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Abstract

Botnet-based hosting or redirection/proxy services provide botmasters with an ideal platform for hosting mali-
cious and illegal contents while affording them a high levelof misdirection and protection. Because of the unreliable
connectivity of the constituent bots (e.g., compromised home computers), domains built atop botnets require frequent
updates to their DNS records, replacing the IPs of offline bots with active ones to prevent a disruption in service.
Consequently, their DNS records contain a large number of constantly-changing (i.e., “fluxy”) IPs, earning them the
descriptive moniker of fast-flux domains—or, when both the content and name servers are fluxy, double fast-flux
domains. In this paper, we examine the global IP-usage patterns exhibited by different types of malicious and benign
domains, including single and double fast-flux domains. We have deployed a lightweight DNS probing engine, called
DIGGER, on 240 PlanetLab nodes spanning 4 continents. Collecting DNS data for over 3.5 months on a plethora
of domains, our global vantage point enabled us to identify distinguishing behavioral features between them based
on their DNS-query results. We have quantified these features and demonstrated their effectiveness for detection by
building a proof-of-concept, multi-leveled SVM classifiercapable of discriminating between five different types of
domains with minimal false positives. We uncovered new, cautious IP-management strategies currently employed by
criminals to evade detection. Our results provide insight into the current global state of fast-flux botnets, includingthe
increased presence of double fast-flux domains and their range in implementation. In addition, we expose potential
trends for botnet-based services, uncovering previously-unseen domains whose name serversalone demonstrate
fast-flux behavior.

I. INTRODUCTION

A botnet is a vast collection of compromised computers underthe control of a botmaster utilizing a common
Command-and-Control (C&C) infrastructure. By exploitingInternet Relay Chat (IRC), peer-to-peer (P2P), and
other protocols as flexible and extensible means for C&C, botnets have gained a great deal of versatility in
providing malicious services and generating profit. The ability to coordinate thousands of individual bots allows the
botmaster to launch larger-scale, sophisticated attacks.Among the numerous criminal uses of botnets, one of the
more advantageous is the botnet-based hosting service, which proxies or redirects unsuspecting users to illegal or
nefarious content. Since botnets are essentially an abundant source of disposable IPs, they can easily be turned into
a large network of front-end redirection/proxy servers pointing to malicious content hosted elsewhere—on anything
from a powerful central server to another bot.

Used as a misdirection mechanism for evading detection, botnet-based hosting services often come in tandem
with a variety of other criminal scams, constituting an essential portion of botnets’ overall operation. For example,
spam/phishing campaigns often utilize botnets for misdirection. They begin by using some spamming mechanism
(e.g., a hijacked mail server and/or a botnet) to send seemingly interesting phishing emails. Within the phishing
emails are innocuously disguised embedded links whose domain names resolve to IP addresses of compromised
computers in a botnet. Once victims click the embedded links, they connect to the bots, which then redirect them
to—or serve as proxies for—the central host (often called the mothership) of the nefarious content. This strategy
grants criminals a high level of anonymity while enabling easy and centralized management of the malicious content.
However, because botnets are composed primarily of compromised home computers with unreliable connectivity,
it is not uncommon for them to unexpectedly go offline (e.g., the computer is turned off or the installed malware
is discovered and removed). Botnet-based hosting services, therefore, must be protected against the failure or
disruption of individual bots, ensuring the availability and stability of the hosted service/content. As a result, it
is beneficial for bot-based hosting infrastructures to adopt fast-flux DNS techniques, which frequently change the
domain name mappings to different bots’ IP addresses. When the victim tries to visit the malicious domain, the
DNS server responds with a set of up-to-date, active bot IPs.By recruiting a large pool of IPs and supplying a
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large set of IPs per query, botmasters can ensure, with high probability, that the malicious domain resolves to at
least one valid IP belonging to an online bot. An additional level of control and resilience is attained by giving the
domain’s IP mappings a short time-to-live (TTL) value. Thispermits botmasters a quick response when a bot goes
offline, replacing its IP with one from the ample supply of online bots. Using this fast-flux technique, botmasters
effectively turned their botnets into a global Content Delivery Network (CDN), providing highly available and
reliable content-hosting services in spite of node failures. This extends the lifetime of illegal activities the botnets
provide, complicating disruption efforts by introducing an additional layer of misdirection.

Previous research has studied the features of fast-flux botnets and their malicious uses in phishing scams [17]
(e.g., Storm Worm and Rock Phish). However, little has been reported on botnets’ IP-usage behavior from a global
perspective. Because botnets are formed with myriad compromised hosts dispersed around the world, accurate
characterization of how botmasters manage this vast numberof IPs can only be achieved by collecting and analyzing
data from a global viewpoint. In this paper, we attempt to fillthis important gap and explore the global usage patterns
of botnets’ IP addresses. Our work is unique and different from the previous work in the following four ways. First,
we build a global query engine calledDIGGER that monitors complete DNS behavior from 240 geographically-
dispersed vantage points for an extended period of time. This provides us with a unique, global view of how different
types of domains differ in their IP-usage patterns. Second,we propose effective methods to characterize and quantify
the temporal and spatial IP-usage patterns of fast-flux botnet domains, facilitating the classification and detection
of different domain types. This also allows us to reveal several previously-unknown features of fast-flux botnets
and uncover new, discreet IP-management strategies currently employed by criminals to evade detection. Third, we
design and implement a proof-of-concept classifier based ona multi-leveled machine learning algorithm. Utilizing
the behavioral features of a domain’s IP usage, the classifier accurately and automatically identifies different types
of malicious and benign domains. Finally, we apply the classifier on three months’ worth of globally-collected data.
The results demonstrate the current trend of fast-flux botnets and the effectiveness of the distinguishing behavioral
features thanks to our global DNS monitoring system.

The remainder of this paper is organized as follows. SectionII reviews related work. Section III defines the
terminology we use. Section IV explores the global DNS IP-usage patterns for different domain types. Section V
presents our proof-of-concept classifier and its experimental results, and finally, Section VI concludes the paper.

II. RELATED WORK

Botnets have now become one of the biggest threats to Internet services and applications. Most previous research
focused on understanding of the operations and threats of botnets by collecting and analyzing bot-related activities,
such as IRC traffic [19], spam emails [26], DNS queries [20], and DNS Blacklist queries [21]. Rajabet al. [19]
constructed a distributed infrastructure to measure the Internet Relay Chat (IRC) botnet activities and showed
that botnets contribute the majority of unwanted traffic in the Internet. Collinset al. [6] explored the spatial
and temporal uncleanliness of networks and showed the correlation between botnets and spam/scanning activities.
Recently, botnets have appeared in the wild using P2P infrastructures for the C&C channel, making them more
robust to node failures and difficult to take down. Grizzardet al. [8] analyzed the architecture and communication
protocol of a most recent P2P botnet, Peacom (a.k.a.Storm Worm) [5]. A model for advanced hybrid P2P botnets has
also been proposed in [24], which provides robust connectivity, control traffic dispersion, encryption, easy recovery
and many other features. Most of these methods fall into the category of passive analysis. To gain an insider
view of a botnet, researchers also took more active approaches, infiltrating botnets with actual malware samples or
customized crawlers. For example, Holzet al. [14] crafted a specific P2P client to join the Storm Worm’s P2P
botnet and estimate the total number of compromised machines. Researchers also disrupted the Conficker botnet
by sinkholing future DNS domains of the C&C server, preventing botmasters from updating the infected hosts
[15]. More recently, Stone-Grosset al. [23] successfully took over the Torpig botnet for ten days bypreemptively
registering DNS domains the bots would be contacting as C&C servers in the near future. This allowed them to
reveal detailed operations of the Torpig botnet and accurately estimate the number of compromised hosts.

Because of the significant threats botnets have posed on the Internet security, numerous detection approaches
have been proposed based on the network or host behavior typical of bots. Rishi [7] passively monitors IRC traffic
for suspicious IRC nicknames, IRC servers and uncommon server ports to detect bot-infected machines. Binkley
and Singh [4] proposed detection of IRC-based botnets via TCP anomaly detection and IRC message statistics.
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BotHunter [10] attempts detection using IDS-driven dialogcorrelation based on IRC C&C communication and
other common actions taken during the life cycle of a bot. Meanwhile, to track and analyze botnets in a large tier-1
ISP, Karasaridiset al. [16] proposed a wide-scale detection technique that looks for typical network-flow patterns
between bots and their controllers. BotSniffer [11] identifies HTTP- and IRC-based C&C channels by capturing
the coordinated and synchronized communication patterns in the C&C traffic. To eliminate the reliance on IRC-
or HTTP-based C&C protocols for identifying botnets, Guet al. proposed BotMiner [9], which clusters similar
communication and malicious traffic and performs cross-cluster correlation to identify potential bot-infected hosts.

