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Abstract. Database provenance chronicles the history of updates and modifica-
tions to data, and has received much attention due to its central role in scientific
data management. However, the use of provenance information still requires a leap
of faith. Without additional protections, provenance records are vulnerable to acci-
dental corruption, and even malicious forgery, a problem that is most pronounced
in the loosely-coupled multi-user environments often found in scientific research.
This paper investigates the problem of providing integrity and tamper-detection for
database provenance. We propose a checksum-based approach, which is well-suited
to the unique characteristics of database provenance, including non-linear prove-
nance objects and provenance associated with multiple fine granularities of data.
We demonstrate that the proposed solution satisfies a set of desirable security prop-
erties, and that the additional time and space overhead incurred by the checksum
approach is manageable, making the solution feasible in practice.

1 Introduction
Provenance describes the history of creation and modification of data. Problems of record-
ing, storing, and querying provenance information are increasingly important in data-
intensive scientific environments, where the value of scientific data is fundamentally tied
to the method by which the data was created, and by whom [3, 7, 10, 11, 14, 19, 29]. In
de-centralized and multi-user environments, we observe that individuals who obtain and
use data (data recipients) often still need to make a leap of faith. They need to trust that
the provenance information associated with the data accurately reflects the process by
which it was created and refined. Unfortunately, provenance records can be corrupted
accidentally, and they can even be vulnerable to malicious forgery.

To this point, integrity concerns have been largely ignored for database provenance.
While recent work considered a similar problem in the context of file systems [22], the
proposed solutions are not directly applicable to databases. In particular, Hasan et al. [22]
only considered provenance that could be expressed as a totally-ordered chain of opera-
tions on an atomic object (e.g., a file). In databases, however, we observe that provenance
is often expressed in terms of a partially-ordered set of operations on compound objects
(e.g., records, tables, etc.). This is best illustrated with an example.
? Approved for Public Release; Distribution Unlimited (09-1348)



TrustUsRx
(aggregate)

Pamela
(Update Patient #4555’s 

Endocrine value)

Good Stewards Lab
(Set all White_Count values)

Paul
(Set all Age, Weight values)

Perfect Saints Lab
(Set all Endocrine values)

Fig. 1. Sample Provenance Scenario

Example 1. A pharmaceutical company, TrustUsRx, wants to show that their new drug is
safe and effective. TrustUsRx delivers the result of their clinical trial (with accompanying
provenance information) to the FDA for approval. The provenance information indicates
that the patients’ ages and weights were originally collected by PCP Paul. Endocrine
activity measurements were produced by the Perfect Saints Clinic, but then PCP Pamela
amended the Endocrine value for patient #4555. White blood cell counts were determined
by blood samples sent to GoodStewards Labs. Finally, all of the patient data was aggre-
gated by TrustUsRx. The provenance of this final aggregate data is shown in Figure 1.
Given the company’s pecuniary incentives, the FDA wants to verify that this provenance
information has not been tampered with or forged.

This example highlights the two major problems that are not addressed by Hasan et
al. [22]. First, each patient record is a compound object; it contains several attributes (e.g.,
Age, Weight, Endocrine, and White Count), which were obtained through different meth-
ods, and have different provenance. Thus, we cannot treat records or tables as atomic;
instead, a fine-grained approach is needed. Second, the modifications to the data do not
form a totally-ordered (linear) sequence of operations (reads, writes, and updates). In-
stead, due to aggregation operations (e.g., the aggregation performed by TrustUsRx), the
provenance associated with the final (compound) object delivered to the FDA is actually
a DAG (non-linear provenance).

