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Abstract –The widespread deployment of 3G tech-
nologies and the rapid adoption of new smartphone de-
vices like iPhone and Blackberry are making cellular
data networks increasingly popular. In addition to email
and Web browsing, a variety of different network ap-
plications are now available, making smartphones po-
tentially reasonable substitute for their desktop counter-
parts. Unfortunately, the performance of smartphone ap-
plications, from the perspective of the users and applica-
tion developers, is still not well understood.

We believe our study, the first of its kind, fills this
void. We identify and study important factors that impact
user perceived performance. We formalize the method
for comparing the performance of smartphone applica-
tions along several unique dimensions such as carrier
network, device capabilities, application types, and net-
work protocols. To ensure a fair comparison across plat-
forms and networks we develop a detailed measurement
methodology. Our work is an important and necessary
step towards understanding the performance of smart-
phone applications from users and application develop-
ers perspective. Our analysis culminates with a set of
recommendations that can lead to better application de-
sign and infrastructure support for smartphone users.

1 Introduction

As of the third quarter of 2008, global smartphone
shipments reached 40 million units representing 13% of
the total mobile phone market [2]. It is widely accepted
that in the next few years smartphones sales will outpace
the sales of regular phones. Vendors such as Research in
Motion, Samsung, Nokia, HTC, and Apple offer a vari-
ety of smartphones that are equipped with fast CPU and
large memory. These phones support various high-speed
3G networks such as EVDO and UMTS. They are pow-
erful enough to run modern operating systems and so-
phisticated network applications such as Web browsing,
email, and streaming media.

The performance of network applications on smart-
phone depends on several factors including the quality
of the hardware, the software, the wireless link, and net-
work traffic load. Understanding the performance of ap-
plications on smartphones is an important and challeng-
ing problem. This understanding can assist consumers in
selecting the carriers and phones on which their favorite
applications perform well and can guide application de-
velopers to write smarter software. Also, cellular net-
work operators, smartphone hardware and software ven-
dors can use this knowledge to optimize their networks

and phones in a way that lead to better end-user experi-
ences.

Researchers have done extensive work in measuring
and optimizing TCP performance over cellular links.
For example, Liuet al. [7] studied multiple TCP vari-
ants by correlating the link-layer measures,e.g., SINR
(signal-to-noise ratio) and DRC (data rate cover), with
TCP performance. While many applications are built on
TCP, their actual user-level performance does not match
that of TCP alone due to various adaptation strategies
and overheads induced by the applications. Realizing
this problem, Chesterfieldet al. [4] evaluated the per-
formance of streaming media application over a WWAN
(Wireless Wide Area Network). They studied how link-
layer characteristics impact the inter-packet arrival time,
bandwidth, and buffer delay of streaming media. But
their work is limited to a customized streaming applica-
tion namedvorbistreamer. In a separate study, Chakra-
vorty et al. [3] measured the performance of TCP and
Web browsing over WWANs. However, that study is also
different from ours because they focus only on compar-
ing the overall throughput across different link layers.

We focus on developing a systematic set of method-
ologies and tools for measuring and analyzing the per-
formance of smartphone applications in a way that is
directly relevant to end users. As a consequence, (1)
we measure the performance of applications instead of
just low-level protocols. Prior work has shown that ap-
plication performance often significantly deviates from
protocol performance [14]. We target the pervasive web
browsing application that most end-users care about; (2)
We measure the application performance on several dif-
ferent mobile devices that consumers actually use. We
find that due to the differences in hardware and the plat-
form software, application performance varies widely
across different devices. This then leads us to study and
compare the performance of application both on laptops
(as has been done in most prior work) and on smart-
phones; (3) We study the application performance under
real-world scenarios. We quantify the performance of
Web browsing by measuring the performance of access-
ing real Web services instead of just the ones under our
control (once again, this differs from prior work). We do
perform some experiments using our own web site but
those are only for the purpose of dissecting the perfor-
mance implications of the dynamic interactions between
consumers and real Web services.

In addition to shedding light on the overall application
performance, we perform detailed analysis to help car-
riers, hardware vendors, operating system vendors, and



application developers gain insight on the factors that
impact user-perceived performance. For carriers, we in-
fer various network-level problems,e.g., high latency or
high loss rate, which they can directly take action on.
For hardware and software vendors, we identify issues
with the devices or the customized contents. They can
resolve these issues either independently or by cooper-
ating with content providers, and for application devel-
opers we identify issues such as the impact of HTML
parsing and Javascript executions.

We comprehensively study the UDP, TCP, and Web
browsing performance for four major US carriers includ-
ing AT&T, Sprint, Verizon, and T-Mobile. These four
carries operate both 2G and 3G networks. For devices,
we use iPhone from Apple Inc., Windows Mobile phones
from Palm, HTC, and Samsung, and desktop comput-
ers for carrying out our experiments. Our results show
that their performance varies significantly across differ-
ent Web services. In fact, even for the same Web ser-
vice, the desktops and certain types of phone consistently
outperform others due to the difference in downloading
behavior, customized contents, and page rendering tech-
niques. We show that the performance also heavily de-
pends on various factors in carriers’ network including
DNS lookup, RTT (round trip time), and loss rate.

Below, we summarize our main observations obtained
after extensive experimentation. Some of these are con-
sistent with expectations, while some are non-intuitive
and even surprising.

1. The same set of smartphones accessing the same set
of websites exhibits performance differences among
one other. We attribute this observation to several
factors including customization of content based on
device type, web servers transferring web objects
in different compression modes, and differences in
browser concurrency, page rendering delay at the
client, object download speed, DNS lookup delay,
and TCP three-way handshake delay.

2. For the same cellular data network, device (and
operating system) specific differentiation appears
to exist, even after we compensate for end-system
software issues.

3. Network performance differs between laptops that
use the phone as a modem and phones that access
the Internet directly. We attribute these differences
to the differences in hardware capability and soft-
ware features between the two set-ups. Previous
studies have ignored this fact and presented results
for the former case only.

4. All the smartphones can reap significant perfor-
mance benefit from WiFi Ad-Hoc proxy based In-
ternet access, However, this cannot eliminate ap-
plication performance differences due to many non-
networking issues, such as page rendering delay at
the client, browser concurrency, and content cus-
tomization.

In the rest of the paper we elaborate on these observa-

tions, share additional ones and discuss the implication
on application design, network operation, and platform
design.

