
Design of SMS Commanded-and-Controlled and
P2P-Structured Mobile Botnets

Yuanyuan Zeng, Kang G. Shin, Xin Hu
The University of Michigan, Ann Arbor, MI 48109-2121, U.S.A.

{gracez, kgshin, huxin}@eecs.umich.edu

Abstract—Botnets have become one of the most serious security
threats to the Internet and personal computer (PC) users.
Although botnets have not yet caused major outbreaks in mobile
networks, with the rapidly-growing popularity of smartphones
such as Apple’s iPhone and Android-based phones that store
more personal data and gain more capabilities than earlier-
generation handsets, botnets are expected to move towards this
mobile domain. Since SMS is ubiquitous to every phone and can
delay message delivery for offline phones, it is a suitable medium
for command and control (C&C). In this paper, we describe
how a mobile botnet can be built by utilizing SMS messages
for C&C, and how different P2P structures can be exploited
for mobile botnets. Our simulation results demonstrate that a
modified Kademlia—a structured architecture—is a better choice
for a mobile botnet’s topology. In addition, we discuss potential
countermeasures to defend against this mobile botnet threat.

I. INTRODUCTION

Botnets have become a most serious security threat to the
Internet and the personal computer (PC) world. Although they
have not yet caused major outbreaks in the mobile world,
attacks on cellular networks and devices have recently grown
in number and sophistication. With the rapidly-growing popu-
larity of smartphones, such as the iPhone and Android-based
phones, there has been a drastic increase in downloading and
sharing of third-party applications and user-generated content,
making smartphones vulnerable to various types of malware.
Smartphone-based banking services have also become popular
without protection features comparable to those on PCs, en-
ticing cyber crimes. There are already a number of reports on
malicious applications in the Android Market [1]. Although the
Android platform requires that applications should be certified
before their installation, its control policy is rather loose—
allowing developers to sign their own applications—so that
attackers can easily get their malware into the Android Market.
The iPhone’s application store controls its content more tightly,
but it fails to contain jailbroken iPhones which can install
any application and even run processes in the background. As
smartphones are increasingly used to handle more personal
information with more computing power and capabilities but
without adequate security and privacy protection, attacks tar-
geting mobile devices are becoming more sophisticated. Since
the appearance of the first, proof-of-concept mobile worm,
Cabir, in 2004, we have witnessed a significant evolution of
mobile malware. The early malware performed tasks, such as
infecting files, replacing system applications and sending out
premium-rate SMS/MMS messages. One malicious program

is usually capable of only one or two functions. Although the
number of mobile malware families and their variants has been
growing steadily over the recent years, their functionalities
have remained simple until recently.

SymbOS.Exy.A trojan [2] was discovered in February 2009
and its variant SymbOS.Exy.C resurfaced in July 2009. This
mobile worm, which is said to have “botnet-esque” behavior
patterns, differs from other mobile malware because after
infection, it connects back to a malicious HTTP server and
reports information of the device and its user. The Ikee.B
worm [3] targets jailbroken iPhones, and has behavior similar
to SymbOS.Exy. Ikee.B also connects to a control server via
HTTP, downloads additional components and sends back the
user’s information. With this remote connection, it is possible
for attackers to periodically issue commands to and coordinate
the infected devices to launch large-scale attacks. Considering
this potential, botnets will likely soon become a serious threat
to smartphone users. Researchers have also envisioned this
threat. Two recent papers [4], [5] dealt with mobile botnets.
The former characterizes and measures the impact of the large
scale Denial-of-Service (DoS) attacks by mobile bots, while
the latter evaluates using Bluetooth as a vehicle for botnet
C&C.

In this paper, we propose the design of a mobile botnet that
makes the most of mobile services and is resilient to disrup-
tion. Within this mobile botnet, all C&C communications are
done via SMS messages since SMS is available to almost every
mobile phone. To hide the identity of the botmaster, there are
no central servers dedicated to command dissemination that is
easy to be identified and then removed. Instead, we adopt a
P2P topology that allows botmasters and bots to publish and
search for commands in a P2P fashion, making their detection
and disruption much harder.

Our contributions are three-fold. First, to the best of our
knowledge, this is the first attempt to design mobile botnets
with a focus on both C&C protocol and topology. The main
intent of this work is to shed light on potential botnet threats
targeting smartphones. Since current techniques against PC
botnets may not be applied directly to mobile botnets, our
proposed mobile botnet design makes it possible for security
researchers to investigate and develop new countermeasures
before mobile botnets become a major threat. Second, to
command and control mobile bots, the proposed mobile botnet
utilizes SMS messages, a unique but widely-used service for
smartphones. This protocol has not yet been adopted as a C&C

channel by attackers, but we demonstrate its feasibility and
benefits. Third, we test and compare two P2P architectures
that can be used to construct the topology of our mobile botnet
on an overlay simulation framework, and finally propose the
architecture that best suits mobile botnets.

The remainder of the paper is organized as follows. Section
II details the proof-of-concept design of our mobile botnet.
Section III presents our simulation and evaluation results.
Section IV discusses potential countermeasures against the
mobile botnets. Section V describes the related work. The
paper concludes with Section VI.

II. MOBILE BOTNET DESIGN

We now present the detailed design of a proof-of-concept
mobile botnet. The botnet design requires three main com-
ponents: (1) vectors to spread the bot code to smartphones;
(2) a channel to issue commands; (3) a topology to organize
the botnet. We will briefly overview approaches that can be
used to propagate malicious code and then focus on C&C and
topology construction.

A. Propagation

The main approaches used to propagate malicious code to
smartphones are user-involved propagation and vulnerability
exploits.

In the first approach, the most popular vector is social
engineering. Like their PC counterparts, current smartphones
have frequent access to the Internet, becoming targets of
malicious attacks. Thus, spam emails and MMS messages
with malicious content attachments, or spam emails and SMS
messages with embedded links pointing to malicious websites
hosting the malicious code, can easily find their way into a
mobile phone’s inbox. Without enough caution or warning, a
mobile phone user is likely to execute the attachments or click
those links to download malicious programs. The advantage of
such schemes is that they can reach a large number of phones.
Nevertheless, as smartphones run on a variety of operating
systems, we expect multiple versions of bot code prepared
to guarantee its execution. Another user-involved propagation
vector can be Bluetooth, which utilizes mobility. Mobile phone
users move around so that the compromised phones can use
Bluetooth to search for devices nearby and after pairing with
them successfully, try to send them malicious files.