Throughout this paper, we will consider an abstract set of participants (users, pro-
cesses, transactions, etc.) that contribute to one or more data objects through insertions,
deletions, updates, and aggregations [5, 7, 9, 17, 19]. Information about these modifica-
tions is collected and stored in the form of provenance records. Various system architec-
tures have been proposed for collecting and maintaining provenance records, from attach-
ing provenance to the data itself as a form of annotation [5, 7] to depositing provenance
in one or more repositories [10, 11, 14, 19, 29]. Thus, one of our chief goals is to develop
a cross-platform solution for providing tamper-evident provenance. Since provenance is
often collected and shared in a de-centralized and loosely-organized manner, it is imprac-
tical to use secure logging tools that rely, for example, on trusted hardware [32] or other
systems-level assumptions about secure operation [37].

Occasionally, a data recipient will request and obtain one or more of these data ob-
jects. In keeping with the vision of provenance, each data object is accompanied by a
provenance object. Our goal is to collect enough additional information to provide cryp-
tographic proof to the data recipient that the provenance object has not been maliciously
altered or forged.
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1.1 Contributions & Paper Overview

This is the first in-depth study of integrity and tamper-evidence for database provenance.
While related work has focused on security (integrity and confidentiality) for file system
provenance [22], we extend the prior work in the following important ways:

– Non-Linear Provenance: Database operations often involve the integration and ag-
gregation of objects. One might consider treating an object produced in this way as if
it were new (with no history), but this discards the history of the objects taken as input
to the aggregation. Thus, in databases it is common to model provenance in terms of
a DAG, or non-linear provenance.

– Compound Objects: In databases, it is critical to think of provenance associated
with multiple granularities of data, rather than to simply associate provenance with
atomic objects. For example, in the relational data model, each table, row, and cell
has associated provenance, and the provenance of these objects is inter-related.

The remainder of this paper is organized as follows: In Section 2, we lay the ground-
work by describing the database provenance model and integrity threat model. We then
develop tamper-evident provenance tools for atomic and compound objects (Sections 3
and 4). Finally, an extensive performance evaluation (Section 5) indicates that the ad-
ditional time and space overhead required for tamper-evidence (beyond that of standard
provenance tracking) is often small enough to be feasible in practice.

2 Preliminaries

We begin with the preliminary building blocks for our work, which include the basic
provenance model and integrity threat model. Throughout this paper, we will consider
a database, D, consisting of a set of data objects. Each object has a unique identifier,
which we will denote using a capital letter, and a value. We will use the notation A.val to
refer to the current value of object A. We assume that the database supports the following
common operations:

– Insert(A, val): Add a new object A to D with initial value val.
– Delete(A): Remove an existing object A from D.
– Update(A, val′): Update the value of A to new value val′.
– Aggregate({A1, ..., An}, B): Combine objects A1, ..., An to form new object B.

2.1 Provenance Model

With the exception of deletion, each operation is documented in the form of a prove-
nance record. (For the purposes of this paper, after an object has been deleted, it’s prove-
nance object is no longer relevant3.) We model each provenance record as a quadruple
of the form (seqID, p, {(A1, v1), ..., (An, vn)}, (A, v)). p identifies the participant who
performed the operation. {(A1, v1), ..., (An, vn)} describes the (set of) input object(s),

3 This is not essential, but does enable some optimizations
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Fig. 2. An Example of Non-linear Provenance

and their values. (A, v) describes the output object and its value.4 seqID is necessary to
describe the relative order of provenance records associated with specific objects. In par-
ticular, if two provenance records rec1 and rec2 involve the same object (with the same
id) as either input or output, then rec1.seqID < rec2.seqID indicates that the operation
described by rec1 occurred before the operation described by rec2.

Definition 1 (Provenance Object). The provenance of a data object, A, consists of a set
of provenance records, which are partially-ordered by seqID. (Alternatively, it is easy to
think of the provenance object as a DAG.) Each data object A always has a single most
recent provenance record, with greatest seqID.

For simplicity, we will assume that seqID values are assigned in the following way:
When a new object is inserted, its initial seqID = 0. On each subsequent update, we
add one to the seqID. Finally, for each aggregation operation, we add 1 to the maximum
seqID of any input object. This is illustrated with a simple example.