Among the numerous criminal uses of botnets, their use as hosting or redirection/proxy servers for illegal content
and phishing scams provides an ideal platform for financial gain. However, because of the unreliable nature of the
bots, more and more botmasters have adopted fast-flux DNS techniques to ensure the availability and stability
of their malicious service/content. Fast-flux techniques are characterized by the frequent change of domain name
mappings to the IP addresses of different bots. Holzet al. [13] studied the characteristics of fast-flux networks
and first developed detection algorithms; they extract URL links from spam emails and then identify fast-flux
networks based on the number of unique IP addresses in DNS queries and the number unique AS to which the IPs
belong. Nazario and Holz [17] applied a similar approach to track the use of fast-flux domains and characterize
several features of fast-flux botnets, such as member size, lifetime, and top-level domain distribution. Their work
demonstrated that continuous data mining of fast-flux DNS records can yield insights into the operations of fast-flux
botnets. Despite the increasing awareness of fast-flux botnets to the security community [22], there has been little
effort in understanding botnets’ global IP-usage patternsof different types of fast-flux botnets (in particular, double
fast-flux domains). We attempt to fill this important gap by continually monitoring the DNS properties of fast-
flux domains from a large number of geographically-dispersed vantage points, allowing us to study their behavior
patterns from a global perspective. In addition, since the purpose of using fast-flux botnets is to reliably distribute
the illegal content to users despite host failures, the behavior of fast-flux botnets resembles that of traditional CDNs
[3] like Akamai and CDNetworks. As a result, we conduct in-depth, comparative analysis of IP management of
fast-flux botnets and popular CDNs. With this knowledge, we are able to develop algorithms that can accurately
distinguish between the different types of fast-flux domains and discern them from other domain types—both benign
and malicious.

III. T ERMINOLOGY

This section defines the terminology we have adopted for succinctness and clarification when discussing the
various domain types and DNS records in this paper.

1) DNS records:We have gathered detailed logs of the DNS behavior for a largenumber of different domains
(both valid and malicious) to enhance our understanding. Our data-acquisition process will be detailed in Section IV.
For now, we need only explain a few terms used to describe particular components of a domain’s DNS-query results.

A rec: is the A (address) record returned in the result of a DNS queryon a domain. It contains the host IP
addresses associated with the domain at that DNS server. An Arec, therefore, consists of the IP addresses of the
actual machines hosting the domain’s content.

NS rec: is the NS (name server) record returned in the result of a DNS query on a domain. It contains the
name servers (NSes) in charge of that domain. These records contain only the NSes’ domain names and not their
IP addresses. For example, an NS rec for the domainwww.example.commay contain the NSesns1.example.com
andns2.example.com, but not their IP addresses.

NA rec: refers to the A record returned in the result of a DNS query on aname server. An NA rec, therefore,
consists of the IP addresses of the actual machines serving as the domain’s name servers.

Reverse DNS lookup/name: is the result of a DNS-query request for the domain name of an IP address.
When we perform a DNS query on a domain, we also perform a reverse DNS lookup on the IPs returned in the
domain’s A and NA recs. Because the reverse DNS names are set by the IP’s Internet Service Provider (ISP) and
not the domain’s owner, they can be different from the original domain or NS domain names queried.

2) Domain types:We gathered extensive DNS-query results for a variety of domain types, including valid and
benign domains as well as malicious botnet domains. In Fig. 1, we have plotted the global IP usage—as seen
from the DNS queries—for some representative domains of thedifferent domain types. In this figure, theTimeaxis
represents the time (in seconds) since we started monitoring the domains;Node Indexrepresents the node (from
those dispersed around the globe) that the IP was observed on, with positive values indicating an A rec IP and
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negative values an NA rec IP of the domains;IP Index is a unique index assigned, in ascending order, to each
newly-observed IP. The following is an explanation of the terms we use to describe these various domain types
and how they behave. Their global behavior will be explainedfurther in Section IV.

1: Global IP usage (in DNS results) for some examples of the domain types

FF domain: is a malicious domain utilizing a Fast-Flux (FF) DNS-advertisement strategy. These domains are
typically built atop botnets, since bots function as a readily available and disposable source of IPs for advertising
to DNS servers. Because bots unexpectedly go offline, FF domains advertise numerous IPs in their DNS-query
results, helping ensure some of the IPs belong to a functional bot. The TTL of the IPs used by FF domains tend
to be relatively short; this permits the botmasters a finer level of control in replacing IPs advertised to the DNS
servers, increasing the availability of an online bot and access to the malicious payload. It is this excessive number
of constantly-changing IP addresses that qualifies a domain’s DNS records and advertisement strategy as “fluxy”,
and the domain is considered a FF domain.

FFx1 Arec domain: represents a FF domain that demonstrates a FF DNS-advertisement strategy in itsA rec
DNS-query results, but not its NA rec. It is considered a single fast-flux domain (FFx1), since only its content
servers (i.e., the A rec IPs) resemble a FF domain.

FFx1 NArec domain: represents a FF domain that demonstrates a FF DNS-advertisement strategy in itsNA
rec DNS-query results, but not its A rec. This is in direct contrast to its FFx1Arec counterpart.

FFx2 domain: (double fast flux) is, as its name suggests, the composite of FFx1 Arec and FFx1NArec
domains. The FF DNS-advertisement strategy described previously can clearly be witnessed in both its A and NA
recs, implying the use of bots for its content and name servers. A FFx2 domain can provide unprecedented control
in the management of the domain and its resources—botnet or otherwise—with the DNS service, affording the
botmaster a high level of misdirection and protection.

FFx1 domain: (single fast flux) is a domain exhibiting FF behavior in its A or NA record, but not both.
CDN domain: is a valid, benign domain that uses a CDN, such as Akamai, to improve the delivery of

its content. CDNs—consisting of a system of computers networked together for the purposes of improving the
performance and scalability of content distribution—produce DNS-query results resembling those of malicious FF
domains: numerous IPs per query with short TTL values. This affinity is a consequence of their similar goal
to provide reliable content delivery despite node failure,as well as their shared assumption that any node can
temporarily or permanently fail at any time. However, CDN domains tend to demonstrate geographic awareness
(i.e., IPs that are geographically close to a DNS server willbe advertised with higher probability at that server) and
load balancing—advanced techniques for improving performance and scalability not yet observed in FF domains.

Non-CDN domain: is a valid, benign domain thatdoesn’tuse a CDN for delivery of its content. Typically,
a non-CDN domain uses a few stable content servers and a modest number of NSes; the same IPs of the content
and name servers appear in DNS-query results regardless of the geographic location of the DNS server queried.

MAL domain: is a malicious domain that isn’t fluxy enough to be considereda FF domain. However, it also
isn’t benign enough to be considered a non-CDN domain. It tends to recruit more IPs than a non-CDN, but not
nearly as many as a FF domain. For example, during a monitoring period of a few months, a FF domain is likely
to advertise thousands of different IPs with DNS; even a fairly slow FF domain will advertise in the hundreds. A
MAL domain, on the other hand, will advertise perhaps a totalof 20-30 IPs—roughly one or two IPs every few
days. This is different from a non-CDN. While a non-CDN may have 20-30 IPs, they are all seen essentially at
once and are stable for the duration of the monitored period.A MAL domain may have some stable IPs over the
monitored period, or they may not, and the IPs will eventually be replaced by new ones. A MAL domain will tend
to slowly add more IPs because they will slowly lose some as their malicious activities are detected and their IPs
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are blocked. The IPs used by a MAL domain may consist of bots orvalid servers being used for malicious means.
Unlike valid domains, MAL domains will exhibit some IP overlap (i.e., the same IPs appear in both the A and
NA recs). If a MAL domain is using bots, a reverse DNS lookup can reveal the presence of compromised home
computers, although this isn’t always the case; often, MAL domains exclusively use stable servers from hosting
providers until the IP is blocked.

IV. GLOBAL IP USAGE PATTERNS OFBOTNET

A. Overview

In this section, we explore the DNS IP-usage patterns of the previously-described domain types, identifying
interesting and differentiating features among them. We accomplish this by analyzing numerous domains’ DNS-
query results from vantage points dispersed around the world. This provides us with a unique,global perspective
of how the different types of domains advertise their IP addresses to DNS servers. First, we will describe how we
set up a globally-distributed DNS monitoring system and then discuss the various features we have identified that
could be useful in the detection and classification of CDN, non-CDN, and the different FF domains. Lastly, we will
show how some of these features differ for MAL domains and howthese variances could aid in their classification.

B. System Architecture

To understand how the IP-usage patterns for FF botnet domains differ from valid (e.g., CDN) domains on a global
scale, we created a distributed DNS-query engine called DIGGER, deployed on 240 geographically disparate nodes
in the PlanetLab testbed [18]. The nodes were chosen based onthe location of the DNS servers they queried, such
that DIGGER would issue queries to DNS servers in different geographic locations around the world. Fig. 2 shows
the distribution of DIGGER nodes, which is reflective of the overall distribution of available PlanetLab nodes.

2: Global distribution of DIGGER nodes by
continent

I: Total A and NA rec IPs and IP overlap for different
domain types.

On each node, DIGGER performs intelligent DNS query digs on aset of malicious and benign domains,
monitoring the returned results. For each domain, DIGGER digs the domain’s A rec, NS, NA rec and the reverse
DNS lookup for the A and NA rec IPs. From this data, we can determine the IPs being used to serve the domain’s
content as well as the IPs being used for the NSes. With the reverse DNS lookup, we can more easily identify IPs
belonging to compromised computers. Since compromised home computers constitute a large portion of botnets,
any reverse DNS lookups resulting in names typical to home computers (i.e., containing words like comcast, charter,
broadband, dailup, etc.) are highly indicative of a potential bot.