Exploiting vulnerabilities to spread malicious code is com-
mon in the PC world. However, since there are various
mobile platforms and most of them are closed-source, it is
difficult to find vulnerabilities in real deployments. To date,
numerous vulnerabilities have been discovered by the research
community. For example, the HTC’s Bluetooth vulnerability,
which allows an attacker to gain access to all files on a phone
by connecting to it via Bluetooth, was disclosed by a Spanish
security researcher [6]. Mulliner et al. [7] discovered a way of
directly manipulating SMS messages on different mobile plat-
forms, without necessarily going through the mobile provider’s
network. In both cases, OS vendors immediately released
patches to the public after the vulnerabilities were published,

allowing few opportunities for a real exploit in the wild. Once
launched in their targets, vulnerability exploits always have a
higher success rate than that of user-involved approaches. As
mobile platforms open up and mobile applications and services
become abundant, vulnerability exploits will play a major role
in mobile malware propagation.

B. Command and Control

In our mobile botnet, SMS is utilized as the C&C channel,
i.e., compromised mobile bots communicate with botmasters
and among themselves via SMS messages. Botnets in the PC
world mostly rely on IP-based C&C delivery. For example,
traditional botnets use centralized IRC or HTTP protocol,
whereas newly-emerged botnets take advantage of P2P com-
munication. Unlike their PC counterparts, smartphones can
hardly establish and maintain steady IP-based connections
with one another. One reason is that they move around
frequently. Another reason is that private IPs are normally used
when smartphones access networks, especially EDGE and
3G networks, meaning that accepting incoming connections
directly from other smartphones is a difficult task. Given this
limitation, if a mobile botnet considers an IP-based channel
as C&C, it needs to resort to centralized approaches in which
bots connect to central servers to obtain commands. Such
approaches, however, are vulnerable to disruption because
the servers are easy to be identified by defenders. Thus, to
construct a mobile botnet in a more resilient manner, a non-
IP-based C&C is needed.

There are a few advantages for choosing SMS as a C&C
channel. First, SMS is ubiquitous. It is reported that SMS
text messaging is the most widely used data application on
the planet, with 2.4 billion active users, or 74% of all mobile
phone subscribers sending and receiving text messages on their
phones [8]. When a mobile phone is turned on, this application
always remains active. Second, SMS can accommodate offline
bots easily. For example, if a phone is turned off or has
poor signal reception in certain areas, its SMS communication
messages will be stored in a service center and delivered once
the phone is turned back on or the signal becomes available.
Third, malicious content in the C&C communication can be
hidden in SMS messages. According to a survey in China [9],
88% of the phone users polled reported they had been plagued
by SMS spamming. As SMS spamming becomes prevalent,
bots can encode commands into spam-looking messages so
that users will not suspect. Last but not least, currently there
are multiple ways to send and receive free SMS messages
directly on smartphones [10], [11] or through some web
interfaces. We will describe such methods in Section II-B2.
Even when the free texting is unavailable, as many phone
users use SMS plans to avoid per-message charge and in
some countries incoming messages are free of charge, with
the design goal of minimizing the number of SMS messages
we expect that using SMS as C&C will not incur considerable
costs.

1) Protocol Design: Our goal is to let a phone that has
installed our bot code perform activities according to the

2

Your paypal account was hijacked (Err msg:

NzkxMjAzNDIxODExMDUyM183Mz).

Respond to http://www.bhocxx.paypal.com

using code Q3MDk2NDUyXzEyMzQ1Njc4

Free ringtones download at

www.myringtone.com, using

username VIP, password

YTJiNGQxMWw to log on

FIND_NODE

7912034218110523 _7347096452

_12345678

SEND_SYSINFO

a2b4d11l

Fig. 1. Disguised SMS messages

commands in SMS messages without being noticed by the
user, if possible. In our design, every compromised phone has
an 8-byte passcode. Only by including this passcode into the
SMS messages, can other phones successfully deliver C&C
information to this particular phone. Upon receipt of a SMS
message, this phone searches for its passcode and pre-defined
commands embedded in the message to tell if it is a C&C
message. If found, the commands are immediately executed
by the phone. Two issues need to be addressed here. First, how
are passcodes allocated among compromised phones? Second,
how to make C&C SMS messages appear harmless so that
users may not notice the malicious content?

In our botnet, passcodes are allocated by botmasters to seg-
ment a botnet into sub-botnets, each with a different function.
For example, one sub-botnet is responsible for sending out
spam messages, while another is in charge of stealing personal
data and transferring them to a malicious server. Each sub-
botnet will be identified by its unique passcode that is hard-
coded into the bot’s binary. In other words, all bots within
the same sub-botnet share the same passcode so that they can
communicate with one another and also with the botmaster.
Using a unique passcode for each bot will be more secure
than using one passcode for an entire sub-botnet because in
the latter case, the passcode will be discovered more easily.
However, there is a tradeoff: using a unique passcode will add
more overhead due to the pairwise passcode exchange before
each communication. The additional cost is undesirable since
our goal is to minimize the number of SMS messages to be
sent.

Not only do we require a passcode included in each SMS
communication message, but also we encode commands to
make it difficult for a user to figure them out. In fact, on
the Android platform, it is possible for an application to send
out SMS messages stealthily, to get immediate notification
of every incoming SMS message by registering itself as a
background service and to read and execute commands or even
delete the message before the user sees it. We still want to
hide the C&C messages because other mobile platforms are
more restricted than Android; they may not allow our bots to
both send and receive SMS messages without notifying the
user. If malicious messages show contents directly, they will
be easily captured and manipulated by defenders. To evade
such detection, we want to make a command-embedded SMS
message look like a common message such as a spam message.

There are benefits of using spam-like messages to transmit
C&C. As pointed out in [12], cellular carriers cannot simply
block offending SMS messages because the senders have paid
for the messages and the carriers fear permanent deletion of
legitimate messages when there are no spam folders available.
We will present a real-world experiment in Section III-C. Even
if in the future the carriers filter out spam messages and dump
them into spam folders, similar to the email filtering, spam
messages can still reach the target phones by going to the
spam directory, which actually helps hide the C&C because
users tend to ignore spam.

