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Abstract. Fast-Flux (FF) service networks are botnet-based hostingdirec-
tion/proxy services for hosting malicious and illegal anttwhile affording bot-
masters a high level of misdirection and protection. Withithuse as service net-
works among criminals on the rise, researchers and se@xitgrts have designed
fast and accurate detection systems based on their ictbesavior patterns. How-
ever, botmasters have responded, adopting a plethora nfexaeasures to evade
detection. In this paper, we explore the escalating “arnsge”raetween FF bot-
net detectors and the botmasters’ effort to subvert theasegmting several novel
mimicry attack techniques that allow botmaster to avoicedidn. We first ana-
lyze the state-of-art FF detectors and their effectiveragssnst the current botnet
threat, demonstrating how botmasters can—with their otimesources—thwart
detection strategies. Based on the realistic assumptidesed from empirically-
observed trends, we create formal models for bot decayp®@alvailability, DNS-
advertisement strategies and performance, allowing ustapare how different
mimicry attacks affect the overall online availability acapacity of botnets.

1 Introduction

A botnet is a vast collection of compromised computers utttecontrol of a botmaster
utilizing a Command-and-Control (C&C) infrastructure. Ang the numerous criminal
uses of botnets, one of the more advantageous is the baieettosting service, which
proxies or redirects unsuspecting users to illegal or mfarcontent. This strategy grants
criminals a high level of anonymity while enabling easy aedtcalized management of
the malicious content. However, because botnets are cadmpdshousands of disparate
compromised systems from around the globe, all with varyaspurces and network
connectivity, it is not uncommon for them to unpredictabtyaffline. To prevent bots’
unreliable connectivity from disrupting the availabild@ftheir nefarious service/content,
botmasters must continuously replace offline IPs in theliaioais domain’s DNS records
with those of online bots. As a result, they adopt fast-fluk)(BNS techniques, which
frequently change the domain-name mappings to differetst H® addresses. By recruit-
ing a large pool of IPs and supplying a large number of IPs pery botmasters can
ensure, with high probability, that the malicious domaigalges to an online bot’s IP.
Using this FF technique, botmasters effectively turnedr thetnets into a global Con-
tent Delivery Network (CDN), providing highly available émeliable content-hosting
services despite frequent node failures/disconnectivity

While their tremendous success as service networks hasesingsearchers and se-
curity experts to develop novel ways for detection, FF bistnemain a persistent threat.



The advent of fast, reliable FF detection systems has netrgeicated FF botnets; rather,
it coaxed them to evolve, developing more robust, efficiant] stealthy mechanisms for
subverting detection. This cycle continues, with defeaderd botmasters caught in an
ever-escalating “arms race”, each side temporarily on@agpthe other in a constant
game of give-and-take. Unfortunately for the good guyss laoe free, easy to come by,
capable of giving significant amounts of coordinated prsicespower, and incredibly ef-
fective sources of revenue. They have, in many ways, tram&fd the malware landscape
from a place to showcase “1337 h4xO0r” skills to a bustlingengdound economy.

It has come to our attention during our global monitoring &f lfotnet domains,
that despite the detection mechanism or mitigation styaitegosed, botnets constantly
evolve methods for subverting them, often at a startlingepbatspite of newly-emerging
detection strategies uniquely targeting them, they alieastiund and continue to grow
into ever more formidable systems—in many ways resemblirigrprise-level CDNs.
This occurs because, while efficient when first introducednynFF detection systems
quickly become outdated; they are designed to detect threrduadvertising strategies
of FF botnets, which are all too easily and quickly adaptedvimid detection. It is not
sufficient to base FF detection on the current class of diffgating features. Instead, im-
provements could be made if the botnets’ limitations wese #dken into consideration.
Thus, while previous research has focused on identifyitgbieral features uniquely in-
trinsic to FF botnets for detection, we have decided to talaternate approach; to better
know our enemy, we will become our enemy. Analyzing the resesicurrently avail-
able to FF botnets, we developed models for their bot degdineavailability, DNS-
management strategies, and performance. Using these snadetxamined the potential
success of novel mimicry attacks against state-of-art E€ctien systems, demonstrating
that such attacks are easily within current botnets’ meaksdo this, not to help FF bot-
nets circumvent detection systems (they know how to do théady, quite skillfully), but
to hopefully provide insight into the current arsenal theydat their disposal and how
it can be—and is being—applied to defeat current detectimtegjies. We hope this will
foster improvements to existing systems, as well as pravadeinsight into the adaptive
limitations of FF botnets.

2 Background

In this section, we investigate the DNS IP-advertisemettepas of different domain
types, including both malicious FF domains and two benigmaia types. First, we will
describe how we set up a globally distributed DNS monitospstem and then discuss
unique features discovered through several months’ mamgof thousands of domains.
This provides us with a unique, global perspective of howdifferent types of domains
advertise their IP addresses to DNS servers; allowing usttetbunderstand the current
state of FF domains and design effective mimicry attacks.