Based on a domain’s most recently returned DNS-query results, DIGGER classifies the domain as either active
or offline. DIGGER continues to dig active domains periodically based on their observed maximum TTL, elimi-
nating wasteful DNS queries while ensuring fresh DNS-queryresults. Domains that have been determined to be
offline are intermittently dug, so that DIGGER can determineif they come back online later. Every 24 hours,
DIGGER compresses the raw DNS-query data and uploads the results to our centralized server for analysis. As
our central server gathers the compressed DNS-query results from DIGGER, it automatically parses them into a
more compressed and useful format for feature extraction, removing any invalid queries. This way we aggregate
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3: IP usage for old-and-girl.net (FFx2) 4: IP usage for www.msnbc.msn.com (CDN)

the global DNS-query results for over 106,000 different domains from 240 nodes around the globe. The set of
domains monitored by DIGGER was compiled from multiple sources, including online repositories of phishing [2]
and malware [1] websites. In addition, we extracted domainsfrom URL links embedded in spam emails found in
our personal mail boxes as well as online repositories [12].

DIGGER has been deployed and gathering global DNS-usage patterns for a little over 3.5 months. Based on the
analysis of this data, we have identified several differentiating features between malicious FF botnet domains and
valid domains, as described in the following subsections.

C. Overlap between IPs of A and NA Records

While analyzing our data, it quickly became apparent that FFdomains tend to exhibit some IP overlap. We were
seeing IPs advertised for a domain’s A rec reappearing in thesame domain’s NA rec. Furthermore, when DIGGER
would perform a DNS dig on the domain’s NSes, the same IP wouldoften be returned for different NSes. It became
apparent that the malicious domains were not only reusing their available IP pool for both A and NA recs, but
were also returning IPs from the same IP pool regardless of which NS was queried.

Table I shows the total number of A rec, NA rec, and overlap IPs(i.e., IPs appearing in both the A and NA rec)
for some representative domains from each domain type. Thisoverlap phenomenon was, as expected, much more
prevalent in FFx2 domains than either type of FFx1; we never observed it in valid domains. The FFx1 domains
almost entirely use valid IPs for one record type and the IPs of compromised computers for the other.

The IP overlap we have empirically observed is in line with our expectation. For redundancy and fault-tolerance
purposes, a valid domain should almost always have separatemachines serving as content providers and NSes.
Otherwise, the domain may easily suffer from a single point of failure. A FF domain, on the other hand, will
attempt to make the best use of all its limited resources, andthus, it will tend to reuse the IPs of compromised
computers for both its A and NA records. Clearly, the amount of observed IP overlap could prove a useful feature
for differentiating between valid and malicious domains, especially FFx2 domains.

D. IP Recruiting

Due to their different resources and management techniques, one would expect FF, CDN, and non-CDN domains
to demonstrate distinct strategies when advertising IPs toDNS servers. To test the validity of this expectation, we
have analyzed the advertisement strategies for the variousdomain types. For a given domain, we assumed a global
vantage point and assigned a unique IP index (in ascending order) to each newly seen IP in the DNS query results.
This IP index is plotted against time for a FFx2 domain, a CDN domain, and a non-CDN domain in Figs. 3, 4,
and 5, with the y-axis representing the unique IP index and the x-axis representing the time in seconds since
DIGGER started monitoring domains. The points in the graphsrepresent when an IP was returned in a DNS query
on a global scale (i.e., across all nodes monitored by DIGGER). Thus, the slope of each plotted curve demonstrates
the rate, or speed, with which a domain—from the global vantage point —seems to “recruit” more unique IPs.

It should be noted that, by definition, FFx1Arec and FFx1NArec domains are essentially specific subsets of
FFx2 domains. They behave like a FF domain in one record type and like a non-CDN in the other. Thus, for
brevity, their plots have not been included as they would mostly be redundant.
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5: IP usage for hostingprod.com (non-CDN) 6: IP usage for tsqfsny.jukutuxef.cn (MAL)

Recruitment Speed: refers to the speed (or rate) at which one observes new, unique IPs for a given domain
when monitoring that domain’s DNS queries over time. Based on our collected data, we have seen three major
recruitment speed strategies, with each strategy being employed by a different type of domain.

Fig. 3 shows how a FFx2 domain slowly and continuously accrues unique IPs over its entire online lifetime.
This behavior comes from the instability of FF domain IPs, which consist of compromised home/office computers
and may go offline arbitrarily. Therefore, in an effort to help ensure reliable delivery of their nefarious content,
botnets must continuously recruit new IPs. Also, compromised home computersoften obtain dynamic IP addresses
from their ISP via DHCP (Dynamic Host Configuration Protocol). Consequently, a bot may be assigned different
IPs over time, causing our DIGGER nodes to observe the apparent recruitment of new IPs. This effect is called
DHCP churn, and it is not present for valid domains using stable serverswith static (i.e., unchanging) IP addresses.

Meanwhile, from Fig. 4, we can see that the CDN quickly burns through most of the IPs in its more stable IP
pool, achieving a much quicker recruitment speed. CDNs havea large pool of stable IP addresses, and rotate these
IPs quickly and efficiently for the purpose of load balancing. They also advertise their IPs in a geographically-
conscious manner. For a given CDN domain, a DNS query in Asia will often result in a diffractive set of IPs than
would the same query originating in South America. This is because the CDN would mostly advertise (from its
total pool of IPs) IPs located in Asia to Asian DNS servers andIPs located in South America to South American
DNS servers. As a result, DIGGER’s global vantage point leads us to see most of the CDN’s IPs in a short period of
time. In contrast, a FF domain typically can’t afford the luxury of such a fine level of geographic IP management.
FF domains are at the whim of the compromised computers that happen to be available and online at any given
moment. Consequently, they tend to advertise the same pool of IPs irrespective of the DNS servers’ geographic
location. Thus, while they may change their advertised IPs as quickly as a CDN, they do so on a global scale,
whereas a CDN is more localized. Therefore, our global vantage point doesn’t allow us to see many more IPs than
we would at any given local vantage point, causing us to observe the comparatively slower, more steady slope in
the IP recruitment rate for FF domains.

Lastly, a non-CDN (shown in Fig. 5) hardly recruits any additional IPs over time. Rather, its IP pool consists
of a small number of stable content servers that are almost simultaneously advertised to DNS servers around the
world.

Due to the stark contrast in how these different types of domains recruit IPs, we suspect this feature will be very
useful in differentiating between them.

Recruitment Period: represents the amount of time during which new IPs are seen for a given domain when
monitoring that domain’s DNS queries over time. A non-CDN domain, using a small pool of very stable IPs, will
have almost no recruitment period; all the IPs used are advertised initially and used throughout the lifetime of the
domain (as shown in Fig. 5). A CDN domain, on the other hand, uses a much larger IP pool, from which it advertises
different IPs based on geographic location and load balancing. Thus, we expect CDNs to have a recruitment period.
However, since CDNs have a high recruitment speed (as previously discussed) and quickly advertise most of the
IPs in their IP pool, we do not expect them to have a very long recruitment period. When looking at the total online
time for a CDN, we expect to see a short recruitment period at the onset of the monitoring period, followed by a
longer period during which we mostly observe previously-seen IPs. This trend is clearly demonstrated in Fig. 4, and
we can see that the CDN’s recruitment period is smaller than the total online period of the domain. From Fig. 3, it
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is apparent that the recruitment period for the FFx2 domainold-and-girl.comis the same as its total online period.
That is, the entire time we observe the FFx2 domain to be online, it is recruiting new IPs. The constant recruitment
of IPs is a result of DHCP churn and the unreliable nature of the compromised computers serving as bots. When the
compromised computers go offline, they are no longer available for use in the botnet. As a result, new computers
must regularly be advertised to the DNS servers to ensure themalicious content is reachable. Of course, this results
in the nearly constant introduction of new IPs and the observed recruitment period. The varying recruitment periods
of the different domain types should provide a beneficial metric for distinguishing between them.

E. IP Continental Distribution

Having compiled a global view of numerous domains’ DNS behavior, we examined how FF domains, CDN
domains, and non-CDN domains differ in respect to their IP distribution (i.e., where the IPs returned in DNS
queries are located geographically). We chose to examine the geographic location of IPs based on continent instead
of the more finely grained country, because we quickly discovered that, due to the close proximity of countries
in Europe, a country-based resolution would be too fine. Whenviewing the IP distribution based on continent,
however, distinguishing trends between the domain types became more apparent.

In analyzing a domain’s IP distribution we asked the following questions:
Q1: What percentage of IPs returned in the DNS queries are located in a different continent than the DNS

server that was queried? We restate this, for succinctness,as thepercentage of IPs from the wrong continent.
Q2: What percentage of IPs returned are located in each continentand based on the continent where the DNS

servers being queried are located? Likewise, for succinctness, we restate this as thecontinental IP distribution.
The answer to Q1 can be seen in Fig. 9 for some representative domains. For each domain, we plotted the

percentage of A and NA rec IPs from the wrong continent. From Fig. 9, it is evident that the CDN domain has a
considerably smaller proportion of IPs from the wrong continent than the other domain types. For both the CDN’s
A and NA rec IPs, the percentage from the wrong continent is less than half that of the next lowest domain. Insight
into continental IP distribution (Q2) can be found in Figs. 7and 8 for some sample domains. For brevity, we have
not plotted any FFx1 domains, since their results are a subset of the FFx2 domain type. In Figs. 7 and 8, the bars
represent the continental IP distribution from different perspectives. In each domain’s plot, the first bar representsthe
continental IP distribution from a global perspective, while the other bars are from the perspective of the different
continents where we deployed DIGGER nodes. For example, thebar labeled “Asia” under theold-and-girl.com
plot in Fig. 7 indicates the percentage of A rec IPs located ineach continent base on queries by DIGGER nodes in
Asia to DNS servers in Asia. It is interesting to note in Figs.7 and 8 that the continental IP distribution for both
FFx2 and non-CDN domains is fairly consistent across the different continents, hardly deviating from the global
distribution. For CDN domains, on the other hand, the distribution varies greatly.