Considering the fact that each SMS message only contains
up to 160 characters, commands in our botnet are concise.
For example, “FIND NODE” instructs a bot to return the
phone numbers of certain nodes; “SEND SYSINFO” asks
a bot to reply with system information. To disguise mes-
sages, each command is mapped to one spam template.
Additional information such as the phone number and the
aforementioned passcode are variables in the templates, and
they are Base64-encoded. Figure 1 shows two disguised SMS
messages. The first one is a “FIND NODE” message (146
characters) with passcode 12345678 requiring the recipient
to locate a bot whose ID is 7912034218110523, and the
result should be returned to the bot whose phone num-
ber is (734)7096452. NzkxMjAzNDIxODExMDUyM183Mz
and Q3MDk2NDUyXzEyMzQ1Njc4—two random strings to-
gether
—are the Base64-encrypted 7912034218110523 7347096452
12345678. The entire encoded string is split into two—

disguising one as an error message and the other as a code—
making it resemble a spam message. The second exam-
ple is a “SEND SYSINFO” message (98 characters) with
a passcode a2b4d11l. This template is different from that
of “FIND NODE” message. The passcode is also Base64-
encoded and appears as a password in the disguised message.
To decode messages, each bot keeps a command-template
mapping list. Since only tens of commands are needed in our
botnet, this list is not long. To make detection harder, one
command message can correspond to different spam templates
and the templates can be updated periodically. As shown,
a command along with additional information can be easily
embedded into one SMS message which appears to be a spam,
familiar to today’s phone users, so it is likely that users ignore
such messages even if they open and read them. If users choose

3

to delete these messages, it will not cause any problem because
the commands have already been executed upon their receipt.
Without monitoring phone behaviors or reverse engineering,
defenders may have difficulty in figuring out the mapping
between spam templates and commands.

2) Sending SMS Through the Internet: Although sending
SMS messages through the cellular networks is always pos-
sible, the botmasters want to hide their identity and lower
costs as much as possible. To achieve this goal, botmasters can
use the Internet to disseminate C&C messages to the mobile
botnet. There are several ways to do so. Many advertisement-
based websites provide free SMS services. Botmasters can
type in messages via these websites and have them sent to
mobile bots, feasible for low volume messaging. Using such
services does not require sender’s mobile number, an email
address is sufficient if reply is expected. If the botnet is large,
botmasters need to create an account with mobile operators
or SMS service providers to make high volume messaging
possible at the lowest price. Usually, this can be done by
sending and/or receiving SMS messages via email through
a SMS gateway connecting directly to a Mobile Operator’s
SMSC (Short Message Service Center). Currently, smartphone
applications such as [10], [11] offer free domestic and interna-
tional text messaging when the phone is connected to a WiFi
and support both one-on-one and group texting. The user only
needs to provide a screen name to send and receive messages
without revealing its identity. Both the botmasters and bots can
take advantage of such a service whenever possible to avoid
messaging costs.

To sum up, using SMS messages as the C&C is a viable
solution for a mobile botnet. Not only is SMS ubiquitous to
every mobile phone, but botmasters and bots are also able to
disguise SMS messages, send bulk messages from the Internet
with little cost while hiding their identities. Thus, using SMS
is both economical and efficient for the botnet.

C. Mobile Botnet Topology

In the previous section we have described the way SMS
messages form the C&C communication in our mobile botnet.
In what follows, we introduce P2P topologies that may be
utilized to organize the botmaster and bots for publishing and
retrieving commands, and describe how to leverage existing
P2P architectures to meet the need for mobile botnet con-
struction.

1) Possible Topologies: Similar to botnets in the PC world,
a mobile botnet can be structured in a traditional centralized
way or in a newly-emerged decentralized P2P fashion. In the
first approach, botmasters hard-code into each bot’s executable
a set of phone numbers that are under their direct control.
When a mobile phone is converted to a bot, it contacts
those hard-coded phones to request commands or wait for
commands to be pushed to them. Such a centralized topology
is easy to implement but not resilient to disruption. Obviously,
once defenders obtain these phone numbers, they can track
down the botmasters and then disable the botnet; the problem

is known as single-point-of-failure. To make our botnet robust
to defenses, we adopt a P2P structure instead.

Currently, there are several structures for P2P networks; they
can be divided into three categories: centralized, decentralized
but structured, and unstructured. Centralized P2P networks
have a constantly-updated directory hosted at central locations.
Peers query the central directory to get the addresses of peers
having the desired content. This structure is similar to the
traditional centralized botnet architecture and hence vulnerable
to the central-point-of failure. Decentralized but structured P2P
networks have no central directory and contents are not placed
at random nodes but at specific locations. The most common
systems in this category are Distributed-Hash-Table (DHT)-
based P2P networks ensuring that any peer can efficiently route
a search to some peer with the desired content. One notable
implementation is Kademlia [13], used by several current P2P
applications, such as eMule and BitTorrent. Decentralized and
unstructured P2P networks have neither central directories nor
control over content placement. If a peer wants to find certain
content in the network in old protocols such as Gnutella, it
has to flood its query to the entire network to find peers
sharing the data. To address the scalability issues, current
unstructured networks adopt different query strategies to avoid
flooding. There have also been extensive studies on how to
make Gnutella-like systems scalable. One such design is Gia
[14].

2) Design: Both structured and unstructured P2P architec-
tures can be modified to suit our need for the mobile botnet
because their decentralized nature hides the botmaster’s iden-
tity. Since the mobile botnet design should consider not only
robustness but also feasibility and efficiency on smartphones,
we need to compare these two architectures to see which is
more suitable. Specifically, we base our structured and un-
structured botnet topology on Kademlia and Gia, respectively,
for comparison. Note that in our botnet, bots obtain commands
mainly in a pull style, i.e., the botmaster publishes commands
and bots are designed to actively search for these commands.
The other possible mechanism for command transfer is push,
meaning that bots passively wait for commands. We prefer
pull to push because push will get malicious activities exposed
easily. That is, under push many SMS messages are sent
out from one or a few central nodes, whereas pull can be
implemented in a more distributed fashion. In what follows,
we overview each protocol and describe our design.

