
Maestro: Orchestrating Lifetime Reliability in Chip
Multiprocessors

Shuguang Feng Shantanu Gupta Amin Ansari Scott Mahlke

Advanced Computer Architecture Laboratory
University of Michigan
Ann Arbor, MI 48109

{shoe, shangupt, ansary, mahlke}@umich.edu

ABSTRACT
As CMOS feature sizes venture deep into the nanometer regime,
wearout mechanisms including negative-bias temperature instabil-
ity and time-dependent dielectric breakdown can severely reduce
processor operating lifetimes and performance. This paperpresents
an introspective reliability management system, Maestro,to tackle
reliability challenges in future chip multiprocessors (CMPs) head-
on. Unlike traditional approaches, Maestro relies on low-level sen-
sors to monitor the CMP as it ages (introspection). Leveraging
this real-time assessment of CMP health, runtime heuristics iden-
tify wearout-centric job assignments (management). By exploit-
ing the complementary effects of the natural heterogeneity(due to
process variation and wearout) that exists in CMPs and the diver-
sity found in system workloads, Maestro composes job schedules
that intelligently control the aging process. Monte Carlo experi-
ments show that Maestro significantly enhances lifetime reliability
through intelligent wear-leveling, increasing the expected service
life of a population of 16-core CMPs by as much as 38% compared
to a naive, round-robin scheduler. Furthermore, in the presence
of process variation, Maestro’s wearout-centric scheduling outper-
formed both performance counter and temperature sensor based
schedulers, achieving an order of magnitude more improvement in
lifetime throughput – the amount of useful work done by a system
prior to failure.

1. INTRODUCTION
In recent years, computer architects have accepted the factthat

transistors become less reliable with each new technology gener-
ation [4]. As technology scaling leads to higher device counts,
power densities and operating temperatures will continue to rise at
an alarming pace. With an exponential dependence on temperature,
faults due to failure mechanisms like negative-bias temperature in-
stability (NBTI) and time-dependent dielectric breakdown(TDDB)
will result in ever-shrinking device lifetimes. Furthermore, as pro-
cess variation (random + systematic) and wearout gain more promi-
nence in future technology nodes, fundamental design assumptions
will become increasingly less accurate. For example, the charac-
teristics of a core on one part of a chip multiprocessor (CMP)may,
due to manufacturing defects, only loosely resemble anidentically
designed core on a different part of the CMP [26, 23]. Even the
behavior of the same core can be expected to change over time as a
result of age-dependent degradation [18, 25].

In light of this uncertain landscape, researchers have begun in-
vestigating dynamic thermal and reliability management (DTM and
DRM). Such techniques hope to sustain current performance im-
provement trends deep into the nanometer regime, while maintain-
ing the levels of reliability and life-expectancy that consumers have

come to expect, by hiding a processor’s inherent susceptibility to
failures and hotspots. Some recent proposals rely on a combina-
tion of thread scheduling and dynamic voltage and frequencyscal-
ing (DVFS) to recover performance lost to process variation[23,
26]. Others implement intelligent thermal management policies
that can extend processor lifetimes and alleviate hotspotsby min-
imizing and bounding the overall thermal stress experienced by a
core [16, 17, 9, 7]. There have also been efforts to design sophisti-
cated circuits that tolerate faults and adaptive pipelineswith flexible
timing constraints [10, 24]. Although many DTM schemes actively
manipulate job-to-core assignments to avoid thermal emergencies,
most existing DRM approaches onlyreact to faults, tolerating them
as they develop.

In contrast, Maestro takes a proactive approach to reliability. To
the first order, Maestro performs fine-grained, module-level wear-
leveling for many-core CMPs. Although analogous to wear-leveling
in flash devices, the challenge of achieving successful wear-leveling
transparently in CMPs is considerably more difficult. Left unchecked,
wearout causes all structures within a core to age and eventually
fail. However, due to process variation, not all cores (or structures)
will be created equal. Every core will invariably possess some mi-
croarchitectural structures that are more “damaged” (moresuscep-
tible to wearout) than others [24, 23]. Performing post-mortems on
failed cores (in simulations) often reveals that a single microarchi-
tectural module, which varies from core to core, breaks downlong
before the rest. Maestro extends the life of these “weak” structures,
their corresponding cores, and ultimately the CMP by ensuring uni-
form aging with scheduling-driven wear-leveling across all levels
of the hierarchy.

Maestro dynamically formulates wearout-centric schedules, where
jobs are assigned to cores such that cores do not execute work-
loads that apply excessive stress to their weakest modules (i.e., a
floating-point intensive thread is not bound to a core with a weak-
ened floating-point adder). This accomplisheslocal wear-leveling
at the core level, avoiding failures induced by a single weakstruc-
ture. When two cores both have a strong affinity for the same job,
a heuristic, which enforcesglobal wear-leveling at the CMP level
determines which core is given priority. Typically, unlessthere is
a substantial negative impact on local wear-leveling, deference is
given to the weaker of the two cores. This ensures that, when nec-
essary, stronger cores are allowed to execute less desirable jobs in
order to postpone failures in weaker cores (details in Section 3.2).

By leveraging the natural, module-level diversity in application
thermal footprints (Section 2.1), Maestro has finer-grained control
over the aging process than a standard core-level DVFS approach,
without any of the attendant hardware/design overheads. Given the
complex nature of wearout degradation, Maestro departs from the



conventional reliance on static analysis to project optimized sched-
ules. Instead, the condition of the underlying CMP hardwareis
continuously monitored, allowing Maestro to dynamically refine
and adapt scheduling algorithms as the system ages. Architectures
like those envisioned in [22], with low-level circuit sensors, can
readily supply this real-time “health” monitoring.