2.1 Global DNS-Monitoring System

We created a distributed DNS-query engine calld@GER deployed on 312 geograph-
ically disparate nodes in the PlanetLab testbed [9]. Theeseekre chosen based on the



location of the DNS servers they queried, such that DIGGERI&vizsue queries to DNS
servers in different geographic locations around the wdidble. 1 shows the continental
distribution of DIGGER nodes, which is reflective of the aalédistribution of available
PlanetLab nodes.

Continent N. America Europe Asia S. America | Oceania TOTAL
DIGGER Nodes 143 94 46 19 10 312
% of TOTAL 45.83% 30.13% 14.74% 6.09% 3.21%

Table 1: Global distribution of DIGGER nodes by continent

On each node, for malicious and benign domains, DIGGER pagf@®@NS queries on
their A (address) records, NS (authoritative name sereegnds, NA records (A records
on name servers) and theverse DNSrDNS) lookup (i.e., PTR records) for the A and
NA record IPs. Based on a domain’s most recently returned QiSy results, DIG-
GER classifies the domain as either active or offif@GGER continues to dig active
domains periodically based on their observed TTL, elimintatvasteful DNS-queries
while ensuring fresh DNS-query results. Domains that haenliletermined to be offline
are intermittently dug every 24 hours, so that DIGGER canalier if they come back
online. Meanwhile, for each domain, DIGGER also collectsrertivity information on
both A and NA record IPs by attempting to establish TCP cotioes on ports 80 and 53.
Notice that although DNS primarily uses UDP on port 53 to eegaquests, DNS servers
also accept TCP connections in order to support responaeedateding 512 bytes or
for tasks such as zone transfer [5]. Based on the connedsuits, DIGGER classifies
each IP as either online or offline, which is used to derive@muate bot online-decay
model. We aggregate the global DNS-query results for dosn@mpiled from multiple
sources, including online repositories of phishing andwaeaé websites as well as the
top 1000 most popular domains. DIGGER has been deployedathening global DNS
data for over 4 months. By applying simple heuristics on thtadwve manually identified
and verified 35 CDN domains and 45 FF domains by looking fodéasses with rDNS
names indicative of popular CDN companies (e.g., Akamagoonpromised computers.
While FF domains may not always use IPs that return rDNS t€sover our 4-month
monitoring period, it becomes highly likely we will obseraeleast one bot IP with a
rDNS result indicating a compromised computer.

2.2 Domain Types

Fast-Flux Domain FF domains are malicious domains utilizing a FF DNS-adsentient
strategy, typically built atop botnets. These domains &enaised for phishing scams or
hosting malicious contents. Thus, the profits botmastenggein from their botnets de-
pend directly on the availability of the hosted servicesteat. However, because botnets
are composed primarily of compromised home computers witieliable connectivity,

it is not uncommon for them to unpredictably go offline (etihe computer is turned off
or the installed malware is discovered and removed). Torerthe availability and sta-
bility of the hosted service/content, botmasters adopt NSDechniques and advertise
numerous IPs in their DNS-query results with frequentlyrdiag mapping between the
domain name and different bots’ IP addresses.

1 a domain is offline if its DNS query returns no A record.
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Fig. 1: Global DNS-query results for Fast-Flux and CDN damsai

Figure 1-aillustrates the global IP usage—across all DIB@&des—for an example
FF domain. In the figure, th@imeaxis represents the time (in seconds) since DIGGER
started monitoring the domaitéNode Indexrepresents the PlanetLab node that the IP
was observed on, with positive values indicating an A redBrdnd negative values an
NA record IP;IP Indexis a unique index incrementally assigned to each newly+obse
IP. From the figure, we can see that FF domains slowly andyeantinuously accrue
unique IPs (in its A, NA or both records) over its entire oellifetime. Over the 4-month
monitoring period, we have observed that a typical FF domairally advertises thou-
sands of unique IP addresses, with the most aggressivetbaitheertising over 35,000.
As we will demonstrate later, this huge IP pool affords thenester great flexibility and
abundant resources to mimic a wide range of benign DNS befsafor evading detec-
tion.

Benign Domains CDN domains are benign domains that use a Content Delivety Ne
work (CDN), such as Akamai, to improve the delivery of th@intent. CDNs—consisting
of a system of computers networked together for the purpbsamroving the perfor-
mance and scalability of content distribution—produce BiN@ry results resembling
those of malicious FF domains: numerous, changing IPs penyquith short TTL val-
ues. For instancesfl.com a CDN domain shown in Fig. 1-b, has very short TTL (20
seconds) and constantly changes its A record IPs, resittiting accumulation of almost
1200 IP addresses during our monitoring period. This affinétween CDN and FF do-
mains is a consequence of their similar goal to provide bidigaontent delivery despite
node failures, as well as their shared assumption that athy c@n temporarily or perma-
nently fail at any time. This affinity can allow botmastersctoak their malicious DNS
advertise strategy as normal behavior.

