Maestro: Orchestrating Lifetime Reliability in Chip
Multiprocessors

Shuguang Feng Shantanu Gupta

Amin Ansari Scott Mahlke

Advanced Computer Architecture Laboratory
University of Michigan
Ann Arbor, Ml 48109

{shoe, shangupt, ansary, mahlke}@umich.edu

ABSTRACT

As CMOS feature sizes venture deep into the nanometer regime

wearout mechanisms including negative-bias temperatistalil-
ity and time-dependent dielectric breakdown can severdyce
processor operating lifetimes and performance. This paggsents
an introspective reliability management system, Maestrtackle
reliability challenges in future chip multiprocessors (E8) head-
on. Unlike traditional approaches, Maestro relies on level sen-
sors to monitor the CMP as it ages (introspection). Leveigagi
this real-time assessment of CMP health, runtime heusistien-
tify wearout-centric job assignments (management). Bylaixp
ing the complementary effects of the natural heterogerditg to
process variation and wearout) that exists in CMPs and trer-di
sity found in system workloads, Maestro composes job sdhedu
that intelligently control the aging process. Monte Carkpei-
ments show that Maestro significantly enhances lifetimaldity
through intelligent wear-leveling, increasing the expécservice

life of a population of 16-core CMPs by as much as 38% compared

to a naive, round-robin scheduler. Furthermore, in the gmes

of process variation, Maestro’s wearout-centric schedutiutper-
formed both performance counter and temperature sensed bas
schedulers, achieving an order of magnitude more improxeme
lifetime throughput — the amount of useful work done by aeyst
prior to failure.

1. INTRODUCTION

In recent years, computer architects have accepted thehfaict
transistors become less reliable with each new technolegerg
ation [4]. As technology scaling leads to higher device ¢sun
power densities and operating temperatures will contiouése at
an alarming pace. With an exponential dependence on tetopera
faults due to failure mechanisms like negative-bias tematpee in-
stability (NBTI) and time-dependent dielectric breakdof¥®DB)
will result in ever-shrinking device lifetimes. Furtherrepas pro-
cess variation (random + systematic) and wearout gain nroreip
nence in future technology nodes, fundamental design gstsums
will become increasingly less accurate. For example, tlaeach
teristics of a core on one part of a chip multiprocessor (CMRY,
due to manufacturing defects, only loosely resemblidantically
designed core on a different part of the CMP [26, 23]. Even the
behavior of the same core can be expected to change overgime a
result of age-dependent degradation [18, 25].

In light of this uncertain landscape, researchers haverbegu
vestigating dynamic thermal and reliability managemerftNCand
DRM). Such techniques hope to sustain current performamee i
provement trends deep into the nanometer regime, whiletaiain
ing the levels of reliability and life-expectancy that cangers have

come to expect, by hiding a processor’s inherent suscéptitn
failures and hotspots. Some recent proposals rely on a cambi
tion of thread scheduling and dynamic voltage and frequsney
ing (DVFS) to recover performance lost to process variaf$)
26]. Others implement intelligent thermal managementcpesi
that can extend processor lifetimes and alleviate hotdpptsin-
imizing and bounding the overall thermal stress experigrimea
core [16, 17, 9, 7]. There have also been efforts to desighistp
cated circuits that tolerate faults and adaptive pipelmigsflexible
timing constraints [10, 24]. Although many DTM schemes\aatii
manipulate job-to-core assignments to avoid thermal eemeigs,
most existing DRM approaches onlgact to faults, tolerating them
as they develop.

In contrast, Maestro takes a proactive approach to reitiabilo
the first order, Maestro performs fine-grained, moduletexgar-
leveling for many-core CMPs. Although analogous to wesaeliag
in flash devices, the challenge of achieving successful4esating
transparently in CMPs is considerably more difficult. Lefcbecked,
wearout causes all structures within a core to age and ealgntu
fail. However, due to process variation, not all cores (arctres)
will be created equal. Every core will invariably possessisani-
croarchitectural structures that are more “damaged” (reoseep-
tible to wearout) than others [24, 23]. Performing posti@ms on
failed cores (in simulations) often reveals that a singlera@rchi-
tectural module, which varies from core to core, breaks dimmng
before the rest. Maestro extends the life of these “wealkittires,
their corresponding cores, and ultimately the CMP by enguirii-
form aging with scheduling-driven wear-leveling acroddelels
of the hierarchy.

Maestro dynamically formulates wearout-centric schesjwidnere

jobs are assigned to cores such that cores do not execute work

loads that apply excessive stress to their weakest moditesa
floating-point intensive thread is not bound to a core withemky
ened floating-point adder). This accomplishesal wear-leveling
at the core level, avoiding failures induced by a single wstakc-
ture. When two cores both have a strong affinity for the sarbg jo
a heuristic, which enforceglobal wear-leveling at the CMP level
determines which core is given priority. Typically, unleéksre is
a substantial negative impact on local wear-leveling, mefee is
given to the weaker of the two cores. This ensures that, ween n
essary, stronger cores are allowed to execute less desjodds in
order to postpone failures in weaker cores (details in 8e&i2).
By leveraging the natural, module-level diversity in apation
thermal footprints (Section 2.1), Maestro has finer-grdioentrol
over the aging process than a standard core-level DVFS agipro
without any of the attendant hardware/design overhead&enGhe
complex nature of wearout degradation, Maestro depans fhe

conventional reliance on static analysis to project oédisched-
ules. Instead, the condition of the underlying CMP hardware
continuously monitored, allowing Maestro to dynamicaléfime
and adapt scheduling algorithms as the system ages. Astthiés
like those envisioned in [22], with low-level circuit semspcan
readily supply this real-time “health” monitoring.

Maestro offers two key benefits for future CMP systems. First
the fine-grained, local wear-leveling prevents unnecgssae fail-
ures, maximizing the life ofndividual cores. Longer lasting cores
translates to more work that can be done over the life of theesy.
Second, itimproves the ability of the system to sustain yeark-
loads despite the effects of aging. Enforcing global weseling
maximizes thenumber of functional cores (throughout its useful
life), which in turn maximizes the computational horsepoenail-
able to meet peak demands. With higher degrees of proceiss var
ation on the horizon, premature core failures will make éréas-
ingly more difficult to design and qualify future CMPs. Hoveey
by harnessing the potential of Maestro, proactive managewmid
enable semiconductor manufacturers to provide chips witdr
lifetimes as well as ensure that system performance taagetson-
sistently met throughout that lifetime. The central cdnitions of
this paper include:

e An evaluation of workload variability and its impact on reli
ability/wearout.

e Anintrospective system, Maestro, that utilizes low-leseh-
sor feedback and
application-driven wear-leveling to proactively manaife-1
time reliability.

e The design and evaluation of two reliability-centric joihedul-
ing algorithms.