Kademlia is DHT-based and has a structured overlay topol-
ogy, in which nodes are identified by node IDs generated
randomly and data items are identified by keys generated from
a hash function. Node IDs and keys are of the same length
(128-bit). Data items are stored in nodes whose IDs are close
to data items’ keys. The distance between two identifiers, x
and y, is calculated by bitwise exclusive or (XOR) operation:
d(x, y) = x⊕y. For each 0 ≤ i < 128, each node keeps a list
for nodes of distance between 2i and 2i+1 from itself. This
list is called a k-bucket, and can store up to k elements. There
are four types of RPC messages in Kademlia: PING, STORE,
FIND NODE and FIND VALUE. PING checks whether a

4

node is online. STORE asks a node to store data. FIND NODE
provides an ID as an argument and requests the recipient
to return k nodes closest to the ID. FIND VALUE behaves
similarly to FIND NODE. The only exception is that when
a node has the data item associated with the key, it returns
the data item. Since there is no central sever, each node has a
hard-coded peer list in order to bootstrap into the network.

Considering the differences between smartphones and per-
sonal computers as well as the SMS C&C channel we adopt,
we modify Kademlia’s design to be suitable for our mobile
botnet’s structured overlay construction. First, we do not use
PING messages to query whether a node is alive and should
be removed from its k-bucket. One reason for this is that SMS
messages transmitting C&C can always reach their recipients
even if these phones are not online (messages are stored in
the SMSC for later delivery). The other reason is that our
design tries to minimize the number of messages sent and
received. Removing PING messages effectively reduces C&C
traffic and thus, the possibility of being noticed by phone users
and defenders. Second, instead of being randomly generated,
a node ID is constructed by hashing its phone number, similar
to the notion in Chord [15] that a node ID is the hash of its
IP address. Doing so can undermine the effectiveness of Sybil
attacks in which defenders add nodes to join the botnet to
disrupt C&C transmission. Evidently, if node IDs are allowed
to be randomly chosen, defenders will take advantage of this
by selecting IDs close to command-related keys to ensure a
high probability that these sybil nodes are on the route of
command search and publish queries. In addition, the absence
of an authentication mechanism in Kademlia, meaning that
anyone can insert values under specific keys, presents an
opportunity for defenders to launch index poisoning attacks
by publishing fake values under command-related keys once
they know these keys, in order to disrupt C&C. We thus use
a public key algorithm to secure the command content. While
publishing a command, the publisher (the botmaster) needs to
attach a digital signature to that command. The signature is the
hash value of the command signed by the botmaster’s private
key. Its corresponding public key is hard-coded in each bot’s
binary. In this way, bots that will store the command are able
to verify that the command is indeed from the botmaster not
anyone else.

Gia improves Gnutella protocol and has an unstructured
overlay topology. Since Gnutella has a scaling problem due to
the flooding search algorithm, Gia modifies Gnutella’s design
and improves its scalability significantly. There are four key
components in Gia’s design: (1) a topology adaptation protocol
to put most nodes within short reach of high-capacity (able to
handle more queries) nodes by searching and adding high-
capacity and high-degree nodes as neighbors; (2) an active
flow control scheme to avoid overloaded nodes by assigning
flow-control tokens to nodes based on capacity; (3) one-hop
replication to maintain pointers to the content offered by
immediate neighbors; (4) a search algorithm based on biased
random walks directing queries to nodes that are likely to
answer the queries.

Our design of unstructured overlay topology is based on
Gia as mentioned before. Our design removes the one-hop
replication scheme because it requires each node to index
the content of its neighbors and to exchange this information
periodically. This scheme may help reduce the number of hops
for locating a command, but will incur additional storage and
computation overheads. Moreover, each SMS message has
a limited length so that the exchange of index information
cannot be done with a single message but requires multiple
messages, increasing the number of messages generated. In
our mobile botnet, the drawbacks of using such a scheme will
outweigh its benefits, and we thus opt out of this scheme.
Three other components are important to our botnet because
their combination ensures queries to be directed to high-
capacity nodes that can provide useful responses without
getting overloaded. This is desirable, especially in a mobile
phone network, since smartphones also have different capac-
ities under different situations. For example, in a poor-signal
area or when the phone is on a voice call (SMS messages
use the same control channel as voice calls for delivery), the
phone’s capability of handling SMS messages is lowered, so
it can only answer fewer queries. Overloading mobile bots
is also a concern. If one bot receives/sends a large number of
SMS messages during a short period of time, its battery can be
drained quickly, and draw the user’s attention. Overloading can
be prevented using the flow-control scheme in Gia. Another
design choice worth mentioning is that similar to the modified
Kademila, a digital signature is attached to every command to
be published.

III. EVALUATION

A. Comparing Two P2P Structures

We now describe our simulation study of structured and
unstructured P2P architectures for mobile botnets and compare
their performances. In the simulation, all nodes are assumed to
have already been infected by the vectors described in Section
II-A. Our evaluation focus is not on how the malicious bot
code propagates, but on how the botnet performs under two
different P2P structures.

We modified OverSim [16], an open-source overlay network
simulation framework, to simulate mobile botnets with the
two P2P structures. While comparing P2P structures’ perfor-
mances, logical connections (SMS activities) among mobile
nodes matter most, i.e., what we care is the overlay network
not the underlying physical network. For example, the fact that
mobile bots move around is not important in our simulation
because the change of geographic location hardly affects bots’
SMS message sending/receiving.

The metrics we use to measure performance are: number of
overlay hops needed for a command lookup; total number of
SMS messages sent (number of those sent = number of those
received) when a botmaster-issued command is acquired by
every node; percentage of total number of SMS messages sent
by each node during this entire command-lookup; and message
delay (from the start of the query until a command is received).
These metrics reflect how well each architecture meets the

5

Fig. 2. CDFs of the number of hops needed for a command-lookup

Fig. 3. CDFs of the total number of messages sent to perform all lookups

requirement of our mobile botnet, namely, minimizing the
number of SMS messages sent and received, load-balancing
and locating commands in a timely manner.

The churn (participant turnover) model we adopted in the
simulation is the lifetime churn. In this model, on creation of
a node, its lifetime will be drawn randomly from a Weibull
distribution which is widely used to characterize a node’s
lifetime. When the lifetime is reached, the node is removed
from the network. A new node will be created after a dead
time drawn from the same probability distribution function.
We set the mean lifetime to 8*3600=28800s, assuming that
each phone will stay connected to the botnet for an average
of 8 hours. Considering the unavailability of real field data on
mobile phones’ online behavior, we made this rough estimate.
We will later evaluate the effect of different mean lifetimes on
the botnet performance.

