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Abstract

Botnet-based hosting or redirection/proxy services mte\iotmasters with an ideal platform for hosting mali-
cious and illegal contents while affording them a high levemisdirection and protection. Because of the unreliable
connectivity of the constituent bots (e.g., compromisesh@@omputers), domains built atop botnets require frequent
updates to their DNS records, replacing the IPs of offlines lvdth active ones to prevent a disruption in service.
Consequently, their DNS records contain a large number $tamtly-changing (i.e., “fluxy”) IPs, earning them the
descriptive moniker of fast-flux domains—or, when both tleatent and name servers are fluxy, double fast-flux
domains. In this paper, we examine the global IP-usagerpatéxhibited by different types of malicious and benign
domains, including single and double fast-flux domains. \&ketdeployed a lightweight DNS probing engine, called
DIGGER on 240 PlanetLab nodes spanning 4 continents. CollectiNg Bata for over 3.5 months on a plethora
of domains, our global vantage point enabled us to idenisjiruishing behavioral features between them based
on their DNS-query results. We have quantified these featanel demonstrated their effectiveness for detection by
building a proof-of-concept, multi-leveled SVM classifiesipable of discriminating between five different types of
domains with minimal false positives. We uncovered newtioas IP-management strategies currently employed by
criminals to evade detection. Our results provide insigtd the current global state of fast-flux botnets, includime
increased presence of double fast-flux domains and theglreranimplementation. In addition, we expose potential
trends for botnet-based services, uncovering previousgeen domains whose name sename demonstrate
fast-flux behavior.

. INTRODUCTION

A botnet is a vast collection of compromised computers unidercontrol of a botmaster utilizing a common
Command-and-Control (C&C) infrastructure. By exploititgternet Relay Chat (IRC), peer-to-peer (P2P), and
other protocols as flexible and extensible means for C&Cndist have gained a great deal of versatility in
providing malicious services and generating profit. Thditgtib coordinate thousands of individual bots allows the
botmaster to launch larger-scale, sophisticated attafksng the numerous criminal uses of botnets, one of the
more advantageous is the botnet-based hosting servicehwdxies or redirects unsuspecting users to illegal or
nefarious content. Since botnets are essentially an abtisdarce of disposable IPs, they can easily be turned into
a large network of front-end redirection/proxy serverafiag to malicious content hosted elsewhere—on anything
from a powerful central server to another bot.

Used as a misdirection mechanism for evading detectiomeldditased hosting services often come in tandem
with a variety of other criminal scams, constituting an esis¢ portion of botnets’ overall operation. For example,
spam/phishing campaigns often utilize botnets for misdioa. They begin by using some spamming mechanism
(e.g., a hijacked mail server and/or a botnet) to send sagyninteresting phishing emails. Within the phishing
emails are innocuously disguised embedded links whose idonzames resolve to IP addresses of compromised
computers in a botnet. Once victims click the embedded Jithesy connect to the bots, which then redirect them
to—or serve as proxies for—the central host (often calledntiothership of the nefarious content. This strategy
grants criminals a high level of anonymity while enablingyand centralized management of the malicious content.
However, because botnets are composed primarily of compeahhome computers with unreliable connectivity,
it is not uncommon for them to unexpectedly go offline (e.ge tomputer is turned off or the installed malware
is discovered and removed). Botnet-based hosting servibegefore, must be protected against the failure or
disruption of individual bots, ensuring the availabilitpdastability of the hosted service/content. As a result, it
is beneficial for bot-based hosting infrastructures to adagt-flux DNS techniques, which frequently change the
domain name mappings to different bots’ IP addresses. Whervittim tries to visit the malicious domain, the
DNS server responds with a set of up-to-date, active bot Bystecruiting a large pool of IPs and supplying a



large set of IPs per query, botmasters can ensure, with higibapility, that the malicious domain resolves to at
least one valid IP belonging to an online bot. An additiomatel of control and resilience is attained by giving the
domain’s IP mappings a short time-to-live (TTL) value. Th&armits botmasters a quick response when a bot goes
offline, replacing its IP with one from the ample supply ofioelbots. Using this fast-flux technique, botmasters
effectively turned their botnets into a global Content ety Network (CDN), providing highly available and
reliable content-hosting services in spite of node fagufEhis extends the lifetime of illegal activities the bdase
provide, complicating disruption efforts by introducing additional layer of misdirection.

Previous research has studied the features of fast-fluxetsoand their malicious uses in phishing scams [17]
(e.g., Storm Worm and Rock Phish). However, little has begomed on botnets’ IP-usage behavior from a global
perspective. Because botnets are formed with myriad comipeal hosts dispersed around the world, accurate
characterization of how botmasters manage this vast nuaidEs can only be achieved by collecting and analyzing
data from a global viewpoint. In this paper, we attempt tatiis important gap and explore the global usage patterns
of botnets’ IP addresses. Our work is unique and differemhfthe previous work in the following four ways. First,
we build a global query engine callddiGGER that monitors complete DNS behavior from 240 geographjeall
dispersed vantage points for an extended period of times. filoivides us with a unique, global view of how different
types of domains differ in their IP-usage patterns. Secaedyropose effective methods to characterize and quantify
the temporal and spatial IP-usage patterns of fast-fluxdialomains, facilitating the classification and detection
of different domain types. This also allows us to reveal savpreviously-unknown features of fast-flux botnets
and uncover new, discreet IP-management strategies tyregnployed by criminals to evade detection. Third, we
design and implement a proof-of-concept classifier based pwlti-leveled machine learning algorithm. Utilizing
the behavioral features of a domain’s IP usage, the clasaifieurately and automatically identifies different types
of malicious and benign domains. Finally, we apply the dfeesson three months’ worth of globally-collected data.
The results demonstrate the current trend of fast-flux istard the effectiveness of the distinguishing behavioral
features thanks to our global DNS monitoring system.

The remainder of this paper is organized as follows. Sediiaeviews related work. Section Ill defines the
terminology we use. Section IV explores the global DNS IBgespatterns for different domain types. Section V
presents our proof-of-concept classifier and its experelgrsults, and finally, Section VI concludes the paper.

Il. RELATED WORK

Botnets have now become one of the biggest threats to Inteengces and applications. Most previous research
focused on understanding of the operations and threatstoétsoby collecting and analyzing bot-related activities,
such as IRC traffic [19], spam emails [26], DNS queries [20]] ®&NS Blacklist queries [21]. Rajaét al. [19]
constructed a distributed infrastructure to measure thernet Relay Chat (IRC) botnet activities and showed
that botnets contribute the majority of unwanted traffic lre tinternet. Collinset al. [6] explored the spatial
and temporal uncleanliness of networks and showed thelatiore between botnets and spam/scanning activities.
Recently, botnets have appeared in the wild using P2P imictares for the C&C channel, making them more
robust to node failures and difficult to take down. Grizzetdil. [8] analyzed the architecture and communication
protocol of a most recent P2P botnet, Peacom (a3t@m Worm[5]. A model for advanced hybrid P2P botnets has
also been proposed in [24], which provides robust conniggtisontrol traffic dispersion, encryption, easy recovery
and many other features. Most of these methods fall into #tegory of passive analysis. To gain an insider
view of a botnet, researchers also took more active appesadhfiltrating botnets with actual malware samples or
customized crawlers. For example, Hatk al. [14] crafted a specific P2P client to join the Storm Worm’'s P2P
botnet and estimate the total number of compromised mashResearchers also disrupted the Conficker botnet
by sinkholing future DNS domains of the C&C server, prevegtbotmasters from updating the infected hosts
[15]. More recently, Stone-Gross al. [23] successfully took over the Torpig botnet for ten dayspbgemptively
registering DNS domains the bots would be contacting as C&Qess in the near future. This allowed them to
reveal detailed operations of the Torpig botnet and acelyr&stimate the number of compromised hosts.

Because of the significant threats botnets have posed omtamét security, numerous detection approaches
have been proposed based on the network or host behavioakydibots. Rishi [7] passively monitors IRC traffic
for suspicious IRC nicknames, IRC servers and uncommores@uorts to detect bot-infected machines. Binkley
and Singh [4] proposed detection of IRC-based botnets vi@ @@omaly detection and IRC message statistics.



BotHunter [10] attempts detection using IDS-driven dialmgrelation based on IRC C&C communication and
other common actions taken during the life cycle of a bot. Mdaile, to track and analyze botnets in a large tier-1
ISP, Karasaridi®t al. [16] proposed a wide-scale detection technique that looksypical network-flow patterns
between bots and their controllers. BotSniffer [11] idées HTTP- and IRC-based C&C channels by capturing
the coordinated and synchronized communication patterriad C&C traffic. To eliminate the reliance on IRC-
or HTTP-based C&C protocols for identifying botnets, @ual. proposed BotMiner [9], which clusters similar
communication and malicious traffic and performs crosstelucorrelation to identify potential bot-infected hosts

Among the numerous criminal uses of botnets, their use amligas redirection/proxy servers for illegal content
and phishing scams provides an ideal platform for financdéh.gHowever, because of the unreliable nature of the
bots, more and more botmasters have adopted fast-flux DNBitpes to ensure the availability and stability
of their malicious service/content. Fast-flux techniques @haracterized by the frequent change of domain name
mappings to the IP addresses of different bots. Halal. [13] studied the characteristics of fast-flux networks
and first developed detection algorithms; they extract URKksl from spam emails and then identify fast-flux
networks based on the number of unigue IP addresses in DN&sg@ed the number unique AS to which the IPs
belong. Nazario and Holz [17] applied a similar approachr&ek the use of fast-flux domains and characterize
several features of fast-flux botnets, such as member #igéimle, and top-level domain distribution. Their work
demonstrated that continuous data mining of fast-flux DN®nes can yield insights into the operations of fast-flux
botnets. Despite the increasing awareness of fast-fluxeboto the security community [22], there has been little
effort in understanding botnets’ global IP-usage pattefndifferent types of fast-flux botnets (in particular, désib
fast-flux domains). We attempt to fill this important gap byntioually monitoring the DNS properties of fast-
flux domains from a large number of geographically-dispérgntage points, allowing us to study their behavior
patterns from a global perspective. In addition, since thp@se of using fast-flux botnets is to reliably distribute
the illegal content to users despite host failures, the \iehaf fast-flux botnets resembles that of traditional CDNs
[3] like Akamai and CDNetworks. As a result, we conduct irptle comparative analysis of IP management of
fast-flux botnets and popular CDNs. With this knowledge, we @ble to develop algorithms that can accurately
distinguish between the different types of fast-flux dorsaind discern them from other domain types—both benign
and malicious.