2. SCHEDULING FOR DAMAGED CORES
AND DYNAMIC WORKLOADS

Scheduling, in the context of this paper, refers to the mece
of assigning jobs to cores in a CMP, and is conceptually decou
pled from the operating system (OS) scheduler. The schexdule
proposed by microarchitects in the past typically residea Virtu-
alization layer (i.e., system firmware) that sits between®$ and
the underlying hardware. At each scheduling interval, tiesOp-
plies a set of jobs/, to this virtualization layer, and it is the task of
the low-level scheduler to bind the jobs to cores. Prior wdrive
investigated techniques that leverage intelligent jokedating to
manage on-core temperatures or cope with process variatmm-
ever, none have studied the impact that wearout-centriedsdimg
alone can have on the evolution of aging within a core.

Embracing process variation and workload diversity, Maest
can enhance lifetime reliability without the extensivedvaare sup-
port for adaptive body biasing (ABB) and adaptive supplytagé
(ASV) required by other approaches [25]. The remainder i5f th
paper targets TDDB and NBTI, which are expected to be the two
leading causes of wearout-related failures in future telduies,
but can be easily extended to address any progressivesfailech-
anisms that may emerge. Since both TDDB and NBTI are highly
dependent on temperature, it is important to understandhtre
mal footprints of typical applications in order to appréeithe po-
tential for reliability-centric scheduling. Section 2 2agnines the
module-level thermal diversity seen across a set of SPEC2p0
plications and Section 2.2 presents preliminary resulgtifying
the impact of this variation on processor lifetimes.

100%

H Min OMax B Median

40%

ayoea|
ayoeaq
pasdg
a1a
PPVdi
oydd
INNIdA
dendd
deppug
Dy
Sayau)
29x33u|
Ddd
ISPl
all

Figure 1: Variation of module temperatures across SPEC2000
workloads. All temperatures are normalized t0T:,,q., the peak
temperature seen across all benchmarks and modules (83).

2.1 Workload Variation

Figure 1 shows the range of temperatures experienced tey-diff
ent structures within an Alpha21364-like processor [1pasra set
of 8 SPECINT bzp2, gcc, gzip, mcf, perlbmk, twolf, vortex, vpr)
and 9 SPECFP benchmarlar{mp, applu, apsi, art, equake, gal-
gel, lucas, sixtrack, swim, wupwise). All temperatures are normal-
ized to the peak temperaturéy,..., seen across all modules and
benchmarks, which corresponds to the temperature offtfeld
module when runningucas (83°C). Notice the significant variation
in temperature within nearly every module. Apart from thereno
than 40% variation seen FPAdd (a 37 C swing), other structures
(whose utilizations are not as strongly correlated withetkecution
of floating-point and integer benchmarks) also exhibit sigant
temperature shifts, 10-15% f@pr ed andl nt Reg. These large
temperature ranges suggest that scheduling alone can bedplo
tool for manipulating aging rates.

Figure 2 selects a few representative applications and iexam
them in greater detail. Figures 2(a) and 2(b) highlight hboetra-
ditional view of “hot” and “cold” applications is perhapsa@im-
plistic. Without accounting for the module-level variation tem-
peratures, one could incorrectly assume #pgiu is more taxing,
from a reliability perspective, thavpr or wupwise simply because
it exhibits a higher peak operating temperatd#eNul). However,
this would neglect the fact that for many structures, like Reg,
temperatures foapplu are actually much lower than the other two
applications. For completeness, Figure 2(c) is includedhow
that variations in module temperatures exist even betwpplica-
tions with comparable peak temperatures. All things carsd,
deciding where on the CMP to schedule a particular apptinati
to achieve the least reliability impact, requires addiilonforma-
tion about the strength of individual structures within rgveore.
Although the magnitude of the temperature differences nmaty n
seem impressive at first, with peak deltas in module temperst
around 10-20% in Figure 2(a), these modest variations ipésai
ture can have dramatic impacts on a processor's mean tinad-to f
ure (MTTF).

2.2 Implications for Mean Time to Failure

From Figure 2, one could expect a core consistently runafrg
plu to fail because of a fault in thePMul unit due to its high oper-
ating temperatures. However, in the presence of procesatioar
other structures within the core could have been manufedtwith
more defects (or tighter timing margins), and thereforasnavere
susceptible to failure despite not ever realizing the saead pem-
peratures afPMul . In this environment, a reliability-centric job
scheduler must take into consideration the extent of dampeegent
within a core in addition to the per-module thermal footpdfrun-
ning applications. Figure 3 presents the expected lifetfreecore
runningapplu or vpr as a function of the module identified as the

80% 80%

80%
H applu @ vpr W applu @ wupwise W vpr O wupwise
70% 1 70% 70%
3 3 3
E60% | I Lot E60% - Eeo%
B X X
50% HLH 50% - 50%
a0y, - WCL L LT L LR LR R 00, L L LR L L R R R R 409, (ML
§1f§f333323222338;3 1§¥33333232;23%§+3 $§g§33333:23:223;°
E- S gR 23 &3 B E- 2% S & 3 B 338 &Ry & 3 B
(a) SPECFP v. SPECINT (b) SPECFP v. SPECFP (c) Variation despite comparable peak tem-
peratures

Figure 2: Head-to-head comparisons of applu (SPECFP), vprSPECINT), and wupwise (SPECFP). No one benchmark in (a), (b)
or (c) strictly dominates the other (with respect to temperaure) across all modules.

