively, to
get functions typeCheckv(f1..k) and typeCheckv′(f1..k). The

analysis then attempts to prove that for all values of f1..k

in the bounded domain, typeCheckv(f1..k) implies type-
Checkv′(f1..k). Note that even though it is the same type-
Check function, v and v′ are different because the small step
evaluator changes the state, so typeCheckv and typeCheckv′
could be different. Our checker invokes the SAT solver to
check if the implication holds. If the implication holds, our
system prunes the state space as described in Section 3.5.
If the implication does not hold, then it means there is a
bug in the type system. An instance satisfying the negation
of the implication provides a counter example. Our system
eliminates quantifiers using skolemization (taking advantage
of the fact that the domains are bounded) and then per-
forms the partial evaluation. We currently require the type
checker to be specified in a declarative style as described
in Section 3.1 to enable us to perform the static analysis.
In the future, we also plan to explore partially evaluating
executable (Java) code [38].

4. Model Checking Type Extensions
Section 3 presented our approach for efficiently model check-
ing the soundness of a type system. This section presents
our approach for efficiently model checking the soundness of
certain kinds of type system extensions, assuming the base
type system (before the extension) was sound. The approach
exploits the above assumption to detect and prune signifi-
cantly more redundant program states. We expect this to be
valuable because people often design extensions to existing
type systems rather than design a type system from scratch.

Our system supports extensions that add additional type
annotations and type checking clauses, but do not change
the operational semantics of a language. Several type system
extensions follow this discipline, e.g., types for preventing
races [17, 5], ownership types [10], and type qualifiers [19].

Our system works as follows. Consider checking the progress
and preservation theorems on a program state p. Given p
and a function (such as a type checker or a small step evalua-
tor), the dynamic analyses described in Section 3.5 separate
the fields of p into relevant fields and fields that are don’t
cares. Let Fs be the set of fields that are relevant w.r.t. the
small step evaluation of p. Of these, let F c

s ⊆ Fs be the set
of fields that affect the control flow of the small step evalu-
ator. Let Ft be the set of fields that are relevant w.r.t. the
type checking that happens after the small step evaluation
(to check the preservation theorem). Of these, let F e

t ⊆ Ft

be the set of fields that are relevant w.r.t. the type check-
ing clauses in the type system extension. Our approach then
treats all the fields not in Fs ∩ (F c

s ∪ F e
t) as don’t care fields,

runs the static analysis described in Section 3.6, and if that
is successful, prunes all states p′ that differ from p only at
the don’t care fields. This is in contrast to the approach in
Section 3 that treats only the fields not in Fs as don’t cares.
This can lead to significant speedups as our results indicate.

The Clarity [9] tool also proves soundness of certain type
qualifier extensions using a theorem prover. However, the
tool seems to be limited in kinds of qualifier extensions it can
handle, because of the limitations of an automated theorem
prover in discharging complex proof obligations. Our model
checking based tool, however, is more general because it uses
exhaustive testing, albeit in a finite domain.

6

5. Experimental Results
This section presents our preliminary experimental results.
We implemented a rudimentary software model checker as
described in this paper. We extended the Polyglot [35] com-
piler framework to automatically instrument the operational
semantics and the type systems of languages to perform our
dynamic analyses (described in Section 3.5). We used Mini-
Sat [16] as our incremental SAT solver. We performed all
our experiments on a Linux Fedora Core 4 machine with a
Pentium 4 3.2 GHz processor and 1 GB memory using Sun’s
Java 1.5.0 08.

5.1 Model Checking Soundness of Type Systems

We present results for the following four languages, each with
increasing complexity:

1. The language of integer and boolean expressions from
[37, Chapters 3 & 8].

2. A typed version of the imperative language IMP from
[42, Chapter 2].

This language has variables, so its type checking rules
include an environment context. This language also
has while loops.

3. An object-oriented language Featherweight Java [25].

This language has classes and objects and methods.
The semantics of method calls require term-level sub-
stitution (of the formal parameters of a method with
their actual values).

4. An extension to Featherweight Java to support owner-
ship types [10], that we call Ownership Java.

This language has classes parameterized by owner pa-
rameters. Therefore the semantics of a method call re-
quire both term-level and type-level substitution. To
make this language meaningful, we also added a null
value to Featherweight Java and extended Feather-
weight Java to support mutations to objects in the
heap. For this, we had to model the heap explicitly in
the configuration space unlike in Featherweight Java.