[11. TERMINOLOGY

This section defines the terminology we have adopted foriscitress and clarification when discussing the
various domain types and DNS records in this paper.

1) DNS records:We have gathered detailed logs of the DNS behavior for a latgeber of different domains
(both valid and malicious) to enhance our understanding.data-acquisition process will be detailed in Section IV.
For now, we need only explain a few terms used to describé&pbmt components of a domain’s DNS-query results.

A rec: is the A (address) record returned in the result of a DNS qoaradomain It contains the host IP
addresses associated with the domain at that DNS server. fat Atherefore, consists of the IP addresses of the
actual machines hosting the domain’s content.

NS rec: is the NS (hame server) record returned in the result of a DSygon a domain. It contains the
name servers (NSes) in charge of that domain. These recondair only the NSes’ domain nhames and not their
IP addresses. For example, an NS rec for the domaimv.example.commay contain the NSessl.example.com
andns2.example.conbut not their IP addresses.

NA rec: refers to the A record returned in the result of a DNS query oarae serverAn NA rec, therefore,
consists of the IP addresses of the actual machines sersgittgeadomain’s name servers.

Reverse DNS lookup/name: is the result of a DNS-query request for the domain name ofPaaddress.
When we perform a DNS query on a domain, we also perform a sevBNS lookup on the IPs returned in the
domain’s A and NA recs. Because the reverse DNS names arg ské bP’s Internet Service Provider (ISP) and
not the domain’s owner, they can be different from the oagiclomain or NS domain names queried.

2) Domain types:We gathered extensive DNS-query results for a variety ofaonypes, including valid and
benign domains as well as malicious botnet domains. In Figvel have plotted the global IP usage—as seen
from the DNS queries—for some representative domains oflifferent domain types. In this figure, tiiémeaxis
represents the time (in seconds) since we started morgtthi@ domainsNode Indexrepresents the node (from
those dispersed around the globe) that the IP was observedittnpositive values indicating an A rec IP and



negative values an NA rec IP of the domaiiiB;Indexis a unique index assigned, in ascending order, to each
newly-observed IP. The following is an explanation of theme we use to describe these various domain types
and how they behave. Their global behavior will be explaifwether in Section IV.

FFx1_Arec: drugsn.com

FFx1_NA: icausmyox.com FFx2: old-and-girl.net CDN: www.msnbc.msn.com MAL domain: tsqfsny.jukutuxef.cn
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1: Global IP usage (in DNS results) for some examples of theaio types

FF domain: is a malicious domain utilizing a Fast-Flux (FF) DNS-adigentnent strategy. These domains are
typically built atop botnets, since bots function as a riyadvailable and disposable source of IPs for advertising
to DNS servers. Because bots unexpectedly go offline, FF mhenaalvertise numerous IPs in their DNS-query
results, helping ensure some of the IPs belong to a fundtiomia The TTL of the IPs used by FF domains tend
to be relatively short; this permits the botmasters a fineellef control in replacing IPs advertised to the DNS
servers, increasing the availability of an online bot anckas to the malicious payload. It is this excessive number
of constantly-changing IP addresses that qualifies a désnBINS records and advertisement strategy as “fluxy”,
and the domain is considered a FF domain.

FFx1_Arec domain: represents a FF domain that demonstrates a FF DNS-advegtisestrategy in ite\ rec
DNS-query results, but not its NA rec. It is considered a lgirfgst-flux domain (FFx1), since only its content
servers (i.e., the A rec IPs) resemble a FF domain.

FFx1_NArec domain: represents a FF domain that demonstrates a FF DNS-aduvegtisestrategy in itdNA
rec DNS-query results, but not its A rec. This is in direct costr its FFx1Arec counterpart.

FFx2 domain: (double fast flux) is, as its name suggests, the compositeFafi Arec and FFxINArec
domains. The FF DNS-advertisement strategy describedgusly can clearly be witnessed in both its A and NA
recs, implying the use of bots for its content and name serveiFFx2 domain can provide unprecedented control
in the management of the domain and its resources—botnethervise—with the DNS service, affording the
botmaster a high level of misdirection and protection.

FFx1 domain: (single fast flux) is a domain exhibiting FF behavior in its ANA record, but not both.

CDN domain: is a valid, benign domain that uses a CDN, such as Akamai, fwrave the delivery of
its content. CDNs—consisting of a system of computers nedsb together for the purposes of improving the
performance and scalability of content distribution—proel DNS-query results resembling those of malicious FF
domains: numerous IPs per query with short TTL values. Tifigity is a consequence of their similar goal
to provide reliable content delivery despite node failume, well as their shared assumption that any node can
temporarily or permanently fail at any time. However, CDNdons tend to demonstrate geographic awareness
(i.e., IPs that are geographically close to a DNS serverlvélhdvertised with higher probability at that server) and
load balancing—advanced techniques for improving peréomoe and scalability not yet observed in FF domains.

Non-CDN domain: is a valid, benign domain thatoesn'tuse a CDN for delivery of its content. Typically,

a non-CDN domain uses a few stable content servers and a mageber of NSes; the same IPs of the content
and name servers appear in DNS-query results regardleke gfeiographic location of the DNS server queried.

MAL domain: is a malicious domain that isn't fluxy enough to be considexdeF domain. However, it also
isn't benign enough to be considered a non-CDN domain. kdgen recruit more IPs than a non-CDN, but not
nearly as many as a FF domain. For example, during a morgtqamniod of a few months, a FF domain is likely
to advertise thousands of different IPs with DNS; even dyfalow FF domain will advertise in the hundreds. A
MAL domain, on the other hand, will advertise perhaps a tofa20-30 IPs—roughly one or two IPs every few
days. This is different from a non-CDN. While a non-CDN mawd&20-30 IPs, they are all seen essentially at
once and are stable for the duration of the monitored peAoMAL domain may have some stable IPs over the
monitored period, or they may not, and the IPs will evenjul# replaced by new ones. A MAL domain will tend
to slowly add more IPs because they will slowly lose some a8 thalicious activities are detected and their IPs



are blocked. The IPs used by a MAL domain may consist of botgalid servers being used for malicious means.
Unlike valid domains, MAL domains will exhibit some IP ovapl (i.e., the same IPs appear in both the A and
NA recs). If a MAL domain is using bots, a reverse DNS lookup caveal the presence of compromised home
computers, although this isn’t always the case; often, MAImdins exclusively use stable servers from hosting
providers until the IP is blocked.

IV. GLOBAL IP USAGE PATTERNS OFBOTNET
A. Overview

In this section, we explore the DNS IP-usage patterns of teeigusly-described domain types, identifying
interesting and differentiating features among them. Weomplish this by analyzing numerous domains’ DNS-
query results from vantage points dispersed around thedw®His provides us with a uniquglobal perspective
of how the different types of domains advertise their IP addes to DNS servers. First, we will describe how we
set up a globally-distributed DNS monitoring system andttescuss the various features we have identified that
could be useful in the detection and classification of CDNy-@®N, and the different FF domains. Lastly, we will
show how some of these features differ for MAL domains and ttege variances could aid in their classification.

B. System Architecture

To understand how the IP-usage patterns for FF botnet dend#fer from valid (e.g., CDN) domains on a global
scale, we created a distributed DNS-query engine calledd®R, deployed on 240 geographically disparate nodes
in the PlanetLab testbed [18]. The nodes were chosen bast#t:docation of the DNS servers they queried, such
that DIGGER would issue queries to DNS servers in differetggaphic locations around the world. Fig. 2 shows
the distribution of DIGGER nodes, which is reflective of theerall distribution of available PlanetLab nodes.

Domain Type | Domain Arec NA rec Overlap

drugsn.com 932 33 0
FFx1_Arec

www.couldchoose.com 486 37 5
FFx1_Narec icausmyox.com 16 370 1

old-and-girl.com 5,227 3,047 879
FFx2

mountainready.com 4,060 2,219 2,144

duelready.com 16 32 15
MAL

tsqfsny.jukutuxef.cn 23 42 20
CDN www.msnhbc.msn.com 1,160 5,412 0
non-CDN hostingprod.com 18 32 0

2: Global distribution of DIGGER nodes by I: Total A and NA rec IPs and IP overlap for different
continent domain types.

On each node, DIGGER performs intelligent DNS query digs oget of malicious and benign domains,
monitoring the returned results. For each domain, DIGGHES® dhe domain’s A rec, NS, NA rec and the reverse
DNS lookup for the A and NA rec IPs. From this data, we can deitee the IPs being used to serve the domain’s
content as well as the IPs being used for the NSes. With trexse\DNS lookup, we can more easily identify IPs
belonging to compromised computers. Since compromisedehommputers constitute a large portion of botnets,
any reverse DNS lookups resulting in names typical to honmepeaers (i.e., containing words like comcast, charter,
broadband, dailup, etc.) are highly indicative of a potdriot.

