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ABSTRACT

Spam filtering has traditionally relied on extracting spam
signatures via supervised learning, i.e., using emails explic-
itly manually labeled as spam or ham. Such supervised learn-
ing is labor-intensive and costly, more importantly cannot
adapt to new spamming behavior quickly enough. The fun-
damental reason for needing labeled training corpus is that
the learning, e.g., the process of extracting signatures, is car-
ried out by examining individual emails. In this paper, we
study the feasibility of unsupervised learning-based spam
filtering that can more effectively identify new spamming
behavior. Our study is motivated by three key observations
of today’s Internet spam: (1) the vast majority of emails are
spam, (2) a spam email should always belong to some cam-
paign, (3) spam from the same campaign are generated from
some template that obfuscates some parts of the spam, e.g.,
sensitive terms, leaving other parts unchanged.

We present the design of an online, unsupervised spam
learning and detection scheme. The key component of
our scheme is a novel text-mining-based campaign identifi-
cation framework that clusters spam into campaigns and ex-
tracts the invariant textual fragments from spam as campaign
signatures. While the individual terms in the invariant frag-
ments can also appear in ham, the key insight behind our un-
supervised scheme is that our learning algorithm is effective
in extracting co-occurrences of terms that are generated by
campaign templates and rarely appear in ham. Using large
traces containing about 2 million emails from three sources,
we show our unsupervised scheme alone achieves a false
negative ratio of 3.5% and a false positive ratio of at most
0.4%. These detection accuracies are comparable to those
of the de-facto supervised-learning-based filtering systems
such as SpamAssassin (SA), suggesting that unsupervised
spam filtering holds high promise in battling today’s Inter-
net spam.

1. INTRODUCTION

Ever since the onset of Internet spam, supervised ma-
chine learning has been the norm in traditional spam
filter systems. In supervised learning, in the training
phase, a set of labeled training data of spam and ham
are fed into a classifier that uses the training corpus to
build a model for the spam (and ham). Then in the
detection phase, the model is used to classify unknown
emails into spam or ham. The difference among various
learning algorithms [51] largely lies in the different ways
they represent the trained model.
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Despite their effectiveness, supervised learning criti-
cally relies on the training corpus. Preparing the train-
ing corpus is labor-intensive and costly, and potentially
leads to a delay in the learning and spam detection cy-
cle. More importantly, any mislabeling of the train-
ing corpus (e.g., due to spammers’ obfuscation) can af-
fect the effectiveness of the learning process and conse-
quently the spam detection accuracy.

We examine the fundamental reason why these supervised-

learning-based schemes require training data. We ob-
serve that regardless of the algorithm details, these su-
pervised learning schemes share a common mechanism:
learning is performed on an individual email basis. In
other words, by their very nature of examining one
email at a time, these classifiers cannot tell whether an
email is spam or ham. This dictates that the only way
the classifier knows what information to learn from one
particular email to enhance the model is to be explicitly
told what the email is.

In this work, we revisit the fundamental reason for
needing training data in supervised-learning-based schemes
and study the feasibility of a completely unsupervised-
learning-based spam filtering scheme. Our study is mo-
tivated by three key observations of the spam in today’s
Internet:

e The vast majority of emails are spam [3, 13, 41];

e A spam email should always belong to some cam-
paign [2, 5, 19, 30, 53, 31];

e The spam from the same campaign are generated
from templates that obfuscate some parts of the
spam, e.g., sensitive terms, leaving the other parts
unmodified [19, 22, 23, 39, 40, 31].

These observations strongly suggest that in princi-
ple it is feasible to develop an unsupervised learning
scheme that automatically identifies the common terms
(signatures) shared by spam belonging to the same cam-
paign and in doing so identifies the spam campaign and
extracts the campaign signatures. The signatures can
then be used to filter future spam belonging to the same
campaign.

While promising, designing such an unsupervised spam
filtering scheme faces several fundamental challenges.
(1) It requires a robust learning algorithm that can ac-
curately identify common terms shared by spam belong-
ing to the same campaign and consequently the corre-



sponding campaign. (2) The learning algorithm needs
to be very efficient so it can be performed online in order
to quickly capture campaigns at their onset. (3) Legiti-
mate emails that exhibit similarities such as newsletters
and broadcast announcements may be falsely classified
into spam campaigns and contribute to false positives
in spam detection. (4) The filtering scheme is designed
to be deployed in a single organization (or mail ser-
vice provider), which may not witness enough volume
or concentration of spam belonging to a campaign for
the mining algorithm to detect the campaign (or soon
enough). This can contribute to false negatives in spam
detection. There have been a number of previous at-
tempts at unsupervised-learning-based spam detection
(e.g., [50, 28, 27, 44]). However, these approaches are
not explicitly designed to identify campaigns and are
unable to sufficiently expose the similarities (low en-
tropy) shared among the same campaign and conse-
quently suffer from either high false positives or high
false negatives.

In this paper, we present the design and evaluation
of an online, unsupervised spam learning and detec-
tion scheme, SpamCampaignAssassin (SCA), that over-
comes the above challenges. SCA performs accurate on-
line campaign detection, extracts campaign signatures,
and performs spam filtering using the signatures. To
our knowledge, SCA is the first unsupervised spam fil-
tering scheme that explicitly exploits online spam cam-
paign identification and achieves accuracy comparable
to the de-facto supervised spam filters.

To overcome the first challenge, SCA employs a text-
mining framework enhanced by Latent Semantic Anal-
ysis (LSA) [24] to cluster spam into campaigns. While
LSA has been used to perform spam detection previ-
ously [11], building a complete online framework on top
of it to perform campaign detection is our novel con-
tribution. In SCA, LSA is used to extract the seman-
tics of emails and infer their relationship by producing
a set of compact concepts, in which the semantic sig-
nificance of invariant texts is boosted. To overcome
the second challenge, SCA adopts a novel “split-and-
merge” strategy in applying the text-mining framework
to the incoming email stream to bound the time and
space complexity of LSA which in turn enables online
spam learning and detection. In particular, the incom-
ing email stream is separated into segments which are
processed independently by LSA. The resulting clusters
from each segment are then efficiently merged. We show
such an approach incurs little loss in learning accuracy.
To overcome the third challenge, SCA conservatively
performs filtering based on emails’ origins and keyword
whitelists to effectively reduce the false positive rate.

The fourth challenge, i.e., a possible lack of suffi-
cient spam observed belonging to the same campaign
at a single organization, poses perhaps the most sig-

nificant challenge to unsupervised learning." As shown
in our evaluation, our proposed text-mining of email
bodies alone generates campaign signatures that cover
over 80% of the spam. To overcome such “visibility
challenge”, SCA employs two optimization techniques.
First, it complements the above text-mining-based learn-
ing with mining HTML and URL information in email
bodies to generate additional campaign signatures. Sec-
ond, during the online learning and detection process,
it self-maintains a source IP blacklist of email sending
hosts with a high spam to ham ratio, and it performs
lookups of the remaining emails against such a blacklist.
Our evaluation results show both techniques effectively
encompass the vast majority of the remaining spam.

We have conducted a detailed evaluation of SCA us-
ing large traces containing about 2 million emails (over
two months) obtained from two heterogeneous orga-
nizations (a large university department and a large
mail service provider sampled via an open relay sink-
hole) and a public email dataset [1]. Our comprehen-
sive evaluation validates campaign identification accu-
racy, campaign signature quality, and online spam de-
tection accuracy. The results indicate that SCA, as a
standalone unsupervised spam detection system, can al-
ready achieve spam detection accuracies comparable to
those of the de-facto supervised-learning-based schemes
such as SpamAssassin. In particular, it achieves false
negative rates of no more than 3.5%, and false positive
rates of at most 0.4%, on the three datasets.

We further manually examined the spam belonging to
the 3.5% false negatives and confirmed the reason they
escaped SCA is because SCA did not witness enough of
similar spam to identify the campaigns they belong to.
We show that supplementing SCA with commonly used
DNSBL lookup can further reduce the remaining false
negative ratio. Ultimately, the visibility problem can be
overcome by having multiple domains share their email
corpus. We discuss ways of sharing the email corpus
anonymously.

In the rest of the paper, we briefly review the tradi-
tional, supervised-learning-based spam filter systems in
82, and motivate our unsupervised-learning-based spam
filtering design with key observations of today’s Internet
spam in §3. We present the design of SCA in §4, and
evaluate its detection accuracy in offline spam detec-
tion in §6 and online spam detection in §7. Finally, we
discuss further enhancements to SCA in §8 and related
work in §9, and then conclude in §10.