Maestro offers two key benefits for future CMP systems. First,
the fine-grained, local wear-leveling prevents unnecessary core fail-
ures, maximizing the life ofindividual cores. Longer lasting cores
translates to more work that can be done over the life of the system.
Second, it improves the ability of the system to sustain heavy work-
loads despite the effects of aging. Enforcing global wear-leveling
maximizes thenumber of functional cores (throughout its useful
life), which in turn maximizes the computational horsepower avail-
able to meet peak demands. With higher degrees of process vari-
ation on the horizon, premature core failures will make it increas-
ingly more difficult to design and qualify future CMPs. However,
by harnessing the potential of Maestro, proactive management will
enable semiconductor manufacturers to provide chips with longer
lifetimes as well as ensure that system performance targetsare con-
sistently met throughout that lifetime. The central contributions of
this paper include:

• An evaluation of workload variability and its impact on reli-
ability/wearout.

• An introspective system, Maestro, that utilizes low-levelsen-
sor feedback and
application-driven wear-leveling to proactively manage life-
time reliability.

• The design and evaluation of two reliability-centric job schedul-
ing algorithms.

2. SCHEDULING FOR DAMAGED CORES
AND DYNAMIC WORKLOADS

Scheduling, in the context of this paper, refers to the process
of assigning jobs to cores in a CMP, and is conceptually decou-
pled from the operating system (OS) scheduler. The schedulers
proposed by microarchitects in the past typically resided in a virtu-
alization layer (i.e., system firmware) that sits between the OS and
the underlying hardware. At each scheduling interval, the OS sup-
plies a set of jobs,J , to this virtualization layer, and it is the task of
the low-level scheduler to bind the jobs to cores. Prior works have
investigated techniques that leverage intelligent job scheduling to
manage on-core temperatures or cope with process variation. How-
ever, none have studied the impact that wearout-centric scheduling
alone can have on the evolution of aging within a core.

Embracing process variation and workload diversity, Maestro
can enhance lifetime reliability without the extensive hardware sup-
port for adaptive body biasing (ABB) and adaptive supply voltage
(ASV) required by other approaches [25]. The remainder of this
paper targets TDDB and NBTI, which are expected to be the two
leading causes of wearout-related failures in future technologies,
but can be easily extended to address any progressive failure mech-
anisms that may emerge. Since both TDDB and NBTI are highly
dependent on temperature, it is important to understand thether-
mal footprints of typical applications in order to appreciate the po-
tential for reliability-centric scheduling. Section 2.1 examines the
module-level thermal diversity seen across a set of SPEC2000 ap-
plications and Section 2.2 presents preliminary results quantifying
the impact of this variation on processor lifetimes.

Figure 1: Variation of module temperatures across SPEC2000
workloads. All temperatures are normalized toTmax, the peak
temperature seen across all benchmarks and modules (83◦C).

2.1 Workload Variation
Figure 1 shows the range of temperatures experienced by differ-

ent structures within an Alpha21364-like processor [1] across a set
of 8 SPECINT (bzip2, gcc, gzip, mcf, perlbmk, twolf, vortex, vpr)
and 9 SPECFP benchmarks (ammp, applu, apsi, art, equake, gal-
gel, lucas, sixtrack, swim, wupwise). All temperatures are normal-
ized to the peak temperature,Tmax, seen across all modules and
benchmarks, which corresponds to the temperature of theFPAdd
module when runninglucas (83◦C). Notice the significant variation
in temperature within nearly every module. Apart from the more
than 40% variation seen inFPAdd (a 37◦C swing), other structures
(whose utilizations are not as strongly correlated with theexecution
of floating-point and integer benchmarks) also exhibit significant
temperature shifts, 10-15% forBpred andIntReg. These large
temperature ranges suggest that scheduling alone can be a powerful
tool for manipulating aging rates.

Figure 2 selects a few representative applications and examines
them in greater detail. Figures 2(a) and 2(b) highlight how the tra-
ditional view of “hot” and “cold” applications is perhaps too sim-
plistic. Without accounting for the module-level variation in tem-
peratures, one could incorrectly assume thatapplu is more taxing,
from a reliability perspective, thanvpr or wupwise simply because
it exhibits a higher peak operating temperature (FPMul). However,
this would neglect the fact that for many structures, likeIntReg,
temperatures forapplu are actually much lower than the other two
applications. For completeness, Figure 2(c) is included toshow
that variations in module temperatures exist even between applica-
tions with comparable peak temperatures. All things considered,
deciding where on the CMP to schedule a particular application,
to achieve the least reliability impact, requires additional informa-
tion about the strength of individual structures within every core.
Although the magnitude of the temperature differences may not
seem impressive at first, with peak deltas in module temperatures
around 10-20% in Figure 2(a), these modest variations in tempera-
ture can have dramatic impacts on a processor’s mean time to fail-
ure (MTTF).

2.2 Implications for Mean Time to Failure
From Figure 2, one could expect a core consistently runningap-

plu to fail because of a fault in theFPMul unit due to its high oper-
ating temperatures. However, in the presence of process variation
other structures within the core could have been manufactured with
more defects (or tighter timing margins), and therefore even more
susceptible to failure despite not ever realizing the same peak tem-
peratures asFPMul. In this environment, a reliability-centric job
scheduler must take into consideration the extent of damagepresent
within a core in addition to the per-module thermal footprint of run-
ning applications. Figure 3 presents the expected lifetimeof a core
runningapplu or vpr as a function of the module identified as the



(a) SPECFP v. SPECINT (b) SPECFP v. SPECFP (c) Variation despite comparable peak tem-
peratures

Figure 2: Head-to-head comparisons of applu (SPECFP), vpr (SPECINT), and wupwise (SPECFP). No one benchmark in (a), (b),
or (c) strictly dominates the other (with respect to temperature) across all modules.