Based on a domain’s most recently returned DNS-query ®eDIGGER classifies the domain as either active
or offline. DIGGER continues to dig active domains periotjchased on their observed maximum TTL, elimi-
nating wasteful DNS queries while ensuring fresh DNS-quesults. Domains that have been determined to be
offline are intermittently dug, so that DIGGER can determihéhey come back online later. Every 24 hours,
DIGGER compresses the raw DNS-query data and uploads thé#srés our centralized server for analysis. As
our central server gathers the compressed DNS-query sefsaih DIGGER, it automatically parses them into a
more compressed and useful format for feature extractemowing any invalid queries. This way we aggregate
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the global DNS-query results for over 106,000 different doma from 240 nodes around the globe. The set of
domains monitored by DIGGER was compiled from multiple sest including online repositories of phishing [2]
and malware [1] websites. In addition, we extracted domam® URL links embedded in spam emails found in
our personal mail boxes as well as online repositories [12].

DIGGER has been deployed and gathering global DNS-usagerpator a little over 3.5 months. Based on the
analysis of this data, we have identified several diffeegintiy features between malicious FF botnet domains and
valid domains, as described in the following subsections.

C. Overlap between IPs of A and NA Records

While analyzing our data, it quickly became apparent thatiBfains tend to exhibit some IP overlap. We were
seeing IPs advertised for a domain’s A rec reappearing irséinee domain’s NA rec. Furthermore, when DIGGER
would perform a DNS dig on the domain’s NSes, the same IP woftiéth be returned for different NSes. It became
apparent that the malicious domains were not only reusieg #wvailable IP pool for both A and NA recs, but
were also returning IPs from the same IP pool regardless athMdS was queried.

Table | shows the total number of A rec, NA rec, and overlap(lfes, IPs appearing in both the A and NA rec)
for some representative domains from each domain type. ddgdap phenomenon was, as expected, much more
prevalent in FFx2 domains than either type of FFx1; we newseoved it in valid domains. The FFx1 domains
almost entirely use valid IPs for one record type and the fRsompromised computers for the other.

The IP overlap we have empirically observed is in line withi eypectation. For redundancy and fault-tolerance
purposes, a valid domain should almost always have separathines serving as content providers and NSes.
Otherwise, the domain may easily suffer from a single poinfadure. A FF domain, on the other hand, will
attempt to make the best use of all its limited resources,thuad, it will tend to reuse the IPs of compromised
computers for both its A and NA records. Clearly, the amodrdlserved IP overlap could prove a useful feature
for differentiating between valid and malicious domainspecially FFx2 domains.

D. IP Recruiting

Due to their different resources and management technigneswould expect FF, CDN, and non-CDN domains
to demonstrate distinct strategies when advertising IFBN& servers. To test the validity of this expectation, we
have analyzed the advertisement strategies for the vatdioosin types. For a given domain, we assumed a global
vantage point and assigned a unique IP index (in ascenddey)aio each newly seen IP in the DNS query results.
This IP index is plotted against time for a FFx2 domain, a COiWndin, and a non-CDN domain in Figs. 3, 4,
and 5, with the y-axis representing the unique IP index amdxtaxis representing the time in seconds since
DIGGER started monitoring domains. The points in the grappsesent when an IP was returned in a DNS query
on a global scale (i.e., across all nodes monitored by DIGGERuS, the slope of each plotted curve demonstrates
the rate, or speed, with which a domain—from the global \g@faoint —seems to “recruit” more unique IPs.

It should be noted that, by definition, FFxXrec and FFxINArec domains are essentially specific subsets of
FFx2 domains. They behave like a FF domain in one record typkliie a non-CDN in the other. Thus, for
brevity, their plots have not been included as they wouldtmd®e redundant.
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Recruitment Speed: refers to the speed (or rate) at which one observes new, eniRgifor a given domain
when monitoring that domain’s DNS queries over time. Baseduor collected data, we have seen three major
recruitment speed strategies, with each strategy beindogetgh by a different type of domain.

Fig. 3 shows how a FFx2 domain slowly and continuously accugque IPs over its entire online lifetime.
This behavior comes from the instability of FF domain IPsjolirconsist of compromised home/office computers
and may go offline arbitrarily. Therefore, in an effort to fhednsure reliable delivery of their nefarious content,
botnets must continuously recruit new IPs. Also, compreshisome computersoften obtain dynamic IP addresses
from their ISP via DHCP (Dynamic Host Configuration Protgc@onsequently, a bot may be assigned different
IPs over time, causing our DIGGER nodes to observe the appegeruitment of new IPs. This effect is called
DHCP churn and it is not present for valid domains using stable semutts static (i.e., unchanging) IP addresses.

Meanwhile, from Fig. 4, we can see that the CDN quickly buhmetgh most of the IPs in its more stable IP
pool, achieving a much quicker recruitment speed. CDNs laaaege pool of stable IP addresses, and rotate these
IPs quickly and efficiently for the purpose of load balancifigey also advertise their IPs in a geographically-
conscious manner. For a given CDN domain, a DNS query in Adleoften result in a diffractive set of IPs than
would the same query originating in South America. This isduse the CDN would mostly advertise (from its
total pool of IPs) IPs located in Asia to Asian DNS servers Hegllocated in South America to South American
DNS servers. As a result, DIGGER’s global vantage pointdasito see most of the CDN's IPs in a short period of
time. In contrast, a FF domain typically can't afford the i of such a fine level of geographic IP management.
FF domains are at the whim of the compromised computers #yappdn to be available and online at any given
moment. Consequently, they tend to advertise the same gdélsoirrespective of the DNS servers’ geographic
location. Thus, while they may change their advertised I®gj@Eckly as a CDN, they do so on a global scale,
whereas a CDN is more localized. Therefore, our global \gmoint doesn'’t allow us to see many more IPs than
we would at any given local vantage point, causing us to eesdre comparatively slower, more steady slope in
the IP recruitment rate for FF domains.

Lastly, a non-CDN (shown in Fig. 5) hardly recruits any adial IPs over time. Rather, its IP pool consists
of a small number of stable content servers that are almosilsineously advertised to DNS servers around the
world.

Due to the stark contrast in how these different types of dosn@cruit IPs, we suspect this feature will be very
useful in differentiating between them.

Recruitment Period: represents the amount of time during which new IPs are seem doven domain when
monitoring that domain’s DNS queries over time. A non-CDNr@in, using a small pool of very stable IPs, will
have almost no recruitment period; all the IPs used are &dedrinitially and used throughout the lifetime of the
domain (as shown in Fig. 5). A CDN domain, on the other hanesasmuch larger IP pool, from which it advertises
different IPs based on geographic location and load balgndihus, we expect CDNs to have a recruitment period.
However, since CDNs have a high recruitment speed (as pr&yidiscussed) and quickly advertise most of the
IPs in their IP pool, we do not expect them to have a very loeguiment period. When looking at the total online
time for a CDN, we expect to see a short recruitment periodh@tonset of the monitoring period, followed by a
longer period during which we mostly observe previouslgrsiPs. This trend is clearly demonstrated in Fig. 4, and
we can see that the CDN’s recruitment period is smaller thartdtal online period of the domain. From Fig. 3, it



is apparent that the recruitment period for the FFx2 domoédrand-girl.comis the same as its total online period.
That is, the entire time we observe the FFx2 domain to be eniins recruiting new IPs. The constant recruitment
of IPs is a result of DHCP churn and the unreliable nature efctbmpromised computers serving as bots. When the
compromised computers go offline, they are no longer aJailtds use in the botnet. As a result, new computers
must regularly be advertised to the DNS servers to ensurmétieious content is reachable. Of course, this results
in the nearly constant introduction of new IPs and the olexerecruitment period. The varying recruitment periods
of the different domain types should provide a beneficialrimdor distinguishing between them.

E. IP Continental Distribution

Having compiled a global view of numerous domains’ DNS bédrawe examined how FF domains, CDN
domains, and non-CDN domains differ in respect to their Itritiution (i.e., where the IPs returned in DNS
gueries are located geographically). We chose to examagebgraphic location of IPs based on continent instead
of the more finely grained country, because we quickly disced that, due to the close proximity of countries
in Europe, a country-based resolution would be too fine. Wiiewing the IP distribution based on continent,
however, distinguishing trends between the domain typearnhe more apparent.

In analyzing a domain’s IP distribution we asked the followviquestions:

Q1. What percentage of IPs returned in the DNS queries are lddata different continent than the DNS
server that was queried? We restate this, for succinctassthepercentage of IPs from the wrong continent

Q2: What percentage of IPs returned are located in each cotdimébased on the continent where the DNS
servers being queried are located? Likewise, for sucoisstnwe restate this as thentinental IP distribution

The answer to Q1 can be seen in Fig. 9 for some representaiivaids. For each domain, we plotted the
percentage of A and NA rec IPs from the wrong continent. Fragn @, it is evident that the CDN domain has a
considerably smaller proportion of IPs from the wrong coaitit than the other domain types. For both the CDN's
A and NA rec IPs, the percentage from the wrong continentsis tkan half that of the next lowest domain. Insight
into continental IP distribution (Q2) can be found in Figsard 8 for some sample domains. For brevity, we have
not plotted any FFx1 domains, since their results are a sufshe FFx2 domain type. In Figs. 7 and 8, the bars
represent the continental IP distribution from differeatgpectives. In each domain’s plot, the first bar represbats
continental IP distribution from a global perspective, \@tthe other bars are from the perspective of the different
continents where we deployed DIGGER nodes. For examplebaéindabeled “Asia” under theld-and-girl.com
plot in Fig. 7 indicates the percentage of A rec IPs locateeaoh continent base on queries by DIGGER nodes in
Asia to DNS servers in Asia. It is interesting to note in Figsand 8 that the continental IP distribution for both
FFx2 and non-CDN domains is fairly consistent across thierdifit continents, hardly deviating from the global
distribution. For CDN domains, on the other hand, the distion varies greatly.