2. SUPERVISED LEARNING IN TRADITIONAL

SPAM FILTERING SYSTEMS

In this section, we give a brief overview of super-
vised learning schemes in traditional spam filter sys-

"We note that the same challenge is faced by supervised
learning.



tems. In supervised machine learning, spam filtering is
recast as a text classification problem using a set of la-
beled training data. In the training phase, the classifier
uses the training corpus to build a model, or a knowl-
edge base. Then in the detection phase, the model is
used to classify unknown emails. The difference among
various learning algorithms lies in the different ways
they use to represent the model. For example, a Naive
Bayes Classifier [26] finds keywords (or other features)
that prevail among spam (ham), but seldomly occur in
ham (spam), and use them as indicators of future spam
(ham). Memory-based learning systems [43] directly
store spam or ham instances in the model, then the label
of an incoming email is majority-voted by examining the
labels of similar emails stored in the model. A support
vector machine (SVM) [10] transforms training email
documents to data points in a high-dimensional space.
Then SVM separates spam and ham by a maximum-
margin hyperplane (a hyperplane with the largest dis-
tance to the nearest data points in both classes). Other
well-known supervised learning paradigms include neu-
ral networks [8], maximum entropy models [51], and
RuleFit (used by the SNARE system [16]).

Regardless of the algorithm details, these supervised
learning schemes share a common ground: learning, i.e.,
spam signature extraction, is performed on an individ-
ual email basis. This turns out to be the fundamental
reason for the necessity of training data: since the clas-
sifier cannot tell whether an email is spam or ham, the
only way it knows what information to learn from that
particular email is to be explicitly told what the email
is. For example, in Bayesian learning, the training data
need to be explicitly labeled so the classifier can learn
a prevailing keyword is indicative of spam, or ham, or
neither.

Supervised learning critically relies on the training
corpus to provide useful information, but preparing the
training corpus is labor-intensive and costly. More im-
portantly, since supervised learning heavily depends on
high-quality training data, feeding inaccurate training
corpus (e.g., due to spammers’ obfuscation) can lower
the detection accuracy, and potentially subvert the en-
tire learning system regardless of how smart the learn-
ing algorithm is. These reasons motivate researchers to
seek unsupervised spam detection approaches which do
not require any labeled training procedure and can au-
tomatically and more timely track evolutions of spam
campaigns.

3. SPAM CAMPAIGNS AND UNSUPERVISED

LEARNING

In this section, we motivate our unsupervised-learning-
based spam filtering with three key observations of to-
day’s Internet spam: (1) the vast majority of emails are
spam, (2) a spam email should always belong to some
campaign, (3) spam messages from the same campaign

are typically generated from some templates that ob-
fuscate some parts of the spam, e.g., sensitive words,
but not all of it. The common (unobfuscated) parts of
the spam belonging to the same campaign effectively
lower the “entropy” of these spam and lend themselves
to unsupervised learning.

3.1 Spam Campaigns

Numerous recent spam reports have suggested that
the vast majority of emails in the Internet today are
spam. A report in May 2009 by Symantec suggests that
90.4% of emails were spam [41], Google (postini) rated
spam volume to be around 90-95% in all four quarters
of 2009 [13], while a report from Microsoft in September
2009 rated spam to be at 97.3% of emails [3]. Several
reports [18] estimate about 85% of spam originate from
botnets. Symantec [41] estimates that 56.7% of spam
originate from known botnets, while a study [19] esti-
mates 79% of spam messages arriving at University of
Washington campus originated from just 6 botnets.

Every spam has an objective, for example, to sell a
product from a particular vendor, to advertise a politi-
cal campaign [33], or to infect hosts to recruit them into
a botnet. Spam messages with the same objective be-
long to a spam campaign (SC). To be effective, a spam-
mer generates spam in units of campaigns, each con-
sisting of a large volume of spam messages sharing the
same objective and targeted at thousands to millions
of mailboxes of many destination domains. Therefore,
due to the high volume of spam campaigns, a significant
number of the spam in a SC are expected to be received
at an individual end destination domain.

Recent studies on offline spam campaign analysis [2,
5, 19, 30, 53] confirm that the majority of spam received
at an end domain/spam honeypot can be clustered into
SCs. John et al. [19] estimated that 89.2% of emails
to UW were spam and more than 95% of spam feed
contained URLs. 80% of the spam pointed to just 11
distinct web pages whose content did not change dur-
ing their period of study (50 days), suggesting that at
least these 80% of spam belonged to SCs (at most 11
SC selling 11 products). Pathak et al. [30] manually
estimated that, in a spam-trace collected at a relay-
sinkhole, 58.6% of spam contained URLs, of which 65%
belonged to just 7 SCs, each containing thousands of
spam. Out of the remaining 41.4% spam that did not
contain a URL, 76% were identified to be a part of some
SC, using features like unique phone numbers, Skype
ids, and mail ids in spam messages. The remaining
24% of spam that did not contain URLs were believed
to be part of a pump-dump stock SC. Calais et al. used
Spam Miner [6, 5] to cluster 97.5 million spam obtained
during a period of one year at 10 honeypots spread over
5 broadband networks into 16K SCs. Over 99.999% of
the SCs consisted of more than 1K spam messages each.



3.2 Template-based Campaign Generation

Recent studies on spam campaigns further uncovered
ample evidence that spam in a SC are typically gen-
erated from spam templates [19, 22, 23, 39, 31]. A
spam template defines a skeleton of spam, along with
a set of rules from which many varying spam can be
generated. The rules specify how the headers should
look like, which part of text/body should be obfuscated,
where in the body the URLs should be placed, which
words should be rotated, etc. Spam templates are dis-
patched to bots which use them to generate individ-
ual instances of spam and send one to each recipient.
The bots/spammers are known to use tools, e.g., Dark-
Mailer [9], send-safe, and the reactor-mailer tool [39],
to automatically generate spam based on templates.

When designing a template, spammers try hard to
ensure that the spam generated from the template is
unlikely to be flagged by popular anti-spam solutions.
To do so, spammers refine the templates to obfuscate
and rotate key words, i.e., words that are sensitive in
identifying a message being a spam email. Some of these
tools even come integrated with open-source anti-spam
solutions to self-check the scores of spam generated from
an input template [39]. While emphasis is placed on
key words, words surrounding the obfuscated text often
receive less attention by both spammers and regular-
expression-based body tests in spam filters. To illus-
trate this point, let us consider a spam template from
dark-mailer [9].

{/Canadian|CANADIANY}

{/idrugs Imeds|health treatments|health remedy’s|
treatments|health drugs¥%}...the{)only|simply|merely|
purely|easily|straightforward|clearly|obviously’%}
{/way|path|route|approach|method|mode’} to {lgolbuyl
acquire|get |purchase’}

{/.URL_ADDRESS’,}

"Ah, {%madel|dust|board|scorch|receipt|tail|commerciall

debt | comparisony,}{%strap|language|tradel|cart|
thundering|stuck|inquisitively|tactic|hand%} your
{/griplplate|inquisitive|steer|splendid|promptly|
needle|shoe|drink}} excellency, I am{%ball|post|

opinion|library|lighten|cow|letter|weak),} overwhelmed

with deligh "Yes."

The above template describes just the body part of
a complete template. Word rotation is being used to
obfuscate the whole body text. One word is picked up
from every braces - {%..%}. Even from such a sim-
ple template, millions of distinct spam can be gener-
ated. While all the sensitive words are rotated in the
spam, the word sequences “...the”, “excellency, I am”,
“overwhelmed with deligh ”Yes.”” will co-occur in every
spam generated from the template.

Finally, the templates for a particular SC are not
frequently changed. A study involving the storm bot-
net [23] observed that half of the campaigns from the

storm botnet employ only a single template. Longer
running campaigns employ more templates. In sum-
mary, template-based spam generation employed by mod-
ern spammers suggests that spam belonging to the same
campaign are highly likely to share a set of common
terms in the body.

3.3 Towards Unsupervised Learning

The above observations about the spam in today’s In-
ternet suggest that in principle it is feasible and highly
promising to develop an unsupervised learning scheme
that automatically identifies the common terms shared
by spam belonging to the same campaign and in doing
so identifies the spam campaign and extracts the cam-
paign signatures, to be used for filtering future spam of
the same campaign.

As discussed in §2, a fundamental reason that super-
vised learning needs labeled data is that when exam-
ining emails one at a time, it is difficult to distinguish
spam from ham. However, when examined together, the
collective common properties of spam at the campaign
level gives a clear manifestation of themselves:

Statistically, due to the nature of template-generated
spam campaigns, spam bear lower entropy (i.e., higher
sitmilarities) than legitimate emails.

In a spam campaign, the spammer, e.g., using a bot-
net, sends a large number of spam messages, of the same
intent, in an automated fashion. In contrast, legitimate
emails are manually sent out by human for different
purposes. Such a fundamental disparity is inevitably
reflected on the entropy (i.e., dissimilarity) of the email
contents; spam belonging to a campaign tend to ex-
hibit low entropy, and ham tend to exhibit high entropy.
An unsupervised learning algorithm should be able to
uncover the entropy gap between spam and ham, by
accurately discovering frequent invariant textual parts
among the spam in a campaign.