2 Related Work

We were influenced by the NetDiff system [8], which
established a benchmark for comparing performance of
different Internet Service Providers (ISPs). In our re-
search we attempt to establish an equivalent benchmark
for 3G carriers based on the network application per-
formance observed on the smartphone and laptops. Al-
though some user-based online comparisons are avail-
able [1], we believe that ours is the first comprehensive
study that analyzes and compares the network behavior
of both 2G and 3G networks from the perspective of the
applications executing on end-user devices.

There are several studies that have examined cellular
data networks but their focus was different. Examples
include, a study of the interaction between the wireless
channels and applications [7]; of application-aware ac-
celeration to improve application performance [14], and
of performance of multimedia streaming [4]. Our work
is the first to evaluate 3G cellular network performance
directly using phones as the platform for measurement,
thus it accurately reflects the actual user experience. All
previous studies (e.g., [7, 3]) perform measurements on
the desktop or laptop systems, relying on cellular net-
work data cards or phones connected through a USB as a
modem. We show later in the paper that the performance
measured on laptops versus that measured on phones for
the same network is different. Phones have more severe
resource restrictions, execute potentially different types
of applications, and send and receive different applica-
tion content compared to their laptop and desktop coun-
terparts.

Unlike many previous works, we mostly take a black-
box approach to performance measurement by examin-
ing network behavior at the application, transport, and
network layers without relying on detailed information
of the wireless channels (e.g., [7]) nor the internal state
of cellular data networks (e.g., [13]). This then presents
an interesting challenge of inferring the bottleneck or the
root cause for observed application performance. We ar-
gue that this approach will stand the test of time as it is
better suited for periodic analysis of evolving networks.
The limitation it has, of reduced visibility into the inner
working of the network, does not prevent us from achiev-
ing the goal of effectively comparing network perfor-
mance across different cellular data network providers.

Our work builds on numerous previous TCP studies
for cellular data networks which aim to understand the
behavior of TCP using cross-layer measurement tech-
niques [9], modeling of multi-rate and multi-user behav-
ior [6], and potential transport improvements for wireless
wide-area networks [12]. These studies expose the lim-
itations of existing designs and our work confirms some
of these problems as measured from the perspective of
end-users.



Finally, previous work has also proposed optimiza-
tions at multiple layers to improve the performance of
streaming media [4], Web browsing [3, 11], and a few
other mobile wireless applications [14]. Wherever ap-
plicable, we analyze and discuss how effective these op-
timizations are to the extent that they are visible in our
experiments.

3 Experimental Methodology
In this section, we present our methodologies for mea-

suring network and application performance over 3G
wireless networks. To help end-users make informed
choices regarding which carrier to use, we measure the
overall performance of popular web applications. The
overall application performance may depend on many
factors across layers,e.g., RTT, loss rate, DNS lookup,
browser concurrency, content organization, and client
execution. To help carriers and application developers
identify performance bottlenecks and make targeted im-
provements, we further perform detailed analysis on the
measurement results.

3.1 Measuring network performance
Measuring the throughput of TCP and UDP over 3G

links can provide valuable insights to the network oper-
ators about the channel capacity available to users. Ap-
plication developers also care about these two measures
because many applications,e.g., video streaming and file
transfer, are built on top of TCP or UDP.

To measure UDP throughput, we use constant bit rate
(CBR) flows because CBR is not impacted by network
condition variations. In the ideal case when the send-
ing rate matches the channel capacity, the available band-
width will be fully utilized. In our experiments, we vary
the sending rate incrementally and use the maximum
throughput measured at the receiver to estimate channel
capacity.

To measure TCP throughput, we use a long-lived TCP
flow. The measured TCP throughput may be lower than
the available channel capacity because of TCP conges-
tion control. The actual TCP throughput also depends on
TCP implementations,e.g., how congestion window is
adjusted over time or how packets are retransmited dur-
ing loss events. Besides throughput, we extract the loss
rate and RTT for each TCP flow. These two metrics help
to explain why throughput is high or low. We can infer
RTT and loss rate from packet traces.

3.2 Measuring web application perfor-
mance

One of the most widely-used applications among
smartphone users are web based applications. There are
numerous traditional web portals as well as web-based
services,e.g., search, email, and map. Almost every type
of smartphones includes web browsing allowing us to
compare performance across different phones.

When a user visits a webpage, the browser first per-
forms a DNS lookup to obtain the IP address of the web
server. It then establishes a TCP connection with the
server before it starts to download the main webpage.

The main page may embed many web objects, includ-
ing CSS, Javascripts, and images, which sometimes are
hosted by servers in multiple domains. In that case, the
browser has to perform more DNS lookups, establish
multiple connections to different servers, and download
objects in parallel. This process continues recursively
until all the objects are downloaded. Clearly, the page
load time depends on factors such as DNS lookup, TCP
handshake, TCP transfer, and client execution.

The contents of many webpages are quite dynamic.
The structure and embeded objects in a page may evolve
over time, reflecting the addition of new contents or
changes in page design. Even within a very short period,
e.g., a few seconds, there could be minor changes when
a page is loaded multiple times. This is often due to cer-
tain dynamic web objects that are generated on-demand,
such as advertisements. Some pages even provide cus-
tomized contents based on the types of phones in order
to optimize user experience. Such content variations can
be problematic for comparing performance across differ-
ent phones and across different times.

In our experiments, we measure the performance of
loading a webpage multiple times to alleviate the im-
pact of random noise. We make sure the measurements
of the same page are completed in a short time period,
e.g., a few minutes. Furthermore, all the phones load
the same page around the same time. These two steps
help to reduce the chance of being affected by significant
content variations in a page. After the measurements are
completed, we further verify that the downloaded con-
tents of each page are similar across different phones
and across different runs. In case a page provides cus-
tomized contents for a particular type of phone, we force
that phone to download both the customized and the reg-
ular contents in order to evaluate the impact of content
customization on performance.