Example 2. Consider the example provenance object (for data object D) shown in Fig-
ure 2. This information indicates that participant p2 originally inserted objects A and B,
with initial values a1 and b1, respectively. Each of these objects was updated several times.
The original version of object A, and an updated version of B were aggregated together
to form C. Finally, D was created by aggregating C and a later version of A. Also, notice
that the DAG shown in the figure is induced by the sequence ID values associated with
each provenance record.

2.2 Threat Model

In the absence of additional protections, the provenance records and objects described in
the previous section are vulnerable to illegal and unauthorized modifications that can go
undetected. Throughout this paper, our goal is to develop an efficient scheme for detecting
such modifications. In this section, we outline our threat model and desired guarantees,
which are a variation of those described by Hasan et al. [22].

4 This is certainly not the only possible way of describing an operation. We selected this model
for the purposes of this work because we found it to be quite general. In contrast to provenance
models that logically log the operation that was performed (e.g., a selection, or a sum), this simple
model captures black-box operations (e.g., user-defined functions) and even non-deterministic
functions. On the other hand, our proposed integrity scheme is easily translated to a provenance
model that simply logs the white-box operations that have been performed.
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In particular, consider a data object A and its associated provenance object P . Suppose
that P accurately reflects the provenance of A, but that a group of one or more attackers
would like to falsify history by modifying A and/or P . In the worst case, the attackers
themselves are insiders (participants).

We set out the following desired guarantees with respect to a single attacker:
R1: An attacker (participant) cannot modify the contents of other participants’ provenance
records (input and/or output values) without being detected by a data recipient.
R2: An attacker cannot remove other participants’ provenance records from any part of
P without being detected by a data recipient.
R3: An attacker cannot insert provenance records (other than the most recent one) into P
without being detected.5

R4: If an attacker modifies (updates) A without submitting a proper provenance record to
P documenting the update, then this will be detected by a data recipient.
R5: An attacker cannot attribute provenance object P (for data object A) to some other
data object, B, without being detected by a data recipient.

In short, we must be able to detect an attack that results from modifying any prove-
nance record that has an immediate successor. Also, we must be able to detect any attack
that causes the last provenance record in P to mismatch the current state of object A.

In addition, it may be the case that multiple participants collude to attack the prove-
nance object. In this case, we seek to make the following guarantees:
R6: Two colluding attackers cannot insert provenance records for non-colluding partici-
pants between them without being detected by a data recipient.
R7: Two colluding attackers cannot selectively remove provenance records of non-colluding
participants between them without being detected by a data recipient.

Finally,
R8: Participants cannot repudiate provenance records.

It is important to point out the distinction between these threats and two related threat
models. First, notice that our goal is to detect tampering; we do not consider denial-of-
service type attacks, in which, for example, an attacker deletes or maliciously modifies
data and / or provenance objects to prevent the information from being used. Second,
we do not address the related problem of forged authorship (piracy) in which an attacker
copies a data object, and claims to be the original creator of the data object.

2.3 Cryptography Basics

We will make use of some basic cryptographic primitives. We assume a suitable public-
key infrastructure, and that each participant is authenticated by a certificate authority.

– Hash Functions: We will use a cryptographic hash function (e.g., SHA-1 [1] or MD5
[33]), which we will denote h(). Generally speaking, h() is considered secure if it is
computationally difficult for an adversary to find a collision (i.e., messages m1 6= m2

such that h(m1) = h(m2)).

5 A participant can always append a provenance record with increasing seqID when the par-
ticipant executes a corresponding database operation. In this case, the provenance record must
properly document the operation in order to comply with requirement R4.
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seqID Participant Input Output Checksum
0 p2 {} (A, a1) C1 = SSKp2