While spammers constantly attempt to increase the
entropy of spam by escalating their obfuscation tech-
niques, e.g., polymorphic spam instances [39], we argue
that the entropy gap between spam and ham will never
disappear due to the fundamental disparity between
campaign-based spam and legitimate emails which are
personalized in nature?. In particular, even if all the
sensitive keywords (e.g., Viagra and Replica) are ob-
fuscated at a per-spam basis, it is very likely that there
exists co-occurrence of non-sensitive words in the tem-
plates that are not obfuscated and unlikely to co-occur
in legitimate emails. Otherwise, spammers have to spend
considerable amount of efforts and resources in cus-
tomizing each spam instance.

While promising, the design of such an unsupervised

*While in principle a spammer could use obfusca-
tion/rotation for all terms in the template, doing so would
severely affect the readability of spam messages.



spam filtering scheme faces several fundamental chal-
lenges. (1) It requires a robust learning algorithm that
can accurately identify common terms shared by spam
belonging to the same campaign and extract the cam-
paign signatures. (2) The learning algorithm needs to
be very efficient so it can be performed online in order
to quickly capture campaigns at their onset. (3) Legiti-
mate emails that exhibit similarities such as newsletters
and broadcast announcements may be falsely classified
into spam campaigns and contribute to the false positive
ratio in spam detection. (4) Same as any practical spam
filtering solution, such a scheme should be designed to
be operated in a single organization. Hence it may not
witness enough spam belonging to a campaign, e.g., in
a short interval after the onset of that campaign, for the
mining algorithm to detect the campaign. This can hap-
pen as a campaign may not generate the same amount
of concentrated spam to all organizations or domains.
This potential “visibility” limitation can contribute to
the false negative ratio in spam detection.

3.4 Previous Unsupervised Approaches

There have been a number of previous attempts at
unsupervised spam detection. To the best of our knowl-
edge, all of these work were motivated by the same set
of observations as ours, without perhaps explicitly stat-
ing them. However, we found none of the existing ap-
proaches are capable of sufficiently exposing the simi-
larities (low entropy) shared among the same campaign
and consequently they all suffer from either high false
positives or high false negatives.

The simplest unsupervised approach is hash-based
duplicate detection. This scheme, however, can be triv-
ially subverted by introducing the slightest obfuscation.
The authors in [50] employ a similar idea except that
they use a hash vector (the hash values of the first N
k-grams) instead of a single hash. Although the authors
claim they achieve 98% recall rate and 100% precision
rate, their evaluation method is questionable as they in-
ject identical copies of the same “pseudo” emails. The
approach in [28] is based on the assumption that the
distribution of substrings in spam (campaigns) is differ-
ent from Zipf’s law which legitimate documents exhibit,
due to the large amount of similarities shared by the
spam. The authors in [27] propose a more complicated
method called String Alienness which detects spam by
discovering outliers in the substring frequency distribu-
tion. However, these approaches suffer from poor ac-
curacy. The evaluation in [27] shows that the highest
precision and recall rate range from 72% to 80% and
63% to 89% in four datasets, respectively®. In [44], the
authors employ an entropy-like measure, called Docu-
ment Complexity, whose values are high for ham, but
low for spam generated from “seed documents” (i.e.,
campaign templates). However, their evaluations us-

$We did not find accuracy evaluation in [28].

ing four datasets containing a total number of 6K blog
spam shows that the highest precision and recall rate
range from 71% to 95% and 63% to 82%, respectively.
A recent theoretical work [15] by Haider et al. detects
spam campaigns using Bayesian clustering that trans-
forms email documents to independent binary feature
vectors. Their algorithm works well in supervised mode,
but when no training hams are available, its false neg-
ative rate is at least 20%. In [47], the authors propose
a semi-supervised approach where the system first clus-
ters unlabeled emails, then the user only needs to label
each cluster instead of each email instance.

4. SPAMCAMPAIGNASSASSIN (SCA): UN-

SUPERVISED SPAM FILTERING SCHEME

In this section, we present SpamCampaignAssassin
(SCA), an online, unsupervised spam learning and de-
tection scheme. SCA is explicitly designed to be campaign-
oriented. The key component of SCA is a novel text-
mining-based framework that clusters spam into cam-
paigns and extracts the invariant textual fragments from
spam as campaign signatures. SCA further comple-
ments text-based signatures with two robust algorithms
that extract campaign signatures from HTML struc-
tures and URLs in the mail body to further reduce the
false negatives. A further optimization on online spam
detection of SCA is presented in §7.2.

4.1 Text-mining Framework for Extracting Tex-
tual Signatures

Figure 1 shows the architecture of our online text-
mining framework. Our framework takes as input the
incoming email stream which may contain multiple spam
campaigns (spam) and legitimate emails (ham), per-
forms unsupervised learning, and outputs textual sig-
natures that well separate spam from ham.

The core unsupervised learning engine in our online
text-mining framework performs Latent Semantic Anal-
ysis (LSA) [24] and clustering. Since LSA has a quadratic
complexity, we adopt a “split-and-merge” approach in
our framework. First, the incoming email stream is split
into multiple segments, each consisting of emails re-
ceived in a continuous duration. Processing results, i.e.,
preliminary identified clusters and signatures, for multi-
ple segments are efficiently merged based. Such a “split-
and-merge” design has two benefits. First, it enables
our framework to process multiple segments in paral-
lel, e.g., on a multicore machine. Second, more impor-
tantly, it makes it feasible to apply sophisticated but ex-
pensive machine learning algorithms such as LSA [24].
Let the total number of emails be n and the number of
segments be s. After segmentation, the cost of a poly-
nomial algorithm of degree k decreases from ©(n*) to

C) (5 . (ﬂ)k) =0 (%), by a factor of s*~1, with lit-

S
tle loss of accuracy as our evaluation will show. We now
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Figure 1: Text-mining framework for extracting textual signatures.

describe each framework component in detail.

4.1.1 Preprocessing: term reduction and matrix gen-
eration

The input to this step is a segment of unlabeled doc-
uments. After filtering 965 common English stop words
and HTML tags, we perform term reduction to miti-
gate obfuscated terms that are usually random (low-
frequency) terms injected by the spammer, and to boost
the performance of LSA (§4.1.2) and vector-based clus-
tering (8§4.1.3), as their performance degrade as the term
space (vocabulary size) becomes larger [37]. In our
implementation, first, terms with document frequency
(the number of documents in which a term occurs) less
than a threshold tf are removed. Second, we employ
Porter Stemming Algorithm to reduce English words to
their basic forms. [48] shows that it is possible to reduce
the vocabulary size by a factor of 10 (100) with no loss
(very small loss) of accuracy.

After term reduction, we represent the documents us-
ing the common tf-idf (term frequency - inverse docu-
ment frequency) weighting considering both the impor-
tance of the term in a particular document as well as the
whole corpus of documents. Thus we tokenize the cor-
pus into a tf-idf matrix where the value of (i, ) corre-
sponds to the composite weight for term ¢ in document

]

4.1.2 Boosting semantics of invariant texts: Latent
Semantic Analysis (LSA)

After tokenizing the documents, the tf-idf matrix X
is usually large in its dimension. In order to boost the
semantics of invariant texts, we employ Latent Semantic
Analysis (LSA) [24] to transform the original vocabu-
lary space into a compact concept space. For example,
assume the vocabulary consists of three terms: {viagra,
cialis, replica}. Assume viagra and cialis have high co-
occurrence in the corpus, but the correlation between
replica and the other two terms is very low. Then the
concept space generated by LSA may contain two terms
{a-viagra + (-cialis, replica} where the values of o and

B depend on how well viagra and cialis are correlated.
The first “term” in the concept space can be thought
as drug.

Mathematically, let the original tf-idf matrix be an
m X n matrix X where m is the number of terms and
n is the number of documents in the segment. The
LSA algorithm transforms X to an r X n matrix X’
by generating a low-rank (dimension) approximation
to X based on singular value decomposition (SVD) of
X. The low-rank approximation X, is constructed as
X =U0UzVT »~ UTETVTT = X, where X, contains the
r largest singular values of X and the matrix X, is
the closest r-rank approximation to X in terms of the
Frobenius norm. Effectively reducing the vocabulary
size from m to r < m significantly increases the ac-
curacy and performance of the subsequent clustering
procedure.

Unfortunately, LSA is not scalable. Its time complex-
ity (the complexity of SVD) is ©(nm?) for an m x n
matrix. Thus, directly applying LSA on a large dataset
is computationally infeasible. This was the main moti-
vation for splitting the incoming email stream into seg-
ments to bound n and hence limiting m.