The results in Figs. 9, 7, and 8 are promising. They indicate that the percentage of IPs from the wrong
continent and the variance of the continental IP distribution across continents could potentially serve as features
for distinguishing CDN domains from the other domain types.Furthermore, these results are in agreement with
our current understanding of the various domain types. Because a goal of CDNs is to provide fast, reliable services
to end users, their DNS query results often contain a majority of IPs located near the DNS server and the issued
query, permitting quick content delivery by reducing the distance data has to travel. Due to thislocation-aware
DNS advertisementstrategy, CDNs demonstrate a smaller percentage of IPs fromthe wrong continent and a larger
variance in continental IP distribution than other domain types. That is, more of a CDN’s IPs are located in the
same continent where the DIGGER nodes—and DNS servers queried—reside, with respect to other continents.

Non-CDN domains operate with a much smaller number of servers (both content and name) than CDN domains,
resulting in a smaller pool of server IPs. With a smaller set of stable servers, non-CDNs don’t require complicated
load balancing or location-aware DNS advertisement. Instead, they adopt a form ofnaive DNS advertisementand
indiscriminately advertise their small pool of server IPs around the world nearly simultaneously (as can be seen
in Fig. 5). As a result, regardless of where DIGGER monitors anon-CDN domain’s DNS queries, it will discover
the same, relatively small, set of IPs. This causes the continental IP distribution at each continent to be the same
as the global distribution. Consequently, the percentage of IPs from the wrong continent will reflect the global
distribution of our DIGGER nodes, depending on the locationof the non-CDN domain’s servers. Fig. 7 shows that
for the non-CDN domainhostingprod.com, almost all of the A rec IPs are in N. America. Because about 46% of
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7: Percentage of total A rec IPs seen from each continent by DIGGER nodes globally and in each continent

8: Percentage of total NA rec IPs seen from each continent by DIGGER nodes globally and in each continent

our DIGGER nodes are located in N. America (Fig. 2), we find that 53.77% ofhostingprod.com’s IPs are from the
wrong continent (Fig. 9), approximately the same percentage as DIGGER nodesnot in N. America.

Unlike CDNs (location-aware DNS advertisement) and non-CDNs (naive DNS advertisement), FF domains use
what we termnecessity-based DNS advertisement. The advertisement strategy employed by botnets seems dictated
by the unstable nature of the individual bots. Since bots cango offline at any time, FF domains must rely on
whichever bots are currently available, regardless of geographic location. While FF domains don’t concurrently
advertise their entire IP pool globally (as non-CDNs do), they will advertise most of their IPs globally—eventually.
As necessity dictates, available IPs will be advertised to DNS servers around the globe, with little or no regard to
location. This is why FF domains have such a large percentageof IPs from the wrong continent and why their
continental IP distribution is nearly identical, across all continents, to the global distribution. Fortunately, these
features should permit us to discern FF and non-CDN domains from CDN domains. This can greatly simplify the
detection of FF domains by helping identify them from CDNs, which are often very similar in other respects.

F. Other Features

1) IP Address Online Time:The IP address online time is defined as the time period duringwhich the IP address
is active (i.e., the IP address appears in the DIGGER query results). Because of the different sources of IPs used
by FF, CDN, and non-CDN domains, the online time of these IP addresses should vary with their type. Both
CDN and non-CDN domains host their content on well-maintained and stable servers throughout their lifetime,
ensuring constant services to their customers. As a consequence, the online time of their IPs is expected to be
long. FF domains, on the other hand, advertise IP addresses that primarily come from compromised computers
with unreliable connectivity. Thus, the online time for FF domain IPs is usually dramatically shorter than for the
IPs of valid domains. Fig. 10 shows the CDF (Cumulative Distribution Function) of A rec IP online times for both
valid and FF domains. As expected, A rec IPs for non-CDN, CDN and FFx1NArec domains have much longer
online times than FFx1Arec and FFx2 domains, which make use of compromised computers for their A rec IPs.
For example, the percentage of A rec IPs with an online time less than 104 seconds (≈2.8 hrs) was≈81% for the
FFx1 Arec domain,≈68% for the FFx2 domain, and only≈37% for the CDN domain; neither the FFx1NArec
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9: Percentage of returned IPs in different continents than
DIGGER node issuing the DNS query
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10: CDF for A rec IP online time

nor the non-CDN domain has any A rec IPs with an online time under 104 secs. Unfortunately, while the A rec IP
online time appears to be a useful feature for identifying some malicious domains (i.e., FFx2 and FFx1Arec), the
same cannot be said for the NA rec IP online time. The FF domains advertise the IPs of more stable bots for their
NSes, making the online time of their NA rec IPs too close to that of valid domains for classification purposes.

2) Number of Unique IP Addresses per Node:Another interesting feature is the number of unique IPs seen
across the DIGGER nodes over time. To better understand thisfeature, we have generated CDF plots, showing the
number of unique A and NA rec IPs observed by our 240 DIGGER nodes over the≈3.5 month monitoring period.

First, let’s examine Fig. 11, the CDF plot for the number of unique A rec IPs per DIGGER node for some
representative domains. Neither the non-CDN nor the FFx1NArec domain had more than 18 unique A rec IPs
per node. Because the domains host their content on a few, stable servers, we observe the same small set of IPs
at each DIGGER node, which is independent of DIGGER node’s geographic location. In the CDN domain’s case,
more than 90% of the DIGGER nodes observe a small number of unique A rec IPs. Specifically,≈84% of the
DIGGER nodes observed less than 22 unique A rec IPs,≈98% observed less than 100, and no node observed
more than 200. For the small percentage of DIGGER nodes that observe a slight increase, the number is still
relatively small and is likely the result of load balancing.As FFx2 and FFx1Arec domains’ bots go offline over
time, botmasters must continuously advertise new bot IPs with DNS to ensure the availability of their malicious
content. This trend is captured by the DIGGER nodes and shownin Fig. 11. For the FFx1Arec domain,≈45%
of the DIGGER nodes detected over 100 unique A rec IPs, more than 35% detected over 200, and a few observed
over 700. The numbers observed for the FFx2 domain are even higher, with over 80% of the nodes observing more
than 100,≈63% over 200,≈43% more than 500, and several with more than 2,500. Clearly,the FFx1Arec and
FFx2 domains possess a much higher average number of unique Arec IPs per node—a direct consequence of the
bots’ unreliable connectivity and, to a lesser extent, DHCPchurn.

While the average number of unique A rec IPs per node appears promising as a feature for discriminating
FFx1 Arec and FFx2 from other domain types, the same cannot be saidfor the average number of uniqueNA
rec IPs, shown in Fig. 12. From the plot, it is apparent that FFx2 and CDN domains possess many more unique
NA rec IPs per node than any of the other domain types, including the FFx1NArec domain. While we expected
this behavior from the FFx2 domain (for similar reasons as those described for the A rec IPs), the CDN domain’s
behavior came as a surprise. Although the CDN domain appearsto utilize more unique NA rec IPs per node on
average, the FFx2 domain does demonstrate a greater number of unique IPs seen at a single node: 999 IPs to
the CDN domain’s 727. It seems that, over time, CDNs can advertise numerous NSes with DNS, resulting in an
excessive number of unique NA rec IPs per node. This behaviorcould arise because the CDN is trying to ensure
the availability of its NSes, affording it control to perform load balancing. In any case, the behavior of the FFx2
and CDN domains is very similar, causing the number of uniqueNA rec IPs to be an indistinctive feature.

3) Number of Nodes per IP Address:Since the number of unique IPs per node proved a promising feature for
differentiation, we decided to look at the relationship from the inverse perspective: for individual IP addresses, how
many different nodes (i.e., DNS servers) were the IP addresses observed on. We restate this as thenumber of nodes
per IP address. For the NA recs, this feature demonstrated no useful trendsfor differentiation, but some interesting
behavior emerged in the A recs. Plotting the CDF for the number of nodes per A rec IP (Fig. 13), we can clearly
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11: CDF: #of unique A rec IPs per
DIGGER node

12: CDF: # of unique NA rec IPs per
DIGGER node
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13: CDF: # of nodes per A rec IPs

see that FFx2 and FFx1Arec domains exhibit remarkably similar trends, separate from those of the other domain
types. Since the non-CDN domain advertises its small set of stable A rec IPs with every DNS server around the
globe, we observe nearly all the IPs on every node, and thus a large number of nodes per IP. The FFx1NArec
domain behaves similarly. However, since some of its A rec IPs might belong to bots (or otherwise unstable content
servers), some of its IPs may not appear on all nodes. As a consequence of its location-aware DNS-advertisement
strategy, many of the CDN domain’s IPs will only be advertised to a small set of nearby DNS servers, keeping its
average number of nodes per IP small. Likewise, the FFx2 and FFx1 Arec domains fall somewhere in between due
to their necessity-based DNS-advertisement strategy. It may be the case that bots with unstable connectivity only get
advertised to a handful of DNS servers before they go offline.If a bot only intermittently loses connectivity, its IP
may eventually propagate to more DNS servers, increasing its nodes-per-IP count. However, if the bot permanently
disconnects from the botnet, its nodes-per-IP count will remain stunted, decreasing the overall average nodes-per-IP.