(0|h(A, a1)|0)
0 p2 {} (B, b1) C2 = SSKp2

(0|h(B, b1)|0)
1 p1 {(A, a1)} (A, a2) C3 = SSKp1

(h(A, a1)|h(A, a2)|C1)
1 p2 {(B, b1)} (B, b2) C4 = SSKp2

(h(B, b1)|h(B, b2)|C2)
2 p2 {(A, a2)} (A, a3) C5 = SSKp2

(h(A, a2)|h(A, a3)|C3)
2 p3 {(A, a1), (B, b2)} (C, c1) C6 = SSKp3

(h(h(A, a1)|h(B, b2))|h(C, c1)|C1|C4)
3 p1 {(A, a3), (C, c1)} (D, d1) C7 = SSKp1

(h(h(A, a3)|h(C, c1))|h(D, d1)|C5|C6)

Fig. 3. Non-Linear Provenance Example with Integrity Checksums

– Public Key Signatures: We assume that each participant p has a public and secret
key, denoted PKp and SKp. p can sign a message m by first hashing m, and then
encrypting h(m) with this secret key. We denote this as SSKp

(m). RSA is a common
public key cryptosystem [34].

3 Provenance Integrity for Atomic Objects

We begin with the simple case in which we have a database D comprised entirely of
atomic objects. In this case, we propose to provide tamper-evidence by adding a prove-
nance checksum to each provenance record. In the case of linear provenance (operations
consisting of only insertions, updates, and deletions), we take an approach similar to that
proposed by Hasan et al. [22], and we begin by recapping this approach. Then, we extend
the idea to aggregation operations (non-linear provenance).

Consider each database operation resulting in a provenance record (insert, update, and
aggregate), and the additional checksum associated with the provenance record:

Insert: Suppose that participant p inserts an object A with value val. The checksum C0

is constructed as
C0 = SSKp(0|h(A, val)|0)

Update: Now consider the provenance record collected during an update in which partic-
ipant p changes the value of object A from val to val′. Suppose that the checksum of the
previous operation on A is Ci−1. The checksum for the update is

Ci = SSKp(h(A, val)|h(A, val′)|Ci−1)

Aggregate: Finally, consider the provenance record collected as the result of an aggrega-
tion operation that takes as input objects A1, ..., An (with values val1, ..., valn, respec-
tively) and produces an object B with value val. Assume that the input objects are sorted
according to a globally-defined order (e.g, numeric or lexical). We denote the checksums
for the previous operations on A1, ..., An as C1, ..., Cn. The checksum is

C = SSKp

(
h
(
h(A1, val1)|h(A2, val2)| · · · |h(An, valn)

)∣∣∣h(B, val)
∣∣∣C1|C2| · · · |Cn

)
Example 3. Consider again the non-linear provenance from Figure 2. Figure 3 shows (in
tabular form) the provenance records augmented with checksums.

Consider the data recipient who obtains object D and the provenance object P de-
fined by these records. She can verify that P and D have not been maliciously altered by
checking that all of the following conditions hold:
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1. D matches the output field in the most recent provenance record.
2. Beginning with the earliest checksums (i.e., those associated with provenance records

having the smallest seqID values among all provenance records with the same output
object), recompute the checksum using the input and output fields of the provenance
record (and the previous checksum if applicable). Check to make sure that each stored
checksum matches the computed checksum.

3.1 Checksum Security

In this section, we will briefly explain how the provenance checksums provide the in-
tegrity guarantees outlined in Section 2.2.

Property R1 is guaranteed because each input and output is cryptographically hashed,
and then signed by the acting participant. Thus, in order to modify the input / output
values that are part of the provenance record, without being detected, an attacker would
need to either forge another participant’s signature, or find a hash collision. Also, attacks
that require inserting or deleting provenance records (R2, R3, R6, R7) can be detected
because each checksum contains the previous checksum(s) (defined by seqID).

Moreover, consider a data recipient who receives a data object A and associated prove-
nance object P . By comparing A to the output field of the most recent provenance record
in P , in combination with the other checks, the data recipient can verify that the prove-
nance has not been reassigned to a different data object (R4) and that a participant (at-
tacker) has not modified the object without submitting proper provenance (R5).

Finally, non-repudiation (R8) is guaranteed by participants’ signatures on provenance
checksums.