4.1.3 Separating low-entropy emails: clustering

Given the corpus containing n vectors in the concept
space, X,., the next natural step is to separate its low-
entropy components (i.e., spam campaigns). This is
achieved by a clustering procedure that, without super-
vision, finds groups of documents with similar content
based on a predefined distance function between two
vectors. We employ the bisect k-means clustering algo-
rithm [42] due to its linearity in time and space and its
ability to automatically decide the number of clusters.
The typical Cosine dissimilarity (one minus the cosine
of the included angle between two vectors) is used as
the distance measure.

The bisect k-means algorithm works as follows. Ini-
tially there exists only one cluster consisting of all doc-
uments. The algorithm iteratively picks one cluster
with the worst quality, then bisects it into two clus-



ters. The cluster quality of a cluster C' = {vy,...,vn}
is defined as q(C) = £ 3" | |vi — c| where c is the cen-
troid of C, i.e., L3 vi. A smaller ¢(C) indicates
better cluster quality. The algorithm terminates when
Y cluster C : [g(C) < d V|C| < A\] where ¢ and X are
predefined thresholds for the cluster quality and cluster

size, respectively.

4.1.4 Preliminary signature generation: computing
frequent term sequences

We exploit the similarities among the vectors in the
same cluster to generate preliminary signatures, which
are invariant textual fragments prevailing in the clus-
ter. We compute w-frequent term sequences, which
are consecutive term sequences with the document fre-
quency higher than =, as preliminary signatures (we
will refine these signatures later). Those w-frequent
term sequences could be efficiently obtained by scan-
ning the entire cluster once using the suffix tree al-
gorithm [14]. We prefer consecutive terms sequences
to other design choices for textural signatures due to
its linear computation cost and its robustness to ob-
fuscation (other approaches we investigated include N-
gram terms, non-consecutive terms, term sets, and the
BLAST pattern discovery algorithm [14] used in bioin-
formatics). Again, the robustness of signatures comes
from the fact that SCA extracts frequently appearing
co-occurrences of terms that are generated by campaign
templates but are rarely appearing in ham.

4.1.5 Purifying clusters

The clustering step effectively exposes similarities shared

by spam in the same campaigns, as the entropy in each
cluster is much lower than the entropy of the entire cor-
pus. However, as clustering is a partition operation, ev-
ery email in the corpus is classified into a certain cluster.
In order to obtain useful, precise signatures, we need to
remove the noises (i.e., legitimate emails) in the clus-
ters. We call this procedure cluster purification, which
consists of four steps:

1. Filtering legitimate emails. This step lever-
ages the preliminary signatures generated in the
previous step. For each cluster, we remove emails
not covered by any preliminary signatures. The
majority of these are legitimate emails mingled in
the clusters.

2. Filtering clusters with few origins. We elim-
inate the entire cluster if all messages are origi-
nated from no more than u distinct IPs where u
is a threshold. Such a cluster is more likely to
be a legitimate campaign (e.g., newsletters and
broadcast announcements) or a long threaded dis-
cussion, since the de facto spamming strategy to-
day is to exploit botnets involving a large num-
ber of infected hosts, as discussed in §3. Also,

emails from internal IP addresses of the organi-
zation where SCA is deployed are automatically
whitelisted.

3. Eliminating small clusters. We eliminate the
entire cluster if its size (i.e., the number of emails
in the cluster) is less than A, a predefined thresh-
old.

4. Eliminating legitimate clusters. Mailing lists
may exhibit behaviors very similar to spam cam-
paigns i.e., messages from heterogeneous sources
share similar content. We use keyword whitelists
(they are test against the signatures) to filter clus-
ters containing legitimate mailing list messages.
The whitelist also contains textual fragments that
may frequently occur in legitimate mail bodies (e.g.,
the name of the organization), based on the ad-
ministrator’s domain knowledge. Given that the
textual behavior of ham is much more stable than
that of spam, we expect the maintenance overhead
of whitelists to be low.

At the end of cluster purification, we update the sig-
natures accordingly, i.e., we remove signatures that are
no longer 7-frequent term sequences in the purified clus-
ters.

4.1.6 Agglomerating similar clusters for all segments

Due to the split-and-merge operational model of SCA,
all operations described from §4.1.1 to §4.1.5 are per-
formed on a per-segment basis. It can happen that
one actual spam campaign in the same segment may
be broken down into multiple clusters (due to the over-
partition of bisect k-means) or a campaign persists over
multiple segments. The signatures for these clusters
due to the same campaign are likely to be very similar.
To avoid a large number of redundant signatures, when
all segments are processed, our framework agglomerates
all purified clusters into final clusters with the purpose
of reducing the number of signatures. The agglomer-
ation is essentially the reverse procedure of clustering.
Initially, every cluster forms an agglomerated cluster
(which is a set of clusters) itself. Then we repeatedly
merge two similar agglomerated clusters based on their
signature information until no further merge can be per-
formed.

Algorithm 1 Cluster Agglomeration

Input: n purified clusters C1, ..., Chp.
Output: A, the set of agglomerated clusters.
Parameter(s): Two thresholds pl and p2.
L A {{C1}} U{{Cal} U U{{Cn}}
2: while 3A;,A; € A:

VCr € A;,Cy € Aj : 3 € Cr, B € Cy : Topi(a, 8) > p1]A
VC» € A;,Cy € Aj : Ja € Cy, B € Cy : Sopi(a, B) > p2]
do

4: end while




Our novel cluster agglomeration algorithm is formally
described in Algorithm 1. Initially, every cluster C;
forms an agglomerated cluster A; by itself. Then we
repeatedly merge two agglomerated clusters A; and A;.
A; and A; can be merged if they satisfy the two condi-
tions in Line 2 of Algorithm 1:

1. All cluster pairs share similar signatures.
The similarity of two signatures a and f is mea-
sured by Toyeriap(e, 8), which computes the length
of longest non-consecutive (but ordered) sequence
(LCS) shared by « and 8.

2. Shared signatures are informative. This is
measured by Soveriap(, 8) which computes the
sum of idf values (inverse document frequency w.r.t.
the entire dataset) for each term in o and 3. A
high Soyeriap value indicates that o and 5 are “in-
formative” signatures in the sense that they do
not prevail among all emails in the dataset, as it is
known that the terms with low-to-medium docu-
ment frequency are the most informative ones [36].
The Soveriap measure is especially useful when LCS
is short.

4.2 Extracting HTML and URL signatures

HTML and URL are popular elements in today’s spam.
In our datasets, we observe a non-trivial fraction of
spam (especially short spam) have URLs as the main
part of the body. We also observe that for many cam-
paigns, their HTML structures are much more stable
than the obfuscated texts. These observations motivate
us to design two robust (i.e., conservative) algorithms
to extract HTML and URL based campaign signatures
that are complementary to textual signatures, in order
to reduce false negatives in spam detection without in-
creasing false positives.

Unlike the texts in email bodies which can be rep-
resented linearly by vectors, HTML contents form non-
linear tree structures. We adopt a simple approach that
aggregates HTML trees by exact matching, based on
our observation that HTML structures are much less ob-
fuscated than texts, and that most popular spamming
tools do not provide HTML-based obfuscation [39]. To
further reduce false positives, we ignore trees with fewer
than 20 nodes since simple trees are more possibly shared
between spam and ham. We could design or make use of
more sophisticated algorithms (e.g., tree edit-distance
based clustering [29]) to handle HTML obfuscations,
but we leave it as our future work.

For URL-based signature extraction, we focus on a
particular type of URLs (examples are shown in Ta-
ble 7 in §6.2) that consist of both the invariant and
the obfuscated components in the URL string, for the
following reason. The invariant component indicates
the low-entropy nature of spam campaigns, while the

obfuscated component well separates spam from ham
since it is common that the same URL without obfus-
cated components occurs in multiple legitimate emails
(e.g., newsletters).

Algorithm 2 URL Signature Extraction

Input: n URLs Uy, ..., Uy, extracted from an email corpus.
Output: S, the set of URL signatures
Parameter(s): A, ey, €ip

1: S < A-frequent domain parts

2: for each s € S do

3: if URLEntropy(s) < eyur1 VIPEntropy(s) < ejp then S «+

S — {s} endif
4: end for

The signature extraction procedure is depicted in Al-
gorithm 2. After preprocessing URLs by only keeping
their domain parts, we focus on the invariant compo-
nent by computing all A-frequent domain parts *(recall
that in §4.1.5, X is the threshold for cluster size). Next,
we require URLs that are covered by a A-frequent do-
main part to exhibit obfuscations, i.e., the URLEntropy
is greater than a threshold e,,). We also require emails
that are covered by URLs with a A-frequent domain part
to be from “random” sources, i.e., their IPEntropy is
greater than a threshold ¢;,. Given a list of URLSs (only
with their domain parts), the URLEntropy is defined
as — . p(u)log p(u) where p(u) is the frequency of a
specific URL u in the list. Similarly, given a list of IPs,
we define the IPEntropy as — >, p(4) log p(i) where p(i)
is the frequency of a specific IP i in the list.