4) Total Number of Unique IPs:The total number of unique IPs seen across all nodes over timeproves remarkably
apt as a metric for distinguishing non-CDN domains from CDN and FF domains. This is because, unlike CDN and
FF domains, non-CDN domains advertise only a few stable content and name servers with DNS. Since a non-CDN
domain’s A and NA rec IPs are seen ubiquitously around the globe, the total number of unique IPs observed by
the DIGGER nodes over time will be meager. Table I, which shows the number of IPs in the A and NA recs for
examples of the different domain types, demonstrates this effect. The CDN and FFx2 domains display abundant
IPs in their A and NA recs. While the FFx1Arec domains possess a modest number of NA rec IPs, they have
a substantial number of A rec IPs—a clear distinction from a non-CDN domain. The opposite holds true for the
FFx1 NArec domain; the small number of IPs cause its A rec to resemble a non-CDN domain, while the much
larger number of NA rec IPs betrays this guise.

5) Reverse DNS Lookup and TTL:The last two features we will discuss seem to be obvious candidates for use in
classification: the reverse DNS lookup result and the TTL values of the A and NA recs. Clearly, if the reverse DNS
lookup on a domain contains suspicious words typical to homecomputers (e.g., comcast, dynamic, dial-up, etc.),
it is a strong indicator that the IP belongs to compromised computer, or bot. Because an IP’s reverse DNS name
is set by the IP’s service provider and not the owner of the domain, it cannot be faked by a botmaster. This makes
it a fairly useful metric for identifying bots. Unfortunately, the reverse DNS lookup is highly unreliable. Often, a
reverse DNS lookup will not return a result, thus providing no insight into the actual identity of the suspect IP.
Additionally, we don’t have a complete list of suspicious words, and occasionally, the presence of such words may
not be indicative of a bot; often, it is only after thoroughlyanalyzing the DNS data in conjunction with the reverse
DNS words that we can determine them to be bad, strengtheninga malicious classification. Therefore, we have
decided not to incorporate the reverse DNS name for automatic domain classification. Instead, when present, we
use it to help reinforce or confirm our manual identification of the different domain types. By omitting it from our
automatic identification, we hope to gain a better insight into potential of the more reliable classification features.

The A and NA recs’ TTL values also appear highly useful for differentiating between the domain types. CDNs
and FF domains tend to use small TTL values, affording them a high level of control over the domain’s IPs. CDN
domains use this extra control for load balancing and reliable content delivery. FF domains are really only concerned
with reliable content delivery in the presence of unreliable content servers (i.e., bots). Non-CDNs, unperturbed by
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these concerns, use much longer TTL values for their stable content and name servers. However, unlike many of
the other features we have previously explored, the TTL value is not an uncontrollable consequence of a botnet.
While it is difficult for a botmaster to mimic features such asa CDN’s location-aware DNS-advertisement strategy
or a valid domain’s recruitment speed/period without sacrificing content availability, this is not the case with the
TTL value. An IP’s TTL value is set by the owner of the domain. Abotmaster can easily increase the average TTL
value for its A or NA records without sacrificing the availability of the malicious content. By setting a short TTL
value for some IPs and very large TTL values for others, the average TTL of a FF domain can be made to look like
the average TTL of a non-CDN domain, without sacrificing the fine level of control over some of the IPs. Those
IPs with large TTLs (used to inflate the average value) could belong to more reliable bots; they could just as easily
be bogus IPs that don’t resolve to anything. So long as some ofthe IPs (presumably those with the shorter TTLs)
resolve to online bots, the malicious content can still be reached. While we could try more complicated methods of
measuring the TTL values to account for this inflation technique, it would be just as easy for botmasters to come
up with another clever way to circumvent our metric. Botmasters simply have too much control over the TTL value
for it to be a reliable feature for classification. Therefore, we have decided not to use it as such. It should be noted
that other features, like the recruitment speed and period,cannot be as easily manipulated by the botmaster, since
the unstable bot IPs necessitate constant recruitment.

G. MAL domains

As previously discussed in Section III, a MAL domain falls somewhere on the spectrum between a non-CDN
and FF domain. It is certainly less stable (over time) than a non-CDN domain, but it is not fluxy enough in its A or
NA records to be considered a FF domain. While it may utilize stable bots for its content or name servers, it most
likely employs a stable server rented—or possibly hijacked—from a hosting provider. In this sense, it is similar
to a non-CDN domain. Yet, unlike a non-CDN domain, a MAL domain is not benign. It is a malicious domain,
partaking in malicious activities. As a consequence, its IPs will likely be blocked eventually, requiring it to register
fresh IPs with DNS in order to maintain its content availability. Therefore, assuming it will be eventually detected
and blocked, it must slowly and continuously recruit new IPs—albeit much more slowly than any FF domain.

This DNS advertising behavior means that, like FF and non-CDN domains, MAL domains will exhibit a large per-
centage of IPs from the wrong continent. This trend is shown for a representative MAL domain (tsqfsny.jukutuxef.cn)
in Fig. 9. Likewise, MAL domains will demonstrate a much smaller variance in their continental IP distribution
across continents than CDN domains, although we have neglected this plot due to space constraints. As a result,
these two features should still allow CDNs domains to easilybe identified from the other domain types.

Other interesting features worth discussing for MAL domains include the total number of unique IPs, the IP
overlap, and the recruitment speed and period. As can be seenfrom Table I, while the representative MAL domains
(duelreal.comand tsqfsny.jukutuxef.cn) have a small number of total unique IPs (like a non-CDN domain), their
IP overlap is exceptionally high (like a FF domain). Almost all of their A rec IPs are also used for their NA recs.
This sets them apart from both non-CDNs and FF domains, providing a useful metric for classification. Looking
at Fig. 6, we can see that the MAL domaintsqfsny.jukutuxef.cndemonstrates a slow and steady recruitment of IPs.
Clearly, this is different than the recruitment behavior ofa non-CDN domain (Fig. 5); however, it initially appears
quite similar to that of a FF domain (Fig. 3). Upon closer examination, it is revealed that unlike FF domains, which
recruit hundreds to thousands of IPs, the MAL domain recruits only tens of IPs over≈3.5 months.This is a drastic
difference, and it should prove beneficial in distinguishing MAL domains from non-CDN and FF domains.

V. DETECTION METHODOLOGY

A. Overview

Our observations in Section IV indicate that the different domain types could be identified based on behavioral
features of their global DNS activity. To demonstrate this,we have build a a rudimentary, proof-of-concept detector,
utilizing a multi-leveled linear SVM (Support Vector Machine) classifier. The rest of this section describes the design
and implementation of this classifier, including how we quantified the behavioral features, chose which features to
apply at each stage (or level), determined the order of the stages, and finally, how the SVMs were trained.
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II: Features for classifying the domain types into different groups

B. Classification Features

Table II shows the features we considered using in the classifier and how they are likely to group the domain
types. Each feature has been given a number to simplify its representation throughout the paper. With the exception
of feature F3, each feature can be applied to a domain’s A or NArec, and while not displayed in Table II, the
features can also be applied to the combined IP pool of the A and NA recs, represented as (A + NA). Notice that
we do not consider the NA rec for features F2 and F9, because our analysis showed that they were not useful
distinguishing features. Lastly, the column labeled “Domain Type Classification Groups” in Table II shows how
each feature—when applied to the A or NA rec—will likely group the different domain types, represented by square
brackets. Table II does not express hard-and-fast rules forhow features classify the domain types. Rather, it shows
likely groupings: domain types tending to produce similar resultswith respect to a given feature and record type.
Thus, Table II is a helpful visual tool for determining the application of features at different SVM levels. Using
numerical subscripts, we have indicated the order our classifier detects the domain types.

1) Spatial and Temporal Incongruities:As previously mentioned, DIGGER collected DNS data from around
the world on over 106,000 different domains for≈3.5 months. During that time, some of the PlanetLab nodes
sporadically went offline. This could result from a number ofpossibilities, including node maintenance, improper
configuration, node failure due to over-utilization, etc. As a result of this instability, our data contains some gaps
in its spatial consistency: sometimes, we are missing data from different parts of the world. Compounding this
problem, is the temporal inconsistency introduced by the nature of malicious domains. When it is discovered that a
domain is partaking in malicious activities, DNS servers may choose from a couple of countermeasures. Some may
choose to block (or blacklist) the domain, responding that the domain is unknown or doesn’t exist. Another option
is to perform DNS domain IP parking, replying with an IP address that doesn’t belong to the malicious domain—
possibly belonging to a website informing the user that the domain is unreachable or has been blocked. Not only do
DNS servers handle identified malicious domains differently, they may do so at different times, or not at all. When
taken together with the spatial inconsistency introduced by instability of the PlanetLab nodes, we find that DIGGER
doesn’t have a complete global view for certain domains. In most cases, this means we are only missing data from
a few nodes around the globe at any given time. Considering the large number of nodes we gather data from, the
effect is negligible. However, in the worst cases, we only have a handful of nodes that managed to gather relevant



14

DNS data for a domain before it’s taken offline and replaced byits owner. In these worst-case scenarios, our view
might be confined to just a few countries or continents. Whilemany of the features in Table II are robust in the
presence of spacial inconsistencies, F2 is not. For this reason, we have chosen not to use it in our data set, although
it could still serve as a reliable metric for classification.We have also decided to omit the temporally-sensitive
feature, F9. To effectively use such a feature, one should first determine the optimal monitoring period for detection
and then rigorously monitor each domain for that specific period of time. Otherwise, the temporal deviations caused
by malicious domains going offline become influential. One could monitor a malicious domain only at the tail-end
of its lifetime while monitoring another from its onset to its demise. Both are malicious domains, yet they would
have very different average IP online times simply as a consequence ofwhenin their lifetimes they were monitored.
How to solve this problem and that of finding an optimal monitoring period despite domains unexpectedly going
offline, DNS domain IP parking, and failing nodes is beyond the scope of this paper. Furthermore, it is unnecessary
since we can rely on other features which are more resilient to temporal deviations. By neglecting F9, we can build
our classifier to operate over our entire data set, spanning≈3.5 months.