Besides the aforementioned performance metrics, another
important metric is scalability for which we simulated two
botnets with 200 and 2000 nodes, respectively. In each botnet,
a command from the botmaster is published, and every node
is designed to locate this command by issuing lookup queries.
The simulation ends when all nodes successfully retrieve the
command. In the structured botnet case, we ran the modified
Kademlia protocol, with k-bucket size k = 8 and the number
of nodes to ask in parallel α = 3. In the unstructured
botnet case, we ran the modified Gia protocol, with minimum
number of neighbors min nbrs = 3, maximum number
of neighbors max nbrs = 10 and maximum number of
responses max responses = 1.

Now, we present and discuss the comparison results. For

each metric, we first look at the 200-node botnet and then
the 2000-node botnet. Figure 2 plots the CDFs of the number
of hops needed to retrieve a targeted command. In the 200-
node botnet, for the structured architecture, 97% of lookups
can be completed within 3 hops. The corresponding number
for the unstructured botnet is 5 hops. In the 2000-node botnet,
despite the increased network size, 99% of lookups under the
structured architecture are fulfilled within 4 hops, but under
the unstructured 8 hops are required. Figure 3 shows the CDFs
of the total number of SMS messages sent from each node
when the command spreads to the entire botnet, which is
the total communication overhead. In the 200-node botnet,
under the structured architecture, about 80% of nodes generate
fewer than 15 messages during the entire period, while under
the unstructured architecture 69% of nodes can do so. The
average number of messages sent is 11 for the structured and
15 for the unstructured, respectively. In the 2000-node botnet,
with more nodes and more lookups, the message overhead
unsurprisingly increases. 80% of nodes send fewer than 20
messages (51% of nodes send fewer than 10 messages) for
the structured architecture with an average of 22 messages
sent by each node. Only 40% of nodes send fewer than 20
messages for the unstructured architecture with an average of
44 messages.

From the above observations, we can see that the structured
botnet, in general, requires fewer number of hops to locate a
command and incurs a lower message overhead on each node
than the unstructured one does in both 200- and 2000-node
cases. Compared to the unstructured botnet, the structured
architecture also scales better, considering its slight increases

6

in the number of hops and messages when the botnet becomes
large. This is expected because in a structured network, data
items are placed at deterministic locations so that fewer hops
and query messages are required to locate the targeted data and
the network can accommodate a large number of nodes. Even
so, one may still wonder, in the structured 2000-node botnet
where 20% of nodes send more than 20 messages while 80%
of nodes send less than 20 messages, if the overhead incurred
is a concern, since SMSC is able to observe much of the traffic.
SMS market statistics show that: “In 2009, U.S. cell phone
subscribers sent and received on average 390 text messages
per month according to the Mobile Business Statistics [17].”
We thus believe that tens of messages overhead per phone
may not draw much attention from the SMSC considering a
phone’s normal messaging volume. If this surge of messages
happens around the same time from each mobile bot, it may
become problematic. As most attacks such as information
stealing and spamming are not time-critical, bots do not
have to rush to get commands. For example, 30 malicious
messages may cause suspicion within an hour, but they may
not attract much attention if they were spread over three days.
To further minimize the number of messages sent/received,
each mobile bot can be restricted by a threshold. If the
number of messages reaches the threshold, the bot will stop
sending/receiving messages. In our case, the threshold may be
20 messages, under which 80% of nodes are still able to obtain
commands. The threshold can also be customized. If a bot has
frequent normal SMS messaging behavior (e.g., nearly 3000
texts per US teen per month in Q1 2009 [18]), its threshold of
allowing bot communication could be high since this phone
is very likely to use a SMS plan and a few blended malicious
messages are less noticeable.

Figure 4 shows the histograms of load distribution on
each node, which is the percentage of total messages each
node accounts for during the entire simulation. In the 200-
node botnet, 76% of nodes in the structured botnet each
accounts for 0.75% – 1.25% of total messages sent, whereas
in the unstructured one, the percentage values are spread
out among different nodes ranging from 0.10% to 6%. The
average percentage for the structured one is 1.02% and for
the unstructured is 1.01%. To gauge the load-balancing more
accurately, we calculated a metric defined as:

∑n
i=1 |pi−p| (∗),

where n is the total number of nodes, pi is the load percentage
at node i, and p is the average percentage across all nodes.
The (∗) values for the structured and the unstructured are
13.40% and 55.89%, respectively. In the 2000-node case, all
nodes’ percentages in the structured botnet range from 0.05%
to 0.25% while those in the unstructured botnet are distributed
within 0.05% – 1.65%, although the average percentages for
both the structured and the unstructured are 0.07%. The metric
(∗) values for the structured and the unstructured are 23.73%
and 145.48%. The unstructured case varies more in load
distribution leading to poor load-balancing, probably because
Gia uses schemes to direct most queries to a few nodes—
forming hub nodes.

To estimate the actual delay of locating a command in our

mobile botnet, we measured one-hop latency by sending SMS
messages between two smartphones. We implemented a SMS
send/receive utility on the Android platform and installed it
on two G1 phones: one connected to T-mobile and the other
to AT&T. The software continually sent out and received
SMS messages between two phones and recorded the exact
timestamps. The intervals between two consecutive SMS mes-
sages were chosen from 1 second to tens of minutes and the
message contents were also randomly generated with various
lengths to simulate the realistic SMS usage. During the entire
experiment, we sent out a total of 138 SMS messages and
collected the corresponding message delays, i.e., the difference
between the time sending a message from one phone and the
time of receiving that message from the other phone. Figure 5
depicts min/max/average message delays based on different
sending intervals (sending rates). We can see that when SMS
messages are sent frequently, the message delays vary a lot
and have high average values. Take 1 second as an example.
Under this interval, delays range from 15 to 205 seconds with
an average of 60 seconds. Similar delay patterns occur when
the interval is 5 seconds. The general trend is that as intervals
become larger, both delay average and variance drop, and that
when the interval is greater than 60 seconds, the delays become
stable.

Since mobile attacks such as confidential information steal-
ing (especially related to credit card, account number, etc.) are
not time-sensitive, bots can send messages at relatively long
intervals to shorten the delay and avoid detection. Using a
greater than 1 minute sending interval’s delay, we now esti-
mate the total delay for a command-lookup. Under structured
Kademlia which uses iterative search, the estimated delay is
given by AverageTotalDelay = 2×
AverageHops×AverageOneHopDelay. When it comes to
unstructured Gia which employs recursive search, the equation
should be the same. By plugging in the data we obtained,
the estimated command-lookup delay is 17 seconds for the
structured and 36 seconds for the unstructured in the 2000-
node botnet. (To be realistic, we only consider the large-scale
scenario.)