To perform detailed analysis of web application per-
formance, we extract the following information from the
packet trace of a page download:
Page load time is the time between the first DNS
packet and the last FIN packet from the server during a
page download. It reflects the overall performance per-
ceived by a user. Note that browser needs to further parse
and render a webpage after it is downloaded. The pars-
ing and rendering time may not be included in page load
time. In § 7, we introduce a method to measure the pars-
ing time of an HTML page.
Page size is the total number of unique downloaded
bytes. It can be used to computeaverage throughput and
to detect content variations and customizations.
Connection completion ratio denotes the percentage
of complete TCP connections. A TCP connection starts
with an SYN and ends with a FIN, a RST, or a timeout.
We consider a connection to be complete if it ends with a
FIN. We discard a page download sample if its complete
connection ratio is low (< 95%).
Loss rate & RTT are extracted from the trace for
each TCP connection. We aggregate the loss rate (de-
noted asp) and the RTT of individual connections to



produce an overall measure of network performance of a
page download. Given that TCP throughput can be mod-
eled as MSS

RT T×√
p whereMSS is the maximum segment

size [10], the download time of a connection of sizeS
can be estimated as

S×RTT×√
p

MSS . Since the download time
of a connection is proportional toS, RT T , and

√
p, we

use ∑(Si×RTTi)
∑Si

and(∑ (Si×
√

pi)

∑Si
)2 as the average RTT and

loss rate of a page download.
Browser concurrency Most browsers support con-
current TCP connections within the same domain to im-
prove download efficiency. The maximum number of
concurrent TCP connections within a domain varies by
browsers. Because each connection has its own start and
end time, we compute the average concurrency of a page
load as the total duration of all the connections divided
by the page load time. When the network is not the bot-
tleneck, higher concurrency usually means better utiliza-
tion of bandwidth which in turn leads to shorter down-
load time.
DNS lookup time A page load may involve many
DNS lookups of different domains. We compute the total
DNS lookup time to quantify the overall impact of DNS
lookup on performance. Since DNS lookup requests are
handled by local DNS (LDNS) servers, we also compute
the average DNS lookup time as a measure of LDNS
server performance.
TCP handshake time Each TCP connection starts
with a three-way handshake during which no data is
transferred. We compute the total handshake time as a
measure of overhead induced by handshake.
TCP idle time & transfer time Given a TCP con-
nection, anidle period is defined as a period of at least
1 second during which no data is transferred and no re-
transmission is detected. The remaining periods in the
connection are thetransfer periods. An idle period usu-
ally corresponds to the processing time on the phone be-
tween the instance when a response is received and the
instance when the next request is issued. The process-
ing time is particularly pronounced on the phone due to
its limited CPU power and memory. We choose 1 sec-
ond threshold because it is almost always bigger than the
measured RTTs (Figure 5). When TCP has data to send
and is not in retransmission, there should be data trans-
mission in every RTT.

There are a few other factors that may affect web ap-
plication performance,e.g., object compression. In § 7,
we will conduct controlled experiments to study the ef-
fects of compression on page load time.

4 Experimental Setup
Table 1 lists the devices and carriers used in this work.

We study the four major carriers in the US, including
AT&T, Sprint, Verizon, and T-Mobile. Among them,
T-Mobile only provides 2G EDGE service in our loca-
tions. The other three 3G carriers are split between HS-
DPA/UMTS (AT&T) and EVDO (Sprint and Verizon).
AT&T has the highest advertised downlink and uplink
data rates, up to 1.7 and 1.2 Mbps respectively. The

Carrier AT&T Sprint Verizon T-Mobile
Network UMTS EVDO EVDO EDGE
D(Mbps) 0.7-1.7 0.6-1.4 0.6-1.4 n/a
U(Mbps) 0.5-1.2 0.35-0.5 0.5-0.8 n/a
Vendor Apple Palm Samsung HTC
Device iPhone Treo800w SCHi760 TyTNII
Mem 128MB 128MB 64MB 128MB
ARM 1176 1136 920T 1136EJS
MHz 620 333 400 400
OS OS 2.1 WM 6.1 WM 6.1 WM 6.1
Browser Safari IE IE IE

Table 1. Carriers and devices

§ Experiment Description #
5.1 UDP performance

Transport layer 125.2 TCP performance
6.1 Video streaming

App overall 66.2 Web browsing

7

DNS lookup

App breakdown 7
TCP handshake

Object download
Javascript execution

HTML parsing

7
Browser concurrency

Controlled scenario 5Object compression
WiFi proxy

Table 2. Summary of experiments

advertised data rates of Verizon and Sprint are some-
what lower. We cannot find any official advertised data
rate from T-Mobile. The actual data rates that a user
can attain depend on many other factors, such as signal
strength, location, and background traffic. One of our
goals is to understand the extent to which the actual data
rates match the advertised ones and how such mis-match
impacts the relative performance of applications such as
web browsing.

To measure user-perceived performance on devices,
we conduct our experiments on four popular smart-
phones listed in Table 1. The three Windows Mobile
phones and iPhone are different in terms of CPU, mem-
ory, OS, and browser. The hardware and software dif-
ferences between the phones are among the most dom-
inant factors that contribute to the application perfor-
mance differences. In the case of web browsing, the CPU
speed and OS scheduling algorithm determine how fast
Javascripts or HTML objects are executed. Browser con-
currency influences how efficiently the available wireless
channel capacity is utilized. Different phones may also
receive customized contents that directly affect both ex-
ecution time and data transfer time.

Beside the four phones, we also use 2 desktops in
three different ways in our experiments: i) a client that
uses phone as a modem; ii) a server that resides on the
Internet; and iii) a proxy that provides high-speed Inter-
net connection to a phone via WiFi. The desktops have
Intel Core2 Duo 2.26GHz processor and 2GB memory.
They run Windows Vista and IE 7 browser.
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Fig. 1. UDP results across platforms and carriers .

Table 2 summarizes the experiments and the corre-
sponding sections in this paper. We measure both net-
work performance and application performance in or-
der to understand the correlation between them,e.g.,
whether a phone with higher TCP throughput will also
have smaller page load time. Because application per-
formance does not always correlate well with network
performance, we conduct controlled experiments to iden-
tify other significant factors, such as DNS performance,
TCP handshake performance, and page rendering per-
formance. Moreover, we study the impact of browser
concurrency and the tradeoff between network and CPU
overheads of object compression. Finally, we perform
a case study on to what extent using a WiFi proxy can
help to improve user experience compared to using 3G
network.

We implement a suite of tools to measure the perfor-
mance of TCP, UDP, DNS, and object download on four
phones. They are written in Java on iPhone and C++ in
Windows Mobile. To capture packet traces for detailed
analysis, we usetcpdump on iPhone andNetlog on Win-
dows Mobile. The format of Netlog traces is the same as
that of tcpdump.