Neglecting features F2 and F9 is reasonable for a proof-of-concept classifier. Since our main goal is to demonstrate
the potential usefulnessmostof these differentiating features possess for classification, we leave the problem of
finding the absolute minimal monitoring period and number ofmonitoring nodes (and their location) as future work.

2) Feature Quantification:With the exception of F2 and F9, which we don’t use for reasonspreviously explained,
the features in Table II are quantified as outlined below. Allof the features, except F3 (A & NA rec overlap), were
quantified using the IPs of the three different record types—A, NA and (A + NA) recs—to produce 3 distinct
values. Which of these values is used at each stage of the classifier is discussed in Section V-C.2. Each feature is
calculated for each domain monitored by DIGGER over the total ≈3.5 month duration.

F1: Let Pi = number of unique IPs on nodei, and letN = number of nodes (of the 240 total) where the
number of unique IPs≥ 1. Then, the average number of unique IPs per node (F1) is computed as:

F1=
∑N

i=1Pi

N
(1)

F3: represents the percentage of unique IPs that overlap between the A and NA recs. Thus, if all the IPs from
one record type are also used for the other record type, therewill be a 100% IP overlap. For a given domain across
all nodes, letPA be the set of unique A rec IPs andPNA be the set of unique NA rec IPs. Then, F3 is calculated as:

F3=
|PA

T

PNA|

min{|PA|, |PNA|}
(2)

F4: Using an online database [25], we were able to determine the country of origin for most IPs observed by
DIGGER. For those IPs not present in the database, we were able to perform a “who is” lookup and determine most
of their countries of origin. The few remaining IPs whose location couldn’t be determined were labeled “unknown”.
Thus, for nearly all IPs monitored by DIGGER, we could determine which continent the IP was located on: N.
America, S. America, Europe, Asia, Africa, Oceania, Antarctica, and—very rarely—unknown. LetWi = number of
unique IPs on nodei that are located in a different (i.e., wrong) continent thannode i. Let Pi = total number of
unique IPs on nodei. Then, the percentage of IPs from the wrong continent (F4) iscomputed as:

F4=
∑N

i=1Wi

∑N
i=1Pi

. (3)

F5: We want to determine theaveragecontinental IP distribution across all nodes from a given continent.
To obtain this, we grouped the nodes together based on the continent they are located in. Then, we examined
each group of nodes, tallying the number of unique IPs (per node) seen from each continent. If, for example, an
IP appears on more than one node from a given continent, it will be counted once for each node it appears on.
Calculating a continent’s continental IP distribution in this way is more robust to misbehaving or abnormal nodes
and better reflects the continental IP distribution of the majority of nodes from a given continent.

Recall from Section IV-E that CDN domains differ from the other domain types due to their location-aware DNS
advertisement strategy. The continental IP distribution of a CDN domain will be biased in favor of the queried
node’s continent. Contrarily, the other domain types will demonstrate nearly identical continental IP distributions
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regardless of the queried node’s location (see Figs. 7 and 8). Therefore, we want to quantify how similar this
distribution appeared between continents, enabling us to discern CDNs from the other domain types.

Let the continents N. America, S. America, Europe, Asia, Africa, Oceania, Antarctic and “unknown” be repre-
sented by the numbers 1–8, respectively. Then,ni = number of nodes on continenti, for 1≤ i ≤ 4 (continents with
DIGGER nodes). For nodej, let â j be a vector representing the number of unique IPs seen from each continent.
Thus, â j

i is the number of unique IPs from continenti that were seen on nodej. Then, for each continenti with
DIGGER nodes, where 1≤ i ≤ 4, we calculateÂi as shown in Eq. (4). We calculate the cosine similarity (shown
in Eq. (5)) between every possible pair of vectorsÂi , for 1≤ i ≤ 4, and then take the average, producing the IP
continental distribution’s average cosine similarity (F5). The closer this value is to 1, the more similar the continental
IP distributions appear on each continent, and the less likely the domain is a CDN domain.

Âi =
ni

∑
j=1

â j (4) Similarity(X̂,Ŷ) = cosθ =
X̂ •Ŷ

‖ X̂ ‖‖ Ŷ ‖
(5)

F6/F7: First, we calculate a domain’s online time, denoted asTo, as the amount of time we consider the
domain to be online. Analyzing all available DNS query data from all nodes, we consider anonline pointto be a
point in time where we have observed IP addresses. If the difference in time between two consecutiveonline points
is less than a threshold of several hours, we add it to theTo. Next, we calculate the domain’s recruit time, denoted
as Tr . We consider arecruit point to be a point in time where we have observed anew IP address (i.e., one that
hasn’t occurred earlier in time). If the difference in time between two consecutiverecruit points is less than the
threshold, we add the it toTr . Let P = the total number of unique IPs observed globally for a domain. Then, the
IP recruiting speed (F6) and period (F7) are calculated as:

F6=
N
Tr

(6) F7=
Tr

To
. (7)

In those instances where all of a domain’s IPs are observed instantaneously, resulting in aTr = 0, we set F6 to
1. This value corresponds to a rate of one new IP every second,and it was great enough in magnitude from all
other observed values to serve as a rough approximation for infinity.

F8: We look at every DNS query gathered by all the DIGGER nodes. Whenever we encounter a previously-
unseen IP, we count it. After examining all available DNS records, the final sum is considered the total unique IPs
(F8) for a domain. It represents the number of different IPs used by a domain around the world.

C. SVM Classifier

1) Rule-based Filter:Before testing our SVM classifiers, we applied a simple, rule-based filter to remove any
domains that were unlikely to be malicious. The filter also ignores domains that clearly belong to CDNs, allowing
us to test the accuracy of our SVM detector. If any of the following rules applied to the domains, they remained
in the testing set, otherwise they were removed: (1) any IP inits A or NA rec had a max TTL less than 1 day,
(2) its A or NA recs contained more than 10 IPs over the entire monitoring period, (3) its reverse DNS lookup
contained a suspicious word (e.g., comcast, charter, dynamic, dialup, etc.), and (4) its reverse DNS lookup indicated
it was a known CDN domain (e.g., contained words like akamai). This simple filter removed all the valid, easily
identified domains. Any domain with a max TTL value of more than a day in both its A and NA recs is probably
not suspicious. If it is FF domain or a MAL domain using stableservers and acting sufficiently suspicious (i.e.,
its IPs are becoming blocked), it should accrue more than 10 IPs after≈3.5 months of monitoring. Clearly, if any
of its DNS lookups indicate the use of a home computer it couldbe malicious, warranting further examination.
Lastly, any domains with reverse DNS lookups indicating known CDNs are included so we can test our SVM’s
ability in identifying CDN domains. Applying this filter to our set of 106,000+ domains reduced our testing set
to 5,422 remaining domains. Finally, we removed any domainswith insufficient DNS query data. This included
250 domains momentarily observed by single nodes and 3 domains monitored by less than 25% of our DIGGER
nodes, bringing the total testing set to 5,169 domains.

2) Multi-level SVM:Fig. 14 shows the design of our multi-leveled SVM classifier and the results of our training
and testing sets. Each level of the SVM classifies one of the domain types from the total set of unknown domains.
This progressively reduces the number of unknown domains ateach level, simplifying the task at subsequent levels
and allowing us to automatically identify the domain types.Each oval in the figure represents a domain type that
has been classified. Each rectangle represents a set of multiple, unknown domain types remaining to be classified.
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14: SVM flowchart

III: Linear SVM equations

The values for “Train” show how many examples of a given domain type (or group of domain types) were used
when training that level of the classifier. The values for “Test” indicate the number of domains that were classified
(or remained to be classified) when we applied each tier of theclassifier to our testing set. We manually identified
about 10 representative domains of each type to be used in training, as show in in Fig. 14. More difficult to detect
by hand, we were only able to manually identify a single FFx1NArec domain.

Table III shows the bias and feature weights for each level ofour classifier. Those features not used at a particular
level are shaded black. For each SVM, theResult is calculated as thebias termplus the product of the feature
and its weight. The “Result> 0” column indicates how a domain with a positiveResultwill be classified. The
exception is FFx1NArec domains, which are classified when SVM-5’sResultis negative. In addition to indicating
how the domain should be classified, the magnitude of theResultrepresents the confidence in classification choice.

As we classify each domain type, it is removed from the set of unknown domains before applying the next SVM
level. Thus, when considering the classification features for level SVM-x, we can ignore domain types in Table II
with numbers less thanx. Due to the similarities some domain types share between certain features, theorder we
apply the classifiers and which features we use at each level becomes important. The proper order can exploit the
strong differentiating features between certain domain types. We will now explain the features used at each level
of our SVM classifier and justify the order of classification.