= applu B yor 3.1 Health Monitoring
Eoon Tracking the evolution of wearout damage within a CMP (i.e.,
Ew% health monitoring) is essential to forming intelligentiaility-

centric schedules. Maestro assumes that the underlying SMP
provisioned with circuit-level sensors like those desegxiilin [22].
Recognizing that the two mechanisms addressed in this WBTK]
and TDDB, both impact physical device parameters as thelyevo
has led researchers to actively develop circuit-level@exthat can
track these changes. NBTI is known to shift threshold vat@g)
leading to slower devices and increased subthresholdisydaak-
age current Lz44), While TDDB increases gate currentg,{ and
1,4). Both result in statistically measurable degradatioriririrtg
paths at the microarchitectural-level [3, 6].

A runtime system collects raw data streams from the array of

R 20m

0%

ayoes|
ayseaqg
paidg
41a
PPVd4
Saydd
INNdA
dendid
deyul
o311
Sayau
29X33U|
0did
0IsP1
all

Figure 3: Projected core lifetime based on execution ofpplu
and vpr as a function of the module identified as the weakest
structure. Values are normalized to the best achievable MTF.

weakest structure. The lifetimes are projected based drkwelvn
MTTF equations for NBTI and TDDB [15, 21]. The values are nor- Circuit-level sensors and applies statistical filtering &rend anal-
malized to the best achievable MTTF, which in this compariso ~ Ysis (similar to what is described in [3]) to convert theseams
attained ifFPMap is the weakest module in the core and the core into descriptions of system characteristics includindaglerofiles,

is runningvpr. The optimal job to schedule on a particular core to leakage currents, and operating temperatures. Thesednalv
maximize its lifetime is dependent not just on the applimatinix channels of information are then processed to generate preem
within that core. Schedulingpplu on a core with a weaknt Reg This is shown in Figure 4 as a vector of per-module damage val-
can nearly triple its operating lifetime compared to naivfercing ues (relative to the maximum damage sustainable prior hor&i

|t to run Vpr_ S|m||ar|y, schedu"ng/pr instead Ofapp|u on a core |ntI’OdUCing the additional analySiS Step a||0WS the heﬂddﬂnitor-

with a weakFPAdd improves its projected lifetime by more than iNg System to account for things like the presence of redunda
4x. devices within a structure, the influence of shifting emviren-

To further highlight the need to address process and watkloa t@l conditions on sensor readings, and the interaction datvdif-
variation, a quick examination of the processors simulitesiec- ferent wearout mechanisms. UItlmgter, this allows thg—level
tion 4.1 reveals that 35% of core failures are the result ihga ~ Sensor feedback to be abstracted with each vector repirgee
structures that never experience peak on-chip tempesatifer- effective damage profile for a particular core.

thermore, 22% of core failures are caused by modules thabtlo n . . .
rank among the top three most thermally active. By accogritin 3.2 Maestro Virtualization Layer

the impact of process variation and module-level thermaatian The second portion of the Maestro framework resides in ayste
of applications, Maestro can prevent premature core &8lend firmware that serves as the interface between the OS and the un
reap the opportunity left on the table by previous scheduler derlying hardware. The OS provides the virtualization tayéth

a set of jobs that need to run on the CMP and other meta-data
(optional) that can guide Maestro in refining its schedulugi-
3. MAESTRO cies (Section 3.2.3). Online profiling of system workloaderiti-
Figure 4 presents a block diagram of Maestro, which consists fies application-specific thermal footprints, shown in Fegd as a
of two main components: 1) a health monitoring system (intro vector of per-module temperatures for each applicatioris ter-

spection) and 2) a virtualization layer that implements nvet mal footprint can either be generated by brief exploratowce-
centric job scheduling (management). Although this papegets tion of jobs on the available cores, similar to what is dong28i,
reliability-centric scheduling, a broader vision of irgpective re- or projected by correlating thermal behavior with programages

liability management could use online sensor feedback tdegu (leveraging the existing body of work on runtime phase naing
a range of solutions from traditional DVFS to more radical ap and prediction). Given the prevalence of on-chip tempeeasen-
proaches like system-level reconfiguration [14]. sors [13], Maestro assumes low-overhead exploration fepeed

(os)

T T
Scheduled Jobs Reliability Target
|

\
! |
! |
! |
| (\ 1
: _____ Stress Profile :
| ALL: 1) (moaue | 1¢0) 4
| S| ~—=—-—]
H = g my (ALU) 85 |
| | | | 2 ° m, (FPU) 95 \
: L]
Wearout-centric Job Schedule SN ! S |
[l = :
- ~ Health Monitoring NS _FIFO Queue /7
\\ S e e e e e e e e e - -
o M~
ol |||l | TN emmmmmmmmmmmmmeeee el
© 0 o N
8 > = 3
HREERE)\ |
o1 é o—-| & Damage Profile :
= @ - DamageProfle
ARHE N woawe | %) |
3 :1 o E’ mo (ALU) 85 :
=T £ _§ o m, (FPU) 95 H
& Sl & 3 1
= < !
w ’
____________________ id
& J —_—

Figure 4: A high-level block diagram of the Maestro introspective reliability management system. Dynamic monitoring é sensor
feedback and detailed characterization of workload behawr enables Maestro to improve lifetime system reliability wth wearout-

centric scheduling.

during each scheduling interval. Coupled with the realktimealth
assessments, this detailed module-level applicationackeniza-
tion enables Maestro to create wearout-centric job scleedtiat
intelligently manage CMP aging.

As previously defined, scheduling in this paper will refethe
act of mapping threads to cores and is initiated by two magmesy

1) the OS issues new jobs for Maestro to execute (pushes into a

FIFO queue) or 2) the damage profile of the underlying CMP has
changed sulfficiently (taking on the order of days/weeks)daant
thread migration. The two reliability-centric schedulipglicies
evaluated in this work illustrate two approaches to lifetinelia-
bility. The greedy policy (Section 3.2.2) takes the positibat
all core failures are unacceptable and aggressively pres@&ven
the weakest cores. The adaptive policy (Section 3.2.3) plam
ons a more unconventional philosophy that claims individoae
failures are tolerable provided the lifetime reliability the CMP
system is maximized.