3.2 Local vs. Global Checksum Chaining

Finally, notice that when there are multiple data objects (each with associated prove-
nance), we chose to “chain” provenance checksums on a per-object basis, rather than
constructing a single global chain. While both approaches would satisfy our integrity
goals, in a (potentially distributed) multi-user environment with many data objects, there
are strong practical arguments in favor of the local-chaining approach. In particular, if we
elected to construct a global chain, we would have to enforce a particular global sequence
on entries into the provenance table, which would become a bottleneck. Consider, for ex-
ample, two participants p1 and p2, who are working on objects A and B. Using the global
approach, the two participants would have to enforce a total order on their provenance
records (e.g., using locking). In contrast, using the per-object approach, the participants
can construct provenance chains (and checksums) for the two objects in parallel.

Also, we find that local chaining is more resilient to failure. If the provenance associ-
ated with object A is corrupted, this does not preclude a data recipient from verifying the
provenance of another object B (provided that B did not originate from an aggregation
operation that took A as input).

4 Provenance Integrity for Compound Data Objects

In the previous section, we described a checksum-based scheme for providing integrity for
provenance (linear and non-linear) describing atomic objects. In this section, we expand
the approach to the case where objects are compound (contain other objects).
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(A,a,{B,C})

(B,b,{D})

(D,d,{})

(C,c,{})

Fig. 4. Example compound object

hA = h((A, a, {B, C})|hB |hC)

hB = h((B, b, {D})|hD)

hD = h((D, d, {}))

hC = h((C, c, {}))

Fig. 5. Example compound hash value

4.1 Extended Data Model

Throughout the rest of this paper, we will expand our data model to include richer and
more realistic structure. In particular, instead of modeling the database D as an unorga-
nized set of objects, we will model the database abstractly in terms of a set of trees (a for-
est). This abstraction allows us to express provenance information associated with vary-
ing levels of data granularity in two common data models: relational and tree-structured
XML. In the relational model, we can use a tree to express varying granularities of data
(e.g., tables, rows, and cells).

Using this abstraction, we expand the idea of an atomic data object to be a triple
of the form (id, value, {child ids}), where id uniquely identifies the object, value is
the atomic value associated with the object, and {child ids} identifies the set of other
objects of which this object is the parent in D. We will also refer to any set of atomic
objects such that the child relationships form a tree as a compound object. We will use the
notation subtree(A) to refer to the compound object defined by the subtree rooted at A.
We assume that the database supports the following primitive operations:

– Insert(A, val, 〈parent〉): Add a new atomic object to D with value = val. The
parent field is optional, and indicates the id of A’s parent. (For simplicity, the prim-
itive operation only supports insertions and deletions of leaf objects. However, more
complex operations can be expressed using multiple primitive operations, as de-
scribed in Section 4.4.)

– Delete(A): Remove an existing (leaf) atomic object A from D.
– Update(A, val′): Update the value field of object A to new value val′.
– Aggregate({A1, ..., An}, B): Combine subtree(A1), ..., subtree(An) to produce a

new compound object rooted at B. For simplicity, we assume that the resulting root
B has no parent in D.

Example 4. As a simple example, consider the compound object shown in Figure 4,
which contains atomic objects A,B, C, and D (with values a, b, c, d).

4.2 Extended Provenance Model

The execution of each primitive operation is documented in the form of a provenance
record. In this case, we extend the provenance records slightly; specifically, the input and
output of each operation can be a compound (rather than atomic) object:

(seqID, p, {subtree(A1), ..., subtree(An)}, subtree(A))
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A provenance object consists of a set of provenance records of this extended form,
which are partially-ordered by seqID like before.

When it comes to compound objects, a unique challenge arises because provenance
among objects is naturally not independent. For example, consider a relational database,
and a participant who updates a particular cell. Intuitively, if we are collecting provenance
for cells, rows, and tables, a record of this update should be maintained in the provenance
of the cell, but also for the row and table.