The results in Figs. 9, 7, and 8 are promising. They indicat the percentage of IPs from the wrong
continent and the variance of the continental IP distrdyutacross continents could potentially serve as features
for distinguishing CDN domains from the other domain typesrthermore, these results are in agreement with
our current understanding of the various domain types. B&ta goal of CDNs is to provide fast, reliable services
to end users, their DNS query results often contain a mgjofittPs located near the DNS server and the issued
query, permitting quick content delivery by reducing thstaice data has to travel. Due to tlogation-aware
DNS advertisemerstrategy, CDNs demonstrate a smaller percentage of IPstiiermrong continent and a larger
variance in continental IP distribution than other domaipes. That is, more of a CDN’s IPs are located in the
same continent where the DIGGER nodes—and DNS serverseguereside, with respect to other continents.

Non-CDN domains operate with a much smaller number of serflth content and name) than CDN domains,
resulting in a smaller pool of server IPs. With a smaller degtable servers, non-CDNs don'’t require complicated
load balancing or location-aware DNS advertisement. atstéhey adopt a form afaive DNS advertisemeand
indiscriminately advertise their small pool of server IReumd the world nearly simultaneously (as can be seen
in Fig. 5). As a result, regardless of where DIGGER monitoreoa-CDN domain’s DNS queries, it will discover
the same, relatively small, set of IPs. This causes the memthl IP distribution at each continent to be the same
as the global distribution. Consequently, the percentdg’® from the wrong continent will reflect the global
distribution of our DIGGER nodes, depending on the locabbthe non-CDN domain’s servers. Fig. 7 shows that
for the non-CDN domairhostingprod.comalmost all of the A rec IPs are in N. America. Because abo@b 48
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our DIGGER nodes are located in N. America (Fig. 2), we find 8877% ofhostingprod.cors IPs are from the
wrong continent (Fig. 9), approximately the same percenag)DIGGER nodesot in N. America.

Unlike CDNs (location-aware DNS advertisement) and noriNG[naive DNS advertisement), FF domains use
what we termnecessity-based DNS advertisemdiiite advertisement strategy employed by botnets seensdetict
by the unstable nature of the individual bots. Since bots garoffline at any time, FF domains must rely on
whichever bots are currently available, regardless of ggaigc location. While FF domains don’t concurrently
advertise their entire IP pool globally (as non-CDNs dogytkvill advertise most of their IPs globally—eventually.
As necessity dictates, available IPs will be advertised SDservers around the globe, with little or no regard to
location. This is why FF domains have such a large perceradEs from the wrong continent and why their
continental IP distribution is nearly identical, acrosk @intinents, to the global distribution. Fortunately, 4be
features should permit us to discern FF and non-CDN domaams €DN domains. This can greatly simplify the
detection of FF domains by helping identify them from CDN#iat are often very similar in other respects.

F. Other Features

1) IP Address Online TimeThe IP address online time is defined as the time period dwhigh the IP address
is active (i.e., the IP address appears in the DIGGER quenyitsd. Because of the different sources of IPs used
by FF, CDN, and non-CDN domains, the online time of these IBresbes should vary with their type. Both
CDN and non-CDN domains host their content on well-mairgdiland stable servers throughout their lifetime,
ensuring constant services to their customers. As a coaseguthe online time of their IPs is expected to be
long. FF domains, on the other hand, advertise |IP addreka¢ptimarily come from compromised computers
with unreliable connectivity. Thus, the online time for FBnalain IPs is usually dramatically shorter than for the
IPs of valid domains. Fig. 10 shows the CDF (Cumulative igtion Function) of A rec IP online times for both
valid and FF domains. As expected, A rec IPs for non-CDN, CN BEFx1LNArec domains have much longer
online times than FFxArec and FFx2 domains, which make use of compromised comgpftde their A rec IPs.
For example, the percentage of A rec IPs with an online tirss taan 16 seconds#2.8 hrs) was<81% for the
FFx1 Arec domain,~68% for the FFx2 domain, and onk37% for the CDN domain; neither the FFENArec
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nor the non-CDN domain has any A rec IPs with an online timeeuridf secs. Unfortunately, while the A rec IP
online time appears to be a useful feature for identifyingeonalicious domains (i.e., FFx2 and FE&tec), the
same cannot be said for the NA rec IP online time. The FF dosradlvertise the IPs of more stable bots for their
NSes, making the online time of their NA rec IPs too close @t tf valid domains for classification purposes.

2) Number of Unique IP Addresses per Nod&nother interesting feature is the number of unique IPs seen
across the DIGGER nodes over time. To better understandehiare, we have generated CDF plots, showing the
number of unique A and NA rec IPs observed by our 240 DIGGEResaVer the~3.5 month monitoring period.

First, let's examine Fig. 11, the CDF plot for the number ofque A rec IPs per DIGGER node for some
representative domains. Neither the non-CDN nor the BR&tec domain had more than 18 unique A rec IPs
per node. Because the domains host their content on a felple starvers, we observe the same small set of IPs
at each DIGGER node, which is independent of DIGGER nodex@gphic location. In the CDN domain’s case,
more than 90% of the DIGGER nodes observe a small number gfuanh rec IPs. Specificallyx84% of the
DIGGER nodes observed less than 22 unique A rec #88% observed less than 100, and no node observed
more than 200. For the small percentage of DIGGER nodes thse¢ree a slight increase, the number is still
relatively small and is likely the result of load balancids FFx2 and FFxJArec domains’ bots go offline over
time, botmasters must continuously advertise new bot IRS @WNS to ensure the availability of their malicious
content. This trend is captured by the DIGGER nodes and shiowiig. 11. For the FFxJArec domain,~45%
of the DIGGER nodes detected over 100 unique A rec IPs, mane 35% detected over 200, and a few observed
over 700. The numbers observed for the FFx2 domain are eghethiwith over 80% of the nodes observing more
than 100,~63% over 200~/~43% more than 500, and several with more than 2,500. ClethdyFFx1Arec and
FFx2 domains possess a much higher average number of unigee WRs per node—a direct consequence of the
bots’ unreliable connectivity and, to a lesser extent, DH®BBrN.

While the average number of unique A rec IPs per node appeamiging as a feature for discriminating
FFxL1Arec and FFx2 from other domain types, the same cannot befsaithe average number of uniqué¢A
rec IPs, shown in Fig. 12. From the plot, it is apparent that FFs@ €DN domains possess many more unigue
NA rec IPs per node than any of the other domain types, inctutlhe FFxINArec domain. While we expected
this behavior from the FFx2 domain (for similar reasons as¢hdescribed for the A rec IPs), the CDN domain’s
behavior came as a surprise. Although the CDN domain appearslize more unique NA rec IPs per node on
average, the FFx2 domain does demonstrate a greater nurhbeigoe IPs seen at a single node: 999 IPs to
the CDN domain’s 727. It seems that, over time, CDNs can dideenumerous NSes with DNS, resulting in an
excessive number of unique NA rec IPs per node. This behaeiold arise because the CDN is trying to ensure
the availability of its NSes, affording it control to perforload balancing. In any case, the behavior of the FFx2
and CDN domains is very similar, causing the number of unijyAerec IPs to be an indistinctive feature.

3) Number of Nodes per IP AddresSince the number of unique IPs per node proved a promisirtgriefor
differentiation, we decided to look at the relationshipnirthe inverse perspective: for individual IP addresses, how
many different nodes (i.e., DNS servers) were the IP addsesgserved on. We restate this asrthenber of nodes
per IP addressFor the NA recs, this feature demonstrated no useful trémddifferentiation, but some interesting
behavior emerged in the A recs. Plotting the CDF for the nunaib@odes per A rec IP (Fig. 13), we can clearly
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see that FFx2 and FFxArec domains exhibit remarkably similar trends, separaimfthose of the other domain
types. Since the non-CDN domain advertises its small setatifles A rec IPs with every DNS server around the
globe, we observe nearly all the IPs on every node, and thasga humber of nodes per IP. The FEXArec
domain behaves similarly. However, since some of its A reccrifight belong to bots (or otherwise unstable content
servers), some of its IPs may not appear on all nodes. As aqgaeace of its location-aware DNS-advertisement
strategy, many of the CDN domain’s IPs will only be advedise a small set of nearby DNS servers, keeping its
average number of nodes per IP small. Likewise, the FFx2 &xd Rrec domains fall somewhere in between due
to their necessity-based DNS-advertisement strategyayt lne the case that bots with unstable connectivity only get
advertised to a handful of DNS servers before they go offliha.bot only intermittently loses connectivity, its IP
may eventually propagate to more DNS servers, increassmgpoitles-per-IP count. However, if the bot permanently
disconnects from the botnet, its nodes-per-IP count willai stunted, decreasing the overall average nodes-per-IP

4) Total Number of Unique IPsThe total number of unique IPs seen across all nodes oveptiowes remarkably
apt as a metric for distinguishing non-CDN domains from CDM &F domains. This is because, unlike CDN and
FF domains, non-CDN domains advertise only a few stableectir@nd name servers with DNS. Since a hon-CDN
domain’s A and NA rec IPs are seen ubiquitously around theeglthe total number of unique IPs observed by
the DIGGER nodes over time will be meager. Table I, which shtve number of IPs in the A and NA recs for
examples of the different domain types, demonstrates ffeste The CDN and FFx2 domains display abundant
IPs in their A and NA recs. While the FFxArec domains possess a modest number of NA rec IPs, they have
a substantial number of A rec IPs—a clear distinction fromoa-@DN domain. The opposite holds true for the
FFxL1NArec domain; the small number of IPs cause its A rec to regermlmon-CDN domain, while the much
larger number of NA rec IPs betrays this guise.