Non-CDN domains are benign domains that do not use a CDN foredyg of their
content. Typically, non-CDN domains use a few stable cdrgervers and a modest num-
ber of name servers (NSes). Some popular non-CDN domainsdvaytise more than 18
IPs in a single DNS query, using the same set of IPs in eacly qunel rotating the order
across queries for load-balancing purposes. This type @& Bisategy is often referred to
asround robin DNJRRDNS).



3 Fast-Detection Systems (2 queries)

3.1 Good Guys

The original FF detection system proposed by Hatlal.[1] (i.e., Holz detector) and RB-
Seeker’s first-tier detector [2] are considered fast-d&tesystems, as they are capable
of detecting FF domains with high accuracy from only 2 DNSrggse This is achieved
through the use of a linear decision function containingghegd terms derived from
the DNS queries and a bias term. The functions for the Holeadet and RB-Seeker’s
first-tier detector can be found in Eq. (1) and Eq. (2), retpely.

f(x) = 1.32-na+ 1854 nagn— 14238 1)

In EqQ. (1), the number of unique A records and Autonomouseydumbers (ASNSs)
are represented by andnasn, respectively. In Eqd. (2Nuniqueips represents the number
of unique IPs seen in the A recordysnthe unique ASNs, andpns bad wordsthe number
of reverse DNSrDNS) lookups (i.e., PTR records) containing “bad wordxglicative of
compromised home computers, such as comcast, chartemnityrdialup, etc. In both
equations, the magnitude éfx) represents the degree of confidence when classifying
domainx as FF or benign, with positive values indicating a FF domairEqg. (1) and a
benign domain for Eq. (2).

3.2 Bot Guise

ASN-Mimicry Attack From Egs. (1) and (2), we can see that the dominant factor in
identifying FF domains is the number of unique ASNs; for R&ker, it is twice as
influential asNpnsbadwords @nd for both detectors, it is an order-of-magnitude more
significant than the number of unique A records (i.e., unitRg). Clearly, an effective
mimicry attack against these fast-detection systems dhedluce the number of ASNs
to levels seen for benign domains.

Since DNS queries on benign domains (engyvw.avast.cojnoften contain A record
IPs from 2 ASNSs, let us assume that a fast-detection systeptsithe following overly
strict policy:over 2 DNS-queries, any domain containing IPs from more thASNs will
be flagged as maliciou¥his policy will result in false-positives for benign domaiwith
IPs from more than 2 ASNSs, such as some CDN domains. HowéwbisiDraconian
approach can be effectively subverted, so can more lengssti@ints.

To discover if this is feasible with current botnet resosgtoge aggregated the IPs
for each FF domain globally monitored by DIGGER, determittegir ASNs, and then
analyzed their IP distribution across ASNs. We found thespite the size of the botnet,
the distribution was long-tailed, with at least one ASN @dming a disproportionably
large number of IPs. This trend is demonstrated in Fig. 2 f@p8esentative FF domains
of varying sizes; to keep the graph readable, we have onlyepldhe distribution for
the top 20 ASNs from which the botnets have the most IPs. Vwhdes are many ASNs
from which the botnets control moderate to few IPs, theraviiably exists at least one



ASN with a large number of IPs. This is possibly due to certg®Ns containing a large
proportion of vulnerable computers, such as Internet gataeiders, or from botmasters
targeting certain institutions. In any case, assumingédistoontain a suitable number of
IPs from at least a single ASN (as our data indicates), tlsesesimple IP-advertisement
strategy for mimicking the ASN behavior of benign domains.

This mimicry strategy is demonstrated in Fig. 3, with each_Tile., fresh DNS
query) showing the distribution of IPs from various ASNsr Egample, at TTL1, the
majority of advertised IPs are from AS1 with a smaller sulismh AS2. In this case,
the botnet controls a large number of IPs from AS1 and a moeléwasmall number of
IPs from AS2. During the next TTL, some of the IPs that haveegaffiine are replaced
with new IPs from either AS1 or AS2. While there exists a sidfitly large pool of
online IPs from AS1, this is not the case with AS2, eventuatyuiring the introduction
of IPs from a different ASN. However, because the detectiorow is 2 DNS-queries,
the botmaster must ensure that all the IPs seen over 2 cdiveequeries belong to no
more than 2 ASNs. Thus, before IPs from a new ASN can be intediutshe must first
advertise only IPs belonging to one of the ASNs present irptegious TTL, as shown
in TTL3. Then, at TTL4, she is free to utilize IPs from the ne®M, AS3. If she happens
to control a large number of IPs in AS3, she can slowly replaBé as the dominant
ASN, as shown in TTL4-TTL7Y. In this way, botmasters can sssftdly mask their use
of numerous ASNs from fast-detection systems.
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Fig. 2: IP distribution for top 20 ASNs

rDNS-Mimicry Attack From Eg. (2), we see that the second most influential term
when identifying FF domains Npns padwords However, RB-Seeker asserts that a rDNS
lookup on an IP will not always return a result, although witedoes, it can be useful.
Despite its inconsistency, the term is still an order-ofgm&ude more important than the
number of unique IPs. Therefore, an effective mimicry &ttdwuld include a mechanism
for subverting this detection metric.