The delays seem to be large compared to that of IP-based
connections. As briefly mentioned before, our current design
does not opt for IP-based C&C or existing IP-based P2P
networks for the following reasons. First, some smartphones
may not have data plans, not always accessible to the Internet.
Second, for smartphones with the Internet access, they can
initiate connections to retrieve commands from designated
servers but are likely to suffer from a single-point-of-failure.
To work in a decentralized P2P fashion, mobile bots should
be able to accept incoming connections without any difficulty,
which presents a challenge due to private IPs used in most
scenarios. A possible solution is to obtain assistance from a
third-party such as a mediator server or a rendezvous server,
adding complexity to the C&C. Since SMS is ubiquitous
across all mobile phones, using SMS as the C&C channel
to construct a P2P structure is a feasible and reliable solution
for mobile botnets. As future work, we can incorporate IP-

7

Fig. 4. Histograms of the percentage of total messages sent from each node

1 5 10 20 60+
0

30

60

90

120

150

180

210

M
es

sa
ge

 D
el

ay
 in

 s
ec

on
ds

Interval between SMS messages (seconds)

Fig. 5. SMS message delays Fig. 6. CDFs of the number of hops for a command lookup under different
mean lifetimes (in sec)

based command-transfer into our botnet. For mobile bots
without network access, they transmit C&C exclusively via
SMS messages. For bots with network access, they can pull
commands from an IP-based P2P network. Such a network
consisting of PCs can be either constructed by the botmaster
or part of an existing P2P network. Doing so may help reduce
the message overhead and the delay.

In summary, our simulation results show that the structured
architecture outperforms the unstructured one in terms of
total number of messages sent, hops needed and delays for
a lookup as well as load-balancing, although both the original
protocols—Kademlia and Gia—have already been tailored
to our mobile botnet’s needs through several modifications.
Thus, the structured architecture is indeed better suited for
our mobile botnet.

B. Effect of Churn Rates

Now that we have chosen the structured architecture, we
would like to see the effect of different mean lifetimes or
churn rates on the number of hops for a command lookup,
which directly affects the delay of locating a command. To
see the trend, in a 2000-node botnet, we varied the mean
lifetimes—100s, 1000s and 28800s. The higher the mean
lifetime, the lower the churn rate. Presumably, a large mean
lifetime indicates a relatively stable network in which fewer
steps are needed to locate a command. This assumption is
verified in our simulation. We can see that in Figure 6,
differences, though minimal, exist among the three CDFs.

With the mean equal to 100s, the average number of hops
is 1.8; with the mean equal to 1000s, the average reduces to
1.7; with the mean equal to 28800s, the average decreases
further to 1.4. It turns out that a higher churn rate does not
degrade much of the lookup performance.

C. Can Disguised C&C Messages Go Through?

One concern with our spam-like C&C messages is what if
they are filtered and deleted by the service providers without
reaching the recipients, which might be the only effective way
to mitigate SMS spam (spam-filtering at the end device is not
useful as the recipient needs to pay for the messages already).
According to some sources [12], [19], mobile carriers do not
automatically block SMS spam because there is no spam folder
with SMS so that accidental deletion of legitimate messages
from the carrier’s side cannot be recovered by the users. Also,
senders are presumably charged for these messages unlike
emails. To confirm this, we ran experiments to see whether
carriers will let our spam-like C&C messages pass through.
Table I shows the spam templates for C&C, which are typical
spam messages. The random strings highlighted in grey are
variables such as passcodes and node IDs. We tried two
methods to send them: web-based and smartphone-based. For
the first method, we sent all messages twice to an AT&T phone
via free texting service at Text4Free.net and txt2day.com
respectively. 100% of them reached the designated phone. For
the second method, we wrote an application and installed it
on an AT&T Samsung Captivate phone running Android OS

8

SMS (P bli h)

Node ID 1111 Node ID 0110
Key 0111

Number 123!456!7890 Number 321!645!0978
Passcode 8888

SMS message (Publish)

ode
Value XXXX

Node ID 0010

Number 521!322!0765

SMS message (Search)

Node ID 0100

Number 521!633!0789Key 0111

Passcode 8888

SMS message (Search)

Node ID 0000

Number 331!645!0278

Node ID 0100

1

2

3

Fig. 7. Publish and Search

TABLE I
SPAM TEMPLATES WITH VARIABLE FIELDS IN GREY

1 Your paypal account was hijacked (Err msg: NzkxMjAzNDlxODExMDUyM183Mz).
Respond to http://www.bhocxx.paypal.com using code Q3MDk2NDUyXzEyMzQ1Njc4

2 Free ringtone download at www.myringtone.com, using username VIP, password YTJiNGQxMWw to log on

3 Dear Customer, your order ID dWFuaWRpb3Q is accepted. Please visit: www.xajq.apple.com for more info

4 Your business is greatly appreciated and we would like to award you a free gift.
http://www.protending.com/ebay/anVzdDRmdW4

5 To confirm your online bank records, follow the link https://login.personal.wamu.com/logon.asp?id=YWhhaGFoYWg

6 Hey, come on - Purchase G.e.n.e.r.i.c V I A G R A! http://www.WQ9.wesiwhchned.com/default.asp?ID=MTA5MzIxMnc

7 Citi Users: This is an important step in stopping online fraud. Please verify your account at
https://www.citi.com.Y2Nzc3Vja3M/verify/

8 Hey alice, I forgot to tell you yesterday that the password to that account(MDkyMzkxMDM0OTgxMjAzN)
should be 183MzQyNjIwOTM5XzUxOTQwMTI5

9 Don’t miss the chance to win an iPhone 4. Go to www.apple.hak/index.asp?id=OTAxMjc1MjM4OTExMTIzOD,
password: QyXzQxNDMyMTg3MzlfNjQ4MTkyMDQ

10 Guess who is tracking your location info? Log on to www.whoistrackingme.com/index.asp?num=YWxqc2hmdy0

9

2.2. This application automatically sent the spam messages
5 times at different times of a day to another AT&T phone.
The application also kept track of whether a message was
sent successfully. Out of the 50 messages, 48 messages were
sent and delivered to the target phone and 2 messages failed
to be sent due to some generic failure at sender’s phone
that had nothing to do with the carrier. Although we were
not able to thoroughly test every possible spam message
on different networks, our experimental results were in line
with the aforementioned reports and we believe that as few
spam-fighting mechanisms are in place, our disguised C&C
messages can safely go through the network.