5) Reverse DNS Lookup and TTELhe last two features we will discuss seem to be obvious datel for use in
classification: the reverse DNS lookup result and the TTlueslof the A and NA recs. Clearly, if the reverse DNS
lookup on a domain contains suspicious words typical to heomaputers (e.g., comcast, dynamic, dial-up, etc.),
it is a strong indicator that the IP belongs to compromisethmater, or bot. Because an IP’s reverse DNS name
is set by the IP’s service provider and not the owner of theaopit cannot be faked by a botmaster. This makes
it a fairly useful metric for identifying bots. Unfortundye the reverse DNS lookup is highly unreliable. Often, a
reverse DNS lookup will not return a result, thus providing insight into the actual identity of the suspect IP.
Additionally, we don’t have a complete list of suspiciousrd& and occasionally, the presence of such words may
not be indicative of a bot; often, it is only after thorouglagalyzing the DNS data in conjunction with the reverse
DNS words that we can determine them to be bad, strengthenimglicious classification. Therefore, we have
decided not to incorporate the reverse DNS name for autordatinain classification. Instead, when present, we
use it to help reinforce or confirm our manual identificatidrite different domain types. By omitting it from our
automatic identification, we hope to gain a better insighd jpotential of the more reliable classification features.

The A and NA recs’ TTL values also appear highly useful fofediéntiating between the domain types. CDNs
and FF domains tend to use small TTL values, affording therigh llevel of control over the domain’s IPs. CDN
domains use this extra control for load balancing and ridiabntent delivery. FF domains are really only concerned
with reliable content delivery in the presence of unreliabbntent servers (i.e., bots). Non-CDNs, unperturbed by
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these concerns, use much longer TTL values for their stadiiéent and name servers. However, unlike many of
the other features we have previously explored, the TTLe/édunot an uncontrollable consequence of a botnet.
While it is difficult for a botmaster to mimic features suchaa€DN’s location-aware DNS-advertisement strategy
or a valid domain’s recruitment speed/period without $iinig content availability, this is not the case with the
TTL value. An IP’'s TTL value is set by the owner of the domainbdtmaster can easily increase the average TTL
value for its A or NA records without sacrificing the availétlyi of the malicious content. By setting a short TTL
value for some IPs and very large TTL values for others, tlegaye TTL of a FF domain can be made to look like
the average TTL of a non-CDN domain, without sacrificing thme fievel of control over some of the IPs. Those
IPs with large TTLs (used to inflate the average value) coeldrm to more reliable bots; they could just as easily
be bogus IPs that don'’t resolve to anything. So long as sontieeolPs (presumably those with the shorter TTLS)
resolve to online bots, the malicious content can still keehed. While we could try more complicated methods of
measuring the TTL values to account for this inflation teghei it would be just as easy for botmasters to come
up with another clever way to circumvent our metric. Botreessimply have too much control over the TTL value
for it to be a reliable feature for classification. Therefose have decided not to use it as such. It should be noted
that other features, like the recruitment speed and pedadnot be as easily manipulated by the botmaster, since
the unstable bot IPs necessitate constant recruitment.

G. MAL domains

As previously discussed in Section 1ll, a MAL domain fallsteawhere on the spectrum between a non-CDN
and FF domain. It is certainly less stable (over time) tha@@DN domain, but it is not fluxy enough in its A or
NA records to be considered a FF domain. While it may utilidble bots for its content or name servers, it most
likely employs a stable server rented—or possibly hijaekémm a hosting provider. In this sense, it is similar
to a non-CDN domain. Yet, unlike a non-CDN domain, a MAL doma not benign. It is a malicious domain,
partaking in malicious activities. As a consequence, isWhl likely be blocked eventually, requiring it to registe
fresh IPs with DNS in order to maintain its content availipilTherefore, assuming it will be eventually detected
and blocked, it must slowly and continuously recruit new—Hdbeit much more slowly than any FF domain.

This DNS advertising behavior means that, like FF and notN@Dmains, MAL domains will exhibit a large per-
centage of IPs from the wrong continent. This trend is shawmafrepresentative MAL domaits@fsny.jukutuxef.gn
in Fig. 9. Likewise, MAL domains will demonstrate a much skaalariance in their continental IP distribution
across continents than CDN domains, although we have rtedlditis plot due to space constraints. As a result,
these two features should still allow CDNs domains to eds#yidentified from the other domain types.

Other interesting features worth discussing for MAL dorsainclude the total number of unique IPs, the IP
overlap, and the recruitment speed and period. As can befiggarTable |, while the representative MAL domains
(duelreal.comand tsqgfsny.jukutuxef.grhave a small number of total unique IPs (like a non-CDN doaheir
IP overlap is exceptionally high (like a FF domain). Almo#tdad their A rec IPs are also used for their NA recs.
This sets them apart from both non-CDNs and FF domains, girayia useful metric for classification. Looking
at Fig. 6, we can see that the MAL domadsgfsny.jukutuxef.cdemonstrates a slow and steady recruitment of IPs.
Clearly, this is different than the recruitment behavioraafion-CDN domain (Fig. 5); however, it initially appears
quite similar to that of a FF domain (Fig. 3). Upon closer eiation, it is revealed that unlike FF domains, which
recruit hundreds to thousands of IPs, the MAL domain resroiitly tens of IPs overc3.5 months.This is a drastic
difference, and it should prove beneficial in distinguishMAL domains from non-CDN and FF domains.

V. DETECTION METHODOLOGY
A. Overview

Our observations in Section IV indicate that the differeatnéin types could be identified based on behavioral
features of their global DNS activity. To demonstrate this, have build a a rudimentary, proof-of-concept detector,
utilizing a multi-leveled linear SVM (Support Vector Mact&) classifier. The rest of this section describes the design
and implementation of this classifier, including how we difeed the behavioral features, chose which features to
apply at each stage (or level), determined the order of thgest and finally, how the SVMs were trained.
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II: Features for classifying the domain types into diffeérgnoups

B. Classification Features

Table Il shows the features we considered using in the @kassind how they are likely to group the domain
types. Each feature has been given a number to simplify jiieesentation throughout the paper. With the exception
of feature F3, each feature can be applied to a domain’s A orréh and while not displayed in Table II, the
features can also be applied to the combined IP pool of thedAN# recs, represented as (A + NA). Notice that
we do not consider the NA rec for features F2 and F9, becausamalysis showed that they were not useful
distinguishing features. Lastly, the column labeled “Dim&ype Classification Groups” in Table Il shows how
each feature—when applied to the A or NA rec—uwill likely gpotine different domain types, represented by square
brackets. Table Il does not express hard-and-fast rulesderfeatures classify the domain types. Rather, it shows
likely groupings: domain types tending to produce similar reswite respect to a given feature and record type.
Thus, Table Il is a helpful visual tool for determining thepéipation of features at different SVM levels. Using
numerical subscripts, we have indicated the order our ifilsdetects the domain types.

1) Spatial and Temporal IncongruitiesAs previously mentioned, DIGGER collected DNS data fromuarb
the world on over 106,000 different domains f&8.5 months. During that time, some of the PlanetLab nodes
sporadically went offline. This could result from a numberpofsibilities, including node maintenance, improper
configuration, node failure due to over-utilization, etes A result of this instability, our data contains some gaps
in its spatial consistency: sometimes, we are missing data different parts of the world. Compounding this
problem, is the temporal inconsistency introduced by thanmeaof malicious domains. When it is discovered that a
domain is partaking in malicious activities, DNS serverg/rohoose from a couple of countermeasures. Some may
choose to block (or blacklist) the domain, responding thatdomain is unknown or doesn'’t exist. Another option
is to perform DNS domain IP parking, replying with an IP addréhat doesn't belong to the malicious domain—
possibly belonging to a website informing the user that thmain is unreachable or has been blocked. Not only do
DNS servers handle identified malicious domains diffesentley may do so at different times, or not at all. When
taken together with the spatial inconsistency introducethbtability of the PlanetLab nodes, we find that DIGGER
doesn't have a complete global view for certain domains. dsihtcases, this means we are only missing data from
a few nodes around the globe at any given time. Consideriadatfye number of nodes we gather data from, the
effect is negligible. However, in the worst cases, we onlyeha handful of nodes that managed to gather relevant
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DNS data for a domain before it's taken offline and replacedtdbpwner. In these worst-case scenarios, our view
might be confined to just a few countries or continents. Whikeny of the features in Table Il are robust in the
presence of spacial inconsistencies, F2 is not. For thioreave have chosen not to use it in our data set, although
it could still serve as a reliable metric for classificatidle have also decided to omit the temporally-sensitive
feature, F9. To effectively use such a feature, one showdtldetermine the optimal monitoring period for detection
and then rigorously monitor each domain for that specifiegoeof time. Otherwise, the temporal deviations caused
by malicious domains going offline become influential. Onaldanonitor a malicious domain only at the tail-end
of its lifetime while monitoring another from its onset t@ ilemise. Both are malicious domains, yet they would
have very different average IP online times simply as a apusece ofvhenin their lifetimes they were monitored.
How to solve this problem and that of finding an optimal moriitg period despite domains unexpectedly going
offline, DNS domain IP parking, and failing nodes is beyonrel skhope of this paper. Furthermore, it is unnecessary
since we can rely on other features which are more resiletgrmporal deviations. By neglecting F9, we can build
our classifier to operate over our entire data set, spamaB§ months.

Neglecting features F2 and F9 is reasonable for a prooboéept classifier. Since our main goal is to demonstrate
the potential usefulnesmostof these differentiating features possess for classifinative leave the problem of
finding the absolute minimal monitoring period and numbemohitoring nodes (and their location) as future work.