Both wearout-centric policies, and the naive baseline cudlee,
are presented below along with corresponding pseudocadess)
otherwise indicated, the following definitions are commonati
policies: m, a microarchitectural module (i.e=PMul , | nt Reg,
etc.); LiveCores, the set of functional cores in the CMP,
{co,c1,...,cn}; JobQueue, the set ofall pending, uncompleted
jobs issued from the OSActiveJobs, the set of theV oldest, un-
completed, jobs, {o, j1, ..., jn}; Dmg(m), the entry in the CMP
damage profile for module:; Temp(j, m), the entry for module
m in the temperature footprint for joh

3.2.1 Naive Scheduler

A standard round-robin scheduler is used as the baseline pol

icy. The least-recently-used (LRU) core in the setlébeCores

is assigned the oldest job from the setAdtiveJobs. This pro-
cess is repeated until all jobs iActiveJobs have been sched-
uled. This policy maintains high-level load balancing bgtdbut-

ing jobs uniformly across the cores. However, without actiog

for core damage profiles or application thermal footpritits, re-
sulting schedule is effectively a random mapping (from ebglity
perspective).

Algorithm 1: Greedy wearout-centric scheduler
Step 1:

foreach ¢ € LiveCores do

find c4y,g4 , the damage present in care where
Cimg +— Dmg(m') | m' € ¢ A Dmg(m’) >
Dmg(m),¥Ym € ¢

end
sort LiveCores based ot g, g

end
Step 2:
until ActiveJobs is empty
¢y +— weakest core iiveCores based Ot gy,
My «— m' | m’ € ¢,y A Dmg(m’) > Dmg(m), Ym €
Cw
foreach j € ActiveJobs do
find cost; ., , the cost of executing jop on corecy, ,
where
costj c,, «— Temp(j,my)

end

Jopt «<— J' | j' € ActiveJobs A costjs .
Vj € ActiveJobs

Assign jobjop: to corecy,

Removec,, from LiveCores andjopt from ActiveJobs

w < costj ey

end
end

3.2.2 Greedy Scheduler

This policy attempts to minimize the number of prematurescor
failures by greedily favoring the weakest cores (AlgorithmCores
are sorted based upon their damage profiles and priorityéndo
the cores whose weakest modules possess the most damagg (Ste
of Algorithm 1). These “weak” cores are greedily assignédukjo
with the most favorable thermal footprints with respect heit
damage profiles (Step 2 of Algorithm 1), minimizing theiresff
tive thermal stress. Thiwcal wear-leveling reduces the probabil-
ity that these weak cores will fail due tosangle damaged struc-
ture. Scheduling the weak cores first maximizes the proipabil
finding jobs with favorable thermal footprints with respeztach
weak core since there is a larger application mix to choome fr
However, this also forces the stronger cores to executesthain-
ing, potentially less desirable, jobs. In practice, thisamethat

Algorithm 2: Adaptive wearout-centric scheduler

let GA(J, C) be the optimal schedule generated by the GA for jobs
J and cores”
Step 1:
foreach c € LiveCores do
find cqrmg , the damage present in cargwhere
Cdmg “— ani a;Dmg(m;) ande; is a scaling factor
biased toward modules with more damage

end

sort LiveCores in increasing order of 3,,,

PrimaryCores «—— first n coreswhere n is set by the user
through the OS

SecondaryCores «— remainingN — n cores

end

Step 2:

let Sprimary. be the set of job-to-core assignmerttsc), Ve €
PrimaryCores

Sprimary «— GA(ActiveJobs, PrimaryCores)

Assign jobs forPrimaryCores according taSy,imary
Remove assigned jobs fromictive Jobs

end

Step 3:

let Ssecondary: b€ the set of job-to-core assignments, c),
Ve € SecondaryCores

Ssecondary —— GA(ActiveJobs, SecondaryCores)
Assign jobs forSecondaryCores according t0Ssccondary

end

the stronger cores in the CMP actually sacrifice a portiorheirt
lifetime to lighten the burden on their weaker counterpégtsbal
wear-leveling).

3.2.3 Adaptive Scheduler

The adaptive scheduler recognizes that many CMP systems are

often underutilized, provisioned with more cores than thgy-
cally have jobs to run (see Section 4.3). The scheduler #gplo
this fact by allowing a few weak cores to be sacrificed in order
to preserve the remaining stronger cores (Algorithm 2)hédigh
being complicit in core failures may seem non-intuitive,siys-
tems that are underutilized, the greedy scheduler can te@iPs
that are overprovisioned early in the CMP’s lifipeCores >>
JobQueue) while not assuring enough available throughput
(LiveCores < JobQueue) later on. This insight forms the basis
of the adaptive policy.

Promoting a survival-of-the-fittest environment, thisippmax-
imizes the functional life of the strongest subset of cores
(PrimaryCores in Step 1 of Algorithm 2), those with the least
amount of initial damage and the potential to have the largfes
times. By assigning jobs to therimaryCores first, Maestro en-
sures that they execute applications with the most apataptiner-
mal footprints (Step 2 of Algorithm 2). The remaining job® ar
assigned amongst thgecondaryCores (Step 3 of Algorithm 2).
This can lead to some weak cores failing sooner than undeealgr
policy. Note, however, in Step 3 of Algorithm 2, the scheduge
still looking amongst the remaining jobs for the one with besst
thermal footprint given a core’s damage profile. Thisal wear-
leveling, common to both the greedy and adaptive policies, ensures
that the weaker cores even under the adaptive policy sulieger
than they would under the naive policy. Ultimately, over lifie-
time of the CMP, ifPrimaryCores > JobQueue consistently,
while avoiding periods whe®rimaryCores >> JobQueue or
PrimaryCores < JobQueue, then Maestro has maximized the
total amount of computation performed by the system. Thegro
size of PrimaryCores, n, is exposed to the OS so that the be-

havior of the scheduler can be customized to the needs ofithe e
user.

Finally, note in Step 2 and Step 3 of Algorithm 2, the schedule
uses an optimization scheme based on a genetic algorithtGA
identify the least-cost schedules for both tAeimaryCores and
SecondaryCores. This allows the adaptive scheduler to consider
the effect scheduling a job has on all structures within a ¢onlike
the greedy scheduler which only looks at the weakest streictar
more effectivelocal wear-leveling. The optimization used in this
work is derived from [8], a standard solution of the geneeddi
assignment problem, and is described betow

Chromosome definition: The chromosome modeled is a job-to-
core mapping of a set of jobs, J = {jo, ji, ..., jn }, t0 & S€t Ofn
coresC = {co,c1,...,cn}. Itis represented as a one-dimensional
array where the value stored at indgy;, is the job that has been
assigned to coré The example in Figure 5 has jops mapped to
core 0,5,—1 mapped to core 1, anfd mapped to coren. During
Step 2of the adaptive scheduling algorithm> m, while for the
optimization performed itstep 3m = n.