Figure 3: Projected core lifetime based on execution ofapplu
and vpr as a function of the module identified as the weakest
structure. Values are normalized to the best achievable MTTF.

weakest structure. The lifetimes are projected based on well-known
MTTF equations for NBTI and TDDB [15, 21]. The values are nor-
malized to the best achievable MTTF, which in this comparison is
attained ifFPMap is the weakest module in the core and the core
is runningvpr. The optimal job to schedule on a particular core to
maximize its lifetime is dependent not just on the application mix
currently available, but also on the strengths of individual structures
within that core. Schedulingapplu on a core with a weakIntReg
can nearly triple its operating lifetime compared to naively forcing
it to run vpr. Similarly, schedulingvpr instead ofapplu on a core
with a weakFPAdd improves its projected lifetime by more than
4x.

To further highlight the need to address process and workload
variation, a quick examination of the processors simulatedin Sec-
tion 4.1 reveals that 35% of core failures are the result of failing
structures that never experience peak on-chip temperatures. Fur-
thermore, 22% of core failures are caused by modules that do not
rank among the top three most thermally active. By accounting for
the impact of process variation and module-level thermal variation
of applications, Maestro can prevent premature core failures and
reap the opportunity left on the table by previous schedulers.

3. MAESTRO
Figure 4 presents a block diagram of Maestro, which consists

of two main components: 1) a health monitoring system (intro-
spection) and 2) a virtualization layer that implements wearout-
centric job scheduling (management). Although this paper targets
reliability-centric scheduling, a broader vision of introspective re-
liability management could use online sensor feedback to guide
a range of solutions from traditional DVFS to more radical ap-
proaches like system-level reconfiguration [14].

3.1 Health Monitoring
Tracking the evolution of wearout damage within a CMP (i.e.,

health monitoring) is essential to forming intelligent reliability-
centric schedules. Maestro assumes that the underlying CMPis
provisioned with circuit-level sensors like those described in [22].
Recognizing that the two mechanisms addressed in this work,NBTI
and TDDB, both impact physical device parameters as they evolve
has led researchers to actively develop circuit-level sensors that can
track these changes. NBTI is known to shift threshold voltage (Vt)
leading to slower devices and increased subthreshold/standby leak-
age current (Iddq), while TDDB increases gate currents (Igs and
Igd). Both result in statistically measurable degradation in timing
paths at the microarchitectural-level [3, 6].

A runtime system collects raw data streams from the array of
circuit-level sensors and applies statistical filtering and trend anal-
ysis (similar to what is described in [3]) to convert these streams
into descriptions of system characteristics including, delay profiles,
leakage currents, and operating temperatures. These individual
channels of information are then processed to generate a compre-
hensive microarchitectural-level reliability assessment of the CMP.
This is shown in Figure 4 as a vector of per-module damage val-
ues (relative to the maximum damage sustainable prior to failure).
Introducing the additional analysis step allows the healthmonitor-
ing system to account for things like the presence of redundant
devices within a structure, the influence of shifting environmen-
tal conditions on sensor readings, and the interaction between dif-
ferent wearout mechanisms. Ultimately, this allows the low-level
sensor feedback to be abstracted with each vector representing the
effective damage profile for a particular core.

3.2 Maestro Virtualization Layer
The second portion of the Maestro framework resides in system

firmware that serves as the interface between the OS and the un-
derlying hardware. The OS provides the virtualization layer with
a set of jobs that need to run on the CMP and other meta-data
(optional) that can guide Maestro in refining its schedulingpoli-
cies (Section 3.2.3). Online profiling of system workloads identi-
fies application-specific thermal footprints, shown in Figure 4 as a
vector of per-module temperatures for each application. This ther-
mal footprint can either be generated by brief exploratory execu-
tion of jobs on the available cores, similar to what is done in[26],
or projected by correlating thermal behavior with program phases
(leveraging the existing body of work on runtime phase monitoring
and prediction). Given the prevalence of on-chip temperature sen-
sors [13], Maestro assumes low-overhead exploration is performed



Figure 4: A high-level block diagram of the Maestro introspective reliability management system. Dynamic monitoring of sensor
feedback and detailed characterization of workload behavior enables Maestro to improve lifetime system reliability with wearout-
centric scheduling.

during each scheduling interval. Coupled with the real-time health
assessments, this detailed module-level application characteriza-
tion enables Maestro to create wearout-centric job schedules that
intelligently manage CMP aging.

As previously defined, scheduling in this paper will refer tothe
act of mapping threads to cores and is initiated by two main events,
1) the OS issues new jobs for Maestro to execute (pushes into a
FIFO queue) or 2) the damage profile of the underlying CMP has
changed sufficiently (taking on the order of days/weeks) to warrant
thread migration. The two reliability-centric schedulingpolicies
evaluated in this work illustrate two approaches to lifetime relia-
bility. The greedy policy (Section 3.2.2) takes the position that
all core failures are unacceptable and aggressively preserves even
the weakest cores. The adaptive policy (Section 3.2.3) champi-
ons a more unconventional philosophy that claims individual core
failures are tolerable provided the lifetime reliability of the CMP
system is maximized.