To further reduce false positives, we also employ clus-
ter purification (Steps 2 and 3 in §4.1.5) for HTML
and URL signatures by regarding all emails covered by
each HTML or URL signature as a cluster. As will be
shown in §6, for our largest dataset, HTML and URL
signatures, when used alone, contribute up to 39.8% to
27.4% true positives, respectively, with less than 0.1%
false positives.

5. EVALUATING TEXTUAL CLUSTERS

Since SCA is explicitly designed to be campaign—
oriented, i.e., it identifies campaigns and then uses the
campaign signatures to perform spam detection, we pro-
ceed with our evaluation of SCA in three steps. In this
section, we evaluate the accuracy of the generated cam-
paign clusters. We then evaluate the detection accuracy
of the three types of signatures in §6. In these two sec-
tions, SCA performs offline detection where we generate
signatures using campaigns agglomerated from clusters
in all segments in an unsupervised manner. Then the
signatures are applied to the entire dataset. Finally,
in §7, we present the design details and evaluation of
the online version of SCA.

1A domain consists of multiple parts separated by “.”, and

frequent parts at different positions are treated as distinct
frequent parts, e.g., *.foo.*.* and *.*.foo.*.



5.1 Data Sets

Table 1 describes the three data sets used in our eval-
uation. The DEPT trace was collected from two mail
servers serving about 2K users in a large university de-
partment. We also have labels classified by SpamAssas-
sin for most emails, but we do not fully trust the results
as SpamAssassin may not be 100% accurate. The RELAY
trace [30] was a subset of one month’s trace collected
from an open relay located in Eastern US which has
been running since Oct 2007; only emails going to the
destination domain of yahoo.com were kept in the sub-
set. We note all emails collected by the open relay are
spam since the presence of relay was not announced to
anyone and legitimate mails are not sent through ran-
dom relays. Since there are other sources that spam
yahoo.com, the RELAY trace represents a sample of all
the spam going to yahoo.com during the collection pe-
riod. We also use one public dataset, ENRON [1], to eval-
uate false positives of campaign signatures in §6. The
ENRON corpus consists of 0.5M emails (most are ham)
collected from a large company. Since the ham are min-
gled with a small amount of spam, we pick a subset of
37.9K emails from all users’ sent-boxes, thus we are con-
fident that emails in the subset are purely ham. We use
a short and fixed whitelist (§4.1.5) of 20 terms for DEPT,
but no whitelist is applied to RELAY and ENRON.

5.2 Parameter Setting

Table 2 shows the parameters used by SCA, for pro-
cessing the three datasets®. We note that although the
datasets have significant disparities in terms of content,
spamming sources, and languages, we found that the
same set of parameters yield good results for all seg-
ments in three datasets.

Among all parameters, three have a large impact on
the text-mining performance: n (the segment size), tf
(the frequency threshold for term reduction), and r (the
dimension of the concept space), because the computa-
tional complexity of LSA (the bottleneck operation of
the framework) is ©(nm? 4+ nr?) where m, the vocabu-
lary size, depends on tf. We empirically tried (for DEPT
and RELAY) (i) tf = 30, 50, 100, 150, 200 when fixing
r =300 and n = 15K; (i) r = 100, 200, 300, 400, 500
when fixing ¢f = 50 and n = 15K; (4ii) n = 10K, 15K,
20K, 40K when fixing r = 300 and ¢f = 50. All config-
urations show no qualitatively difference in clustering
accuracy. This indicates that we could use small values
of n,r, tf in online detection for better text-mining per-
formance. In particular, We note that the third exper-
iment that varies segment size n suggests segmenting
incoming emails for per-segment text-mining analysis
does not worsen the potential visibility problem faced
by SCA as mentioned in §3.3.

The rest of the parameters only affect the accuracy.

SFor the value of p; in Table 2, I, and lg are the lengths of
two signatures « and f3, respectively.

Table 3: Cluster quality under sampled evaluation.

Dataset DEPT RELAY

# Examined clusters | 500 largest clu. | 100 largest clu.
# Samples per cluster 50 100

# Quality: good 488 (97.6%) clu. | 100 (100%) clu.
# Quality: acceptable 10 (2%) clu. 0
# Quality: incorrect 2 (0.4%) clu. 0

Their values are derived from the general knowledge
about spam campaigns (7, A\, u), and empirically from
the datasets (0, p1, p2, €url, €ip)- Again, since they work
well on the three diverse datasets, we believe they are
fairly general and applicable to other datasets.

5.3 Manually Sampled Evaluation

The framework generates 1,775 and 243 agglomer-
ated clusters on DEPT and RELAY datasets, respectively.
Note we are only concerned with the quality of indi-
vidual clusters; it is acceptable that spam in a cam-
paign are split into multiple clusters (e.g., due to over-
partitioning (§4.1.3)) as each cluster will contribute some
signatures for spam detection. Automated evaluation
of textual clusters is challenging due to lack of ground
truth. Instead, we perform sampled manual inspection
as follows. For DEPT, we pick the largest 500 clusters
and visually sample 50 spam in each cluster. Then we
score the cluster quality with one of the following three
marks: good if all 50 spam unanimously belong to the
same campaign due to similar content and text struc-
ture; acceptable if less than 10 emails are misclassified
(they are legitimate emails or they belong to other cam-
paigns); incorrect if at least 10 emails are misclassified.
For RELAY, we sample 100 emails in each of the largest
100 clusters and use the same evaluation metrics. The
evaluation results shown in Table 3 demonstrate the
text-mining framework is highly accurate in identifying
campaign clusters.

5.4 Manually Unsampled Evaluation

Leveraging the RELAY dataset, we further perform
manual unsampled evaluation of the quality of the clus-
ters generated by our text-mining framework. We man-
ually identified five campaigns (SC1 to SC5 in the RELAY
dataset, as shown in Table 4. They were used in our
previous study [30]). If we feed the mixed dataset con-
taining SC1 to SC5 to the text-mining framework that
produces several agglomerated clusters, then ideally two
emails from different campaigns in Table 4 should not
be mingled in the same cluster. This is validated by
the results shown in Table 5 where “misclassified” de-
notes the number of spam that belong to clusters that
contain emails from two sets, and “false negatives” de-
notes the number of spam not belonging to any clus-
ter. Furthermore, Table 5 shows the clear benefits of
the cluster purification step (§4.1.5), which significantly
reduces misclassified spam with acceptable tradeoff of
false negatives.



Table 1: Email traces used for evaluation.

DEPT RELAY (dest. to Yahoo) ENRON [1]

# Emails 1.68 M 316.4 K 379 K
Sampling 1:1 1:10 Unknown

Time April 5 - May 9, 2009 February 1-28, 2009 2004

Source Dept. mail servers Open relay Sent-boxes of 150 employees

Type Spam + ham All spam All Ham
Language Mostly English Mostly Chinese Mostly English

Labels SA labels Ground truth Ground truth

§ 85, §6, §7 85, §6, §7 §6

Table 2: Parameters used in the text-mining framework.

[ Parameter Name [ 8 [ Value ]
n: segment size 84.1 15,000
tf: freq. threshold for term reduction 84.1.1 50
r: concept space dimension §4.1.2 500

Threshold parameters

0: for vector similarity 84.1.3 0.45 to 0.5
m: for document freq. of textual signatures 84.1.4 50% to 60%
A: for cluster size 84.1.5, §4.2 30
u: for # IPs in legitimate clusters 84.1.5 10
p1: for T,y in cluster agglomeration §4.1.6 0.8max{la,ls}
p2: for Sy in cluster agglomeration 84.1.6 5.0
€url, Eip: for URL/IP entropies §4.2 3.0

6. EVALUATING CAMPAIGN SIGNATURES

We now evaluate the offline spam detection accuracy
of the three types of signatures, using the three datasets
(DEPT, RELAY, and ENRON). This helps us to understand
the upper-bound on the effectiveness of the derived sig-
natures before we build the online version of SCA with
additional optimizations.

6.1 Methodology

In §6 and in §7, we use TP, TN, FP, FN to denote
true positive(s), true negative(s), false positive(s), and
false negative(s), respectively. We employ two widely
used metrics for detection accuracy: False Positive Rate
(FPR) and True Positive Rate (TPR, or detection rate).
FPR is defined as FP/(FP 4+ TN), and TPR is defined
as TP/(TP+FN). A perfect detection scheme will have
a FPR of 0 and a TPR of 100%.