SVM-1: CDN domains tend to have a short recruit period (F7) and a fastrecruit speed (F6) when compared to
MAL and FF domains. In the case of non-CDN domains, all the IPsare often seen simultaneously, resulting in no
recruit period and an instantaneous recruit speed. Since MAL and non-CDN domains are similar in the total number
of unique IPs seen, this difference in recruit speed and period becomes an important differentiating feature. If we
were to classify non-CDN domains first, F6 and F7 would receive less weight, putting the burden of differentiation
on F3 (IP overlap). Moreover, F4 and F5 are strong indicatorsof CDN domains due to their DNS strategy; none
of the other domain types display this location-aware behavior. Therefore, we can remove CDN domains from the
unknown set first with high accuracy. Since CDN domains can behave similarly to FF domains in other respects
(e.g., large number of IPs), removing them first will improvesuccessive classification. For these reasons, SVM-1
was trained on 10 CDN domains and 40 other domains (i.e., non-CDN, MAL, and FF), using F4 and F5 on the
domains’ A and NA recs. As we can see from Table III, a large percentage of IPs from the wrong continent (F4) or
similar IP distributions on each continent (F5) will generate a negativeResult. Thus, only CDN domains, practicing
a location-aware DNS advertisement strategy, will obtain positive values. We ran SVM-1 on our testing set of 5,169
domains. It identified a total of 17 CDN domains, which we manually verified then removed from the testing set.

SVM-2: With CDN domains removed from the testing set, F6 and F7 couldnow be used to their full potential.
While non-CDN domains advertise all there IPs nearly instantaneously, both MAL and FF domains will need to
recruit IPs over time. Additionally, MAL and FF domains may possess IP overlap; this should never be the case
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for valid non-CDN domains. Thus, for SVM-2, we use F6, F7, andF3. However, unlike SVM-1, where we applied
the features to the A and NA recs individually, SVM-2 looks atthe combined (A + NA) recs, accounting for FFx1
domains demonstrating fluxy behavior in only a single recordtype—the other often appearing benign. We trained
SVM-2 on 11 representative non-CDN domains and 29 of the FF and MAL domains. When applied to the remaining
5,152 unknown domains, it classified 279 as non-CDN. We manually analyzed the 69 boarder cases withResults
closest to 0 and found them to be satisfactorily classified; these results will be discussed further in Section V-D.1.
From Table III, we can see that F7 is the dominating feature. If the domain demonstrates any significant recruitment
period, it is unlikely to be a non-CDN domain. Had CDN domainsnot been previously classified and removed,
this feature would have been less prominent, forcing the classifier to depend on the more unreliable F3.

SVM-3: After removing the non-CDN domains identified by SVM-2, the testing set was entirely composed of
malicious domains (i.e., FF and MAL). Due to the many similarities between FFx1 and FFx2 domains, it seemed
logical to classify MAL domains next. F8 is the most obvious distinguishing feature between MAL and FF domains,
but we suspected that F6 and F7 might also prove useful, sinceFF domains should recruit more IPs over a greater
percentage of their online time. SVM-3 applies F6, F7 and F8 to the domains’ (A + NA) recs, again to account for
FFx1 domains. We trained SVM-3 on a representative set of 10 MAL domains and 19 FF domains. When applied
to the testing set of 4,873 malicious domains, it identified 4,694 MAL domains and 179 FF domains. Looking at
SVM-3 in Table III, we see that the dominant feature in distinguishing MAL domains from FF domains is F8: the
number of unique IPs. Because of their slower IP recruitmentrate, MAL domains will be quickly outpaced by FF
domains, resulting in a much lower number of unique IPs. Thisdifference will be accentuated with time, causing
it to be the dominant classification feature for our≈3.5 months of data.

SVM-4: After three stages of the classifier, only FF domains remained in the testing set. By definition, the
only thing distinguishing the FF domains is which record type demonstrates fluxiness. A combination of the two
FFx1 domain types, FFx2 domains should be the next candidatefor classification. From Table II, it appears that
applying F1, F3, F6, F7 and F8 to the individual A and NA recs should discern FFx2 from FFx1 domains. For F1,
F6, F7 and F8, all the FF domains will demonstrate fluxy behavior, but the FFx2 domain will demonstrate twice
as much as either FFx1 domain. This will also cause the IP overlap (F3) experienced by FFx2 domains—which
use botnets for both record types—to be considerably larger. We trained SVM-4 on a representative set of 11 FFx2
domains and 8 FFx1 domains. While F6 appears less significant, features F3, F7, and F8 contribute nearly equally
in classification, and F1 is a strong indicator of FFx2 domains. These results and their implications will be detailed
in Section V-D.3. Applying SVM-4 to the 179 remaining FF domains resulted in the classification of 38 FFx2 and
141 FFx1 domains, which we manually verified.

SVM-5: The final level of the classifier is charged with the modest task of discriminating between FFx1Arec
and FFx1NArec domains. With the exception of F3, SVM-5 makes use of the same features and record types
as SVM-4 for similar reasons. F3 is ignored at this stage since the FFx1 domains should experience comparable,
modest-to-no IP overlap. If a FFx1 domain demonstrates too much IP overlap, the fluxy behavior becomes visible in
both record types, and the domain can be considered FFx2. Theusefulness of the other features is straightforward:
for FFx1 Arec domains, the features will appear more fluxy in the A recs, and the opposite holds for FFx1NArec
domains. Unfortunately, we were only able to find a single FFx1 NArec domain by hand for training purposes.
When applying SVM-5 to the 141 FFx1 domains, we were surprised to find 53 of them were actually classified
as FFx1NArec domains. We examined the results by hand and discovered they were indeed correctly identified
as FFx1NArec domains. We will examine these results and possible explanations in in Section V-D.4. Table III
shows that F6 and F7 became negligible for SVM-5. F1 holds some influence in classification, but the dominating
feature is clearly F8. By this SVM stage, the testing set consisted entirely of FFx1 domains, and since the fluxy
record type naturally accrues more IPs with time, F8 strongly influences classification.

D. Results

1) False Positives:From our classifier’s results at each stage, only SVM-2 was found to experience any false
positives; two FFx1Arec domains were incorrectly identified as non-CDN due to DNS domain IP parking, which
caused the IPs to resemble the stable and benign behavior characteristic of non-CDN domains. When we initially
analyzed DIGGER’s data, we discovered a couple of nodes thatreliably partook in IP parking using the same set
of IPs. Their parking behavior is easily observed in Figs. 15and 16 as two long, constant lines with positive Node



18

15: FFx1Arec domain:
correctly classified

16: FFx1Arec domain:
misclassified as non-CDN

17: Cautious MAL domain

Index values, indicating parking in the A rec. Appearing as consistent, stable IP addresses, these parked IPs cause
a domain to appear more benign than it actually is, and if their influence dominates, our classifier could consider
the domain to be non-CDN. We removed the influence of IP parking due to these two nodes by ignoring the
associated parking data when present. However, in reality,these were not the only nodes performing IP parking—
though they were the most consistent. Since we didn’t filter this behavior for all nodes, they affected classification,
accounting for SVM-2’s two false positives. For example, consider the similar domains in Figs. 16 and 15. For the
misclassified domain in Fig. 16, a large majority of nodes instigated IP parking in both record types, confusing
our classifier. While initially the domain appears fluxy, theparking behavior of multiple nodes dominates over its
lifetime, causing it to be classified as non-CDN. While considered a false positive, this labeling is rather subjective,
since for the majority of the domain’s lifetime itdoesresemble a non-CDN due to IP parking. Since our classifier
is temporally naive (we consider all available data over our≈3.5 month monitoring period), this misclassification
is entirely reasonable; nevertheless, it would be better todetermine an optimal monitoring period and identify IP
parking techniques. This is part of our future work.

2) Cautious MAL domains:While manually validating SVM-3’s results, we discovered 4borderline MAL
domains exhibiting atypical IP behavior, one of which is shown in Fig. 17. Recruiting less than 50 A rec IPs
over ≈2.5 months (the domain was parked afterwards), it is not fluxyenough to be considered a FFx1Arec
domain. However, its uncannily regular IP recruitment distinguishes it from other MAL domains. Further analysis
revealed that the domains advertise only a single A rec IP perquery, with a max TTL of one minute. Despite
this fine level of control, the domains only replace the IP once a day, adhering to a meticulously precise schedule.
Additionally, we can see from Fig. 17, that once changed, theA rec IPs are not reused. Since these malicious
domains are not fluxy enough to be considered FF, they are correctly classified as MAL domains, but their behavior
implies a management strategy different from most MAL domains. They appear to be a type ofcautiousMAL
domain, regularly and preemptively replacing their A rec IPs before they can be detected and blocked—though the
short TTL permits rapid response when required. With only 4 instances observed, this behavior is currently very
rare. Nevertheless, the strategy is interesting and may gain popularity among malicious domain owners trying to
evade current detection technologies, warranting future research into these domains and how to better detect and
subvert them.