2) Feature QuantificationWith the exception of F2 and F9, which we don’t use for reagasiously explained,
the features in Table Il are quantified as outlined below.oflthe features, except F3 (A & NA rec overlap), were
guantified using the IPs of the three different record typAs-NA and (A + NA) recs—to produce 3 distinct
values. Which of these values is used at each stage of theifidass discussed in Section V-C.2. Each feature is
calculated for each domain monitored by DIGGER over thel t8ta5 month duration.

F1: Let B = number of unique IPs on node and letN = number of nodes (of the 240 total) where the
number of unique IP& 1. Then, the average number of unique IPs per node (F1) is ceth@s:

ShaR
Fl= N Q)
F3: represents the percentage of unique IPs that overlap betiiveeA and NA recs. Thus, if all the IPs from
one record type are also used for the other record type, thilree a 100% IP overlap. For a given domain across
all nodes, letP, be the set of unique A rec IPs aida be the set of unique NA rec IPs. Then, F3 is calculated as:

~|PaNPnal
= Tin{[Pal, [Pal) @)

F4: Using an online database [25], we were able to determinedbatry of origin for most IPs observed by
DIGGER. For those IPs not present in the database, we wegd@bkrform a “who is” lookup and determine most
of their countries of origin. The few remaining IPs whosealti@n couldn't be determined were labeled “unknown”.
Thus, for nearly all IPs monitored by DIGGER, we could det@emwhich continent the IP was located on: N.
America, S. America, Europe, Asia, Africa, Oceania, Aniaeg and—very rarely—unknown. L&% = number of
unique IPs on node that are located in a different (i.e., wrong) continent timmalei. Let B = total number of
unique IPs on nodé Then, the percentage of IPs from the wrong continent (F4pimputed as:

®3)

F5: We want to determine thaveragecontinental IP distribution across all nodes from a giventicent.

To obtain this, we grouped the nodes together based on thineonthey are located in. Then, we examined
each group of nodes, tallying the number of unique IPs (pelehseen from each continent. If, for example, an
IP appears on more than one node from a given continent, litbeilcounted once for each node it appears on.
Calculating a continent’s continental IP distribution histway is more robust to misbehaving or abnormal nodes
and better reflects the continental IP distribution of thgomiy of nodes from a given continent.

Recall from Section IV-E that CDN domains differ from the etldomain types due to their location-aware DNS
advertisement strategy. The continental IP distributibra €DN domain will be biased in favor of the queried
node’s continent. Contrarily, the other domain types wéhtbnstrate nearly identical continental IP distributions
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regardless of the queried node’s location (see Figs. 7 andTi&refore, we want to quantify how similar this
distribution appeared between continents, enabling usstteth CDNs from the other domain types.

Let the continents N. America, S. America, Europe, Asia,jodfr Oceania, Antarctic and “unknown” be repre-
sented by the numbers 1-8, respectively. Thgr; number of nodes on continentfor 1 <i <4 (continents with
DIGGER nodes). For nodg let & be a vector representing the number of unique IPs seen fraim @tinent.
Thus,a1d is the number of unique IPs from contindnthat were seen on node Then, for each continerntwith
DIGGER nodes, where & i < 4, we calculateA' as shown in Eq. (4). We calculate the cosine similarity (show
in Eq. (5)) between every possible pair of vectdis for 1 <i < 4, and then take the average, producing the IP
continental distribution’s average cosine similarity YFbBhe closer this value is to 1, the more similar the contiaken
IP distributions appear on each continent, and the lesly/like domain is a CDN domain.

n; ~ ~
A=Y al TR XeY
A= J;a (4) Similarity(X,Y) = co9 = m (5)
F6/F7: First, we calculate a domain’s online time, denotedTgsas tLe amount of time we consider the

domain to be online. Analyzing all available DNS query datanf all nodes, we consider amline pointto be a
point in time where we have observed IP addresses. If therdiite in time between two consecutirdine points
is less than a threshold of several hours, we add it toTgh&lext, we calculate the domain’s recruit time, denoted
asT,. We consider aecruit pointto be a point in time where we have observedeavIP address (i.e., one that
hasn't occurred earlier in time). If the difference in timetlween two consecutiveecruit pointsis less than the
threshold, we add the it t®. Let P = the total number of unique IPs observed globally for a domahen, the
IP recruiting speed (F6) and period (F7) are calculated as:
F6= T (6) F7= % @)

In those instances wherre all of a domain’s IPs are obser\&ldritane%usly, resulting in|® =0, we set F6 to
1. This value corresponds to a rate of one new IP every se@mtljt was great enough in magnitude from all
other observed values to serve as a rough approximatiomfioity.

F8: We look at every DNS query gathered by all the DIGGER nodesengkier we encounter a previously-

unseen IP, we count it. After examining all available DNSorels, the final sum is considered the total unique IPs
(F8) for a domain. It represents the number of different IBsduby a domain around the world.

C. SVM Classifier

1) Rule-based Filter:Before testing our SVM classifiers, we applied a simple,-hdsed filter to remove any
domains that were unlikely to be malicious. The filter alsaoigegs domains that clearly belong to CDNs, allowing
us to test the accuracy of our SVM detector. If any of the feifgg rules applied to the domains, they remained
in the testing set, otherwise they were removed: (1) any IRsiA or NA rec had a max TTL less than 1 day,
(2) its A or NA recs contained more than 10 IPs over the entiomitoring period, (3) its reverse DNS lookup
contained a suspicious word (e.g., comcast, charter, dignaimalup, etc.), and (4) its reverse DNS lookup indicated
it was a known CDN domain (e.g., contained words like akami)s simple filter removed all the valid, easily
identified domains. Any domain with a max TTL value of morertteaday in both its A and NA recs is probably
not suspicious. If it is FF domain or a MAL domain using stabégvers and acting sufficiently suspicious (i.e.,
its IPs are becoming blocked), it should accrue more tharP$0after~3.5 months of monitoring. Clearly, if any
of its DNS lookups indicate the use of a home computer it cdiddmalicious, warranting further examination.
Lastly, any domains with reverse DNS lookups indicatingWwnaCDNs are included so we can test our SVM’s
ability in identifying CDN domains. Applying this filter touwr set of 106,000+ domains reduced our testing set
to 5,422 remaining domains. Finally, we removed any domaiitls insufficient DNS query data. This included
250 domains momentarily observed by single nodes and 3 denmadnitored by less than 25% of our DIGGER
nodes, bringing the total testing set to 5,169 domains.

2) Multi-level SVM: Fig. 14 shows the design of our multi-leveled SVM classified ¢he results of our training
and testing sets. Each level of the SVM classifies one of tmeaito types from the total set of unknown domains.
This progressively reduces the number of unknown domaieset level, simplifying the task at subsequent levels
and allowing us to automatically identify the domain typEach oval in the figure represents a domain type that
has been classified. Each rectangle represents a set opleulthknown domain types remaining to be classified.
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SVM-1
Features: F3, F4
Records: A, NA

SVM-2
Features: F2, F5, F6
Records: (A + NA)

SVM-3
Features: F5, F6, F7
Records: (A + NA)

SVM-4
Features: F1, F2, F5, F6, F7
Records: A, NA

SVM-5
Features: F1, F5, F6, F7
Records: A, NA

FF
MAL
non-CDN

ALLTEST
DOMAINS

FF
MAL

FF FFx1 FFx1_NArec

Train:1
Test: 53

Train:19
Test: 179

Train:8
Test: 141

Train:50
Test: 5,169

Train:29
Test: 4,873

Train:40
Test: 5,152

CDN non-CDN MAL FFx2 FFx1_Arec

Train: 10 Train: 11 Train: 10 Train: 11 Train:7
Test: 17 Test: 279 Test: 4,694 Test: 38 Test: 88

14: SVM flowchart

b F1 P2 F3 F4 F5 F6 F7

(bias term) | A NA A NA A NA A NA | (A+NA) A NA (A+NA) A NA | (A+NA)
SVM-1 | 284.69 -108.10 | -88.90 | -124.83 | -160.60 CDN
SVM-2 | 128.26 -217.20 47.23 -2,072.45 non-CDN
SVM-3 | 192.04 1.32E-06 -4.06E-03 -1.77 MAL
SVM-4 | -390.75 | 3.13 | 1254 | 027 -1.14E-03 | -0.03 0.42 0.21 037 | 038 FFx2
SVM-5 | 933.52 042 | -0.03 2.28E-06 | 0.02 7.30E-04 | -4.01E-03 174 | -5.31 FFx1_Arec

Result >0

lll; Linear SVM equations

The values for “Train” show how many examples of a given domgpe (or group of domain types) were used
when training that level of the classifier. The values forsiTendicate the number of domains that were classified
(or remained to be classified) when we applied each tier otkhssifier to our testing set. We manually identified
about 10 representative domains of each type to be usedimntgaas show in in Fig. 14. More difficult to detect
by hand, we were only able to manually identify a single FR&rec domain.

Table Il shows the bias and feature weights for each levelunfclassifier. Those features not used at a particular
level are shaded black. For each SVM, tResultis calculated as theias termplus the product of the feature
and its weight. The Result> 0” column indicates how a domain with a positiResultwill be classified. The
exception is FFxINArec domains, which are classified when SVM-Rssultis negative. In addition to indicating
how the domain should be classified, the magnitude oRbsultrepresents the confidence in classification choice.

As we classify each domain type, it is removed from the setndhown domains before applying the next SVM
level. Thus, when considering the classification featuoeddvel SVM-%x we can ignore domain types in Table |l
with numbers less thar Due to the similarities some domain types share betwednigdeatures, therder we
apply the classifiers and which features we use at each legsinbes important. The proper order can exploit the
strong differentiating features between certain domajresy We will now explain the features used at each level
of our SVM classifier and justify the order of classification.