Both wearout-centric policies, and the naive baseline scheduler,
are presented below along with corresponding pseudocode. Unless
otherwise indicated, the following definitions are common to all
policies: m, a microarchitectural module (i.e.,FPMul, IntReg,
etc.);LiveCores, the set of functional cores in the CMP,
{ c0, c1, ..., cN }; JobQueue, the set ofall pending, uncompleted
jobs issued from the OS;ActiveJobs, the set of theN oldest, un-
completed, jobs, {j0, j1, ..., jN }; Dmg(m), the entry in the CMP
damage profile for modulem; Temp(j,m), the entry for module
m in the temperature footprint for jobj.

3.2.1 Naive Scheduler
A standard round-robin scheduler is used as the baseline pol-

icy. The least-recently-used (LRU) core in the set ofLiveCores

is assigned the oldest job from the set ofActiveJobs. This pro-
cess is repeated until all jobs inActiveJobs have been sched-
uled. This policy maintains high-level load balancing by distribut-
ing jobs uniformly across the cores. However, without accounting
for core damage profiles or application thermal footprints,the re-
sulting schedule is effectively a random mapping (from a reliability
perspective).

Algorithm 1: Greedy wearout-centric scheduler
Step 1:

foreach c ∈ LiveCores do
find cdmg , the damage present in corec , where

cdmg ←− Dmg(m′) | m′ ∈ c ∧ Dmg(m′) ≥
Dmg(m), ∀m ∈ c

end
sort LiveCores based oncdmg

end
Step 2:

until ActiveJobs is empty
cw ←− weakest core inLiveCores based oncdmg

mw ←− m′ |m′ ∈ cw ∧Dmg(m′) ≥ Dmg(m), ∀m ∈
cw

foreach j ∈ ActiveJobs do
find costj,cw

, the cost of executing jobj on corecw ,
where

costj,cw
←− Temp(j, mw)

end
jopt ←− j′ | j′ ∈ ActiveJobs ∧ costj′,cw

≤ costj,cw
,

∀j ∈ ActiveJobs
Assign jobjopt to corecw

Removecw from LiveCores andjopt from ActiveJobs

end
end

3.2.2 Greedy Scheduler
This policy attempts to minimize the number of premature core

failures by greedily favoring the weakest cores (Algorithm1). Cores
are sorted based upon their damage profiles and priority is given to
the cores whose weakest modules possess the most damage (Step 1
of Algorithm 1). These “weak” cores are greedily assigned jobs
with the most favorable thermal footprints with respect to their
damage profiles (Step 2 of Algorithm 1), minimizing their effec-
tive thermal stress. Thislocal wear-leveling reduces the probabil-
ity that these weak cores will fail due to asingle damaged struc-
ture. Scheduling the weak cores first maximizes the probability of
finding jobs with favorable thermal footprints with respectto each
weak core since there is a larger application mix to choose from.
However, this also forces the stronger cores to execute the remain-
ing, potentially less desirable, jobs. In practice, this means that



Algorithm 2: Adaptive wearout-centric scheduler
let GA(J, C) be the optimal schedule generated by the GA for jobs
J and coresC
Step 1:

foreach c ∈ LiveCores do
find cdmg , the damage present in corec , where

cdmg ←−
Pc

mi
αiDmg(mi) andαi is a scaling factor

biased toward modules with more damage

end
sort LiveCores in increasing order ofcdmg

PrimaryCores ←− first n coreswhere n is set by the user
through the OS
SecondaryCores←− remainingN − n cores

end
Step 2:

let Sprimary, be the set of job-to-core assignments,(j, c), ∀c ∈
PrimaryCores
Sprimary ←− GA(ActiveJobs, P rimaryCores)
Assign jobs forPrimaryCores according toSprimary

Remove assigned jobs fromActiveJobs

end
Step 3:

let Ssecondary, be the set of job-to-core assignments,(j, c),
∀c ∈ SecondaryCores
Ssecondary ←− GA(ActiveJobs, SecondaryCores)
Assign jobs forSecondaryCores according toSsecondary

end

the stronger cores in the CMP actually sacrifice a portion of their
lifetime to lighten the burden on their weaker counterparts(global
wear-leveling).

3.2.3 Adaptive Scheduler
The adaptive scheduler recognizes that many CMP systems are

often underutilized, provisioned with more cores than theytypi-
cally have jobs to run (see Section 4.3). The scheduler exploits
this fact by allowing a few weak cores to be sacrificed in order
to preserve the remaining stronger cores (Algorithm 2). Although
being complicit in core failures may seem non-intuitive, insys-
tems that are underutilized, the greedy scheduler can lead to CMPs
that are overprovisioned early in the CMP’s life (LiveCores >>

JobQueue) while not assuring enough available throughput
(LiveCores < JobQueue) later on. This insight forms the basis
of the adaptive policy.

Promoting a survival-of-the-fittest environment, this policy max-
imizes the functional life of the strongest subset of cores
(PrimaryCores in Step 1 of Algorithm 2), those with the least
amount of initial damage and the potential to have the longest life-
times. By assigning jobs to thePrimaryCores first, Maestro en-
sures that they execute applications with the most appropriate ther-
mal footprints (Step 2 of Algorithm 2). The remaining jobs are
assigned amongst theSecondaryCores (Step 3 of Algorithm 2).
This can lead to some weak cores failing sooner than under a greedy
policy. Note, however, in Step 3 of Algorithm 2, the scheduler is
still looking amongst the remaining jobs for the one with thebest
thermal footprint given a core’s damage profile. Thislocal wear-
leveling, common to both the greedy and adaptive policies, ensures
that the weaker cores even under the adaptive policy survivelonger
than they would under the naive policy. Ultimately, over thelife-
time of the CMP, ifPrimaryCores ≥ JobQueue consistently,
while avoiding periods whenPrimaryCores >> JobQueue or
PrimaryCores < JobQueue, then Maestro has maximized the
total amount of computation performed by the system. The proper
size ofPrimaryCores, n, is exposed to the OS so that the be-

havior of the scheduler can be customized to the needs of the end
user.