3) FF domains: Another interesting aspect of our classifier is how it distinguishes between the various FF
domains. Recall from Table III that F1 is the dominant feature for SVM-4, with the NA rec being 4x as influential
as the A rec. This assessment makes sense and is in agreement with our observed data. From Table I and Fig. 3,
we see that the FF domains recruit more IPs for their A recs than their NA recs, making the A recs appear more
fluxy. Therefore, for SVM-4, behavior that isn’t consideredfluxy enough for the A rec could be sufficient when
demonstrated in the NA rec. The consequence of this asymmetric weighting of fluxiness can be witnessed in Fig. 18
(a domain classified as FFx2) and Fig. 19 (a domain classified as FFx1NArec). The first thing to notice about both
of these domains is that they demonstrate definite fluxy behavior in one of their record types. Fig. 18 is clearly fluxy
in the A rec, while Fig. 19 is clearly fluxy in the NA rec. However, at a first glance, neither domain appears overly
fluxy in their other record. The FFx2 domain seems relativelystable for most of its NA rec, with what appears to
be fluxy behavior for≈20–30 of its NA rec IPs. In the case of the FFx1NArec domain, which only has about 30
IPs in its A rec, the recruitment behavior resembles that of aMAL domain; it slowly and consistently recruits a
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18: Classified FFx2 domain 19: Classified FFx1NArec domain

IV: Relative distributions of the various domain types

small number of IPs over the duration of the monitoring period. In addition, the IP overlap for the FFx1NArec
domain is less than 4%. Thus, in this case, the classifier seems to have performed correctly: a domain with FF
behavior in its NA rec and MAL behavior in its A rec should be considered a FFx1NArec domain. However, it
isn’t immediately obvious why the FFx2 domain is consideredfluxy in its NA rec. We already know that NA recs
require less fluxy behavior to be considered FF. Clearly, theFFx2 domain does demonstrate some FF behavior
in its NA rec. Furthermore, the FFx2 domain has an IP overlap of ≈26%, about the same number of NA rec
IPs demonstrating recruitment behavior. Thus,≈26% of NA rec IPs are also present in the A rec, and their fluxy
behavior influences the NA rec’s behavior. Because the totalnumber of unique NA rec IPs is approaching 100 and
≈26% of them demonstrate fluxy behavior, the less stringent fluxiness demands for the NA rec are met. Since both
the A and NA rec behave reasonably fluxy, the domain is correctly classified as FFx2.

4) Domain Type Distribution:Table IV shows the number and distribution for each domain type identified by
our classifier. For example, it shows that of the 106,311 domains we monitored, our rule-based filter (Section V-
C.1) identified 101,142 domains as benign or lacking in sufficient data—corresponding to 95.14% of our monitored
domains. This is reasonable, considering the fact that the domains monitored were extracted from online malware
and phishing repositories or from spam emails. Most malicious domains are only active for a short period of
time before they are discovered and blocked. DIGGER would have collected little-to-no valid data for these dead
domains, and they would have been filtered out. Not all hyperlinks in spam belong to malicious or phishing websites;
some contain links for legitimate companies peddling wareslike cheap pharmaceutical, herbal supplements, online
pornography, etc. These companies may not be doing any illegal activities, (or doing them discreetly enough not to
be caught), allowing them to utilize stable, legitimate servers. Thus, it is not unreasonable for≈95% of domains
to be removed by the rule-based filter.

Continuing to look at Table IV, we see that MAL and FF domains account for 94.27% of the remaining 5,169
test domains. Again, this is in line with our expectations, since we have already removed the most benign of the
non-CDN domains. Since the domain list is generated from suspicious sources, it is reasonable that few would be
utilizing the extensive CDN infrastructure typically employed by more popular and reputable domains. Of the 4,873
nefarious domains,≈96% were MAL domains, with only 179 being FF domains. This result is not surprising, since
MAL domains—due to their ease of management—are the traditional and most popular mechanism employed by
malicious websites. A MAL domain typically makes use of valid servers rented from less-than-reputable hosting
providers. When the domain is discovered and its IPs are blocked, the owner must find a new, shady hosting



20

provider willing to host the malicious content.
The additional level of misdirection and the nearly limitless supply of IPs enable botnets to make FF domains

appealing, despite their more diligent maintenance requirements. Thus far, it has been primarily FFx1Arec domains
observed in the wild, and their popularity is supported withour findings:≈49% of the FF domains are FFx1Arec.
Unsurprisingly, FFx1Arec domains are the most popular, since they provide the greatest return on their investment,
affording botmasters an additional layer of misdirection without the hassle of maintaining volatile botnet NSes.
Botmaster must still monitor the domain and replace the botnet IPs to avoid an interruption of service, but this task
is greatly simplified with the use of stable NSes. Unfortunately for botmasters, security professionals have become
aware of the FFx1Arec botnet technique, devising clever detection strategies. While the botnet provides a steady
source of fresh A rec IPs, the NSes can still be blocked, crippling the botmaster’s control until new NSes can be
acquired. As a means of botmasters overcoming this difficulty, we witnessed considerable presence of FFx2 domains,
composing≈21% of the FF domains. FFx2 domains improve upon FFx1Arec domains by providing an additional
layer of misdirection, further protecting the botmaster. Clearly, FFx2 domains require a more diligent management
effort than FFx1Arec domains; in addition to the A rec, the botmaster must constantly replace IPs for the NA
rec as well. However, this extra effort also makes FFx2 domains more difficult to subvert, protecting the NSes
against simple countermeasures such as IP blocking. Interestingly, when we analyzed the identified FFx2 domains,
we found there was a spectrum in the amount of NA rec fluxiness botmasters were incorporating. Obviously, there
were domains that were incredibly fluxy in both record types,as demonstrated byold-and-girl.com(Fig. 3). Such
FFx2 behavior is essentially what we had envisioned when applying the better-known, fluxy A rec behavior to the
NA rec. While it’s interesting to observe these aggressive FFx2 domains in the wild, it was the FFx2 domains at
the other end of the spectrum that proved more insightful. Asan example, recall the more modest FFx2 domain
ehuytyt.cn, shown in Fig. 18. With over 2,500 unique A rec IPs,ehuytyt.cnis extremely considerably more more
fluxy in its A rec than its NA rec. Using stable bot IPs from its Arec for roughly a quarter of its NA rec IPs,
FFx2 domains likeehuytyt.cnbenefit from the increased control and stability provided bytraditional NSes, while
simultaneously enhancing the domain’s resilience to subversion—for a minimal increase in management—through
the use of botnets.

Another interesting discovery is the apparent popularity of FFx1 NArec domains, accounting for≈30% of the
total FF domains observed. Surprisingly, this is a larger share than the FFx2 domains. It seems that botmasters
have become aware of security professionals analyzing domains’ A recs for FF behavior. Consequently, they have
migrated the fluxy behavior to the NA recs, where it is more likely to remain unnoticed. Fig. 19 is a typical example
of the FFx1NArec domains identified by our classifier. It demonstrates aMAL domain strategy for its A rec IPs
and a FF strategy for its NA rec IPs. This results in the domainappearing more benign when its A recs are analyzed,
while providing the botmaster with a fine level of control over the NSes. Should the domain’s malicious activity
be detected and the A rec IPs blocked, the botmaster, having retained control over the NSes, can easily replace the
IP’s with minimal service interruption. The implication ofthis discovered behavior is straightforward: both record
types must be monitored for fluxy behavior in order to quicklyidentify FF domains and their botnets. A real-time
monitor analyzing only domains’ A recs will not identify FFx1 NArec domains as fluxy, and it could take days for
the A rec’s MAL domain behavior to display its slow, steady IPrecruitment; even then, the observed recruitment is
a side effect of others detecting the malicious domain and blocking its IPs. However, a real-time detection system
monitoring NA recs for fluxy behavior could determine the domain to be FF in a much shorter period of time—quite
possibly before any MAL domain behavior becomes apparent inthe A rec. Obviously, the faster malicious domains
can be identified, the sooner they can be shutdown or have their nefarious influence mitigated.

VI. CONCLUSION AND FUTURE WORK

In this paper, we examined the global IP-usage patterns exhibited by different types of malicious and benign
domains, including FFx1 and FFx2 domains. We have deployed DIGGER, a lightweight DNS probing engine, on
240 PlanetLab nodes spanning 4 continents. Collecting DNS data for over 3.5 months on a plethora of domains, our
global vantage point enabled us to identify the various IP-usage patterns inherent to the operation of the different
domain types. Conducting a detailed analysis, we were able to determine distinguishing behavioral features between
the domain types based on their DNS query results. We have quantified these features and demonstrated their
effectiveness for detection by building a proof-of-concept, multi-leveled SVM classifier capable of discriminating
between five domain types: CDN, non-CDN, MAL, FFx2, FFx1Arec and FFx1NArec. Applying our classifier
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on a set of 5,169 unknown domains produced promising results, correctly categorizing the domains with only 2
false positives—due to DNS domain IP parking. Our classification results showed the relative distribution of the
domain types in our testing data and the current state of FF domains, including the increased presence and versatile
implementation range of FFx2 domains. We have shown that fluxiness is typically more pronounced in A recs, and
that there is an apparent trend towards using FFx1NArec domains, which were previously unseen in the wild.

While our multi-leveled classifier has proven effective in identifying the different domain types, it is only a
proof-of-concept detector. It is temporally naive, operating over the complete set of data gathered during DIGGER’s
≈3.5-month monitoring period. Additionally, our data was gathered by 240 nodes dispersed around the globe. An
optimal and practical detector should function over a much shorter duration, relying on fewer nodes. The problem of
determining the optimal monitoring period, the minimal number of nodes, and how to handle anomalous behavior
like DNS domain IP parking and node failure remains as futurework. Additionally, further study into the cautious
MAL domains is required to better detect and subvert them. Lastly, continued analysis and global monitoring of
malicious domains by DIGGER should be conducted to keep up with the future direction of malicious domains,
improving detection and mitigation strategies.
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