SVM-1: CDN domains tend to have a short recruit period (F7) and aréastit speed (F6) when compared to
MAL and FF domains. In the case of non-CDN domains, all thedisoften seen simultaneously, resulting in no
recruit period and an instantaneous recruit speed. Sinck 4 non-CDN domains are similar in the total number
of unique IPs seen, this difference in recruit speed andgdsecomes an important differentiating feature. If we
were to classify non-CDN domains first, F6 and F7 would rexé#gs weight, putting the burden of differentiation
on F3 (IP overlap). Moreover, F4 and F5 are strong indicaddr€DN domains due to their DNS strategy; none
of the other domain types display this location-aware biehmaVherefore, we can remove CDN domains from the
unknown set first with high accuracy. Since CDN domains camabe similarly to FF domains in other respects
(e.g., large number of IPs), removing them first will impraugccessive classification. For these reasons, SVM-1
was trained on 10 CDN domains and 40 other domains (i.e.,GidN; MAL, and FF), using F4 and F5 on the
domains’ A and NA recs. As we can see from Table Ill, a large@eatage of IPs from the wrong continent (F4) or
similar IP distributions on each continent (F5) will gertera negativdResult Thus, only CDN domains, practicing
a location-aware DNS advertisement strategy, will obtaisitive values. We ran SVM-1 on our testing set of 5,169
domains. It identified a total of 17 CDN domains, which we madlyverified then removed from the testing set.

SVM-2: With CDN domains removed from the testing set, F6 and F7 coald be used to their full potential.
While non-CDN domains advertise all there IPs nearly insta@ously, both MAL and FF domains will need to
recruit IPs over time. Additionally, MAL and FF domains magssess IP overlap; this should never be the case
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for valid non-CDN domains. Thus, for SVM-2, we use F6, F7, &3d However, unlike SVM-1, where we applied
the features to the A and NA recs individually, SVM-2 lookdfa combined (A + NA) recs, accounting for FFx1
domains demonstrating fluxy behavior in only a single redgpt—the other often appearing benign. We trained
SVM-2 on 11 representative non-CDN domains and 29 of the FRVAL domains. When applied to the remaining
5,152 unknown domains, it classified 279 as non-CDN. We nilhnanalyzed the 69 boarder cases wilesults
closest to 0 and found them to be satisfactorily classifieesé results will be discussed further in Section V-D.1.
From Table I, we can see that F7 is the dominating featdrdnel domain demonstrates any significant recruitment
period, it is unlikely to be a non-CDN domain. Had CDN domaimd been previously classified and removed,
this feature would have been less prominent, forcing thesdier to depend on the more unreliable F3.

SVM-3: After removing the non-CDN domains identified by SVM-2, testing set was entirely composed of
malicious domains (i.e., FF and MAL). Due to the many siniiles between FFx1 and FFx2 domains, it seemed
logical to classify MAL domains next. F8 is the most obvioustidguishing feature between MAL and FF domains,
but we suspected that F6 and F7 might also prove useful, §irRadomains should recruit more IPs over a greater
percentage of their online time. SVM-3 applies F6, F7 andd=®é domains’ (A + NA) recs, again to account for
FFx1 domains. We trained SVM-3 on a representative set of AQ BMomains and 19 FF domains. When applied
to the testing set of 4,873 malicious domains, it identifie@4 MAL domains and 179 FF domains. Looking at
SVM-3 in Table I, we see that the dominant feature in digtiishing MAL domains from FF domains is F8: the
number of unique IPs. Because of their slower IP recruitnatet, MAL domains will be quickly outpaced by FF
domains, resulting in a much lower number of unique IPs. Tifference will be accentuated with time, causing
it to be the dominant classification feature for eu8.5 months of data.

SVM-4: After three stages of the classifier, only FF domains renthinghe testing set. By definition, the
only thing distinguishing the FF domains is which recordetygemonstrates fluxiness. A combination of the two
FFx1 domain types, FFx2 domains should be the next candidatgassification. From Table Il, it appears that
applying F1, F3, F6, F7 and F8 to the individual A and NA recsudtt discern FFx2 from FFx1 domains. For F1,
F6, F7 and F8, all the FF domains will demonstrate fluxy bedraliut the FFx2 domain will demonstrate twice
as much as either FFx1 domain. This will also cause the IPlagv€F3) experienced by FFx2 domains—which
use botnets for both record types—to be considerably laWjertrained SVM-4 on a representative set of 11 FFx2
domains and 8 FFx1 domains. While F6 appears less signifiteatures F3, F7, and F8 contribute nearly equally
in classification, and F1 is a strong indicator of FFx2 domairhese results and their implications will be detailed
in Section V-D.3. Applying SVM-4 to the 179 remaining FF ddnsaresulted in the classification of 38 FFx2 and
141 FFx1 domains, which we manually verified.

SVM-5: The final level of the classifier is charged with the modedt tddiscriminating between FFxArec
and FFxINArec domains. With the exception of F3, SVM-5 makes use ef same features and record types
as SVM-4 for similar reasons. F3 is ignored at this stageesthe FFx1 domains should experience comparable,
modest-to-no IP overlap. If a FFx1 domain demonstrates tochnhP overlap, the fluxy behavior becomes visible in
both record types, and the domain can be considered FFx2udéfalness of the other features is straightforward:
for FFx1 Arec domains, the features will appear more fluxy in the A reecsl the opposite holds for FF2Arec
domains. Unfortunately, we were only able to find a single ERArec domain by hand for training purposes.
When applying SVM-5 to the 141 FFx1 domains, we were surgrisefind 53 of them were actually classified
as FFxINArec domains. We examined the results by hand and discovbey were indeed correctly identified
as FFx1INArec domains. We will examine these results and possibdaeations in in Section V-D.4. Table lli
shows that F6 and F7 became negligible for SVM-5. F1 holdsesimrffuence in classification, but the dominating
feature is clearly F8. By this SVM stage, the testing set @@ entirely of FFx1 domains, and since the fluxy
record type naturally accrues more IPs with time, F8 stiypmgfluences classification.

D. Results

1) False Positives:From our classifier’s results at each stage, only SVM-2 wamdoto experience any false
positives; two FFxJArec domains were incorrectly identified as non-CDN due to>dédmain IP parking, which
caused the IPs to resemble the stable and benign behaviactdrdstic of non-CDN domains. When we initially
analyzed DIGGER's data, we discovered a couple of nodesré¢fiably partook in IP parking using the same set
of IPs. Their parking behavior is easily observed in Figsah8 16 as two long, constant lines with positive Node
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Index values, indicating parking in the A rec. Appearing aegistent, stable IP addresses, these parked IPs cause
a domain to appear more benign than it actually is, and ifr iméluence dominates, our classifier could consider
the domain to be non-CDN. We removed the influence of IP pgrkine to these two nodes by ignoring the
associated parking data when present. However, in retilidge were not the only nodes performing IP parking—
though they were the most consistent. Since we didn't filiex behavior for all nodes, they affected classification,
accounting for SVM-2’s two false positives. For examplengider the similar domains in Figs. 16 and 15. For the
misclassified domain in Fig. 16, a large majority of nodegiga¢ed IP parking in both record types, confusing
our classifier. While initially the domain appears fluxy, therking behavior of multiple nodes dominates over its
lifetime, causing it to be classified as non-CDN. While cdesed a false positive, this labeling is rather subjective,
since for the majority of the domain’s lifetime dtloesresemble a non-CDN due to IP parking. Since our classifier
is temporally naive (we consider all available data over s3t5 month monitoring period), this misclassification
is entirely reasonable; nevertheless, it would be bettatetermine an optimal monitoring period and identify IP
parking techniques. This is part of our future work.

2) Cautious MAL domainsWhile manually validating SVM-3's results, we discoveredbdrderline MAL
domains exhibiting atypical IP behavior, one of which iswhan Fig. 17. Recruiting less than 50 A rec IPs
over ~2.5 months (the domain was parked afterwards), it is not flarpugh to be considered a FFEAtec
domain. However, its uncannily regular IP recruitmentidgishes it from other MAL domains. Further analysis
revealed that the domains advertise only a single A rec IPgpery, with a max TTL of one minute. Despite
this fine level of control, the domains only replace the IPeoadaday, adhering to a meticulously precise schedule.
Additionally, we can see from Fig. 17, that once changed,Ahec IPs are not reused. Since these malicious
domains are not fluxy enough to be considered FF, they areattyriclassified as MAL domains, but their behavior
implies a management strategy different from most MAL dameaiThey appear to be a type chutiousMAL
domain, regularly and preemptively replacing their A res before they can be detected and blocked—though the
short TTL permits rapid response when required. With onlygtances observed, this behavior is currently very
rare. Nevertheless, the strategy is interesting and may g@pularity among malicious domain owners trying to
evade current detection technologies, warranting futasearch into these domains and how to better detect and
subvert them.