Finally, note in Step 2 and Step 3 of Algorithm 2, the scheduler
uses an optimization scheme based on a genetic algorithm (GA) to
identify the least-cost schedules for both thePrimaryCores and
SecondaryCores. This allows the adaptive scheduler to consider
the effect scheduling a job has on all structures within a core (unlike
the greedy scheduler which only looks at the weakest structure) for
more effectivelocal wear-leveling. The optimization used in this
work is derived from [8], a standard solution of the generalized
assignment problem, and is described below1.

Chromosome definition: The chromosome modeled is a job-to-
core mapping of a set ofn jobs,J = {j0, j1, ..., jn}, to a set ofm
coresC = {c0, c1, ..., cn}. It is represented as a one-dimensional
array where the value stored at indexi, ji, is the job that has been
assigned to corei. The example in Figure 5 has jobsj1 mapped to
core 0,jn−1 mapped to core 1, andj0 mapped to corem. During
Step 2of the adaptive scheduling algorithmn > m, while for the
optimization performed inStep 3m = n.

Figure 5: Chromosome structure

Cost function: The cost function used by the GA is recalculated at
each scheduling interval, based on the CMP damage profile andap-
plication thermal footprints, according to Equation 1, whereCost(S)
= the cost of scheduleS andCost(j, c) = the cost of scheduling job
j on corec.

Cost(S) =
S

X

j,c

Cost(j, c)

=

S
X

j,c

“

c
X

m

Dmg(m) · Temp(j,m)
”

(1)

The individual steps of the GA are enumerated below:

1. Generate initial population: An initial population of solu-
tions (schedules) is created by randomly enumerating a sub-
set of the possible job-to-core mappings.

2. Evaluate fitness:Calculate the fitness (cost) of all members
of the population using Equation 1.

3. Reproduction: Two parents are identified, each using a sim-
ple binary tournament where two candidates are selected ran-
domly from the population and the one with the best fitness
(smallest cost) is chosen for reproduction (Figure 6(a)). A
child is generated by applying a one-point crossover operator
on the parent chromosomes, where a random crossover point
i ∈ [0, m] is selected, wherem is the size of the chromo-
somes. The child chromosome is formed by combining the
first i genes from one parent with the lastm − i genes from
the second parent (Figure 6(b)) . Note that this newly formed
chromosome could have the same job assigned to two dif-
ferent cores. For this case to arise there must also be a set of
jobsJ ′ ⊂ J that are unassigned sincen ≥ m. To resolve the

1The runtime overhead of the GA is negligible for long-running scientific
and server workloads. However, for shorter-running applications the GA
optimization can be replaced by a greedy version without severely impact-
ing the effectiveness of the adaptive scheduler.



(a) Parent selection (b) Crossover operation

(c) Conflict resolution (d) Mutation

Figure 6: Steps involved in reproduction.S0, S1, S2, S3 are the parental candidates.Sc is the resulting child chromosome after initial
crossover.S′

c and S′′

c are the states of the child chromosome after conflicts resolution and mutation respectively.

conflicts, one of the redundant cores (selected at random) is
reassigned a job fromJ ′ based onCost(j, c) (Figure 6(c)).
Lastly, the newly formed child chromosome is mutated by
taking 2 randomly selected job assignments and swapping
them (no risk of creating new conflicts), reducing the proba-
bility of converging at local optima (Figure 6(d)) .

4. Replace and Repeat:After a child solution is formed the
weakest member, as defined by the cost function, of the ex-
isting population is replaced by the new child. This con-
cludes a single generation in the evolutionary cycle. The
process is repeated until a predetermined number of gener-
ations,genmax, fails to produce an improved solution.2

4. EVALUATION AND ANALYSIS
This section evaluates Maestro’s reliability-centric scheduling

policies using lifetime reliability simulations. A variety of system
parameters including CMP size and system utilization are varied to
investigate their impact on Maestro’s performance. The effective-
ness of each wearout-centric policy is measured in terms oflife-
time throughput (LT), the number of cycles spent executing active
jobs (real applications not idle threads), summed across all cores,
throughout the entire lifetime of the CMP. LT improvement metrics
are the result of comparisons with the naive, round-robin scheduler
presented in Section 3.2.1. Monte Carlo experiments are conducted
using a simulation setup similar to the framework in [12]. The stan-
dard toolchain of SimAlpha, Wattch [5], and Hotspot [20] is used
to simulate the thermal characteristics of workloads and Varius [19]
is used to model the impact of process variation. Results presented
in this section, unless otherwise indicated, are for a 16-core CMP
with processors modeled after the DEC Alpha 21264/21364 [1].

Given that CMPs have lifespans on the order of years (3-5 years
in future computer systems [11]), detailed lifetime reliability sim-
ulation is a computationally intensive task. This is especially true

2Given the size of the solution space, as many as16! possible schedules
for a 16-core CMP, values ofgenmax from 0 to 100,000 were studied to
understand the tradeoff between optimality and runtime. The actual values
of genmax used in Section 4 were determined empirically based on the
CMP size, with many runs producing good results withgenmax as low as
1000.

when large numbers of Monte Carlo runs must be conducted to gen-
erate statistically significant results. Since wearout damage takes
years to reach critical mass, results presented in this section were
gathered using anadaptive simulation scheme. Short periods of de-
tailed system-level reliability simulation, the darker phases in Fig-
ure 7(a), are used to gather statistics on the progression ofCMP
aging in light of dynamically changing workload streams andMae-
stro’s reliability-centric scheduling. The simulation isthen rapidly
advanced through a longer period of time (accelerated simulation)
using the statistics generated during the most recent detailed phase
as a guide. To minimize error, the length of the accelerated simula-
tion phase is limited by the amount of damage accumulated during
the detailed interval according to Equation 2:

La = (
Dfail

Dacc

) · AF · Ld (2)

where,La = length of the accelerated phase,Ld = length of
the previous detailed phase,Dfail = amount of damage the weak-
est core in the CMP can sustain before failing,Dacc = amount of
damage accumulated by the weakest core during the previous de-
tailed phase, andAF = parameter that trades off simulation time
for accuracy (0%-100%).