The extended provenance model captures this through the idea of provenance inheri-
tance. Conceptually, when an update or insert is applied to an atomic object A, we collect
the standard provenance record for A: (seqID, p, {subtree(A)}, subtree(A)′), where
subtree(A) denotes the subtree rooted at A before the update (in the case of insertions,
this is empty), and subtree(A)′ denotes the subtree rooted at A after the update. In ad-
dition, when an object A is inserted, updated, or deleted, we must also collect, for each
ancestor B of A the provenance record (seqID, p, {subtree(B)}, subtree(B)′).

Of course, this conceptual methodology is not an efficient means of collecting and
storing inherited provenance. Efficient collection and storage of fine-grained provenance
is beyond the scope of this paper; however, this problem has been studied in prior work.
For example, [7, 11] describe a set of optimizations that can be used.

4.3 Extended Provenance Checksums

Finally, in order to provide provenance integrity for compound objects, we must extend
the signature scheme described in Section 3. We accomplish this using an extended sig-
nature scheme related to Merkle Hash Trees [25].

Consider the provenance record (seqID, p, {subtree(A)}, subtree(A)′) collected as
the result of an update (or inherited update) on compound object subtree(A). Suppose
also that the checksum of the previous (actual or inherited) operation on subtree(A) is
Ci−1. We will construct the following checksum for this provenance record:

Ci = SSKp(h(subtree(A))|h(subtree(A)′)|Ci−1)

Notice that this checksum includes hashes computed over full compound objects (i.e.,
h(subtree(A))). While we could use any blocked hashing function for this purpose, we
elected to define the hash function recursively, which allows us to reuse hashes computed
for one complex object when computing the checksums necessary for inherited prove-
nance records.

For example, in Figure 5, hB is the hash value for subtree(B) from Figure 4. (In
order to ensure that these checksums are always consistent, we again assume that there
exists a pre-defined total order over atomic objects.) Notice that an update of object B
would generate a provenance record for B, but also an inherited provenance record for A.
We are able to reuse h(subtree(B)) when computing h(subtree(A)).

Economical Approach A Basic version of this algorithm will hash all nodes in the input
subtree(A), and hash all nodes in the output subtree(A). Even reusing h(subtree(B))
when computing h(subtree(A)), this approach requires two walks over the entire tree
rooted at A. A more economical approach is to compute the hashes of the input nodes in
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subtree(A), and only re-compute a hash if the node has changed. In the worst case, this
still could require 2 traversals of the tree. However, in the best case, it would be 1 traversal
of the tree for computing the hash of the input and 1 traversal of the height of the tree to
compute the hash of the output.

Checksum Guarantees These extended checksums provide the same guarantees as de-
scribed earlier (Section 2.2). The analysis is essentially the same as in Section 3.1; the
only important addition is to observe that the extended hash value constructed for a com-
pound object is also difficult for an adversary to reverse.

4.4 Complex Operations

At the most basic level, provenance records (including checksums) are defined and col-
lected at the level of primitive operations (insert, update, and aggregate), and in the case
of compound objects, updates are inherited upward whenever a descendant object is in-
serted, updated, or deleted.

Of course, in practice, it may not be necessary to collect provenance records for ev-
ery primitive operation. Instead, we can group together a sequence of insert, update, and
delete operations to form a complex operation (which we assume produces a modified
complex object). This is based on the idea of transactional storage described in [7]. In this
case, for every object A, and its ancestors still present in the database after a series of op-
erations, we collect the provenance record (seqID, p, {subtree(A)}, subtree(A)′). The
checksum associated with this record is exactly the same as described in the last section.

5 Experiments

This section briefly describes our experimental evaluation, the goal of which is to better
understand the time and space overhead introduced by generating and storing checksums.
Our experiments reveal that these costs are often low enough to be feasible in practice.

5.1 Experimental Setup

Our experimental setup includes two databases. First, we have a back-end database, which
contains the user data about which we collect provenance. Second, we have a provenance
database. We will assume that both databases are relational. For the purposes of fine-
grained provenance, we will view the back-end database as a tree of depth 4, with a single
root node, and subsequent levels representing tables, rows, and cells.