Because a 3G link can be quite unstable, we repeat
each experiment multiple times to discount the impact
of random noise (column 4 in Table 2). We report both
mean and standard deviation for results that have signif-
icant variations. We repeat some of these experiments
at different times of day and different locations to ver-
ify the consistency of our observations. To avoid poten-
tial interferences by mobility and power management, all
the phones are kept stationary in the same location with
plugged-in power during the experiments.

5 Network Performance
To understand the different characteristics of network

applications, we first focus on controlled network experi-
ments to test the throughput of TCP and UDP based data
streams. We infer the bottleneck resources by conduct-
ing Iperf-like one-way data transfer for exposing sustain-
able network throughput between the phones and a well-
provisioned host in the wired network. Each through-
put test lasts for 5 minutes. We measure UDP through-
put with packet size of 1300 bytes. We correlate RTT
and loss rate to explain the observed throughput of TCP
data streams. And we also compare across devices and

networks to identify and explain observed differences in
performance.

5.1 UDP performance
Unlike TCP, UDP does not guarantee reliable and in-

order delivery, and is more commonly used for multime-
dia streaming,e.g., YouTube. We evaluate the maximum
throughput sustained for UDP streams for downlink net-
work behavior. Since the desktop machine communicat-
ing with the phone for performing the experiment is con-
nected to 100Mbit Ethernet wired network, we expect
the bottleneck link in terms of latency and bandwidth to
reside inside the 3G networks. Figure 1 shows the down-
link throughput behavior collected mostly during night
hours at our location.
Cross phone, cross carrier: We compare across the five
phone platforms with corresponding carriers. The down-
link throughput values shown in Figure 1 range from
about 150kbps for HTC/T-Mobile to about 1100kbps for
HTC/AT&T. T-Mobile’s network offers only 2G service
at our location; however, the corresponding number for
Samsung/Verizon phone is only 200kbps, one fifth of the
rate of HTC/AT&T. These maximum UDP throughput
are the saturated UDP throughput values observed by in-
creasing the sending rate. The loss rate observed is ex-
pected to be very high,e.g., close to 50% for iPhone/ATT
with high variability, though the exact values shown may
vary greatly depending on the saturation point chosen.
Thus, we do not compare them at a fine-grained level.

The clear difference across carriers is also reflected
by comparing iPhone/AT&T with HTC/AT&T, where
HTC/AT&T consistently outperforms, in fact for TCP
and UDP traffic. We do not expect AT&T to intention-
ally differentiate traffic based on the actual phones, we
expect the differences be caused by factors directly re-
lated to the phones,e.g., software such as the network
stack or hardware such as the radio.
Phone vs. computer: Previous studies have performed
measurements using desktop or laptop systems con-
nected to the cellular data networks either via data cards
or through the phones acting as a modem. We compare
the UDP throughput behavior measured on the computer
with that on the phones. Given that the phones are much
more restricted by limited resources, we expect the desk-
top to perform better. This is mostly confirmed by all
plots in Figure 1, demonstrating that in some cases, such
as Sprint, the computer based performance improved by
almost 50% – 662kpbs vs. 442kbps. This confirms our
earlier conjecture that performance observed on comput-
ers do not truly reflect that experienced by phone users,
thus validating the motivation for our study.

5.2 TCP performance
Most applications use TCP as their transport protocol;

thus, TCP behavior is critical to the overall performance
of network applications. Previous work has proposed
various TCP variants optimized for wireless networks.
Our study focuses on the behavior of the TCP stack cur-
rently running on Windows Mobile phones and iPhone
platforms without detailed knowledge of the actual TCP
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Fig. 2. TCP downlink throughput results across two time periods.

implementations. Our data are collected during two time
periods: day time (Time 1) and night time (Time 2) to
illustrate the variability across times. We examine the
downlink TCP throughput characteristics by correlating
with RTT and loss rate, as stable TCP throughput can be
modeled roughly inversely proportional to the RTT value
and to the square root of the packet loss rate value [10].

Figure 2 illustrates the TCP downlink throughput
across two time periods for different phone and car-
rier combinations, as well as for computer based setups.
There exist obvious differences in average TCP through-
put across the carriers with HTC/T-Mobile clearly lag-
ging behind due to no 3G network access at our lo-
cation. The overall TCP throughput values for phones
range from about 150 kbps to 1.1 Mbps, which is lower
than measured downlink rates for broadband DSL or ca-
ble networks [5]. The throughput values for Time 2 are
generally slightly larger compared to those for Time 1,
which is expected due to fewer users expected during
Time 2, i.e., the night time. Interestingly, despite its 3G
network, Verizon’s downlink performance is not much
better compared to the T-Mobile’s 2G network.

RTT correlation: Large RTT values usually indicate
long queuing delays and also result from large buffer
sizes. The RTT values observed shown in Figures 2(a)
and (b) range from 200 ms to close to 750ms, which are
significantly larger compared to typical RTT values on
the Internet. Comparing with ping-based probes gener-
ating RTT values ranging from 140 to 340 ms depending
on the platform, the additional delays are most likely due
to queuing inside router buffers. The general trend of
larger RTTs matching smaller throughput does hold well

in the data we collected.
Loss rate correlation: Figures 2(c) and (d) show that the
observed loss rate is much lower than that of UDP flows
across all the phones and computer-phone setups with
values of at most 15% for HTC/ATT setup. Based on pre-
vious studies [7], we conjecture that the low loss rate is a
result of aggressive link-layer retransmission and adap-
tive intelligent coding schemes deployed at the link layer
designed to achieve a target error rate, which also uses
smart scheduling of channels to avoid collision. TCP
adapts to loss experienced as opposed to UDP, further
preventing loss at the network layer due to buffer over-
flows. Also note that the TCP throughput ranking across
phones remain relatively the same compared to that for
UDP throughput values.
Phone vs. computer: Just as expected and also match-
ing the observations for UDP measurements, the aver-
age TCP throughput measured on the phone platform is
generally slightly lower than the corresponding measure-
ments on the desktop platform. In some cases, the differ-
ences are not too obvious,e.g., Verizon and T-Mobile,
due to different resources available on each platform.
For Sprint and AT&T, the desktop platform has higher
throughput for Time 2.