Let us assume the following aggressive detection poliexer 2 DNS-queries, any
domain with more than 2 “bad words” in its rDNS results will flagged as malicious.
Certainly, this policy is overkill, as many legitimate doimes (e.g.,www.comcast.com
will have rDNS results that contain “bad words”. Howevehdttnets can defeat this harsh



limitation, more realistic thresholds can also be subwedtfecurrent FF botnets contain
enough IPs without rDNS results (i.e., IDNS=NONE IPs), taemmicry strategy similar
to that proposed for ASNs in Section 3.2 could be applied.étemine the feasibility of
this approach, we aggregated the IPs for each FF domainanediglobally by DIGGER
and determined the percentage of DNS=NONE IPs. We disedvat for all the FF
domains, at least 15% of their total IPs lacked a rDNS re&uitthermore, for24%
of the domains, over 50% lacked a rDNS result. Considerirglaéinge proportion of
rDNS=NONE IPs and the fact that rDNS results for bots that’ammpromised home
computers will be free of “bad words,” the mimicry strategpjposed earlier for ASNs
can easily be applied: IPs without rDNS results (or withdaad words”) can be used in
conjunction with IPs containing “bad words”, such that odl{pbad words” are observed
over 2 queries.

However, to be truly effective, we need to ensure that thistegy can be combined
with the previous ASN-mimicry attack. Thus, for each FF domae analyzed the distri-
bution of  DNS=NONE IPs across ASNs, once again observiadahg-tailed distribu-
tion. This phenomenon is shown in Fig. 4 for 3 representatomains of varying sizes.
When only looking at the rDNS=NONE IPs, some of the smalleorter-lived botnets
would have a hard time achieving the combined mimicry attaitkout diligent main-
tenance. However, this was not the case for the majority tfdie we observed, which
possessed enough IP-dense ASNSs to sufficiently mount tHerdirécry attacks.
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IP Mimicry Having determined that current botnet resources are caj#élhstigating
ASN- and rDNS-mimicry attacks, we turn our attention to tmalffiattribute utilized by
the fast-detection systems in Egs. (1) and (2), the numbguandPs. It stands to reason
that the more IPs a FF domain advertises per query, the maly kome of the bots
will be online. Furthermore, because most DNS servers parfound-robin schedul-
ing within a given TTL, advertising more IPs per query dese=sathe load imparted on
each bot, thereby increasing the botnet’s total servicaagp Since benign non-CDN
domains often advertise a large number of stable IPs (@ogtingprod.conuses 18 IPs
per DNS query), FF domains are afforded a fair amount of fseeth the number of bots
they can advertise; this is supported by Egs. (1) and (2)reviiee number of unique IPs



is the least influential classification feature. Howevenige non-CDN domains adver-
tise the same set of IPs for every DNS-query, causing th&t tmique IPs to remain
bounded and facilitating the use of a maximum IP threshaldi&ection.

Regardless of the chosen detection threshold, there arbawio strategies available
to FF domains performing an IP-mimicry attack. The first,yghaén Fig. 5-a, has no IP
overlap, with the botnet advertising a completely new séPefevery TTL. The alternate
strategy, shown in Fig. 5-b, has IP overlap, with some of Beeldeing advertised for mul-
tiple TTLs. Each strategy has certain pros and cons. Havingroverlap allows for the
rapid replacement of offline IPs, increasing the availgbdf advertised bots. However,
as can be seen from Fig. 5, this reduces the number of IPsahdtecused for any given
TTL, which, in turn, increases the load per bot and decreihsekotnet’s service capac-
ity. On the other hand, with an increase in IP overlap, mosed&n be advertised per
TTL, decreasing the load per bot; however, this reducesateeat which offline IPs can
be replaced, resulting in a greater proportion of dead budSaled victim connections.
Considering bots’ unreliable connectivity, finding theiop! IP-advertisement strategy
for FF domains requires a better understanding of the uyidgrbots’ online availability.