Dynamically adjusting the durations allows simulation to slow
down as cores near their failing point, where small changes in dam-
age and scheduling decisions have larger implications. When a
core fails in phasei, accelerated simulation resumes at a faster rate
(Lai+1

> Lai
), butLa soon contracts as the next core in the CMP

nears failure. Figure 7(a) illustrates (not to scale) how adjusting
AF can influence the lengths of the accelerated phases. The value
of AF essentially dictates the number of detailed phases that are
simulated between core failures. At anAF of 100%, simulations
are accelerated from one core failure to the next. However, when
AF is dialed down to 50%, many more phases are required to cover
the same amount of simulated time, concentrating simulation effort
around times when cores are failing and improving simulation ac-
curacy. Figure 7(b) shows both simulation time speedup and error
as a function ofAF , illustrating how simulation time can be traded
off for fidelity. The experiments presented in this work use an AF

of 6%, resulting in simulation runtimes from 30 minutes to over 6
hours for a single set of Monte Carlo runs.



(a) Interleaving of detailed and accelerated simulation phases.

(b) Simulation time/error v. acceleration factor (AF).

Figure 7: The adaptive simulation used to accelerate lifetime
reliability simulations while incurring minimal experime ntal
error.

Figure 8: Performance of wearout-centric scheduling policies
verses CMP size and failure threshold.

4.1 Lifetime Throughput Enhancement
Figure 8 shows the normalized LT improvement as a function

of the scheduling policy, CMP size, and failure threshold. In the
context of this paper, failure threshold is defined as the number
of cores that must fail before a chip is considered unusable.This
is the point at which the risks/costs associated with maintaining
a system with only a fraction of its original computational capac-
ity justifies replacing the chip. The CMP is considered dead even
though functional cores still remain. The results shown in Figure 8
are conducted for 2 to 16-core systems, and failure thresholds rang-
ing from 1 core to all cores. The value of the failure threshold is
passed to the adaptive policy so that it can optimize for the appro-
priate number of cores. Results are shown for CMP utilizations
of 100%, providing a lower-bound on the benefits of the adaptive
policy (Section 4.3 examines the impact of CMP utilization).

As expected, both the greedy and adaptive policies perform well
across all CMP sizes and the majority of failure thresholds.As
the size of the CMP grows, Maestro has more cores to work with,
increasing the chances of finding complementary job-to-core map-
pings. This results in more effective schedules for both wearout-
centric policies improving their performance. Yet even with the

(a) Failure distribution (Core)

(b) CMP failure distribution (CMP)

Figure 9: Failure distributions for individual cores and th e 16-
core CMP with a failure threshold of 8 cores and 100% uti-
lization. Trendlines are added (between markers) to improve
readability.

lack of scheduling alternatives in a 2-core system, both policies
can still achieve a respectable 30% improvement.

A strong dependence on failure threshold is also evident. Byag-
gressively minimizing premature core failures, the greedysched-
uler achieves large gains for small failure thresholds. However, as
the failure threshold nears the size of the CMP, the LT improve-
ment attenuates. This is expected since under the greedy policy,
stronger cores sacrifice a portion of their lifetime in orderto pre-
serve their weaker counterparts. The cost of this sacrifice is most
apparent when the failure threshold allows all the cores to fail. In
these systems, the increased contribution toward LT by the weak
cores is offset by the loss in LT resulting from the strong cores
failing earlier. Notice also that the adaptive scheduler outperforms
greedy by the largest margins when the failure threshold is roughly
half the size of the CMP. In these situations, the adaptive sched-
uler has the maximum freedom to sacrificeSecondaryCores to
preservePrimaryCores (Section 3.2.3). At either extreme for
failure threshold, it performs similarly to greedy.

Lastly, it is important to note that, although the benefits ofwearout-
centric scheduling are less impressive for these extreme values of
failure threshold, the scenarios when a user could actuallyafford to
wait for all the cores within a system to fail are also quite remote.
For the remainder of the paper, all the experiments shown arefor a
16-core CMP with a failure threshold of 8 cores and 100% system
utilization unless otherwise indicated.

4.2 Failure Distributions
Figure 9 presents the failure distributions for the individual cores,

as well as the CMPs that correspond to the results in Figure 8.
Figure 9(a) illustrates the effectiveness of the wearout-centric poli-
cies at distributing the workload stress appropriately. The distri-



Figure 10: Impact of CMP utilization on reliability enhance-
ment.

bution for the baseline naive policy reveals a bias towards early
premature core failures. The greedy scheduler, exploitingeffec-
tive wear-leveling, produced a tighter distribution, lacking in both
premature failures as well as cores that significantly outlasted their
peers. Lastly, the adaptive policy also delivers on its promises by
preserving a subset of cores for a longer period of time than either
the naive or greedy schedulers.