6 Application Performance
Given the previous discussions on understanding the

UDP and TCP throughput behavior, we examine the per-
formance of two common applications on smartphones,
namely Web browsing and video streaming. It is impor-
tant to note that many factors jointly determine user per-
ceived performance, as applications may not fully utilize
available network resources and may be limited by pro-



Experiments Metrics Rank
UDP uplink

Throughput
HTC/ATT>Sprint>iPhone>VZW>T-Mobile, C≥phoneTCP uplink

UDP downlink
HTC/ATT>iPhone>Sprint>VZW>T-Mobile, C≥phoneTCP downlink

YouTube Load time Sprint>iPhone>VZW>HTC/ATT>C/ATT>C/Sprint
Throughput C/Sprint>C/ATT>iPhone>VZW>Sprint>HTC/ATT

Real web browsing

Page load time iProxy>C/Sprint≥Sprint≥iPhone>VZW>HTC/ATT>T-Mobile
Throughput iProxy>C/Sprint≈iPhone>Sprint>VZW>T-Mobile>HTC/ATT
DNS iProxy>Sprint>C/Sprint≥T-Mobile≈VZW≥iPhone
TCP handshake iProxy>Sprint>C/Sprint≥VZW>iPhone>HTC/ATT>T-Mobile
TCP idle time HTC/ATT>iPhone≥iProxy≥C/Sprint>VZW≥Sprint>T-Mobile
TCP transfer iProxy>C/Sprint>VZW>Sprint>iPhone≈HTC/ATT>T-Mobile
RTT iProxy>Sprint>C/Sprint>VZW>iPhone>HTC/ATT>T-Mobile

Controlled experiments

Page load time iProxy>C/Sprint>Sprint≥iPhone≈VZW>T-Mobile>HTC/ATT
Throughput iProxy>C/Sprint>iPhone>Sprint>VZW≥T-Mobile>HTC/ATT
DNS iProxy≥Sprint≥C/Sprint>VZW>iPhone≥T-Mobile
TCP transfer iProxy>C/Sprint>HTC/ATT≥Sprint≥iPhone≥VZW≥T-Mobile
TCP handshake iProxy>C/Sprint>Sprint>VZW≥HTC/ATT≥T-Mobile≥iPhone
Object download iProxy>C/Sprint>iPhone>VZW>Sprint>HTC/ATT>T-Mobile
Javascript execution C/IE7>iPhone/safari=iProxy/Safari>GPhone>Samsung>Palm>HTC
HTML parsing C/IE7>iProxy/safari>iPhone/Safari>GPhone>Palm>Samsung>HTC

Table 3. Performance rank order table (iProxy: iPhone-WiFi-Proxy setup, C: computer)

Computer/Sprint
Computer/ATT

HTC/ATT
Samsung/VZW

Palm/Sprint
iPhone/ATT

 0  100  200  300  400  500  600  700  800

 0  50  100  150  200  250  300  350

Load time(secs)

Throughput(kbps)

Load time(sec)
Throughput(kbps)

Computer/Sprint

Computer/ATT

HTC/ATT

Samsung/VZW

Palm/Sprint

iPhone/ATT

 0  2  4  6  8  10  12  14

Average video payload (MB)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.02  0.04  0.06  0.08  0.1

Inter-packet arrival time (secs)

iPhone/ATT
Palm/Sprint

Samsung/VZW
HTC/ATT

Computer/ATT
Computer/Sprint

(a) Load time vs. throughput. (b) Total payload differences. (c) Packet interarrival time distribution.

Fig. 3. YouTube video streaming performance across platforms for a 4:57min video clip.

cessing or memory related bottlenecks [14]. Table 3 dis-
plays the performance rank order based on the average
value among the platforms studied for different settings
to be explained in the remaining paper. “≈” means that
the average value differs in less than 5%. “>=” indicates
that the rank order is not consistent if the distribution of
all experiments are considered besides the average.
6.1 Video streaming

We focus on video streaming hosted by YouTube
given its popularity. We found that Windows Mobile
consistently uses UDP regardless of the phone platform.
TCP is used for other platforms including desktop. Fig-
ure 3 illustrates the performance of watching a 4:57min
video clip, measured using average load and through-
put (along with standard deviation), repeated five times
for each platform. The load time is computed from the
client’s SYN packet till the server’s FIN packet. As
shown, computers clearly outperform phones in through-
put but have slightly longer load time due to much
larger payload to be downloaded given larger display
and higher resolution. Throughput difference may stem
from superior processing capabilities on the desktop ma-
chines. Figure 3(c) shows HTC/AT&T has surprisingly
much larger packet interarrival times explaining its worse
throughput. Note that the result for T-mobile is not in-
cluded, as phones using the 2G network are unable to

iPh/ATT Pm/Spr Sam/VZW HTC/TM HTC/ATT
12 6 5 5 6

C/ATT C/Spr C/VZW C/TM
4 6 6 6

Table 4. Max observed concurrency (C: Computer).

mapquest hotmail.com live.com cnn.com
maps.yahoo facebook.com google.com ebay.com
maps.google weather.com amazon.com espn.com
mail.yahoo myspace.com yahoo.com msn.com
microsoft youtube.com gmail.com nba.com*

wikipedia* blogger.com imdb.com* go.com*
Table 5. 24 URLs used in web browsing experiments

consistently complete the video clip download.

6.2 Web browsing
Web browsing is likely the most popular application

on smartphones, and its performance is determined by
many factors such as network, browser software (e.g., the
degree of parallelism), content customization, DNS over-
head, CPU resources,etc. We attempt to dissect these
factors to understand the performance differences across
platforms. We briefly describe our experimental setup.

For our study we select 24 URLs from a diverse set of
popular content with a variety of content types as shown
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Fig. 4. Overall performance of Web browsing across platforms.
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Fig. 5. Breakdown of Web transaction performance: (a)-(d), RTT and Web page payload distribution.

in Table 5, only four of them indicated by ’*’ do not have
customized content for mobile phones. Each is visited 6
times. To facilitate repeated experiments, for Windows
Mobile platform, a C++ program is written to invoke IE
to visit each URL in turn. We overcome the challenge
of the inability to call the Safari browser from iPhone
directly by creating a Web page with Javascript that pe-
riodically redirects the browser to each URL in turn after
120 seconds.