Bot Online-Decay Model We developed an accurate bot online-decay mdeighne(t),

to predict the probability a bot will be online after timen building the model, we first
aggregated all the bot IPs seen for FF domains globally radtby DIGGER, record-
ing the time they were observed and if they were online anchaale at that time (i.e., a
connection could be established). Unfortunately, DIGGER observes the IPs of bots
that have been advertised to the queried DNS server, reguftia partial view of the
botnet. Furthermore, to be efficient, DIGGER only performeries when the domains’
TTLs have expired, ensuring fresh results. It is at this tthet DIGGER performs an
online test by attempting to connect to the bots seen in tleeyqiihus, our view of the
bots’ online time is at the granularity of the FF domain’s THowever, this shortcoming
can be overcome due to the observation that many botnetsadefor multiple online
scams; thus, many of the same bot IPs will be observed inepien different FF do-
mains. Additionally, DIGGER is a globally distributed sgst on a shared resource (i.e.,
PlanetLab). As such, DIGGER nodes will perform queriestiersame domain at slightly
different times, depending on the other PlanetLab workdoadng for process time. By
combining all available data points for each bot IP—regessllof the DIGGER node’s
location or the FF domain it was observed for—we can buildrdyfaomplete picture of
the online times of bots currently used by FF domains. Wheattyaimg the data, if an IP
is not seen by any DIGGER node for over 12 hours, we assumeét thas gone offline
during that time. The resulting bot online-decay model hasig-tailed distribution, with
a non-zero probability that some bots will remain contirglpwnline for over 2 months.
In Fig. 6, which plots the first 72 hours of this model, the ysarpresents the probability
that a bot is continuously online for more than some timeepresented by the x-axis.
From the plot, it is clear that the probability of a bot beingine decays exponentially
with time, such that, after a day, there is less than a 10%aehds still online. These
findings reassert the notion that a bot's connectivity ilyiguinreliable, resulting from
the varied usage patterns of the compromised computergimyn
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Fig. 7: Persistence of overlapped IPs
Performance Model Using our online-decay model, we can determine the optifal |
mimicry strategy in terms of performance, which we evaluzsed on the number of
victim connections per unit time the botnet can handle.éfrtimicry attack drastically
reduces this amount, then the bots will become overwhelnesdlting in dropped con-
nections and decreased revenue for the botmaster. Tablgn2sléhe terms we will be
using throughout the evaluation process. We assume botimtirearrival time of vic-
tim connections and the bots’ service time are Poisson psesewith Markovian (i.e.,
exponential and memoryless) distributions; thereforey thave a cumulative distribu-
tion function ofA(t) = 1— e and a probability density function aft) = xe ™, where
t is time andx = A or p for the inter-arrival and service times, respectively. Wita
given TTL, most DNS servers perform round-robin schedulithgn responding to DNS-
queries. As a result, incoming victim connections will berly dispersed among tloa-
line bots advertised for that TTL. While each bot's processindjragtwork resources will
vary, the distribution will be essentially random and we traat the online IPs advertised
in a given TTL asNoniine parallel and identical servers. We can then calculat@divid-
ual online bot’s incoming connection ra} as the ratio of the total rafleto the number
of online bots for that TTL. Using', we can model the online bots Blyine identical
M/M/1/K queues, where K is the online bots’ queue lengtht ikidhe maximum connec-
tions each can queue before dropping additional connectidypplying queuing theory
to this model, we can calculate tkennection loss probabilityi.e., the probability that
an online bot will drop connections due to a full queue as:
pKprJrl .
Ploss= { 1pr+l pf ! Wherep = m
K1 p=1

Because we must assume that each online bot is identicahdandual bot'sPgss
is equivalent to that of the entire botnet, allowing us to pane the various IP-mimicry
attacks’ performance; a higher probability of dropped @mtions results in fewer ex-
ploitable victims and decreased revenues.

DNS-Strategy Model Before we can successfully use this model for performanoe co
parisons, we must be able to estimate the potential numbanlofe 1Ps during a given
TTL. This requires a formal relationship between an IP-maipattack’s DNS-advertisement
strategy and our online-decay mod@Jyine(t), which predicts the probability a bot will
still be online after timé. This relationship is straightforward when there is no Ilerev
lap, as in Fig. 5-a. Since each TTL contains a fresh set of ifleuthis strategy (i.e.,



The DNS A record's max Time to Live value (TTL) in
The IP detection threshold.

Tttl seconds. IPs don’t change within a TTL, so they are i ) ) .
subject to decay. Nthresh During the detection window, if more than N ..,
unique IPs are seen, the domain is considered malicious.
Probability an IP is online after it has been used for t q
P seconds. Using our bot online-decay model , it captures A Overall incoming rate of victim connections to botnet.
ontine(t) the effect that IPs go offline as time passes due to the Represented as the number of connections per second.
unstable nature of bots. Average bot capacity.
N Number of IPs advertised at each TTL. K Number of victim connections per second each bot IP can
. Number of overlapped IPs between 2 consecutive TTLs. . A Incoming victim connection rate for individual IP at time
overlap Thus, it's the number of IPs inherited from previous TTL. || A(t) = Nonine(t) 0<t<Ty(overallincoming rate A divided by the number
online’

of online IPs at time t)

=N- Number of new IPs added at the beginning of a new TTL.
Npew =N No"e"ap 8 8 The probability the bots’ connection queues are full and

P, A ) ) ;
Noniine(t) Number of A record IPs that are online at time 0 < t < Ty =3 additional incoming connections will be dropped.

Table 2: Performance modeling terms

N = Nhew), they can only decay for the timg,that has elapsed in the current TTL; thus,
Nonline(t) = N - Poniing(t), where 0<t < Ty.