Core cp C4 C, C3 Ca Cm-1 Cm

Job

jt b d2 in | i3 ja | Jo

Figure 5: Chromosome structure

Cost function: The cost function used by the GA is recalculated at
each scheduling interval, based on the CMP damage profileand
plication thermal footprints, according to Equation 1, vé€ost(S)

= the cost of schedul& andCost (7, ¢) = the cost of scheduling job

Jj on corec.

s
Cost(S) X:C'ost(j7 c)
J,c

zsj (3 Dmg(m) - Temp(iom)) @)

The individual steps of the GA are enumerated below:

1. Generate initial population: An initial population of solu-
tions (schedules) is created by randomly enumerating a sub-
set of the possible job-to-core mappings.

. Evaluate fitness:Calculate the fitness (cost) of all members
of the population using Equation 1.

. Reproduction: Two parents are identified, each using a sim-
ple binary tournament where two candidates are selected ran
domly from the population and the one with the best fithess
(smallest cost) is chosen for reproduction (Figure 6(a)). A
child is generated by applying a one-point crossover operat
on the parent chromosomes, where a random crossover point
i € [0,m)] is selected, wheren is the size of the chromo-
somes. The child chromosome is formed by combining the
first i genes from one parent with the last— : genes from
the second parent (Figure 6(b)) . Note that this newly formed
chromosome could have the same job assigned to two dif-
ferent cores. For this case to arise there must also be a set of
jobsJ’ C J that are unassigned singe> m. To resolve the

The runtime overhead of the GA is negligible for long-rurgnstientific
and server workloads. However, for shorter-running apfibois the GA
optimization can be replaced by a greedy version withoutredy impact-
ing the effectiveness of the adaptive scheduler.

So | s | i Lo [ine] o | oo [Jine |
Cost(So) < Cost(S1) o s [[[ine [| - T Jim]
S1|j||j7|j5|j3|jn|---|jA|jo|— o
_____ ¥ ~~
Um - R A R =~
Ll L H I 3 5 R
——— —— So s [ir [ie [ine is | - Jie] i |
Cost(S;) > Cost(Ss) —Ssl jo |Jn»1| J2 | Jn | js | | Ja | j7 | P
—————— =
1. 111 1. _
SAEAAnEnnt g I 50 Y —-
(a) Parent selection (b) Crossover operation
/——_‘\\
Solis | i ie [ine|is | - Jictin | selis |ir i Jine] is | oo e []
- _ 7 y Ve
N e
I ={o,jn js. Jo - } >
——— 4 e ~
S' J"o |j7 | J2 |jn-2| ja‘l—:-T—I—jATjs | S"cl Jo |j7 | j |jn-2| ja | | is | is |
(c) Conflict resolution (d) Mutation

Figure 6: Steps involved in reproduction. So, S1, S2, S3 are the parental candidates.S. is the resulting child chromosome after initial
crossover.S, and S are the states of the child chromosome after conflicts resadlion and mutation respectively.

4.

This section evaluates Maestro’s reliability-centric esbhling
policies using lifetime reliability simulations. A varietf system
parameters including CMP size and system utilization anesdo
investigate their impact on Maestro’s performance. Thecgiffe-

ness

time throughput (LT), the number of cycles spent executing active
jobs (real applications not idle threads), summed acrdssoeds,
throughout the entire lifetime of the CMP. LT improvementtrivs
are the result of comparisons with the naive, round-robiredaler
presented in Section 3.2.1. Monte Carlo experiments ardummad
using a simulation setup similar to the framework in [12] e Etan-
dard toolchain of SimAlpha, Wattch [5], and Hotspot [20] sed
to simulate the thermal characteristics of workloads ariligd19]
is used to model the impact of process variation. Resultsepted
in this section, unless otherwise indicated, are for a 1&-&@MP
with processors modeled after the DEC Alpha 21264/21364 [1]
Given that CMPs have lifespans on the order of years (3-Syear
in future computer systems [11]), detailed lifetime relli&p sim-
ulation is a computationally intensive task. This is esaigcitrue

conflicts, one of the redundant cores (selected at random) is when large numbers of Monte Carlo runs must be conductedto ge
reassigned a job froni’ based orCost(j, ¢) (Figure 6(c)). erate statistically significant results. Since wearout algentakes
Lastly, the newly formed child chromosome is mutated by years to reach critical mass, results presented in thisosesere
taking 2 randomly selected job assignments and swapping gathered using aadaptive simulation scheme. Short periods of de-
them (no risk of creating new conflicts), reducing the proba- tailed system-level reliability simulation, the darkeragks in Fig-
bility of converging at local optima (Figure 6(d)) . ure 7(a), are used to gather statistics on the progressi@vit
aging in light of dynamically changing workload streams Muk-

- Replace and Repeat:After a child solution is formed the stro’s reliability-centric scheduling. The simulationtigen rapidly

weakest member, as defined by the cost function, of the ex- advanced through a longer period of time (accelerated sitionl)
isting population is replaced by the new child. This con- using the statistics generated during the most recentetaihase
cludes a single generation in the evolutionary cycle. The as a guide. To minimize error, the length of the accelerdtadla-
process is repeated until a predetermined number of gener-tion phase is limited by the amount of damage accumulateidgiur

ations,gen.q, fails to produce an improved solutiori. the detailed interval according to Equation 2:
D ai
EVALUATION AND ANALYSIS Lo = (%) “AF - Lq 2

where, L, = length of the accelerated phade; = length of
the previous detailed phasBy.,; = amount of damage the weak-
est core in the CMP can sustain before failifig,.. = amount of
damage accumulated by the weakest core during the previsus d
tailed phase, andl ' = parameter that trades off simulation time
for accuracy (0%-100%).