Figure 4 shows the overall Web browsing perfor-
mance across the representative platforms studied, omit-
ting some for ease of exposition. To enable fair com-
parison, we exclude browsing sessions with many in-
complete TCP connections, due to reasons such as net-
work or server errors, insufficient wait time, and contin-
uously running Web connection caused by dynamic con-
tent. Figure 4(a) shows the distribution per URL TCP
connection completion ratio. We use a threshold of 90%
to include about 98% of our data samples.

Note that we also show a setup callediPhone-WiFi-
proxy (iProxy), in which iPhone connects to a laptop us-
ing wireless Ad-Hoc network and the laptop has wired
Internet access. iPhone can use the laptop as a proxy to
gain Internet access. We compare this setting with the
other platforms using 3G networks, and notice signifi-
cant performance differences.

The page load time distribution shown in Figure 4(b)

is quite telling in demonstrating the difference across
platforms and the fact that network throughput alone,i.e.,
measured via TCP downlink Iperf experiments, is not
sufficient for predicting application performance. The
rank order for Web performance in terms of download
time is shown in Table 3. The iPhone-WiFi-Proxy setup
is clearly superior for both measures of page load times
as well as throughput. HTC/T-mobile has the longest
page load time likely due to limited bandwidth in a
2G network compared to 3G networks for other setups.
HTC/AT&T again anomalously performs poorly, much
worse than iPhone/AT&T. The remaining platforms have
similar performance, with iPhone/AT&T slightly ahead
of others in average throughput.

It is surprising that although the HTC/AT&T setup has
previously shown to have higher TCP downlink through-
put than most other platforms (Figure 2), its overall page
load time and average throughput lag behind platforms
such as iPhone/AT&T and Samsung/Verizon. Upon fur-
ther inspection we found that HTC/AT&T always con-
tacts a proxy server IP before any URL visits. In our
experiments, the IP contacted is66.209.11.32 with the
DNS name ofvdispwap2.mycingular.net. Such a
setup helps improve caching and reduce DNS lookup de-
lay, but also enables ISPs to instrument potential traffic
differentiation. We also note that the computer based se-
tups are not consistently better in page download times



for the phone counterparts, likely due to special content
customization for the phones.

The average throughput distribution depicted in Fig-
ure 4(c) confirms our expectation that iPhone WiFi and
computer based setups have higher throughput due to
wired network connections. Interestingly iPhone/AT&T
appears to have much higher throughput than other se-
tups, despite comparable TCP downlink throughput per-
formance. Our subsequent analysis in decomposing the
Web transaction provides further insight for this.
6.2.1 Web transaction breakdown

As previously discussed, performance of Web trans-
actions depends on several factors. To understand the ac-
tual bottleneck, we decompose the overall delay in fetch-
ing a Web page into the following key components: DNS
lookup for resolving domain name in URLs to IP ad-
dresses, TCP 3-way handshake for establishing the TCP
connection, idle time due to server or client process-
ing, and the actual TCP payload transfer time. These
are measured by analyzing network traces collected on
the phones or computers. Figure 5 depicts the distribu-
tion across platforms for these components. Note that
for each of the component below, the values are accu-
mulated across all TCP connections associated visiting a
particular URL, then averaged across six visits, clearing
the cache after each visit.
DNS lookup: DNS lookup delay is computed by ob-
serving packets destined to port 53 with all setups using
UDP, except for HTC/AT&T with no such traffic found
due to the use of a proxy. There is little concurrent
DNS request observed, so we sum up all the DNS re-
quest delays for each URL visit. It is interesting to note
that iPhone/AT&T actually has the longest DNS lookup
times, while iPhone-WiFi-proxy setup and Palm/Sprint
appear to have the best performance in DNS. Despite
contacting the same DNS server, Computer/Sprint setup
has worse DNS delays compared to Palm/Sprint are
mainly due to many more lookups for richer content as
evidenced by much larger payload in Figure 5(f).
TCP handshake: shows TCP handshake distribu-
tion on a per flow basis, matching the rank order shown
in Figure 5(e), as TCP handshake is mainly determined
by RTT. HTC/AT&T setup has significantly worse av-
erage RTT and longer TCP handshake than other plat-
forms, which we suspect is caused by the proxy rather
than the 3G network, as explained by better performance
of iPhone/AT&T. Again, computer/Sprint does not out-
perform Palm/Sprint which has slightly larger RTT and
TCP handshake values for the top 50 percentile. Again,
this is a result of many more TCP connections estab-
lished.
TCP idle time: Per TCP flow idle times shown in
Figure 5(c) are usually spent parsing the HTML content,
executing Javascript, or performing other client process-
ing before another request can be issued. Chosen empir-
ically, one second threshold is used for excluding RTT-
induced gaps. Similarly, server may be busy process-
ing before replying with data. HTC/T-mobile is found
to have the longest idle time explaining its longest page
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Fig. 7. Page load time difference at two locations.

load time and smallest average throughput as shown in
Figures 4(b)(c). The idle time ranking does not directly
correlate with the page load time, partly due to effect of
throughput and also as a result of large subsecond packet
interarrival time gaps (e.g., for HTC/AT&T).
TCP transfer: Per flow TCP transfer time distribution
correlates reasonably well with the throughput behavior,
as iPhone-WiFi-Proxy setup has shortest transfer time,
while HTC/T-mobile is the worst.

It is important to note that fair comparison across plat-
forms by visiting actual Web sites is impossible due to
platform-specific content customization as indicated by
large differences in the payload size (Figure 4(f)), and
the actual IPs contacted for each URL visit. Moreover,
differences in browser configuration may also impact the
performance. For example, the maximum number of
concurrent TCP connections allowed for each IP or do-
main may differ, as observed in Table 4, where iPhone
is shown to have a much larger limit, accounting for its
superior Web browsing performance.
6.2.2 Location dependence

For this study, all the experiments unless mentioned
otherwise are carried out at a single location; however,
it is known that location has an impact on data cellu-
lar network performance due resource and usage differ-
ences. Here we show the influence of location over the
performance of transport layer and application layer in
Figure 6 and 7 using TCP downlink throughput and Web
page load time.