DeterminingNoniine(t) becomes more complicated for a strategy utilizing IP oygrla
as in Fig. 5-b. Because IPs are persistent for multiple TThey suffer an increased
probability of going offline. For the modeling purpose, wa't@uery the bots’ online
state to aid in our replacement decisions, as an actual lstgmaight. Instead, we must
rely on reasonable assumptions, in this case, that olderblesg more likely to be
offline—uwill always be replaced before newer IPs. Additiyao best distribute load
among their bots, we can assume that botmasters will chooadviertise as many IPs
as possible without exceeding the detection thresNglds;, These two assumptions im-
ply an optimal replacement strategy from which we can dedhedollowing intrinsic
properties: in any given TTL, (1) there exist a totalMk IPs also present in the pre-
vious Q1,2,..., |- | —1 TTLs, and (2) there exist a total 6N modNney) IPs also

NI’IEW
present in the previou%] TTLs. The effect of these properties can be seen in Fig. 7

for two examples. Thus, for any given DNS-query, we can deitez the number of pre-
vious queries for which the IPs were used, allowing us to fdat@eNojine(t) in terms of
Ponline(t) as:

| Fnew) 1

N
Nonline(t) = (N mod Nnew) - Ponline(t + LmJ T ) + ZO Nnew Ponline(t +n-Tery)  (3)
n—

whereTy is the max A record TTL in seconds ahds the number of seconds elapsed
in the current TTL (i.e., Xt < Ty). Having definedNonjine(t) in terms of the IP-
advertisement strategy, we can use it in our definitioRQE(t):

() — DK puK e
Poss(t) 1—p(t)K+T wherep(t) Noniine(t) - 1

(@)
Empirical Evaluation Using our online-decay model and Eq. (4), we can now compare
the performance of various IP-advertisement strategiterims of botiNgnjine andPjoss

To establish a basis for current FF botnet performancesleamine the 3 FF domains
shown in Table 3. As can be seen from the table, the domailizeutery different DNS
strategies. With both a largé andNove”ap it seems thatmountainready.corns attempt-

ing to capitalize on the load-balancing benefits provided large number of advertised
IPs, while also keeping the total number of unique IPs oveu&rigs relatively low to
avoid detection; additionally, its use of a fairly smg|| indicates a proactive approachto
countering the bot decay phenomena, which will be acceadigiie to its larg&loyeriap
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Converselypld-and-girl.netmakes use of a far different strategy. Withﬁgve”ap con-
stituting only a small fraction of itd, the effect of bot decay due to IP overlap is less
severe, permitting less diligent IP replacement and afigior a longefy; . Interestingly,

its decision to use a small appears to be a double-edged sword; while keeping the total
unique IPs over 2 queries low despite its small IP overlagsib results in fewer IPs per
TTL for load-balancing purposes, reducing the botnet'saleapacity. Lastlypently-
cap.netseems to have found some middle ground between the otheridqees, with a

Ty andN almost exactly between the those of others. However,dldeand-girl.net it

has chosen a small ratio ('a\'WN&'ap reducing the amount of bot decay and the need for
more rapid IP replacement.

mountainready.com

T, N, _ [A=100conn/s
i ity N P, w=10conn/s
Fast-Flux Domain |(mvaxTry)| (# of IPs per query) |  (# of IP overlap) online e et

seconds

min_avg max|min avg max (Connection Loss Prob)

old-and-girl.net 600 3 5 5 0 1 5 4.53 54.00%

bentleycap.net 300 |10 10 10| O 3 10 9.41 12.10%
inready.com| 120 4 19 20| 0 14 20 17.8 0.14%

Number of Online IPs
2
=)

-
N
®

17.6

Table 3: Current FF DNS strategies and performa
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Fig. 8: Number of online IPs based on
online-decay model

To compare the performance of these various strategiesrsteafiplyN andNpew
to Eq. (3), findingNgniine When the system reaches a steady state, as shown in Fig. 8 for
mountainready.conT he resultindNoniine values for each domain can be found in Table 3.
From the results, botmasters appear quite adept at comfggthreir DNS strategies to
minimize the effect of bot decay. Through the skillful mamggtion of theirTy, N and
Noverlap these remarkably different strategies were all able téezetgreater than 90%
online availability (i.e. Megine).