Dynamically adjusting the durations allows simulation tows
down as cores near their failing point, where small changesim-
age and scheduling decisions have larger implications. f\he
core fails in phase, accelerated simulation resumes at a faster rate
(La;,, > La;), but L, soon contracts as the next core in the CMP
nears failure. Figure 7(a) illustrates (not to scale) hoyustthg
AF can influence the lengths of the accelerated phases. The valu
of AF essentially dictates the number of detailed phases that are
simulated between core failures. At & of 100%, simulations
are accelerated from one core failure to the next. Howevieenw
AF is dialed down to 50%, many more phases are required to cover
the same amount of simulated time, concentrating simurlaffmort
around times when cores are failing and improving simutagio-

of each wearout-centric policy is measured in ternigfesf

2Given the size of the solution space, as manylasé possible schedules ~ curacy. Figure 7(b) shows both simulation time speedup ard e
for a 16-core CMP, values afenmq. from 0 to 100,000 were studied to ~ as a function ofAF', illustrating how simulation time can be traded
understand the tradeoff between optimality and runtimee attual values off for fidelity. The experiments presented in this work use4d’

of genmaz used in Section 4 were determined empirically based on the of 6%, resulting in simulation runtimes from 30 minutes t@08

CMP size, with many runs producing good results wit,, ... as low as

1000.

hours for a single set of Monte Carlo runs.

Acceleration Factor = 100%
A
DNy

s
0 i1

AN Acceleration Factor = 50% RN

0 | —

Ay
Simulated Time ,

0

,

0

-
. Detailed Simulation Phase C) Accelerated Simulation Phase l{) Core Failure

(a) Interleaving of detailed and accelerated simulaticasps.

10 - - 16%
#Simulation Time -#-Error

: =1

14%

12%

=)
Q
N7
F / 10%
E s m
g o #% 3
= 5 =
3 0/ 6%
i) ,l/
9

L 4%

2 j/./ 2%

1 0%

0% 20% 40% 60% 80% 100%

Acceleration Factor (AF)

(b) Simulation time/error v. acceleration factor (AF).

Figure 7: The adaptive simulation used to accelerate lifethe
reliability simulations while incurring minimal experime ntal

200%
—-o- 4-Adaptive

-4 16-Adaptive

——2-Greedy
—B-8-Greedy

N\
\\\
e S

-— 2-Adaptive
= 8-Adaptive

—#-4-Greedy
—+—16-Greedy

5
8
8

H
5
3
B

o
3
]

s
8
R

Lifetime Throughput Increase

Q
=

i
0 2 I3 6 8 10 12 14 16

Failure Threshold (# cores)

Figure 8: Performance of wearout-centric scheduling polies
verses CMP size and failure threshold.

4.1 Lifetime Throughput Enhancement

Figure 8 shows the normalized LT improvement as a function
of the scheduling policy, CMP size, and failure threshold.tHe
context of this paper, failure threshold is defined as the berm
of cores that must fail before a chip is considered unusabies
is the point at which the risks/costs associated with maiimg
a system with only a fraction of its original computationapac-
ity justifies replacing the chip. The CMP is considered deazhe
though functional cores still remain. The results showniguFe 8
are conducted for 2 to 16-core systems, and failure thrdshiahg-
ing from 1 core to all cores. The value of the failure thredhsl
passed to the adaptive policy so that it can optimize for ppra
priate number of cores. Results are shown for CMP utilizegtio
of 100%, providing a lower-bound on the benefits of the adapti
policy (Section 4.3 examines the impact of CMP utilization)

As expected, both the greedy and adaptive policies perfoeth w
across all CMP sizes and the majority of failure thresholés.

the size of the CMP grows, Maestro has more cores to work with,

increasing the chances of finding complementary job-te-caap-
pings. This results in more effective schedules for bothraugia
centric policies improving their performance. Yet evenhniihe

+Naive #*Greedy «Adaptive
15%

Lifetime (years)
% | Naive | Greedy [Adaptive
99| 0.350 | 0644 | 1.400
95| 0.859 | 0.894
90| 1.071 | 1270
50| 2.566 | 2.712

1.653
1.840
3.303

10%

Population

5% -

Population

0% -
0 1 2 3 4 5 6 7 8
Failure Time (Years)
(a) Failure distribution (Core)

+Naive *+Greedy +Adaptive

25%
20%
15%

Lifetime (years)
% | Naive [Greedy [Adaptive
1.400] 1.510 | 1.939
1.690
1.914
2.542

1.800
2.000
2.670

2.236
2.372
3.144

10%
5%
0% -

Population

Failure Time (Years)
(b) CMP failure distribution (CMP)

Figure 9: Failure distributions for individual cores and th e 16-
core CMP with a failure threshold of 8 cores and 100% ulti-
lization. Trendlines are added (between markers) to improe
readability.

lack of scheduling alternatives in a 2-core system, botlicies
can still achieve a respectable 30% improvement.

A strong dependence on failure threshold is also evidena@®y
gressively minimizing premature core failures, the gresdyed-
uler achieves large gains for small failure thresholds. eley, as
the failure threshold nears the size of the CMP, the LT imgrov
ment attenuates. This is expected since under the greedy,pol
stronger cores sacrifice a portion of their lifetime in ortepre-
serve their weaker counterparts. The cost of this sacri§iceast
apparent when the failure threshold allows all the coresito n
these systems, the increased contribution toward LT by thakw
cores is offset by the loss in LT resulting from the strongesor
failing earlier. Notice also that the adaptive schedulgperforms
greedy by the largest margins when the failure thresholdughly
half the size of the CMP. In these situations, the adaptitedc
uler has the maximum freedom to sacrifiecondaryCores to
preservePrimaryCores (Section 3.2.3). At either extreme for
failure threshold, it performs similarly to greedy.

Lastly, itis important to note that, although the benefitwerout-
centric scheduling are less impressive for these extretueyaf
failure threshold, the scenarios when a user could actaéfthyd to
wait for all the cores within a system to fail are also quiteoge.
For the remainder of the paper, all the experiments showfoage
16-core CMP with a failure threshold of 8 cores and 100% syste
utilization unless otherwise indicated.