D. How Do SMS C&C and P2P Structure Become One?

Having an impression of how SMS transmits C&C messages
and how a structured P2P topology fits our mobile botnet, one
may want to know in detail the way we integrate both into
the mobile botnet. We now use a simplified example (Figure
7) to illustrate the command publish and search process. For
illustration purpose, node IDs and data items’ keys are 4-
bit long, and SMS messages transmitted are not disguised as
spam. In this figure, node 1111 wants to publish certain data—
a command—under the key 0111. Note that in Kademlia,
data items are stored in nodes whose IDs are close to data
items’ keys. To locate such nodes, node 1111 first sends SMS
messages to nodes in its hard-coded node list; these nodes
help to obtain nodes closer to the target from their node lists.
The process continues till no closer nodes could be found (this
process is omitted in the figure). Finally, node 1111 finds the
closest node 0110 (0110⊕0111 = 0001), so a publish message
containing the command’s key (0111), the encrypted command
(XXXX) along with a passcode (8888) is sent to node 0110.
After verifying the pre-defined passcode and command, node
0110 stores this information so that later any node requests
the command associated with key 0111 it is able to return
this command. As for the search process, it is similar to the
publish process described. Node 0000 looks up a command
associated with key 0111 and it has to find the node whose
ID is closer to this key. Node 0000 first asks node 0010; node
0010 points it to node 0100; node 0100 provides the closest
one, node 0110. Node 0000 contacts node 0110 to request the
command.

IV. DISCUSSION ON COUNTERMEASURES

Although we have focused on the design of a stealthy and
resilient mobile botnet, we would like to discuss potential
defensive strategies against this botnet and challenges in using
these techniques.

Similar to the patching mechanism in the PC world, to
prevent malicious code from infecting mobile devices by
vulnerability exploits, OS vendors and software providers
need to push patches to end devices in a timely manner.
Certification (only approved applications can be installed) is
also an important security measure, but it is far from being
perfect as some malware has been able to get around [20] as
a disguised harmless application. To nip the mobile malware

in the bud, additional protection features are necessary. For ex-
ample, Kirin [21] is designed for the Android-platform whose
certification process is not stringent; it provides application
certification at install time using a set of predefined security
rules that determine whether the security configuration bundled
with an application is safe. With the aid of Kirin, users may
be more cautious while installing applications.

Host-based approaches that detect malware at runtime could
also serve as a solution. Signature-based detection is effective
but cannot handle unknown or polymorphic malware. There-
fore, we prefer use of behavior-based detection. Since our bots
send SMS messages stealthily without the user’s involvement
or awareness, the detector could first characterize the normal
process of sending SMS messages by a system-call state-
diagram and then keep monitoring the system calls that gen-
erate outgoing messages to see if there is any deviation from
the normal behavior. To detect incoming C&C messages, the
detector needs to know the encoding scheme probably through
binary analysis so that it can tell which messages are malicious
and intercept and delete them before any application’s access.
However, the botmaster can apply advanced packing and
obfuscation techniques to make the binary analysis harder, and
periodically update the spam templates as well as the mapping
between them and corresponding commands. In addition, host-
level detection is susceptible to compromise by the malware,
and consumes much resource.

Deploying detection schemes at SMSC is another possible
solution. Compared to the host-level detection, this centralized
approach can acquire a global view of all phones’ SMS
activities, although the information of each phone might be
limited. As mentioned before, simply filtering out spam will
not effectively cut off the botnet’s C&C. The reason is that
even if carriers dump spam-like SMS messages into a spam
folder like email service providers do, spam messages will
still reach target phones, stay at a less noticeable place—the
spam folder and get commands executed. Black-listing and
SMS sending/receiving rate-limiting may be difficult because
our design attempts to minimize the total number of messages
sent/received and to balance the load on each bot. As always,
matching signatures extracted from known bots’ messages
can be bypassed by malicious messages with completely new
formats or contents. To differentiate between mobile bots and
normal phones, the detector at the SMSC needs to extract more
distinctive features from SMS traffic patterns. For example,
normal phones may have regularities in whom they send
messages to and the sending frequency [22]. The detector
can therefore build normal profiles and identify anomalies
accordingly. The detector may also adopt a high-level view
for detection. As our botnet utilizes a P2P architecture, the
resultant network topology stemmed from SMS activities may
be different from that formed by benign phones, given the
fact that P2P applications are rare in today’s mobile phone
networks.

10

V. RELATED WORK

The research areas most relevant to our work are P2P-based
botnets and botnet C&C evaluation. Wang et al. [23] proposed
the design of an advanced hybrid P2P botnet that implemented
both push and pull C&C mechanisms and studied its resilience.
In [24] they conducted a systematic study on P2P botnets in-
cluding bot candidate selection and network construction, and
focused on index poisoning and Sybil attacks. Overbot [25]
is a botnet protocol based on Kademlia. The strength of this
protocol lies in its stealth in the communication between the
bots and the botmaster leveraging a public-key model. Davis
et al. [26] compared the performance of Overnet with that
of Gnutella and other complex network models under three
disinfection strategies. Singh et al. [27] evaluated the viability
of email communication for botnet C&C. Nappa et al. [28]
proposed a botnet model exploiting Skype’s overlay network
to make botnet traffic undistinguishable with legitimate Skype
traffic. All of these dealt with botnets in the PC world, while
our work targets mobile botnets, in which C&C channel and
network structure requirements are different, in view of unique
services and resource constraints on smartphones. Dagon et
al. [29] proposed key metrics to measure botnets’ utility for
conducting malicious activities and considered the ability of
different response techniques to disrupt botnets.

There are numerous efforts on mobile malware focusing on
vulnerability analysis and attack measurements. The former
investigates ways of exploiting vulnerable mobile services,
such as Bluetooth and MMS [30], [31], while the latter
characterizes the feasibility and impact of large-scale attacks
targeting mobile networks, mostly Denial of Service (DoS)
attacks [32]. There are two papers treating the idea of mobile
botnets [4], [5]. The first paper was not concerned with C&C
or the network architecture but focused on the attack aspect—
whether compromised mobile phones can generate sufficient
traffic to launch a DoS attack. The second paper investigated
using Bluetooth as a C&C to construct mobile botnets without
any analysis on their network structure.