Next, we wished to examine the influence each type of strategyon the botnet’s
overall capacity. Because botnet capacity translatestangial victims and revenue, max-
imizing it should be of great importance to botmasters. Haxegbefore we could apply
their DNS strategies to Eq. (4), we needed to determine sdhré\ andp. For compar-
ison purposes, the actual choice for these values is trstalong as we are consistent
and use the same values when evaluating each strategy. @&adeel spam click-through
rate reported in [3], which actually managed to control alkpwtion of a botnet, we
estimate an incoming connection rate=f100 per minute. Since flash crowds could
cause the entire 100 connections to occur in a short peritishef and botmasters would
want to support such onslaughts of victims for the potert@hings, we assume (for
comparison purposes) an overall incoming connection dgtef 100 connections per
second. We then choge= 10, as its reasonable to assume the entire botnet can handle
an order-of-magnitude more connections per second thamdaridual bot. Using these
incoming rates and a bot queue lengthkof= 10, we applied Eq. (4) to each of the 3
botnets’ DNS strategies. We then determiri&gls once the system achieved a steady
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state. The domains’ results are shown in Table 3. Interglgtiwhile the varying DNS

strategies offered comparable performance in term@ggﬁ—e, they clearly differ in the
total capacity each botnet can support. This is a directegunance of the number of bots
available during a given TTL. While the ratio of online IPg@ighly the same for each
FF domain, the magnitude is not, witibuntainready.comaving approximately twice as
many ashentlycap.neand 4« as many a®ld-and-girl.net From the table, it is apparent
thatmountainready.copwith Pjoss < 0.15%, can easily support our assumed connection
rates; it is possible that this is even its expected victiadlmecessitating its choice of
DNS strategy. However, whileentleycap.ngterforms modestly under these conditions,
old-and-girl.netdoes not. It’s likely that neither botnets’ DNS strategy wasigned with
this sort of load in mind.
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Fig. 9: Nonjine Optimization: IP-mimicry attack Fig. 10:Pj,ss Optimization: IP-mimicry attack

IP-Mimicry Attack Having modeled the performance for various DNS strategies ¢
rently employed by FF domains in the wild, we can now deteenifiradapting them to
our proposed IP-mimicry attack achieves comparable omoraectivity and capacity.
Since our mimicry attack manipulatEBandNovenapto evade detection while maximiz-
ing online time and capacity, we cannot restrict these toctiveent values imposed by
each FF domain. Instead, we will retain the domaifs'values, assuming that they were
chosen by the botmasters in response to how diligently therg willing to monitor and
replace IPs. In order to reduce false-positives from bemgn-CDN domains advertising
a large number of stable IPs, sucthastingprod.coniet us assume—for the purposes of
this mimicry attack—a detection thresholdMf,esh= 20 IPs, resulting in the following
policy: over 2 DNS-queries, any domain with more than 20 unique Ardelé®s will be
flagged as malicious.

It is clear from the results in Section 3.2, that the morer@lPs available during a
given TTL, the greater the botnet's overall capacity. Thanee an optimal DNS strategy
will necessarily advertise the maximum IPs allowed by thiecter’s thresholdNiresh
This reduces the problem to determining WiNateriap results in the most online IPs,
which can be found by either maximizing Eq. (5) or minimiziag. (6), such that 2N —
Noveriap = Nthresh andthi'1 is performed when a steady state is achieved.

_ EtTill Nonline(t) _ 2;@1 Hoss(t)

Nonline = T (5) ﬁIoss— T (6)
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For the FF domains in Table 3, Figs. 9 and 10 show the resul&gef (5) and
(6) across the search spadec [[N‘hzfesﬂ ,Nenresh— 1]. From the figures, we can see that
while mountainready.corandbentlycap.netchieve optimal performance witlh = 18,
for old-and-girl.net N = 17. Apparently, its longef, of 600 seconds results in addi-
tional bot decay, causiny = 17—with its 2 fewer overlapped IPs—to provide better
performance. We also find that fbentlycap.netind old-and-girl.net their Nopjine has
increased to 14.62 and 13.4, while thBjgss has decreased ta®™®% and 143%, re-
spectively. While neither of these FF domains would havenliegected by the imposed
Nihresh Under their original DNS strategies, utilizing the IP-mémyi attack has kept them
from being detected while also greatly increasing theifgrerance and capacity. On
the other hand, the mimicry attack causaduntainready.conto suffer a reduction in
Nonline: dropping from 17.8 to 15.99. The attack also causétg to more than double,
increasing from 0.14% to 0.34%. Howeverpuntainready.commoriginal DNS strategy
advertised 24 unique IPs over 2 queries, exceeding thetaeteébreshold. Thus, the IP-
mimicry attack has allowed it to successfully evade dedeatiith only a minor decrease
in performance—its average probability of a connectioms lesmains under 1% and its
average online IPs has been reduced by less than 2.

3.3 Empirical Observations

Curious how the proposed Holz and RB-Seeker detectors watddagainst today’s FF
botnet threat, we implemented the detectors and appliad theour set of 45 FF do-
mains (which we manually verified as FF). Both detectorstified the same set of 6
FF domains, with the RB-Seeker detecting an additional 6vleae missed by the Holz
detector. The resulting false-negative rates are 86.7%/arP6 for the Holz and RB-
Seeker detectors respectively. Both papers realize thaghts and thresholds used for
detection must be periodically retrained to counter futanmicry attacks. However, the
poor results of the original detectors on current FF domderaonstrates the extent to
which botnets have evolved since they were proposed, strening the need to better
understand the extent of FF botnets’ mimicry capabilitied Bmitations.