Our main goal is to measure the additional time and space cost incurred by collecting
integrity checksums, as opposed to the cost of collecting provenance itself, which has
been studied extensively in prior work. Thus, for each complex operation, our experiments
record: 〈SeqID(int), Participant(int), Oid(int), Checksum(binary(128))〉.

For the experiments, we generated synthetic back-end databases, each consisting of
one or more synthetic data tables, as described in Table 1(a). We also constructed a set of
synthetic complex operations on the back-end database, as described in Table 2.

Our hardware and software configuration consists of a Celeron 3.06GHz machine
with 1.96G RAM running Windows XP and Java SE runtime environment (JRE) ver-
sion 6 update 13. Our provenance collection and checksumming code is written in Java,
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Table 1. Synthetic Tables And Databases

(a) Synthetic Tables

Table No. Num. Attr. Num. Row Attr. types
1 8 4000 all integer
2 9 3000 all integer
3 10 2000 all integer
4 5 5000 all integer

(b) Synthetic Databases

Combination of tables Num. of nodes
1 36002

1,2 66000
1,2,3 88004

1,2,3,4 118006

Table 2. Complex Operations for Each Experi-
ment

Experimental Complex Operations
Setup

A

1 update on 1 cell
400n updates on 400n cells in
400n rows(n = 1, · · · , 10)
4000n updates on 4000n cells in
4000 rows (n = 2, · · · , 8)

B

500 deletes of rows
500 inserts of rows
4000 updates of cells in 500 rows
4000 updates of cells in 4000 rows

C

500 operations
96(19.2%) deletes
189(37.8%) inserts
15(43%) updates

500 operations
183(36.6%) delete
152(30.4%) inserts
165(33%) updates

500 operations
285(57%) deletes

106(21.2%) inserts
109(21.8%) updates

500 operations
391(78.2%) deletes

49(9.8%) inserts
60(12%) updates

and connected to a MySQL database (v5.1) using MySQL connector/J. For hashing, we
use java.security.MessageDigest (algorithm “SHA”), which generates a 20-byte message
digest; for encryption, we use java.crypto.Cipher (algorithm “RSA”), which produces a
128-byte signature (given a 1024-byte key).

For all performance experiments, we report the average across 100 runs, including
95% confidence intervals.

5.2 Experimental Results

We conducted several experiments, which illustrate the effect of database size on hashing
time, the difference between basic and economical hashing, and the effect of operation
types on checksum generation.

Hashing To understand the effect of the back-end database size on hashing time, we use
four databases with increasing sizes as listed in Table 1(b). The time to hash each database
is shown in Figure 6. It can be seen that the time grows roughly linearly with the number
of nodes (thus the size of the database).

To compare the Basic and Economical hashing approaches described in Section 4.3,
we use a back-end database with one synthetic table (4000 rows and 8 integer-valued
attributes). We used the complex operations in Experimental Setup A (Table 2), which
consist entirely of updates, with increasing numbers of cells updated as part of the opera-
tion. As expected, the hashing time remains approximately constant when using the basic
approach; however, the economical hashing time increases with the number of updated
cells.
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Fig. 7. Hashing The Output Tree Using Basic and
Economical Approaches

Of course, a pressing question is whether these techniques can scale to a much larger
database (i.e., larger than available memory). To do this we can read one row at a time,
hashing the row and the cells in it, and updating the table’s hash value with the row’s
hash value. When all rows are read and hashed, we get the final hash value of the table
and update the database’s hash value with the table’s hash value. When all tables are
hashed, we get the final hash value of the database. As a simple experiment, we hashed a
relational database with a single table named “Title”. This table had 18,962,041 rows and
two fields: Document ID (integer) and Title (varchar). (The total number of nodes was
thus 56,886,125.) The time to hash this database was 1226.7 seconds (excluding the time
of writing the hash values to disk), i.e., the average time of hashing a node took 0.02156
milliseconds. Although it is not an apples-to-apples comparison, this average hashing time
of a node is within one order of magnitude of that when the whole tree fits into memory.