The evaluation metrics are intuitive, but calculat-
ing them is slightly challenging. We apply generated
signatures on all emails in the dataset, then measure
how many emails are misclassified. For RELAY (ENRON)
this is straightforward since all emails are spam (ham).
For DEPT, however, since we do not fully trust the Spa-
mAssassin (SA) labels, we perform the evaluation by
classifying emails into four categories. (i) Both SA and
our detection scheme SCA report spam, then we are
confident that such emails are indeed spam (TP); (ii)
Both SA and SCA report ham, then we assume that
they are truly ham (TN); (iii) SA reports spam, but
SCA reports ham, then we conservatively regards such
emails as spam (i.e., we assume SA has no FP), there-
fore they are FN of our detection scheme; (iv) SA re-
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ports ham, but SCA reports spam, then we manually
sample 500 emails to find out how many emails are mis-
classified by SpamAssassin therefore they are our TP
(we do assume SA has FN), and how many emails are
misclassified by us i.e., they belong to our FP. Let the
number of emails in Category (i), (i), (i), and (iv)
be n1,n9,n3,n4 and the fraction of emails misclassified
by SA in Category (iv) be r, 0 < r < 1, based on our
sampled manual inspection on emails in Category (iv).
Then FP = ny(1 — r) and TP = ny + ny - r and we can
compute FPR and TPR as FPR = n4(1 — r)/[n4(1 —
r) + ns], and TPR = (ny + ng - r)/(n1 + ng - r 4+ n3).

6.2 HTML and URL Signatures

For the DEPT trace, SCA generates 679 HTML sig-
natures and 1647 URL signatures. Their coverage (the
number of spam that are covered by each signature,
sorted in descending order) is plotted in Figure 2 where
both types of signatures exhibit heavy-tail distribution,
i.e., a small number of signatures can be used to detect
a large fraction of spam. The most effective HTML
and URL signatures capture 55K and 88K spam, re-
spectively, out of the total 1.68 million emails. Two
example URL signatures and their covered obfuscated
URLs are listed in Table 7. Table 6 shows the spam
detection accuracy when using the three types of signa-
tures individually and when using them together. As
shown in Columns 2 to 4, HTML and URL signatures
incur very low false positives (less than 0.1%), but their
detection capabilities are limited. Even by combining
both, only 54.6% of spam are detected (Column 4 in
Table 6).



Set (Size) Category How they form a campaign
SC1 (11K) Drugs, adult video Contain a distinct URL
sc2 (62K) House renting Contain a distinct URL Purfication T With T Without
SC3 (36K) Books and videos Contain similar URLs - -

) : . o Misclassified | 0.1% 9.8%
Sc4 (55K) Financial services Contain similar URLs False nesatives | 5.2% 9. 1%
SC5 (33K) | Mortgage loan service | Contain a unique Skype ID g 270 =70

Table 4: Five manually identified campaigns used in un-

sampled evaluation.

+++ HTML Signatures
== URL Signatures
Textual Signatures|
(Min Length = 3)
.. Textual Signatures
(Min Length = 5)

Covered spam emails
=
o

0 1000 2000 3000 4000 5000

Sigantures (sorted by covered spam)

Figure 2: Coverage of spam in DEPT by HTML, URL,

and textual signatures.

For the RELAY dataset, only 33.2% of spam contain
HTML structures and 12.2% of spam could be detected
by HTML signatures. Most of the remaining spam do
share the same HTML trees, but the tree structures are
too simple to form a signature. Therefore, as shown
in Table 8, the TPR of HTML-based detector is only
12%. Furthermore, 69.1% of spam contain URLs (the
remaining spam have telephone numbers, SkyelDs, or
physical addresses). However, SCA does not generate
any URL signature since there are no observed obfus-
cations®. Such fixed domains without any obfuscation
are not good indicators for spam since it is entirely pos-
sible that fixed domains occur in legitimate campaigns
such as newsletters. For the ENRON dataset (Table 9),
no HTML/URL signature was generated since very few
ham in the trace contain HTML tags or URLs.

6.3 Textual Signatures

We now evaluate the overall quality of textual signa-
tures in performing spam detection. For the DEPT and
the RELAY trace, respectively, SCA outputs 4,480 and
2,095 textual signatures when the minimum signature
length is 3, and 2,798 and 833 textual signatures when
the minimum signature length is 5. Figure 2 shows the
distribution of textual signature coverage (for DEPT),
which also exhibits heavy-tail distribution. Table 10
lists a few examples of textual signatures that can be
either product name, (fake) addresses, or meaningless
chaff injected to deceive the supervised classifiers.

Table 6 and Table 8 also show the accuracy of textual
signatures for DEPT and RELAY, respectively. Clearly, for

SFormally, in Algorithm 2 described in §4.2, the URLEn-
tropy, controlled by ey , is zero or close to zero.
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Table 5: Cluster quality under un-
sampled evaluation.

both datasets, the detection rates (TPR) of textual sig-
natures are much higher than those of HTML and URL
signatures. In particular, textual signatures are capa-
ble of identifying nearly all spam in the RELAY trace.
The FPR for DEPT under textual signatures, 0.1-0.4%,
are still very low. Furthermore, the last two columns
of Table 6 and Table 8 demonstrate the effectiveness
of unsupervised Ensemble learning: for DEPT, by comb-
ing three types of signatures, SCA achieves a TPR of
94.9%, a 14% improvement compared to only using tex-
tual signatures.

Table 9 shows the detection results for the ENRON
trace from which no signatures were generated due to
the high-entropy nature of legitimate emails. For each
segment, the bisect k-means algorithm generates a large
number of small clusters with low quality. Then all clus-
ters are filtered in the purification procedure.

7. ONLINE UNSUPERVISED DETECTION

In this section, we present the detailed design and
evaluation of the online version of SCA which exploits
campaigns and their signatures obtained from histori-
cally received emails. In §7.1 and §7.2, we describe the
online learning component and the detection compo-
nent of the system, focusing on the difference from the
offline scheme. We then present the accuracy results
in §7.3 and the performance results in §7.4.

7.1 Learning

Figure 3 shows the online learning and detection pro-
cess of SCA. The learning component uses the text-
mining framework (§4.1) to process the input email stream
at the unit of one segment for low processing time, and
generates signatures based on a sliding window of w
most recent segments. When a full segment is ready,
it is processed by the per-segment routines described
from §4.1.1 to §4.1.5 to obtain signatures for that new
segment. Next, the new segment, together with the pre-
vious w — 1 segments, are agglomerated (§4.1.6) to gen-
erate the final textual signatures. The signature window
of w recent segments ensures that the signatures are up-
to-date. Obviously each segment needs to be processed
only once even though it stays in the sliding window
w times. The overhead of generating HTML and URL
signatures is linear w.r.t. the number of emails. There-
fore, we do not employ the “split-and-merge” scheme
for HTML and URL signatures. But the signature win-



Table 6: Offline results for DEPT. “\/,” and “,/.” correspond to textual signatures with min lengths of 3 and

5, respectively.

HTML signatures v V4 Vv v
URL signatures Vv Vv v v
Text signatures V5 Vs V5 Vs
Have SA Records 72.5% | 72.5% | 72.5% | 72.5% | 72.5% | 72.5% | 72.5%
SA: spam SCA: Spam 31.2% | 21.4% | 42.9% | 63.9% | 56.7% | 75.8% | 72.3%
SA: Ham, SCA: Ham 19.4% | 19.8% | 19.0% | 19.3% | 19.5% | 18.1% | 18.0%
SA: Spam, SCA: Ham 48.5% | 58.2% | 36.8% | 15.4% | 22.7% | 4.2% 8.0%
SA: Ham, SCA: Spam 0.9% 0.6% 13% | 14% | 1.1% | 1.8% | 1.7%
Misclassified by SA 99% 99% 99% 96% 98% 96% 97%
Misclassified by SCA 1% 1% 1% 4% 2% 4% 3%
No SA Records 27.5% | 275% | 27.5% | 27.5% | 27.5% | 27.5% | 27.5%
False Positive Rate (FPR) <01% [ <0.1% | 0.1% | 0.3% | 0.1% | 04% | 0.3%
True Positive Rate (TPR) 39.8% | 27.4% | 54.6% | 80.9% | 71.8% | 94.9% | 90.2%

Table 7: Example URL signatures.

http://*.*.interia.* (88175 spam)

http://*.pochta.*/*.*

(6776 spam)

http://jfedcbue.w.interia.pl
http://xiureuyo.fm.interia.pl
http://nbbhobdi.eu.interia.pl

http://rogerswsinclair010.pochta.ru/haxu.htm
http://susiewait0321.pochta.ru/tofu.html
http://harrysatodd7269.pochta.ru/vucfo.html

dow containing n - w recent emails (n is the segment
size) is still maintained by the system to keep signa-
tures up-to-date.