4.2 Failure Distributions

Figure 9 presents the failure distributions for the indixdticores,
as well as the CMPs that correspond to the results in Figure 8.
Figure 9(a) illustrates the effectiveness of the weareumtric poli-
cies at distributing the workload stress appropriately.e Tistri-

B Greedy O Adaptive ’/—"<
30%

20% -

10% -

0% -

Lifetime Throughput Increase

20% 40% 60% 80% 100%
CMP Utilization

Figure 10: Impact of CMP utilization on reliability enhance-
ment.

bution for the baseline naive policy reveals a bias towaattye
premature core failures. The greedy scheduler, explokiifigc-

tive wear-leveling, produced a tighter distribution, lexkin both

premature failures as well as cores that significantly stekhtheir
peers. Lastly, the adaptive policy also delivers on its fsesby
preserving a subset of cores for a longer period of time tlithere
the naive or greedy schedulers.

Figure 9(b) tells a similar story, but with chip-level faiés. As
with the individual core distributions, both wearout-a#npolicies
are able to increase the mean failure time of the CMP pojpmati
Note that because the failure time of a CMP is limited by thakve
est set of its constituent cores, the distributions in Fég(b) are
considerably tighter than those in Figure 9(a). The cooeding
tables of expected lifetimes embedded within the plotserethe
data slightly differently. From a product yield/warrantgrppec-
tive, intelligent wearout-centric scheduling can be thduaf as an
additional means of ensuring that cores meet their expeeted
ability qualified lifetimes. For example, the table in Figus(b)
shows that the adaptive scheduler enabled 99% of the chijg-to
vive beyondl.9 years, compared to judt4 years with the naive
baseline, a 38% improvement. Granted, job assignment alame
not makeguarantees on lifetime, but it can complement existing
more aggressive techniques like thermal throttling.

4.3 Sensitivity to System Utilization

The utilization of computer systems can be highly variabégh
within the same domain (e.qg., variability inside data cesjtand
across domains. One might expect computationally intensi-
entific codes (e.g., physics simulations, oil exploratitn,) to con-
sistently utilize the hardware. On the other hand, sincégdess
build web servers to accommodate peak loads (periodic Isosea
day, and hour), they are often over-provisioned for the comm

30%

20%

N l—\
0% - : : :

B Greedy O Adaptive

Lifetime Throughput Increase

Ideal +/-5% +/-10% +/-15%
Random Sensor Noise
(a)

30%

20%

N <IT
0% - T T T |

B Greedy O Adaptive

Lifetime Throughput Increase

Ideal +/-5% +/-10% +/-15%
Systematic Sensor Error
(b)

Figure 11: Sensitivity to sensor noise. Although random sesor
noise can be removed with the appropriate filtering, systeniic
error due to manufacturing tolerances is more problematic.

than at full utilization. In these highly over-provisionsgistems,

the efforts of wearout-centric scheduling to prevent preemesfail-

ures argartially wasted because so few cores are actually neces-
sary to sustain demand. Nevertheless, in the long run, thedie
spikes in utilization do accumulate, and thanks to the loogerall

core lifetimes (lower utilization means less overall srémt trans-
lates to longer lifetimes), the greedy and adaptive scleesltill
manage to exhibit improvements.

4.4 Sensitivity to Sensor Noise

Figure 11 illustrates how error-prone sensors could im{ifsct

time reliability gains. Although the introduction of systatic er-
ror, which is studied in Figure 11(b), does reduce the pakof
wearout-centric scheduling, the presence of random noize(
common for circuit-level sensors) shown in Figure 11(a) lamac-
counted for and mitigated by the statistical filtering arehtt anal-
ysis schemes referenced in Section 3.1. Yet, even at thenestof

case. Some reports claim average utilization as low as 20% of ;1504 systematic error, Maestro still achieves over 10%rhT

peak [2].

Figure 10 plots the performance of Maestro’s wearout-gentr
schedulers as a function of system utilization. The resuéshown
for nominal utilizations ranging from 20% (light duty maérser or
embedded system) to 100% (scientific clusteNote that initially
as average utilization drops, improvement in lifetime tigioput
actually increases. A system that is slightly underutdizan be
more aggressively load balanced since some cores are dllmve
remain idle. However, as utilization continues to drop ¢hgains
are eventually lost, until finally improvements are actpalorse

3AIthough the mean utilization per simulation run is fixede tinstanta-
neous utilization experienced by the CMP is allowed to vargrdime,
sometimes peaking at 100% even for a system nominally at 2@ Fur-
thermore, the averaggfective utilization is also changing as cores on the
CMP begin to fail.

provement. Figure 11(b) also suggests that the adaptivedatdr

is more sensitive to noise than the greedy scheduler. Byeaggr
sively trying to preservePrimaryCores, the adaptive heuristic
relies strongly on sensor feedback to accurately idertidyatound-
ary between its two classes of processors, making it lessstob
against sensor inaccuracy.

4.5 Sensor Selection

Lastly, Figure 12 presents a comparison between the loal-lev

damage sensors advocated in this work and more conventiard:
ware like temperature sensors and performance countergenGi
that Maestro is targeting an environment with significanbants
of process variation, it is not surprising that employingperature
and activity readings as proxies for wearout/manufactuiriduced
damage is inadequate. They are unable to account for thetéate

1000%
#Access Counters

e

I

-+«Damage

) —

-+ Temperature

N
1)
S
X

=
Q
X

-
xR

Lifetime Throughput Increase

|

Q
X

Q
X

40% 60% 80% 100%

Extent of Variation (% expected)

Figure 12: Performance of wearout-centric scheduling withdif-
ferent sensors. Results are shown for a failure threshold of
core to favor the temperature sensor and access counter bake
approaches.

which non-uniform, pre-existing damage within the CMP g5
to the same thermal stimuli. In the absence of variation hedc
uler relying on only temperature might effectively enhalifegime
reliability by evenly distributing the thermal stress asohe CMP.
However, without any knowledge of CMP damage profiles, as pro
cess variation is swept from one extreme (no variation) écother
(100% expected variation at 32nm), thermal load balanciogea
is insufficient and Figure 12 shows a dramatic plunge in tfecef
tiveness of these temperature based schemes. Similalyettior-
mance counter approach performed poorly across the speciru
variation.