Effects of Different Operations Recall from Section 4.2 that, in the fine-grained prove-
nance model, if a node n has x ancestors, and we delete n, then we must produce x
(inherited) checksums. Alternatively, if we inserted or updated n, this would produce a
total of x + 1 (actual and inherited) checksums.

To analyze this relationship between operations and checksum overhead, we used the
complex operations in Experimental Setup B, and we ran these operations on a database
with one synthetic table consisting of 4000 rows and 8 integer-valued attributes. From
Figure 8, we can see that the time overhead for the all-deletes operation is the smallest.
The time overhead for the all-inserts and all-updates operation are similar to one another.
Figure 9 shows the space overhead of storing the (actual and inherited) checksums for
these four complex operations. As expected, the space overhead is much larger for inserts
and updates, as these produce more total provenance records and checksums.

In addition, we conducted some experiments for complex operations containing com-
binations of insert, update, and delete primitives. Figure 10 shows the time of hashing
trees, encrypting and inserting checksums while running Experimental Setup C. As ex-
pected, the time overhead decreases as the percentage of deletes increases in the complex
operation. Similarly, Figure 11 shows that the space overhead is also inversely propor-
tional to the number of deletions.
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6 Related Work

Issues surrounding provenance have been studied in database systems [4, 5, 9, 8], work-
flow systems [10, 14, 17, 20, 29], scientific applications [3, 7, 18, 19] and general prove-
nance issues [11, 30]. However, this paper is the first to provide platform-independent
support for verifying the integrity of provenance associated with data at multiple granu-
larities, and through aggregation.

The closest work to ours was described by Hasan et al. [21, 22], and focused on se-
curity problems (integrity and confidentiality) that arise when tracking and storing prove-
nance in a file system (e.g., PASS [27]). While our work utilizes a similar threat model
and integrity checksum approach, we must deal with a significantly more complicated
data model (compound objects) and provenance model (non-linear provenance objects)
in order to apply these techniques in the database setting.

A recent vision paper by Miklau and Suciu [26] considered the problem of data au-
thenticity on the web, and described a pair of operations (signature and citation) for track-
ing the authenticity of derived data. One of the main differences between that work and
ours is the structure of participants’ transformations. The previous work assumed that
transformations were structured in a limited way (specifically, as conjunctive queries),
whereas we consider arbitrary black-box transformations.

The general problem of logging and auditing for databases has become increasingly
important in recent years. Research in this area has focused on developing queryable audit
logs (e.g., [2]) and tamper-evident logging techniques (e.g., [32, 36, 37]). In addition, there
has been considerable recent interest in developing authenticated data structures to verify
the integrity of query results in dictionaries, outsourced databases, and third-party data
publishing (e.g., [15, 16, 24, 28, 31]).
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Finally, the provenance community has begun to think about security issues surround-
ing provenance records and annotations. [6, 38] motivate the need for and complications
of security in provenance systems. Several systems have implemented a provenance sys-
tem to protect the information from unauthorized access: [39] for provenance in a SOA
environment; [23] for annotations. Meanwhile, several groups are interested in securely
releasing information. First, [13] use the history of data ownership to determine if a user
may access information. Second, [12], provide views of provenance information based on
the satisfaction of an access control policy. Finally, [35] describe the particular require-
ments that provenance mandates in access control abilities, and propose an extension to
attribute based access control to satisfy these requirements.

7 Conclusion

In this paper, we initiated a study of tamper-evident database provenance. Our main tech-
nical contribution is a set of simple protocols for proving the correctness and authenticity
of provenance. This is the first paper dealing with the specific provenance and security
issues that arise specifically in databases, including non-linear provenance resulting from
aggregation and provenance expressed for data at multiple levels of granularity. Through
an extensive experimental evaluation, we showed that the additional performance over-
head introduced by these protocols can be small enough to be viable in practice.
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