Our system works best when each small step of evaluation
touches only a small part of the program state. That way,
the rest of the state can be treated as a don’t care, and a
large portion of the state space can be pruned away after
each small step of evaluation. But when running experi-
ments, we noticed that for a while expression in IMP, the
small step evaluator clones the entire body of the while, as
shown below. σ contains the values of variables.

〈while c do b, σ〉 → 〈if c then (b; while c do b), σ〉

However, we realized that the preservation theorem always
holds for the above small step of evaluation, because the
same expressions are type checked under the same type en-
vironment before and after the small step. We therefore
introduced a special construct in our specification language
to express such cases. Our tool recognizes that the validity
of the preservation theorem is independent of the term being
cloned, and thus treats the term as a don’t care.

Benchmark Max Expression States Time (s)
Length Checked

1 1 0.082
2 3 0.105
3 3 0.080
4 5 0.107

Arithmatic
Expressions 13 11 0.102

40 17 0.139
121 23 0.307
364 29 0.756

1093 35 2.784
3280 41 22.176

1 1 0.025
2 16 0.034
3 20 0.042
4 42 0.065
5 69 0.086
6 68 0.093

IMP 7 68 0.097
...
15 139 0.237
31 250 0.646
63 485 2.387

127 913 9.905
255 1797 53.580
511 3653 315.719

1 4 0.725
2 11 0.549
3 14 0.312
4 21 0.272
5 36 0.243

Featherweight 6 43 0.261
Java 7 50 0.317

...
15 198 0.738
31 550 2.282
63 1254 9.048

127 2662 42.019
255 5478 202.009

1 32 0.946
2 1795 12.606
3 1978 14.592

Ownership 4 8513 72.824
Java 5 8648 78.920

6 15487 155.789
7 18370 214.947

...
15 200611 5815.375

Figure 9. Checking soundness of type systems. Our sys-

tem achieves significant state space reduction. E.g., there

are over 2786 well typed IMP programs of length upto 511,

but we check only 3653 states to cover this space.

A similar situation occurs in Featherweight Java, where
method calls have a method inlining semantics. Method
calls have an additional problem, which is that one small step
substitutes all the formals with actuals in the method body,
and thus touches the entire method body. To address this,
we redefined the semantics of method calls by performing
the substitution incrementally. That is, each small step of
evaluation performs substitution on at most one AST node.
We also changed the type checking rules to properly handle
partially substituted program states.

We checked each benchmark exhaustively on states up to a
maximum size. For the language of arithmetic expressions,
we checked all states up to a given maximum expression
length l. For the imperative language IMP, we checked all
states up to a given maximum expression length l and l
variables and l integer literals. For Featherweight Java, we
checked all program states with at most four classes, where
each class can have at most two fields and two methods (in

7

Benchmark Max Expression States Time (s)
Length Checked

1 5 0.543
2 46 0.485
3 94 0.576
4 142 0.766
5 188 0.966

MiniJava 6 246 1.163
7 1153 4.366

...
15 3293 16.598
31 7576 65.752
63 16269 261.394

1 3 0.201
2 8 0.243
3 35 0.358
4 40 0.390
5 67 0.489
6 72 0.523
7 149 0.840

...
MiniJava+NonNull 15 377 2.336

31 833 7.759
63 1745 31.180

127 3569 143.401
255 7217 748.063

1 3 0.492
2 8 0.262
3 46 0.475
4 51 0.541
5 89 0.643
6 94 0.866
7 199 1.188

...
MiniJava+Tainted 15 505 2.841

31 1117 9.718
63 2341 38.655

127 4789 171.884
255 9685 843.275

Figure 10. Checking soundness of type system extensions

with the technique in Section 4. The results show that

checking a type system extension assuming the base type

system is sound is more efficient than checking the base

type system (or therefore the extended type system).

addition to inherited fields and methods), and where ev-
ery method and the main expression have up to a given
maximum length l. For the Ownership Java, we checked
all states with at most four heap objects and at most four
classes where each class can have at most two owner param-
eters, two methods, and two fields, and every method and
the main expression have up to a given maximum length l.

We report both the number of states explicitly checked by
our checker and the time taken by our checker. Note that
we did not yet optimize the execution time of our checker,
but we report it here nonetheless to provide a rough idea.
The results indicate that our approach is feasible and that
our model checker achieves significant state space reduction.
For example, the number of well typed IMP programs of
maximum length 511 is over 2786, but our checker explicitly
checks only 3653 states to exhaustively cover this space.

5.2 Model Checking Soundness of Type System Extensions

To test our technique for checking soundness of type system
extensions, we first extended Featherweight Java with sev-
eral features including an explicit heap representation, muta-
tions to objects, null pointers, integer and boolean primitive
types, arithmetic and boolean operations on the primitive
types, for and while loops, and an if construct. We call
the resulting language, which is a subset of Java, MiniJava.