5. CONCLUSION

As large CMP systems grow in popularity and technology scal-
ing continues to exacerbate lifetime reliability challeagthe re-
search community must develop innovative ways for systems t
dynamically adapt. Although issues like process variationthe
source of design and validation nightmares, this inhereterb-
geneity in future systems is also a source of potential dppor
nity. Maestro recognizes that although emerging religbdbsta-
cles cannot be ignored, with the appropriate monitoringiatedli-
gent management, they can be overcome. By exploiting loetle
sensor feedback, Maestro was able to demonstrate theieffect
ness of wearout-centric scheduling at preventing preraatore
failures, improving expected CMP lifetimes by as much as 38%
Formulating wearout-centric schedules that achieved lboti and
global wear-leveling, Maestro enhanced the lifetime tgtgaut of
a 16-core CMP by as much as 180%. Future work that leverages
sensor feedback to improve upon other traditional religtihan-
agement mechanisms (e.g., DVFS) could demonstrate stilé mo
potential.

6. REFERENCES

[1] Alpha. 21364 family, 2001.
http://www.alphaprocessors.com/21364.htm.

[2] A. Andrzejak, M. Arlitt, and J. Rolia. Bounding the resce
savings of utility computing models, Dec. 2002. HP
Laboratories, http://www.hpl.hp.com/techreports/2602L-
2002-339.html.

[3] J. Blome, S. Feng, S. Gupta, and S. Mahlke. Self-calibgat
online wearout detection. IAroc. of the 40th Annual
International Symposium on Microarchitecture, pages
109-120, 2007.

[4] S. Borkar. Designing reliable systems from unreliable

components: The challenges of transistor variability and

degradationlEEE Micro, 25(6):10-16, 2005.

D. Brooks, V. Tiwari, and M. Martonosi. A framework for

architectural-level power analysis and optimizationsPiac.

of the 27th Annual International Symposium on Computer

Architecture, pages 83-94, June 2000.

[6] A. Cabe, Z. Qi, S. Wooters, T. Blalock, and M. Stan. Small

embeddable nbti sensors (sens) for tracking on-chip

performance decay. Washington, DC, USA, Mar. 2009. IEEE

Computer Society.

J. Choi, C. Cher, , H. Franke, H. Haman, A. Wedger, and

P. Bose. Thermal-aware task scheduling at the system

software level. IrProc. of the 2007 International Symposium

on Low Power Electronics and Design, pages 213-218, Aug.

2007.

P. C. Chu and J. E. Beasley. A genetic algorithm for the

generalised assignment problem. 24(1):17-23, 1997.

J. Donald and M. Martonosi. Techniques for multicore

thermal management: Classification and new exploration. In

Proc. of the 33rd Annual International Symposium on

Computer Architecture, June 2006.

D. Ernst, S. Das, S. Lee, D. Blaauw, T. Austin, T. Mudge,

N. S. Kim, and K. Flautner. Razor: Circuit-level correction

of timing errors for low-power operation. PProc. of the 37th

Annual International Symposium on Microarchitecture,

pages 10-20, 2004.

[11] C. Evangs-Pughe. Live fast, die young [nanometeresizal
life expectancy]lEE Review, 50(7):34-37, 2004.

[12] S. Feng, S. Gupta, and S. Mahlke. Olay: Combat the sifns o
aging with intropsective reliability management.Rroc. of
the Workshop on Architectural Reliability, June 2008.

[13] J. Friedrich et al. Desing of the power6 microprocesBeb.
2007. InProc. of ISSCC.

[14] S. Gupta, S. Feng, A. Ansari, J. Blome, and S. Mahlke. The

stagenet fabric for constructing resilient multicore syss.

In Proc. of the 41st Annual International Symposium on

Microarchitecture, pages 141-151, 2008.

X. Li, B. Huang, J. Qin, X. Zhang, M. Talmor, Z. Gur, and

J. B. Bernstein. Deep submicron cmos integrated circuit

reliability simulation with spice. IfProc. of the 2005

International Symposium on Quality of Electronic Design,

pages 382-389, Mar. 2005.

Z.Lu, J.Lach, M. R. Stan, and K. Skadron. Improved

thermal management with reliability bankingEE Micro,

25(6):40-49, Nov. 2005.

M. Powell, M. Gomaa, and T. Vijaykumar. Heat-and-run:

Leveraging smt and cmp to manage power density through

the operating system. t2th International Conference on

Architectural Support for Programming Languages and

Operating Systems, pages 260—270, Oct. 2004.

D. Roberts, R. Dreslinski, E. Karl, T. Mudge, D. Sylvest

and D. Blaauw. When homogeneous becomes

heterogeneous: Wearout aware task scheduling for strgamin

applications. IrProc. of the Workshop on Operationg System

Support for Heterogeneous Multicore Architectures, Sept.

2007.

S. Sarangi, B. Greskamp, R. Teodorescu, J. Nakano,

A. Tiwari, and J. Torrellas. Varius: A model of process

variation and resulting timing errors for microarchitedts

IEEE Transactions on Semiconductor Manufacturing, pages

3-13, Feb. 2008.

(5]

(7]

(8]
9]

[10]

[15]

[16]

[17]

(18]

[19]

[20] K. Skadron, M. R. Stan, K. Sankaranarayanan, W. Huang,
S. Velusamy, and D. Tarjan. Temperature-aware
microarchitecture: Modeling and implementatié&q¢M
Transactions on Architecture and Code Optimization,
1(1):94-125, 2004.

[21] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers. Tdsec
for lifetime reliability-aware microprocessors. Rroc. of the
31st Annual International Symposium on Computer
Architecture, pages 276-287, June 2004.

[22] D. Sylvester, D. Blaauw, and E. Karl. Elastic: An adagti
self-healing architecture for unpredictable silictBEE
Journal of Design and Test, 23(6):484—490, 2006.

[23] R. Teodorescu and J. Torrellas. Variation-aware apfibn
scheduling and power management for chip multiprocessors.
In Proc. of the 35th Annual International Symposium on
Computer Architecture, pages 363-374, June 2008.

[24] A. Tiwari, S. Sarangi, and J. Torrellas. Recycle: Fipel
adaptation to tolerate process variationPhac. of the 34th
Annual International Symposium on Computer Architecture,
pages 323-334, June 2007.

[25] A. Tiwari and J. Torrellas. Facelift: Hiding and slowgin
down aging in multicores. IRroc. of the 41st Annual
International Symposium on Microarchitecture, pages
129-140, Dec. 2008.

[26] J. Winter and D. Albonesi. Scheduling algorithms for
unpredictably heterogeneous cmp architectureBrg. of
the 2008 International Conference on Dependable Systems
and Networks, page To appear, June 2008.