Figure 9(b) tells a similar story, but with chip-level failures. As
with the individual core distributions, both wearout-centric policies
are able to increase the mean failure time of the CMP population.
Note that because the failure time of a CMP is limited by the weak-
est set of its constituent cores, the distributions in Figure 9(b) are
considerably tighter than those in Figure 9(a). The corresponding
tables of expected lifetimes embedded within the plots present the
data slightly differently. From a product yield/warranty perspec-
tive, intelligent wearout-centric scheduling can be thought of as an
additional means of ensuring that cores meet their expectedreli-
ability qualified lifetimes. For example, the table in Figure 9(b)
shows that the adaptive scheduler enabled 99% of the chips tosur-
vive beyond1.9 years, compared to just1.4 years with the naive
baseline, a 38% improvement. Granted, job assignment alonecan-
not makeguarantees on lifetime, but it can complement existing
more aggressive techniques like thermal throttling.

4.3 Sensitivity to System Utilization
The utilization of computer systems can be highly variable,both

within the same domain (e.g., variability inside data centers) and
across domains. One might expect computationally intensive sci-
entific codes (e.g., physics simulations, oil exploration,etc.) to con-
sistently utilize the hardware. On the other hand, since designers
build web servers to accommodate peak loads (periodic by season,
day, and hour), they are often over-provisioned for the common
case. Some reports claim average utilization as low as 20% of
peak [2].

Figure 10 plots the performance of Maestro’s wearout-centric
schedulers as a function of system utilization. The resultsare shown
for nominal utilizations ranging from 20% (light duty mail server or
embedded system) to 100% (scientific cluster)3. Note that initially
as average utilization drops, improvement in lifetime throughput
actually increases. A system that is slightly underutilized can be
more aggressively load balanced since some cores are allowed to
remain idle. However, as utilization continues to drop these gains
are eventually lost, until finally improvements are actually worse

3Although the mean utilization per simulation run is fixed, the instanta-
neous utilization experienced by the CMP is allowed to vary over time,
sometimes peaking at 100% even for a system nominally at 20% load. Fur-
thermore, the averageeffective utilization is also changing as cores on the
CMP begin to fail.

(a)

(b)

Figure 11: Sensitivity to sensor noise. Although random sensor
noise can be removed with the appropriate filtering, systematic
error due to manufacturing tolerances is more problematic.

than at full utilization. In these highly over-provisionedsystems,
the efforts of wearout-centric scheduling to prevent premature fail-
ures arepartially wasted because so few cores are actually neces-
sary to sustain demand. Nevertheless, in the long run, the periodic
spikes in utilization do accumulate, and thanks to the longer overall
core lifetimes (lower utilization means less overall stress that trans-
lates to longer lifetimes), the greedy and adaptive schedulers still
manage to exhibit improvements.

4.4 Sensitivity to Sensor Noise
Figure 11 illustrates how error-prone sensors could impactlife-

time reliability gains. Although the introduction of systematic er-
ror, which is studied in Figure 11(b), does reduce the potential of
wearout-centric scheduling, the presence of random noise (more
common for circuit-level sensors) shown in Figure 11(a) canbe ac-
counted for and mitigated by the statistical filtering and trend anal-
ysis schemes referenced in Section 3.1. Yet, even at the extreme of
+/-15% systematic error, Maestro still achieves over 10% LTim-
provement. Figure 11(b) also suggests that the adaptive scheduler
is more sensitive to noise than the greedy scheduler. By aggres-
sively trying to preservePrimaryCores, the adaptive heuristic
relies strongly on sensor feedback to accurately identify the bound-
ary between its two classes of processors, making it less robust
against sensor inaccuracy.

4.5 Sensor Selection
Lastly, Figure 12 presents a comparison between the low-level

damage sensors advocated in this work and more conventionalhard-
ware like temperature sensors and performance counters. Given
that Maestro is targeting an environment with significant amounts
of process variation, it is not surprising that employing temperature
and activity readings as proxies for wearout/manufacturing induced
damage is inadequate. They are unable to account for the extent to



Figure 12: Performance of wearout-centric scheduling withdif-
ferent sensors. Results are shown for a failure threshold of1
core to favor the temperature sensor and access counter based
approaches.

which non-uniform, pre-existing damage within the CMP responds
to the same thermal stimuli. In the absence of variation, a sched-
uler relying on only temperature might effectively enhancelifetime
reliability by evenly distributing the thermal stress across the CMP.
However, without any knowledge of CMP damage profiles, as pro-
cess variation is swept from one extreme (no variation) to the other
(100% expected variation at 32nm), thermal load balancing alone
is insufficient and Figure 12 shows a dramatic plunge in the effec-
tiveness of these temperature based schemes. Similarly, the perfor-
mance counter approach performed poorly across the spectrum of
variation.

5. CONCLUSION
As large CMP systems grow in popularity and technology scal-

ing continues to exacerbate lifetime reliability challenges, the re-
search community must develop innovative ways for systems to
dynamically adapt. Although issues like process variationare the
source of design and validation nightmares, this inherent hetero-
geneity in future systems is also a source of potential opportu-
nity. Maestro recognizes that although emerging reliability obsta-
cles cannot be ignored, with the appropriate monitoring andintelli-
gent management, they can be overcome. By exploiting low-level
sensor feedback, Maestro was able to demonstrate the effective-
ness of wearout-centric scheduling at preventing premature core
failures, improving expected CMP lifetimes by as much as 38%.
Formulating wearout-centric schedules that achieved bothlocal and
global wear-leveling, Maestro enhanced the lifetime throughput of
a 16-core CMP by as much as 180%. Future work that leverages
sensor feedback to improve upon other traditional reliability man-
agement mechanisms (e.g., DVFS) could demonstrate still more
potential.