Max AST Percentage of Errors Caught
Height

1 0
2 36
3 92
4 100
5 100
6 100
7 100

Figure 11. Evaluating the small scope hypothesis. An

AST height of 4 was sufficient to catch all the type system

errors we introduced into Ownership Java.

We extended MiniJava with two type qualifier extensions:
nonNull and tainted. nonNull variables may not have null
values assigned to them. The tainted qualifier describes
the reliability of data—variables that have been declared as
untainted may not have tainted data assigned to them and
objects which are untainted may not have tainted fields. For
each language, we checked all states with at most four heap
objects and at most four classes where each class can have
at most two methods and two fields, and every method and
the main expression have up to a given maximum length l.

The results in Figure 10 show that checking the soundness
of a type system extension assuming the base type system
is sound is far more efficient than checking the soundness
of the base type system itself. Also, the number of states
checked for each extended type system (not shown in the
figure) is the same as the the number of states checked for
the base type system because the operational semantics of
the languages are identical. Thus, checking the soundness of
a type system extension is significantly more efficient than
checking the soundness of the extended type system.

5.3 Validating the Small Scope Hypothesis

Finally, Figure 11 presents the experimental results that sug-
gest that exhaustive testing within a small finite domain does
indeed catch all type system errors in practice, a conjecture
also known as the small scope hypothesis [28, 29, 36]. We
introduced twenty different errors into the type system of
Ownership Java (one at a time) and five different errors into
the operational semantics. Some were small mistakes such
as forgetting to include a type checking clause. Some were
deeper errors as the following examples illustrate.

The Java compiler rejects as ill typed a term containing a
type cast of a value of declared type T1 into a type T2 if T1 is
neither a subtype nor supertype of T2. The Ownership Java
(as also the Featherweight Java) compiler, however, accepts
such a term as well typed. We changed Ownership Java to
reject such casts as ill typed. Our model checker then cor-
rectly detected that the preservation theorem does not hold
for the changed language. The term (T2) (Object<world>)
new T1() provides a counter example. It is well typed ini-
tially. But after a small step of evaluation, the term sim-
plifies to (T2) new T1() which is ill typed in the changed
language. The preservation theorem therefore does not hold.

We also introduced a subtle bug (c.f. [4, Figure 24]) into
Ownership Java such that the owners as dominators prop-
erty does not hold. Our checker correctly detected the bug.

8

The results in Figure 11, while preliminary, do indicate that
exhaustive testing within a small finite domain is an effective
approach for checking soundness of type systems. Moreover,
we examined all the type soundness errors we came across
in literature and found that in each case, there is a small
program state that exposes the error. This lends credibility
to the validity of the small scope hypothesis in practice.

6. Related Work
This section presents related work on software model check-
ing. Model checking is a formal verification technique that
exhaustively tests a circuit/program on all possible inputs
(sometimes up to a given size) to handle input nondetermin-
ism and all possible nondeterministic schedules to handle
scheduling nondeterminism. There has been much research
on model checking of software. Verisoft [20] is a stateless
model checker for C programs. Java PathFinder (JPF) [40]
is a stateful model checker for Java programs. XRT [22]
checks Microsoft CIL programs. Bogor [15] is an extensible
framework for building software model checkers. CMC [31] is
a stateful model checker for C programs that has been used
to test large software including the Linux implementation of
TCP/IP and the ext3 file system.

For hardware, model checkers have been successfully used to
verify fairly complex finite state control circuits with up to a
few hundred bits of state information; but not circuits that
have large data paths or memories. Similarly, for software,
model checkers have been primarily used to verify control-
oriented programs (with scheduling nondeterminism) with
respect to temporal properties; but not much work has been
done to verify data-oriented programs (with input nondeter-
minism) with respect to complex data-dependent properties.

Thus, most of the research on reducing the state space of a
software model checker has focused on checking programs
with scheduling nondeterminism. Tools such a Slam [2],
Blast [24], and Magic [7] use heuristics to construct and
check an abstraction of a program (usually predicate ab-
straction [21]). Abstractions that are too coarse generate
false positives, which are then used to refine the abstraction
and redo the checking. This technique is known as Counter
Example Guided Abstraction and Refinement or CEGAR.
There are also many static [20] and dynamic [18] partial or-
der reduction systems for concurrent programs. There are
many other symmetry-based reduction techniques as well
(e.g., [26]). However, none of the above techniques seem to
be effective in reducing the state space of a model checker
when checking the soundness of a type system—where one
must deal with input nondeterminism (to check every input
program state) and data-dependent properties (type correct-
ness properties that depend on input program states). In
fact, because of input nondeterminism, it is difficult to even
formulate the problem of checking type soundness automat-
ically in the context of most software model checkers.