7.2 Detection

The visibility problem faced by SCA as described
in §3.3 is further exacerbated in online spam detection,
as SCA is expected to detect a new campaign upon its
onset, i.e., upon witnessing the first batch of spam from
that campaign. In the following, we first present the ba-
sic online detection scheme of SCA. We then present an
optimization to the basic scheme that effectively reduces
the false negative ratio.

Spam detection is always performed on a per-email
basis. An incoming email is first checked against HTML
and URL signatures, then the more expensive textual
signatures if none of HTML/URL signatures match the
email. Apparently, for each email, performing textual
matching for hundreds of signatures may incur non-
trivial computational overhead. Such performance over-
head could be alleviated by exploiting the heavy-tail
distribution of campaign sizes, i.e., a large fraction of
spam belong to a small number of campaigns (Figure 2).
SCA periodically (every 1K emails) reorders the textual
signatures based on their hit counts, i.e., the number
of spam they matched. We observe that with dynamic
signature reordering enabled, up to 47% emails could
be tested against no more than 10 signatures for the
DEPT dataset.

7.2.1 Self-Maintained IP Blacklisting

To alleviate the potential effects of the visibility prob-
lem while maintaining SCA as an unsupervised learning
scheme, we enhance the online detection process of SCA
by adding a self-maintained IP blacklist of end hosts
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that have originated a high spam-to-ham ratio. This is
motivated by the well-known bimodal behavior of email
sources (The vast majority of IP addresses originate ei-
ther a spam-to-ham ratio or ham-to-spam ratio close to
0, ¢.e., their behaviors are either consistently malicious
or consistently benign [45]) and by the fact that spam-
ming IPs are known to participate in multiple spam
campaigns launched in similar time [30]. For each IP,
SCA actively maintains the spam ratio (the ratio of
emails that matched some campaign signatures, in the
w recent segments). In the detection phase, when an
email does not match any of the HTML/URL/textual
signatures, SCA checks the spam ratio or the source IP,
and flags the email as spam if the ratio is close to 1.

7.3 Detection Accuracy

Figure 4 shows the online detection results without
blacklisting for the DEPT trace. We observe that increas-
ing the signature window size improves the TPR, until
the window size reaches beyond 15 segments. The FPR
of the online detection remains at no more than 0.3%
while the TPR, 92.4% (with min signature length of 3),
is about 2.5% lower than that achieved by the offline
scheme (Table 6). This is expected due to the finite
sliding window size that limits the campaigns’ visibility
to SCA and hence its signature generation. In partic-
ular, with a window size w, SCA applies the signature
set generated from the past w segments to the emails in
the next segment. Such signatures cannot capture any
campaign that is starting in that new segment. Simi-
larly Table 11 shows the sliding window in the online
version also reduces the TPR, from 99.9% to 99.7% for
the RELAY trace for minimum signature length of 3.

Figure 5 shows the online detection results for the



HTML V4 Vi
URL v i
Text Vs/Vs | Vs/Vs

TP 122% | 0% 99.9% 99.9%
FN 87.8% | 100% | <0.01% | <0.01%

[ TPR | 12.2% | 0% | 99.9% | 99.9% |

Table 8: Offline spam detection results for
RELAY (all emails are spam).

HTML v v
URL N v
Text V3 V3
TN 100% | 100% | 100% | 100%
FP 0 0 0 0
[FPR [ 0 [ 0 | 0 | 0 |
Table 9: Offline spam detection results for

ENRON (all emails are ham).

Out-of-date Segments used for Current Incomplete
Segments Signature Generation Segment
Signature Z# Spam | SEG | | SEG || SEG | | SEG |
pharmacy industry created 102.7K e el
autoresponder 2635 meridian pkwy... (29 words) 24.9K Time ) '
: iali ; Signature Detection

price cialis soft tabs price 53.0K Generation

east minor street emmaus 18098 15.8K

broccoli cauliflower brussels sprouts combination | 10.0K :

allergies asthma depression 8.7TK Drf;iﬁﬁﬂn

Table 10: Example textual signatures.

Table 11:

varying signature window sizes, without blacklisting.

Online detection accuracy for RELAY with

Signature Window Size 1 7 15 20

TPR (Min Sig. Len > 3) | 99.5% | 99.7% | 99.7%
TPR (Min Sig. Len > 5) | 99.3% | 99.4% | 99.4%

99.7%
99.4%

two traces with self-maintained IP blacklisting turned
on, as we vary the spam ratio threshold. The spam ra-
tio is defined as the ratio of the number of spam sent (as
detected by SCA) over the total number of emails sent
in the past, for a given IP address. We observe that
blacklisting is highly effective in reducing false nega-
tives. Using a threshold of 0.9, it improves the TPR
from 92.4% to 96.5% for the DEPT trace and 99.7% to
99.9% for the RELAY trace, respectively. The FPR is not
affected by blacklisting, and remains at no more than
0.4% for DEPT (FPR is always O for RELAY).

As discussed in §7.2.1, the effectiveness of IP black-
listing on reducing the false negative ratio is explained
by the bimodal behavior of the email sources. Figure 6
shows that over 96.9% of the source IPs in the DEPT
trace originated either only spam or only ham, based
on the detection results of SCA. Figure 7 shows that
28% (DEPT) and 51% (RELAY) of the source IPs in the
two traces sent at least two spam.

7.4 Filtering Throughput

To demonstrate that SCA is truly online, we com-
pare its throughput in filtering spam with that of Spa-
mAssassin (SA), the de-facto anti-spam solution. Our
current prototype of SCA was implemented in about
6K lines of C++ and Perl code. The measurement ma-
chine is a commodity Lenovo T60 laptop with 2.0GHz
processor and 3GB RAM at 667MHz. Using the param-
eters in Table 2 and with self-maintained IP blacklisting

13

Figure 3: Online learning / detection scheme in SCA

turned on, we ran SCA by feeding it the DEPT dataset
as fast as possible. We measured the average process-
ing throughput of SCA to be 18.9 emails/sec (including
the time for both campaign generation and spam de-
tection). To measure SA’s throughput, we configured
SA with all of its four tests: the network test that per-
forms DNSBL lookups, the raw body test that matches
mail body against regexes downloaded from the central
SA site, the auto-whitelisting and the Bayesian filtering.
Then we feed SA with the DEPT trace as fast as possible.
We optimized the network test using parallel DNSBL
lookups that improved SA’s email processing through-
put from 0.22 emails/sec (sequential DNSBL lookup)
to 11.7 emails/sec (200 concurrent DNSBL lookups).
These results demonstrate that SCA already outper-
forms SA in terms of email processing throughput due
to the efficient design of its online learning framework.

8. DISCUSSIONS

In this section, we discuss two important issues re-
garding SCA: (i) how to overcome the visibility chal-
lenge (i.e., a single organization may not witness enough
spam belonging to a campaign); (%) from the perspec-
tive of spammers, how difficult it is to evade SCA.

8.1 The Visibility Challenge

Our evaluation in §7 has shown that the online ver-
sion of SCA achieves 96.5% TPR and no more than
0.4% FPR for the DEPT trace. These detection accu-
racies are already comparable to those of the de-facto
supervised-learning-based filtering systems such as Spa-
mAssassin (SA) [38, 35, 34].” We manually examined
the spam belonging to the 3.5% false negatives and

" Authors in [38] measured SA’s FPR, and FNR to vary be-
tween 0.02-0.56% and 4.02-5.60%, on 4 department mail




0.94 FPR  FPR  FPR
0.3% 0.3% 0.3%

0.92

0.9 FPR
0.2%

FPR  FPR
0.2% 0.2% 0.2%
g---8---10

TPR

0.88 FPR

FPR B ——
0.86F o195 -~ —S—Min Signature Len = 3
=0 - B -Min Signature Len =5

1 7 15 3
Signature Window Size (# Segments)

0.98

& 0.96
a

—O— DEPT

094 - Bl - RELAY

0.92
(No AutoBL)LO  0.99 0.95 0.9
Spam Ratio Threshold

- ——

0 0.5 1
Spam Ratio

—DEPT
- = =RELAY

10 10" 10
# Spam per IP (in log scale)

2

Figure 4: Online detection accu- Figure 5:
racy for DEPT with varying signature

window sizes, w/o blacklisting.

found the reason they escaped SCA is indeed due to the
visibility challenge discussed in §3.3: SCA did not wit-
ness enough of similar spam to identify the campaigns
they belong.

First, we note that the DEPT trace is for a single uni-
versity department covering about 2000 mailboxes. The
typical user base for spam filtering at one organization
is larger. For example, many universities deploy spam
filtering at the university-level mail servers. We ex-
pect the visibility of campaigns at this level to be much
higher which can potentially further reduce false nega-
tives.