6. REFERENCES
[1] Alpha. 21364 family, 2001.

http://www.alphaprocessors.com/21364.htm.
[2] A. Andrzejak, M. Arlitt, and J. Rolia. Bounding the resource

savings of utility computing models, Dec. 2002. HP
Laboratories, http://www.hpl.hp.com/techreports/2002/HPL-
2002-339.html.

[3] J. Blome, S. Feng, S. Gupta, and S. Mahlke. Self-calibrating
online wearout detection. InProc. of the 40th Annual
International Symposium on Microarchitecture, pages
109–120, 2007.

[4] S. Borkar. Designing reliable systems from unreliable

components: The challenges of transistor variability and
degradation.IEEE Micro, 25(6):10–16, 2005.

[5] D. Brooks, V. Tiwari, and M. Martonosi. A framework for
architectural-level power analysis and optimizations. InProc.
of the 27th Annual International Symposium on Computer
Architecture, pages 83–94, June 2000.

[6] A. Cabe, Z. Qi, S. Wooters, T. Blalock, and M. Stan. Small
embeddable nbti sensors (sens) for tracking on-chip
performance decay. Washington, DC, USA, Mar. 2009. IEEE
Computer Society.

[7] J. Choi, C. Cher, , H. Franke, H. Haman, A. Wedger, and
P. Bose. Thermal-aware task scheduling at the system
software level. InProc. of the 2007 International Symposium
on Low Power Electronics and Design, pages 213–218, Aug.
2007.

[8] P. C. Chu and J. E. Beasley. A genetic algorithm for the
generalised assignment problem. 24(1):17–23, 1997.

[9] J. Donald and M. Martonosi. Techniques for multicore
thermal management: Classification and new exploration. In
Proc. of the 33rd Annual International Symposium on
Computer Architecture, June 2006.

[10] D. Ernst, S. Das, S. Lee, D. Blaauw, T. Austin, T. Mudge,
N. S. Kim, and K. Flautner. Razor: Circuit-level correction
of timing errors for low-power operation. InProc. of the 37th
Annual International Symposium on Microarchitecture,
pages 10–20, 2004.

[11] C. Evangs-Pughe. Live fast, die young [nanometer-scale ic
life expectancy].IEE Review, 50(7):34–37, 2004.

[12] S. Feng, S. Gupta, and S. Mahlke. Olay: Combat the signs of
aging with intropsective reliability management. InProc. of
the Workshop on Architectural Reliability, June 2008.

[13] J. Friedrich et al. Desing of the power6 microprocessor, Feb.
2007. InProc. of ISSCC.

[14] S. Gupta, S. Feng, A. Ansari, J. Blome, and S. Mahlke. The
stagenet fabric for constructing resilient multicore systems.
In Proc. of the 41st Annual International Symposium on
Microarchitecture, pages 141–151, 2008.

[15] X. Li, B. Huang, J. Qin, X. Zhang, M. Talmor, Z. Gur, and
J. B. Bernstein. Deep submicron cmos integrated circuit
reliability simulation with spice. InProc. of the 2005
International Symposium on Quality of Electronic Design,
pages 382–389, Mar. 2005.

[16] Z. Lu, J. Lach, M. R. Stan, and K. Skadron. Improved
thermal management with reliability banking.IEEE Micro,
25(6):40–49, Nov. 2005.

[17] M. Powell, M. Gomaa, and T. Vijaykumar. Heat-and-run:
Leveraging smt and cmp to manage power density through
the operating system. In12th International Conference on
Architectural Support for Programming Languages and
Operating Systems, pages 260–270, Oct. 2004.

[18] D. Roberts, R. Dreslinski, E. Karl, T. Mudge, D. Sylvester,
and D. Blaauw. When homogeneous becomes
heterogeneous: Wearout aware task scheduling for streaming
applications. InProc. of the Workshop on Operationg System
Support for Heterogeneous Multicore Architectures, Sept.
2007.

[19] S. Sarangi, B. Greskamp, R. Teodorescu, J. Nakano,
A. Tiwari, and J. Torrellas. Varius: A model of process
variation and resulting timing errors for microarchitects. In
IEEE Transactions on Semiconductor Manufacturing, pages
3–13, Feb. 2008.



[20] K. Skadron, M. R. Stan, K. Sankaranarayanan, W. Huang,
S. Velusamy, and D. Tarjan. Temperature-aware
microarchitecture: Modeling and implementation.ACM
Transactions on Architecture and Code Optimization,
1(1):94–125, 2004.

[21] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers. The case
for lifetime reliability-aware microprocessors. InProc. of the
31st Annual International Symposium on Computer
Architecture, pages 276–287, June 2004.

[22] D. Sylvester, D. Blaauw, and E. Karl. Elastic: An adaptive
self-healing architecture for unpredictable silicon.IEEE
Journal of Design and Test, 23(6):484–490, 2006.

[23] R. Teodorescu and J. Torrellas. Variation-aware application
scheduling and power management for chip multiprocessors.
In Proc. of the 35th Annual International Symposium on
Computer Architecture, pages 363–374, June 2008.

[24] A. Tiwari, S. Sarangi, and J. Torrellas. Recycle: Pipeline
adaptation to tolerate process variation. InProc. of the 34th
Annual International Symposium on Computer Architecture,
pages 323–334, June 2007.

[25] A. Tiwari and J. Torrellas. Facelift: Hiding and slowing
down aging in multicores. InProc. of the 41st Annual
International Symposium on Microarchitecture, pages
129–140, Dec. 2008.

[26] J. Winter and D. Albonesi. Scheduling algorithms for
unpredictably heterogeneous cmp architectures. InProc. of
the 2008 International Conference on Dependable Systems
and Networks, page To appear, June 2008.