Figure 6 reflects the location on difference in TCP
downlink throughput. A big performance gap exists be-
tween two places: In Loc2, the TCP downlink through-
put is consistently better than that in Loc1. Sam-
sung/VZW’s downlink throughput is roughly 5x bet-
ter, and Palm/Sprint and iPhone/ATT perform roughly
2x better. Although Loc2 performs much better than
Loc1 in transport layer, in application layer Loc2 is only



slightly better indicating that application layer perfor-
mance depends on not only transport layer capacity but
also other factors.
Result summary: We have demonstrated the diverse
application performance behavior for video streaming
and Web browsing that do not directly correlate with the
TCP/UDP throughput. Due to the complexity of Web
browsing, it is difficult to fairly compare by visiting ac-
tual Web sites. Thus, we investigate the use of controlled
experiments to dissect Web browsing performance.

7 Controlled Web Experiments
Given the difficulty caused by client-based content

customization for narrowing down the bottleneck (e.g.,
CPU for Javascript processing vs. network bottleneck
for content download), visiting commercial Web sites
alone is insufficient. We design a set of controlled exper-
iments to ensure the same content downloaded for each
URL visit and the same browser setting by creating a lo-
cal Web server using Apache that replicates or mirrors
the actual Web content of the sites studied previously.
We collect altogether 1758 Web objects (including types
such as images, applications, and text) associated with
128 distinct domain names and 258 server IPs. We noted
previously that each browser has its own default setting
for maximum number of allowed concurrent connections
shown in Table 4. To ensure fair comparison we config-
ure the maximum TCP concurrency on the client side to
12 which is the upper bound that observed in the trace.

Besides the server load behavior, our setup can fairly
accurately represent the actual user experience, despite
slightly different network paths traversed. The reason
is that we expect the bottleneck to reside in the 3G/2G
network or on the devices which are mostly unchanged
in the controlled experiments. We discuss next how
each key contributing factor for Web performance pre-
viously examined can be effectively analyzed and more-
over fairly compared across platforms, in addition to
fine-grained Javascript execution and Web content pars-
ing analysis.
DNS lookup: For each phone setup, a small pro-
gram is run to perform lookups for all 128 unique domain
names. The distribution of per DNS lookup completion
time is shown in Figure 8(a), which actually disagrees
in the rank order shown in Figure 5(a), explained by the
observation that a different set of names are resolved for
each platform. Understanding DNS delays provides in-
sight into the usefulness of DNS caching.
TCP handshake: Similar to DNS experiments, each
platform establishes a TCP connection with each of the
258 server IPs from the trace in sequence to obtain the
TCP handshake time distribution shown in Figure 8(b)
where some curves crossing each other, indicating an in-
consistent rank order. Compared to Figure 5(b), the rank
order also differs and surprisingly iPhone’s performance
appears to be slightly worse for some TCP connections
likely due to worse network performance.
Web object downloading: Popular Web sites of-
ten contain many embedded web objects in the main
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Fig. 9. Controlled experiments for JS execution.

page, including images, Javascripts, CSS files,etc. Al-
though Web object download and execution can hap-
pen concurrently, it is still important to measure web
object download time separately which could be a bot-
tleneck during web browsing. We measured the down-
load time of all 1758 observed Web objects by send-
ing the same HTTP GET requests found in the trace.
Figure 8(c) shows the distribution, where iPhone-WiFi-
Proxy setup again is much superior due to higher network
bandwidth. T-Mobile has longest download time as it is
using a 2G network. Confirming previous observations,
HTC/AT&T again shows much worse performance com-
pared to iPhone/AT&T setup. This confirms our previous
conjecture that device-based traffic differentiation exists
in some 3G networks.
Performance: We measure page load time and
throughput to compare the performance of Web brows-
ing across platforms as shown in Figures 8(d)(e) respec-
tively. We did not plot the idle time distribution, as we
found very few gaps lasting longer than 1 sec, likely due
to shorter round-trip delay, lighter server load, and gen-
erally faster networks in the wired part of the testbed in-
frastructure compared to experiments visiting commer-
cial Web sites. Consistent with previous observations,
HTC/AT&T again is an outlier in experiencing worst
performance, outperformed even by T-Mobile’s 2G net-
work. Computer/Sprint setup immediately trails behind
the iPhone-WiFi-Proxy setup with the best performance,
proving the importance of high processing capabilities.
The average throughput for iPhone/AT&T is among the
third best, demonstrating sufficient network resources
within the AT&T 3G networks.
Concurrent TCP connections: Previously, we found
iPhone has somewhat an unfair advantage, as we found
it is configured with a much higher limit for maximum
number of allowed concurrent TCP connections for each
server IP or domain. We also explore how increasing
maximum TCP concurrency, conveniently configured at
our server side due to a lack of control for iPhone, has
an impact on the average HTML parsing time. This met-
ric is measured as the elapsed between the start of the
first byte from the server until the end of the last HTTP
request which is embedded at the end of the Web page
using a Javascript. Overlapping with parsing, this time
also includes download time which is improved with in-
creasing concurrency as shown in Figure 8(f).
Javascript execution time: Due to limited resources,
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Fig. 8. Controlled experiments for Web transaction breakdown.
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Fig. 10. Controlled experiments for HTML parsing.
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it takes browsers on smartphones more time to parse and
render Web objects compared to browsers executing on
desktop computers. We design a set of controlled ex-
periments to understand HTML parsing overhead and
Javascript execution time.

For Javascript analysis, we extract all embedded
Javascript objects from real network traces of visiting
the 24 Web sites. By replaying to Web servers the
same HTTP GET requests in the trace, we can download
all Javascript objects on a desktop computer. Two sets
Javascripts are obtained: one corresponding to iPhone’s
web browsing, the other for Windows Mobile phones.
To ensure fair comparison, we exclude platform-specific
Javascripts which first infer the browser type and then
branch accordingly. Though it is hard to precisely iden-
tify such Javascripts, we apply heuristics by searching
key words such asActiveXObject, indicative of being IE-
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specific. 40 scripts are collected after filtering based on
a list of key words.

To measure Javascript execution time, we first create
an HTML page which includes all selected scripts. Two
HTTP HEAD requests are used to mark the start and end
of the execution of all scripts. This is to bypass a bug
in the implementation of Date objects for IE browsers
on some phones preventing us directly invoking getMil-
liseconds(). HEAD requests are used for correlating the
start and end time of the execution in the packet traces.
A small drawback of this method is that the time in the
packet trace of the HTTP HEAD request packet always
appears later than the timestamp of xmlhttp.send(null),
which is used to initiate HTTP HEAD request due to
scheduling. However, this time gap of less than 100 ms is
negligible relative to the aggregate Javascript execution
time and HTML parsing time on the order of seconds.