VI. CONCLUSION AND FUTURE WORK

As smartphones are getting more powerful, they become
potential targets of profit-driven attacks, especially botnets. In
this paper, we presented the design of a mobile botnet that
utilizes SMS to transmit C&C messages and a P2P structure
to construct its topology. Specifically, we used simulation
to compare two types of P2P architectures—the structured
and the unstructured—based on several metrics critical to
the mobile botnet performance. We found that the modified
Kademlia—a structured architecture—is more suitable for
our botnet in terms of message overhead, delay, and load-
balancing. We also investigated possible ways to counter the
mobile botnet threat. As future work, we plan to combine
SMS-based C&C and IP-based C&C utilizing existing DHT
or P2P networks. Since our current work focuses on the aspects
of feasibility and efficiency in botnet design, we would also
like to measure robustness, i.e., how our botnet performs under
different detection and mitigation strategies.

REFERENCES

[1] : Malware infects more than 50 android apps: First big
infection highlights vulnerability of android’s openness.
http://www.msnbc.msn.com/id/41867328/ns/technology
and science-security/t/malware-infects-more-android-apps/

[2] SymbOS.Exy.A. http://www.symantec.com/security response
/writeup.jsp?docid=2009-022010-4100-99

[3] Ikee.B. http://www.symantec.com/security response
/writeup.jsp?docid=2009-112217-4458-99

[4] P.Traynor, M.Lin, M.Ongtang, V.Rao, T.Jaeger, P.McDaniel, T.L.Porta:
On cellular botnets: Measuring the impact of malicious devices on a
cellular network core. In: Proceedings of the 12th ACM Conference on
Computer and Communications Security (CCS’09)

[5] Singh, K., Sangal, S., Jain, N., Traynor, P., Lee, W.: Evaluating bluetooth
as a medium for botnet command and control. In: Proceedings of the
International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment (DIMVA 2010)

[6] : Htc bluetooth vulnerability. http://www.cio.com/article/497146
/HTC Smartphones Left Vulnerable to Bluetooth Attack

[7] C.Mulliner, C.Miller: Fuzzing the phone in your phone. In: BlackHat
Security Conference, 2009

[8] SMS. http://en.wikipedia.org/wiki/SMS
[9] : China cracks down on sms spam.

http://www.redherring.com/Home/19081
[10] textPlus. http://www.textplus.com/
[11] : Textfree unlimited. http://itunes.apple.com/us/app/textfree-unlimited-

send-text/id305925151?mt=8
[12] : Gsma launches sms spam reporting service.

http://www.pcworld.com/businesscenter/article/192469
/gsma launches sms spam reporting service.html

[13] Maymounkov, P., Mazieres, D.: Kademlia: A peer-to-peer information
system based on the xor metric. In: IPTPS, 2002

[14] Chawathe, Y., Ratnasamy, S., Breslau, L., Lanham, N., Shenker, S.:
Making gnutellalike p2p systems scalable. In: ACM SIGCOMM, 2003

[15] Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.:
Chord: A scalable peer-to-peer lookup service for internet applications.
In: ACM SIGCOMM 2001

[16] OverSim. http://www.oversim.org/
[17] : Sms market statistics 2009. http://www.massmailsoftware.com

/blog/2010/04/sms-market-statistics-2009-know-your-customer/
[18] : More than text: mobile habits of teens. http://www.atelier-

us.com/mobile-wireless/article/more-than-text-mobile-habits-of-teens
[19] : Mobile phone spam. http://en.wikipedia.org/wiki/Mobile phone spam
[20] : Researcher says app store open to malware.

http://www.iphonealley.com/current/researcher-says-app-store-open-
to-malware

[21] Enck, W., Ongtang, M., McDaniel, P.: On lightweight mobile phone
application certification. In: Proceedings of the 16th ACM conference
on Computer and communications security (CCS ’09)

[22] Yan, G., Eidenbenz, S., Galli, E.: Sms-watchdog: Profiling social
behaviors of sms users for anomaly detection. In: Proceedings of
the 12th International Symposium on Recent Advances in Intrusion
Detection (RAID’09)

[23] Wang, P., Sparks, S., Zou, C.C.: An advanced hybrid peer-to-peer botnet.
In: HotBots’07

[24] Wang, P., Wu, L., Aslam, B., Zou, C.C.: A systematic study on peer-
to-peer botnets. In: ICCCN 2009

[25] Starnberger, G., Kruegel, C., Kirda, E.: Overbot - a botnet protocol
based on kademlia. In: 4TH INTERNATIONAL CONFERENCE ON
SECURITY AND PRIVACY IN COMMUNICATION NETWORKS
(SECURECOMM’08)

[26] Davis, C.R., Neville, S., Fernandez, J.M., Robert, J.M., McHugh, J.:
Structured peer-to-peer overlay networks: Ideal botnets command and
control infrastructures? In: Proceedings of 13th European Symposium
on Research in Computer Security (ESORICS’08)

[27] Singh, K., Srivastava, A., Giffin, J., Lee, W.: Evaluating email’s
feasibility for botnet command and control. In: Proceedings of 38th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN’08)

[28] Nappa, A., Fattori, A., Balduzzi, M., Dell’Amico, M., Cavallaro, L.:
Take a deep breath: A stealthy, resilient and cost-effective botnet using
skype. In: Proceedings of 7th International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment (DIMVA’10)

11

[29] Dagon, D., Gu, G., Lee, C.P., Lee, W.: A taxonomy of botnet structures.
In: Proceedings of the 23 Annual Computer Security Applications
Conference (ACSAC’07)

[30] Bose, A., G.Shin, K.: On mobile viruses exploiting messaging and
bluetooth services. In: Proceedings of the 2nd International Conference
on Security and Privacy in Communication Networks (SecureComm’06)

[31] Racic, R., Ma, D., Chen, H.: Exploiting mms vulnerabilities to
stealthily exhaust mobile phone’s battery. In: Proceedings of the 2nd
International Conference on Security and Privacy in Communication
Networks (SecureComm’06)

[32] Enck, W., Traynor, P., McDaniel, P., Porta, T.L.: Exploiting open
functionality in sms-capable cellular networks. In: Proceedings of the
12th ACM Conference on Computer and Communications Security
(CCS’05)

12