Tools such as Alloy [27] and Korat [3] systematically gener-
ate all test inputs that satisfy a given precondition. However,
these tools generate and test every valid state and so do not
achieve as much state space reduction as our system.

This paper builds on our recent previous work on model
checking properties of data structures [12]. While our previ-

ous paper focused on checking properties of tree-based data
structures, this paper focuses on checking soundness of type
systems. It improves on the techniques in [12] by using an
incremental SAT solver instead of a BDD to better han-
dle non-tree-based constraints and by using a static analysis
to be sound even with non-tree-based constraints. It also
includes several domain specific optimizations, such as effi-
ciently checking the soundness of type system extensions and
special support to clone terms in an operational semantics.

A recent paper [8] describes a technique for checking prop-
erties of programming languages specified in αProlog, using
a bounded backtracking search in an αProlog interpreter.
However, [8] does not use our state space reduction tech-
niques and does not scale nearly as well as our model checker.

7. Conclusions
This paper presents a software model checker that automat-
ically checks the soundness of a type system, given only a
specification of type correctness of intermediate program
states and the small step operational semantics. Other
proofs of type soundness are done either by hand or are ma-
chine checked, but require significant manual assistance in
both cases. This paper also presents an approach for check-
ing the soundness of a type system extension assuming that
the base type system is sound. This approach is significantly
more efficient than checking the soundness of the extended
type system without making the above assumption.

The paper presents techniques that significantly reduce the
state space of a model checker for checking type soundness.
This paper thus makes contributions both in the area of
checking soundness of type systems, and in the area of re-
ducing the state space of a software model checker.

We have tested our system on several small to medium sized
languages that include several features such as term and type
level substitution, explicit heap, objects, etc., and found our
approach to be feasible. We expect our system to be partic-
ularly useful to researchers who design novel type systems,
but formalize only a core subset of their type systems, as is
the standard practice in the research community.

We have not yet tested our system on large realistic lan-
guages, partly because of effort it takes to formalize such
languages. We plan to explore that in our future work. We
have some evidence that our system might scale reasonably
well because the number of states explicitly checked by our
tool seems to increase only linearly with the number of syn-
tactic constructs in a language. Our evidence also suggests
that our tool might work well for checking small extensions
to large languages, assuming the large language is sound.

References
[1] B. E. Aydemir et al. Mechanized metatheory for the

masses: The POPLMARK challenge, May 2005.
http://www.cis.upenn.edu/ plclub/wiki-static/poplmark.-
pdf.

[2] T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani.
Automatic predicate abstraction of C programs. In
Programming Language Design and Implementation
(PLDI), June 2001.

[3] C. Boyapati, S. Khurshid, and D. Marinov. Korat:
Automated testing based on Java predicates. In

9

International Symposium on Software Testing and Analysis
(ISSTA), July 2002. Winner of an ACM SIGSOFT
distinguished paper award.

[4] C. Boyapati, R. Lee, and M. Rinard. Ownership types for
safe programming: Preventing data races and deadlocks. In
Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), November 2002.

[5] C. Boyapati and M. Rinard. A parameterized type system
for race-free Java programs. In Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA), October 2001.

[6] R. E. Bryant. Symbolic boolean manipulation with ordered
binary decision diagrams. ACM Computing Surveys 24(3),
1992.

[7] S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith.
Modular verification of software components in C. In
International Conference on Software Engineering (ICSE),
June 2003.

[8] J. Cheney and A. Momigliano. Mechanized metatheory
model-checking. In Principle and Practice of Declarative
Programming (PPDP), July 2007.

[9] B. Chin, S. Markstrum, and T. D. Millstein. Semantic type
qualifiers. In Programming Language Design and
Implementation (PLDI), June 2005.

[10] D. G. Clarke, J. M. Potter, and J. Noble. Ownership types
for flexible alias protection. In Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA), October 1998.

[11] E. M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. MIT Press, 1999.

[12] P. Darga and C. Boyapati. Efficient software model
checking of data structure properties. In Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA), October 2006.

[13] R. DeLine and M. Fahndrich. Enforcing high-level protocols
in low-level software. In Programming Language Design and
Implementation (PLDI), June 2001.

[14] S. Drossopoulou and S. Eisenbach. Java is type
safe—probably. In European Conference for
Object-Oriented Programming (ECOOP), June 1997.