To ascertain to what extent browsers on smartphones
are slower than the desktop counterparts, we repeat these
experiments using Internet Explorer 7.0 on a desktop ma-
chine running Windows Vista. The result is shown in
Figure 9 which demonstrates the clear advantage of com-
puter based platform over smartphones, among which
iPhone performs the best.
HTML parsing time: To assess the HTML parsing
overhead, we modify the mirrored Web pages on our lo-
cal Web server to contain a simple line of Javascript to
initiate an HTTP request at two locations: one right af-



ter<body> and the other is right before</html>. From
the packet traces, we can identify the time difference be-
tween these two HTTP requests. This is is a good esti-
mate for the HTML parsing time, as most of the HTML
parsing time is spent on parsing its<body> element and
the delay of sending out HTTP request packet caused by
scheduling is insignificant.

In this set of experiments, all phones and computer
use WiFi connection so that network conditions are
the same across all platforms. For all browsers, the
maximum TCP connections per domain is set to 20,
large enough to not affect the experiment. Figure 10
shows the HTML parsing performance for two sets of
URLs: iPhone URLs containing content downloaded us-
ing iPhone and WM URLs including content obtained on
Windows Mobile browsers. iPhone-based setups have
performance quite close to that of computer, GPhone
coming second, followed by HTC, Palm, and Samsung
which have similar performance.

Compression: Aside from content customization,
another factor that is difficult to control in real brows-
ing experiments is whether the content is compressed.
Such setting is configured at the server. Compression
reduces the data size, but incurs additional processing
at the device due to the need for decompression. We
investigate the benefit of compression across platforms
by configuring our servers with two modes: always
sending compressed content vs. sending only uncom-
pressed content. Figures 11 and 12 illustrate the page
load time and throughput respectively across setups for
both compressed and uncompressed content. We ob-
serve that for the same AT&T network, HTC consis-
tently performs much worse than iPhone or any other
platform, but not due to compression overhead. The per-
formance improvement due to compression is negligible,
i.e., iPhone’s page load time is improved by only 1 sec-
ond on average.

Result summary: We have demonstrated the bene-
fit of using controlled experiments to dissect and fairly
compare the contributing factors for Web browsing per-
formance across platforms. Our analysis has shown
iPhone’s clear advantage in Javascript execution and
HTML parsing speed, and higher average throughput.
Desktop platforms also exhibit much higher performance
in execution and render of Web content. We can con-
clude that network is still likely the main bottleneck for
pages we have characterized. For example, Javascript ex-
ecution time for 40 scripts is at the same order of as the
transfer time for only one Web object.

In particular, we note the benefit of using locally avail-
able network infrastructure by connecting smartphones
to a desktop with wired connectivity through an Ad-Hoc
WiFi network using the desktop as a proxy to access net-
work services. We explored the setup for iPhone (iProxy)
and have shown its superior performance over other se-
tups due to higher bandwidth and smaller RTT values
while accessing the same content as 3G network.

8 Conclusion

In this paper we characterized the performance of net-
work applications on smartphones in a way that is rel-
evant to end-users, cellular operators, and smartphone
vendors. Our goal was to provide users with data and
analysis that equips them to make an informed decision
about which carrier is good for their specific needs. We
conducted detailed analysis of application performance
along several dimensions that are of interest to cellular
network operator and hardware and software vendors.
This analysis provides guidance on how they can im-
prove their networks and devices. Most importantly, we
presented a systematic black-box methodology for mea-
suring performance of cellular data networks from the
perspective of end-users and application developers. We
believe our results are an important step towards under-
standing of cellular networks and smartphones.

9 References
[1] Broadband DSLReports.com.http://www.dslreports.com/

archive.

[2] Apple Takes 2nd in Smartphone Market Share, But Q4 Looking
Good for RIM. http://www.intomobile.com/2008/11/09/apple-
takes-2nd-in-smartphone-market-share-but-q4-looking-good-
for-rim.html, November 2008.

[3] R. Chakravorty, S. Banerjee, P. Rodriguez, J. Chesterfield, and
I. Pratt. Performance Optimizations for Wireless Wide-Area Net-
works: Comparative Study and Experimental Evaluation. InPro-
ceedings of ACM MOBICOM, 2004.

[4] J. Chesterfield, R. Chakravorty, J. Crowcroft, P. Rodriguez, and
S. Banerjee. ”Experiences with multimedia streaming over 2.5G
and 3G networks”.Journal ACM/MONET, 2004.

[5] M. Dischinger, A. Haeberlen, K. P. Gummadi, and S. Saroiu.
Characterizing Residential Broadband Networks. InIMC ’07,
2007.

[6] M. Ghaderi, A. Sridharan, H. Zang, D. Towsley, and R. Cruz.
Modeling tcp in a multi-rate multi-user cdma system. InIFIP-
Networking 2007, 2007.

[7] X. Liu, A. Sridharan, S. Machiraju, M. Seshadri, and H. Zang.
Experiences in a 3g network: Interplay between the wireless
channel and applications. InProceedings of ACM MOBICOM,
September 2008.

[8] R. Mahajan, M. Zhang, L. Poole, and V. Pai. Uncovering Perfor-
mance Differences in Backbone ISPs with Netdiff. InProceeding
of NSDI, 2008.

[9] K. Mattar, A. Sridharan, H. Zang, I. Matta, and A. Bestavros. Tcp
over cdma2000 networks : A cross-layer measurement study. In
PAM, 2007.

[10] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling TCP
Throughput: A Simple Model and its Empirical Validation. In
Proc. ACM SIGCOMM, 1998.

[11] P. Rodriguez, S. Rangarajan, and S. Mukherjee. SessionLevel
Techniques for Improving Web Browsing Performance over
Wireless Links. InProceedings of World Wide Web, 2004.

[12] W. Wei, C. Zhang, H. Zang, J. Kurose, and D. Towsley. Inference
and evaluation of split-connection approaches in cellulardata net-
works. InPAM, 2006.

[13] D. Willkomm, S. Machiraju, J. Bolot, and A. Wolisz. Primary
users in cellular networks: A large-scale measurement study. In
DySpAN, 2008.



[14] Z. Zhuang, T.-Y. Chang, R. Sivakumar, and A. Velayutham. A3:
Application-Aware Acceleration for Wireless Data Networks. In
Proc. of ACM MOBICOM, 2006.