3) FF domains: Another interesting aspect of our classifier is how it digtishes between the various FF
domains. Recall from Table Il that F1 is the dominant featfar SVM-4, with the NA rec being 4x as influential
as the A rec. This assessment makes sense and is in agreeitteatiivobserved data. From Table | and Fig. 3,
we see that the FF domains recruit more IPs for their A recs thair NA recs, making the A recs appear more
fluxy. Therefore, for SVM-4, behavior that isn’t consideriaky enough for the A rec could be sufficient when
demonstrated in the NA rec. The consequence of this asynemegtighting of fluxiness can be witnessed in Fig. 18
(a domain classified as FFx2) and Fig. 19 (a domain classifideFa1NArec). The first thing to notice about both
of these domains is that they demonstrate definite fluxy hehawvone of their record types. Fig. 18 is clearly fluxy
in the A rec, while Fig. 19 is clearly fluxy in the NA rec. Howeyat a first glance, neither domain appears overly
fluxy in their other record. The FFx2 domain seems relatiaible for most of its NA rec, with what appears to
be fluxy behavior for=20-30 of its NA rec IPs. In the case of the FEXMArec domain, which only has about 30
IPs in its A rec, the recruitment behavior resembles that &Ad. domain; it slowly and consistently recruits a
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Domain Type | #ofd i ‘ % of ALL | % of ALL (TEST) | % of MAL/FF | % of FF \ % of FFx1
ALL 106,311
SIMPLE FILTER 101,142 95.14%
ALL TEST 5,169 4.86%
CDN 17 0.02%
non-CDN 279 0.26%
MAL/FF 4873 | 4.58%
MAL 4,694 4.42%
FF 179 | 017%
FFx2 38 0.04% 21.23%
FFx1 141 | 013% 2.73% 2.89% 78.77%
FFx1_Arec 88 | 0.08% 1.70% 1.81% 49.16% | 62.41%
FFx1_NArec 53 0.05% 1.03% 1.09% 2961% | 37.59%

IV: Relative distributions of the various domain types

small number of IPs over the duration of the monitoring perilm addition, the IP overlap for the FFx4Arec
domain is less than 4%. Thus, in this case, the classifier seerhave performed correctly: a domain with FF
behavior in its NA rec and MAL behavior in its A rec should bensmlered a FFxNArec domain. However, it
isn't immediately obvious why the FFx2 domain is consideftedy in its NA rec. We already know that NA recs
require less fluxy behavior to be considered FF. Clearly,RRg2 domain does demonstrate some FF behavior
in its NA rec. Furthermore, the FFx2 domain has an IP overlapz26%, about the same number of NA rec
IPs demonstrating recruitment behavior. That26% of NA rec IPs are also present in the A rec, and their fluxy
behavior influences the NA rec’s behavior. Because the tatalber of unique NA rec IPs is approaching 100 and
~26% of them demonstrate fluxy behavior, the less stringeririiss demands for the NA rec are met. Since both
the A and NA rec behave reasonably fluxy, the domain is cdyretdssified as FFx2.

4) Domain Type Distribution:Table IV shows the number and distribution for each domajpe tidentified by
our classifier. For example, it shows that of the 106,311 desnave monitored, our rule-based filter (Section V-
C.1) identified 101,142 domains as benign or lacking in sefficdata—corresponding to 95.14% of our monitored
domains. This is reasonable, considering the fact that timeaghs monitored were extracted from online malware
and phishing repositories or from spam emails. Most malgidomains are only active for a short period of
time before they are discovered and blocked. DIGGER woulet ltallected little-to-no valid data for these dead
domains, and they would have been filtered out. Not all hyqeslin spam belong to malicious or phishing websites;
some contain links for legitimate companies peddling wéikescheap pharmaceutical, herbal supplements, online
pornography, etc. These companies may not be doing anglillegivities, (or doing them discreetly enough not to
be caught), allowing them to utilize stable, legitimatevees. Thus, it is not unreasonable f885% of domains
to be removed by the rule-based filter.

Continuing to look at Table IV, we see that MAL and FF domainsaaunt for 94.27% of the remaining 5,169
test domains. Again, this is in line with our expectationece we have already removed the most benign of the
non-CDN domains. Since the domain list is generated frompisigais sources, it is reasonable that few would be
utilizing the extensive CDN infrastructure typically erapéd by more popular and reputable domains. Of the 4,873
nefarious domainsz96% were MAL domains, with only 179 being FF domains. Thiguleis not surprising, since
MAL domains—due to their ease of management—are the toaditiand most popular mechanism employed by
malicious websites. A MAL domain typically makes use of dgadiervers rented from less-than-reputable hosting
providers. When the domain is discovered and its IPs arekbthcthe owner must find a new, shady hosting
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provider willing to host the malicious content.

The additional level of misdirection and the nearly limégesupply of IPs enable botnets to make FF domains
appealing, despite their more diligent maintenance requénts. Thus far, it has been primarily FEAfiec domains
observed in the wild, and their popularity is supported vaithr findings:~49% of the FF domains are FF@rec.
Unsurprisingly, FFx1Arec domains are the most popular, since they provide thatgsereturn on their investment,
affording botmasters an additional layer of misdirectioithaut the hassle of maintaining volatile botnet NSes.
Botmaster must still monitor the domain and replace thedtdfs to avoid an interruption of service, but this task
is greatly simplified with the use of stable NSes. Unfortehafor botmasters, security professionals have become
aware of the FFxJArec botnet technique, devising clever detection stratediVhile the botnet provides a steady
source of fresh A rec IPs, the NSes can still be blocked, nigghe botmaster’s control until new NSes can be
acquired. As a means of botmasters overcoming this difficwie withessed considerable presence of FFx2 domains,
composing=21% of the FF domains. FFx2 domains improve upon FRrdc domains by providing an additional
layer of misdirection, further protecting the botmastdedtly, FFx2 domains require a more diligent management
effort than FFx1Arec domains; in addition to the A rec, the botmaster muststamtly replace IPs for the NA
rec as well. However, this extra effort also makes FFx2 damanore difficult to subvert, protecting the NSes
against simple countermeasures such as IP blocking. $titegéy, when we analyzed the identified FFx2 domains,
we found there was a spectrum in the amount of NA rec fluxinessiéisters were incorporating. Obviously, there
were domains that were incredibly fluxy in both record tymesdemonstrated bgld-and-girl.com(Fig. 3). Such
FFx2 behavior is essentially what we had envisioned whetyaqpthe better-known, fluxy A rec behavior to the
NA rec. While it's interesting to observe these aggressivgZ-domains in the wild, it was the FFx2 domains at
the other end of the spectrum that proved more insightfulaAsxample, recall the more modest FFx2 domain
ehuytyt.cnshown in Fig. 18. With over 2,500 unique A rec IRhuytyt.cnis extremely considerably more more
fluxy in its A rec than its NA rec. Using stable bot IPs from itsréc for roughly a quarter of its NA rec IPs,
FFx2 domains likeehuytyt.cnbenefit from the increased control and stability provideditaglitional NSes, while
simultaneously enhancing the domain’s resilience to sigime—for a minimal increase in management—through
the use of botnets.

Another interesting discovery is the apparent popularftFlex1_NArec domains, accounting fae30% of the
total FF domains observed. Surprisingly, this is a largaratthan the FFx2 domains. It seems that botmasters
have become aware of security professionals analyzing iama recs for FF behavior. Consequently, they have
migrated the fluxy behavior to the NA recs, where it is morelifto remain unnoticed. Fig. 19 is a typical example
of the FFx1NArec domains identified by our classifier. It demonstratdd/d. domain strategy for its A rec IPs
and a FF strategy for its NA rec IPs. This results in the dorapjpearing more benign when its A recs are analyzed,
while providing the botmaster with a fine level of control owke NSes. Should the domain’s malicious activity
be detected and the A rec IPs blocked, the botmaster, hastamed control over the NSes, can easily replace the
IP’s with minimal service interruption. The implication &fis discovered behavior is straightforward: both record
types must be monitored for fluxy behavior in order to quicklgntify FF domains and their botnets. A real-time
monitor analyzing only domains’ A recs will not identify FENArec domains as fluxy, and it could take days for
the A rec’s MAL domain behavior to display its slow, steadyréeruitment; even then, the observed recruitment is
a side effect of others detecting the malicious domain andKuhg its IPs. However, a real-time detection system
monitoring NA recs for fluxy behavior could determine the @gomto be FF in a much shorter period of time—quite
possibly before any MAL domain behavior becomes apparetitdrA rec. Obviously, the faster malicious domains
can be identified, the sooner they can be shutdown or haverbgirious influence mitigated.

VI. CONCLUSION AND FUTURE WORK

In this paper, we examined the global IP-usage patternsbigatliby different types of malicious and benign
domains, including FFx1 and FFx2 domains. We have deploy&@3ER, a lightweight DNS probing engine, on
240 PlanetLab nodes spanning 4 continents. Collecting D&& for over 3.5 months on a plethora of domains, our
global vantage point enabled us to identify the various $Bge patterns inherent to the operation of the different
domain types. Conducting a detailed analysis, we were aldetermine distinguishing behavioral features between
the domain types based on their DNS query results. We havatifjed these features and demonstrated their
effectiveness for detection by building a proof-of-coricepulti-leveled SVM classifier capable of discriminating
between five domain types: CDN, non-CDN, MAL, FFx2, FEXfec and FFxINArec. Applying our classifier
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on a set of 5,169 unknown domains produced promising restdisectly categorizing the domains with only 2
false positives—due to DNS domain IP parking. Our clasdificaresults showed the relative distribution of the
domain types in our testing data and the current state of Ffadts, including the increased presence and versatile
implementation range of FFx2 domains. We have shown thaintss is typically more pronounced in A recs, and
that there is an apparent trend towards using FNAtec domains, which were previously unseen in the wild.

While our multi-leveled classifier has proven effective deitifying the different domain types, it is only a
proof-of-concept detector. It is temporally naive, opgigbver the complete set of data gathered during DIGGER'’s
~3.5-month monitoring period. Additionally, our data wagsrgaed by 240 nodes dispersed around the globe. An
optimal and practical detector should function over a muwdrter duration, relying on fewer nodes. The problem of
determining the optimal monitoring period, the minimal rhen of nodes, and how to handle anomalous behavior
like DNS domain IP parking and node failure remains as futwoek. Additionally, further study into the cautious
MAL domains is required to better detect and subvert thenstlizacontinued analysis and global monitoring of
malicious domains by DIGGER should be conducted to keep i thie future direction of malicious domains,
improving detection and mitigation strategies.
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