[15] M. Dwyer, J. Hatcliff, M. Hoosier, and Robby. Building
your own software model checker using the Bogor extensible
model checking framework. In Computer Aided Verification
(CAV), January 2005.

[16] N. Een and A. Biere. Effective preprocessing in SAT
through variable and clause elimination. In Theory and
Applications of Satisfiability Testing (SAT), June 2005.

[17] C. Flanagan and S. N. Freund. Type-based race detection
for Java. In Programming Language Design and
Implementation (PLDI), June 2000.

[18] C. Flanagan and P. Godefroid. Dynamic partial-order
reduction for model checking software. In Principles of
Programming Languages (POPL), January 2005.

[19] J. S. Foster, M. Fahndrich, and A. Aiken. A theory of type
qualifiers. In Programming Language Design and
Implementation (PLDI), May 1999.

[20] P. Godefroid. Model checking for programming languages
using VeriSoft. In Principles of Programming Languages
(POPL), January 1997.

[21] S. Graf and H. Saidi. Construction of abstract state graphs
with PVS. In Computer Aided Verification (CAV), June
1997.

[22] W. Grieskamp, N. Tillmann, and W. Shulte.
XRT—Exploring runtime for .NET: Architecture and
applications. In Workshop on Software Model Checking
(SoftMC), July 2005.

[23] D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang,
and J. Cheney. Region-based memory management in
Cyclone. In Programming Language Design and
Implementation (PLDI), June 2001.

[24] T. A. Henzinger, R. Jhala, and R. Majumdar. Lazy
abstraction. In Principles of Programming Languages
(POPL), January 2002.

[25] A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java:
A minimal core calculus for Java and GJ. In
Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), October 1999.

[26] C. N. Ip and D. Dill. Better verification through symmetry.
In Computer Hardware Description Languages, April 1993.

[27] D. Jackson. Software Abstractions: Logic, Language, and
Analysis. MIT Press, 2006.

[28] D. Jackson and C. Damon. Elements of style: Analyzing a
software design feature with a counterexample detector.
IEEE Transactions on Software Engineering (TSE) 22(7),
July 1996.

[29] D. Marinov, A. Andoni, D. Daniliuc, S. Khurshid, and
M. Rinard. An evaluation of exhaustive testing for data
structures. Technical Report TR-921, MIT Laboratory for
Computer Science, September 2003.

[30] M. Musuvathi and D. Dill. An incremental heap
canonicalization algorithm. In SPIN workshop on Model
Checking of Software (SPIN), August 2005.

[31] M. Musuvathi, D. Y. W. Park, A. Chou, D. R. Engler, and
D. Dill. CMC: A pragmatic approach to model checking
real code. In Operating System Design and Implementation
(OSDI), December 2002.

[32] A. C. Myers. JFlow: Practical mostly-static information
flow control. In Principles of Programming Languages
(POPL), January 1999.

[33] G. C. Necula, S. McPeak, and W. Weimer. CCured:
Type-safe retrofitting of legacy code. In Principles of
Programming Languages (POPL), January 2002.

[34] T. Nipkow and D. von Oheimb. Java light is
type-safe—definitely. In Principles of Programming
Languages (POPL), January 1998.

[35] N. Nystrom, M. R. Clarkson, and A. C. Myers. Polyglot:
An extensible compiler framework for Java. In Compiler
Construction (CC), April 2003.

[36] J. Offutt and R. Untch. Mutation 2000: Uniting the
orthogonal. In Mutation 2000: Mutation Testing in the
Twentieth and the Twenty First Centuries, October 2000.

[37] B. C. Pierce. Types and Programming Languages. MIT
Press, 2002.

[38] U. P. Schultz, J. L. Lawall, and C. Consel. Automatic
program specialization for Java. Transactions on
Programming Languages and Systems (TOPLAS) 25(4),
July 2003.

[39] P. Sewell, F. Z. Nardelli, S. Owens, G. Peskine, T. Ridge,
S. Sarkar, and R. Strnisa. Ott: Effective tool support for
the working semanticist. In International Conference on
Functional Programming (ICFP), October 2007.

[40] W. Visser, K. Havelund, G. Brat, and S. Park. Model
checking programs. In Automated Software Engineering
(ASE), September 2000.

[41] D. Walker. A type system for expressive security policies. In
Principles of Programming Languages (POPL), January
2000.

[42] G. Winskel. The Formal Semantics of Programming
Languages. MIT Press, 1993.

[43] X. Zhang and R. Gupta. Cost effective dynamic program
slicing. In Programming Language Design and
Implementation (PLDI), June 2004.

10