One systematic way to reduce the remaining false
negatives is to look up the emails that escaped all signa-
tures and the self-maintained blacklist (§7.2.1) in public
DNSBL blacklists. We evaluated this step and found
that looking up DNSBLs improves the TPR of SCA
on the DEPT trace from 96.5% to 97.1%, and keeps the
FPR the same at 0.4% 8. In comparison, only perform-
ing DNSBL lookups for the source IPs in the DEPT trace
gives a TPR of 23% and a FPR of 0.1%. This suggests
querying DNSBLs alone is far from being sufficient as a
spam filtering scheme. While it is arguable if querying
DNSBLs is considered unsupervised, it is widely used as
one of the filtering steps by many spam filter systems,
such as SpamAssassin.

Ultimately, the visibility problem can be overcome by
having multiple organizations share their email corpus.
Similar approach has been taken by community-based
intrusion detection system [32]. To avoid compromising
privacy, sharing email corpus can be done anonymously
using one-way functions. For example, several organi-
zation can agree on using the same one-way function
to hash the terms in their email corpus before shar-
ing. The combined corpus can then be used for learning
campaigns and extracting campaign signatures. After-
wards, each organization only needs to be concerned

datasets. Also, every version of SA comes with accuracy
statistics of the current version against a few public cor-
pora [34]. The FPR and FNR according to statistics in SA
vary between 0.06-0.70% and 1.49-7.63%, respectively [35].
8We query six public blacklists, and an email is classified as
spam if its IP is blocked by at least 2 DNSBLs.

Online de-
tection accuracy with self-
maintained IP blacklisting.
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Figure 6: CDF of
spam ratio for IPs
found in DEPT dataset.

Figure 7: CDF of
number of spam per IP
for DEPT and RELAY.

with extracting the subset of campaign signatures for
which it can map back to unhashed terms. We plan to
pursue this in our future work.

8.2 Evasion

It is well-known that spam filtering is a continuous
battle between spammers and anti-spam solutions. When
a new filtering system gets a step ahead in the arms
race, the spammers will exploit new ways to evade it.
One possible way to evade SCA is to reduce similarities
among spam belonging to the same campaign. This
can be achieved by spammers by employing a more
complicated template language (e.g., context-sensitive
grammar), expanding the vocabulary size by introduc-
ing large amount of term-level obfuscation, or confusing
the clustering algorithm by increasing the proportion of
random chaff. Doing so can potentially reduce the TPR
or increase the computation overhead of SCA. However,
the spammers also to have pay the price of higher over-
head for generating spam and larger spam sizes, which
potentially reduces the readability of spam and hence
lowers the conversion rates. As suggested by [31], this is
probably the reason that template languages have not
changed significantly during the past five years.

Another way to evade SCA is to try to generate fewer
spams per template, thus not giving SCA enough learn-
ing opportunities for signature generation even when
SCA is deployed at a large domain (sophisticated spam-
mers knowing the window size w can even reuse the old
templates when they are out of the window). How-
ever, overall, spammers would need to generate a larger
number of templates to maintain the same spam vol-
ume. This effect is largely considered a win in the arms
race since the efforts or resources of spammers are in-
creased. Further, if a spammer knows the IP-based fil-
tering policy (controlled by u in Table 2), then he/she
may launch a campaign originated from no more than
u infected hosts. However, each of the fewer u hosts has
to send a larger volume of spam, making them easier to
be detected. An alternative way to abuse the IP-based
filtering policy is to spam using public mail providers.
In such case, there are existing techniques to identify



such bot accounts (e.g., BotGraph [52]).

In this study, we focus on generating textual signa-
tures. For HTML and URL signatures, our current pro-
totype performs exact matching for HTML trees and
only considers a particular types of URLs consisting
both the invariant and the obfuscated components in
the URL string. Spammers can exploit this by obfus-
cating HTML structures and making URLs contain no
invariant substring. This can be mitigated by using
clustering algorithms for trees [29], and by using sophis-
ticated URL signature generator such as [46, 31]. Fi-
nally, SCA in its current form does not work for image-
based spam.

9. RELATED WORK

To our knowledge, SCA is the first unsupervised spam
filtering system that explicitly exploits online spam cam-
paign identification and achieves accuracy comparable
to the de-facto supervised spam filters. We have al-
ready discussed previous work on supervised spam fil-
tering in §2 and on unsupervised spam filtering in §3.
Below, we briefly summarize previous work on spam
campaign identification, then compare our system with
Judo [31], a recently proposed anti-spam scheme aiming
at inferring underlying templates which are then used
to generate signatures.

9.1 Existing Campaign Identification Techniques

Existing work on campaign identification fall into four
categories. (1) A number of work identified campaigns
via manual classification and exact matching [23, 21, 30,
25], based on the common templates used, the common
URLs or URL-groups embedded in the email bodies, or
the common, finally redirected web pages pointed by
the URLs. (2) The second category includes work that
extract token streams from URLs or a portion of mes-
sage body and use MD5 or SHA1 to generate a hash
of the token stream as the campaign signature [49, 20].
Such hashing-based signatures are highly sensitive to
the slightest obfuscation or noise. (3) The third cate-
gory includes approaches that use text shingling [4] for
spam campaign identification (e.g., [53]). It is known [7]
that shingling suffers poor scalability due to its quadratic
time complexity, and poor accuracy, especially on small
documents (e.g., less than 4KB). (4) The final cate-
gory includes automated systems like [46, 12, 31] Au-
toRE [46] is a technique that automatically extracts
regular expressions from URLs that satisfy distributed
and burstiness criteria as signatures (e.g., xx.*yy . *zz).
However, this approach tends to yield many uncovered
spam since (i) a non-trivial fraction of spam do not
contain URLSs, (i1) botnet spam campaigns could last
long with non-bursty URLs [30]. We argue that the
unsupervised learning should consider the entire mes-
sage content and complement textual signatures with
HTML- and URL-based signatures for added coverage
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and accuracy. In [5, 6], Calais et al. group messages
with similar content layout into one campaign, consid-
ering partial information, e.g., URL and language.

9.2 Comparing to Judo

Judo [31] is a recent work that aims at inferring the
underlying template used to generate the signatures. It
examines spam feeds generated by bots and infers the
underlying templates by finding out the anchor texts
and macros. It also utilizes mail-header knowledge to
reverse-engineer the header part of the template. This
approach falls in the category of supervised learning
since the input (training data) to the system is a clean
trace consisting of pure spam generated from templates.
Therefore, Judo can achieve very low false positives,
and low false negatives, if most received spam are gen-
erated by the inferred templates from the same bots.
However, Judo imposes the requirement of setting up a
bot monitoring infrastructure (like botlab [19]), thus
making it difficult to be deployed at any end mail-
receiving system (e.g., a university mail server). Fur-
thermore, Judo infers templates from spam produced
by bots running in the sandbox. Therefore the cover-
age of its template-based signatures is limited by the
diversity of captured bots and the fraction of templates
seen by those particular bot instances. Compared to
Judo, SCA is completely unsupervised. It neither re-
quires pre-classified training trace nor any special in-
frastructures. Instead, by leveraging the low-entropy
nature of (campaign-based) spamming, SCA generates
high-quality campaign signatures from the raw traces
of mixed ham and spam (potentially from several tem-
plates and botnets). Also, our system can more quickly
adapt to the emergence of new templates or campaigns,
again due to its unsupervised nature. In terms of accu-
racy, our evaluation results indicate that SCA already
achieves TPR and FPR comparable to de-facto super-
vised approaches. Finally, we note that Judo and SCA
can trivially coexist without any conflict.

10. CONCLUSIONS

We have made two key contributions in this paper.
First, we have shown it is feasible to design a completely
unsupervised-learning-based spam filtering scheme to
achieve spam detection accuracy comparable to those
of the de-facto supervised-learning-based filtering sys-
tems such as SpamAssassin. We elucidated the key ob-
servations about today’s Internet spam that make such
a design feasible and identified the visibility challenge
as the main obstacle to the spam detection accuracy of
such a filtering system when deployed at individual or-
ganizations. Second, we have presented the complete
design of SCA, the first unsupervised spam filtering
system that explicitly exploits online spam campaign
identification, and experimentally shown it achieves ac-
curacy comparable to those of the de-facto supervised



anti-spam systems. We have further demonstrated its
three components, a text-mining based framework for
extracting textual campaign signatures, two robust al-
gorithms for extracting HTML and URL signatures,
and self-maintained TP blacklist, are all essential and
complementary to achieve high detection accuracy and
efficiency.

In our ongoing work, we are soliciting and collecting
diverse email datasets to further evaluate the detection
accuracy of SCA. We plan to study how the size of the
organization affects SCA’s learning and detection accu-
racy, and in particular, how much sharing email corpus
among multiple organizations is needed to reduce the
remaining false negative ratio. We are also integrating
SCA with MailAvenger [17] and planning to experiment
with it running as a production mail server in our or-
ganization.
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