4 Increased Detection Window (more queries)

4.1 Good Guys

Alogical extension to the fast-detection systems of theiptes section is to increase their
monitoring window to analyze more queries. Examining nplétiTTLs when making a

decision exploits a commonly known property of FF domaihsytneed to continuously
advertise fresh IPs to account for their unstable constithets. Thus, while non-CDN

domains may advertise a large number of IPs in their quettiey, will be stable IPs

and will not change over time. FF domains, previously abléitte behind non-CDN

domains’ numerous IPs to subvert fast-detection systerilisguickly be exposed once

additional queries are examined. Furthermore, while CDMhalas often demonstrate
the fluxy behavior characteristically attributed to FF keasy for many CDNSs, a longer
detection window can allow their more stable nature to em&am the chaos.
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Current detectors, such as FIuXOR [7] and RB-Seeker’s sktiendetector, make
use of longer detection windows to increase accuracy amubstiie detection of stealthy
FF domains, which use slower DNS advertisement strategestiat fooling fast-detection
systems. For example, RB-Seeker monitors suspectedhsté#it domains for up to a
week. Besides using an increased monitoring window, FluXdB# incorporates addi-
tional metrics in its detection decision in an effort to mékeslassification more accurate
and harder to subvert. Unfortunately, how these featuresetually used in detection
is omitted from the paper. In any case, like the Holz and RBk8edetectors, FIuXOR
examines the number of unique A records and ASNs. These graemied with addi-
tional features such as TTL and the number of return qualdi@tain names, or top-
level domains (TLDs), to try and capture the quickly chaggamd dispersed nature of
FF domains.

4.2 Bot Guise

ASN Mimicry Attack Unfortunately, extending the detection window in time dbies
tle to weaken the ASN mimicry attack described in Section B&tause botnets seem
to invariably control a sizable number of bots from withinledst one ASN, the same
essential attack can be performed by simply accommoddttatger detection window
as shown in Fig. 11.
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Fig. 12: IP disribution for top 20 TLDs

rDNSMimicry Attack While the specifics of FluXOR’s returned qualified domainmet
ric are not revealed, we can assume it operates as any TLOcwetnld. Essentially, for
any rDNS results returned, the number of unique TLDs arautatied—the insight being
that FF botets, consisting of bots scattered across mamyories, will return numerous
TLDs. However, while botnet IPs do belong to many differebD§, ultimately, this fea-
ture cannot be reliably used for detection. Like the rDNSrioét Section 3.2, it suffers
from the inherent shortcoming of the rDNS lookup processcivbdoesn't always return
a result. This results in a sufficient quantity of  DNS=NONHs l(adequately distributed
across ASNSs) to perform a similar dual-mimicry attack. Amtdially, we analyzed the
distribution of bot IPs across TLDs and found a similar disttion as across ASNSs, in
that there exist some TLDs from which a large number of boterize In Fig. 12, we
have plotted this distribution for representative FF dareaif varying sizes. Like the
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ASN distribution, it is long-tailed. While rDNS=NONE IPs dhinate, there are clearly
other TLDs with a sufficient number of IPs to similarly be usedhe aforementioned
mimicry attack, providing botmasters additional freedenDINS advertisement strate-
gies. Consequently, we find rDNS results to be an inadequataavor detecting FF

botnets, based on their current resources.

Improved DNS-Strategy Model Before examining IP-mimicry attacks, we must first
extend the DNS-strategy model developed in Section 3.2doramodate the larger de-
tection window. First, let us assume a detection windoviDgf fresh DNS queries of
length Ty . Let us further assume the detector applies a threshgidgn, on the number
IPs seen during this detection window. Under these coms#rathe botnet could add at
least one new IP evefiy, so long adDyy < Nipress However, if Dy > Nipresh the bot-
master can no longer introduce new IPs eggtwithout exceedind\ihreshand triggering
detection. Nevertheless, botnets can still keep theit tBgbelow the threshold by re-
peating the same set of IPs over multipig. We term this the botnetigpetition window
and define it a&y DNS queries (of length ) for which the botnet repeats the same set
of IPs. This effectively extends the durationTf while taking up more of the detection
window, meaning we can determiNgnine(t) by substitutingRy - Ty for Ty in Eq. (3). If
a botnet introducel ey IPs everyRy, a detection windoviDy will at mostobservely,
DNS queries with new IPs, wherg, is definiens in Eq. (7). This relationship is shown
for Dy =4 andRy = 2 in Fig. 13, where we see thag = 2. Thus, botnets can adew
IPs everyAy, so long as Eq. (8) is satisfied.

Dy —2

Al = L?J +1 (7) N+ Aeti - Nnew < Nihresh (8)
9
| Detection Window Dttl s 4Dttl= 10
' \
7 \ +Dttl=4
6
_ 5
<
4
3
2
1 w
0 !
TTL6 Time 1 2 3 4 5 6 7 8 9 10

Re

Fig. 13: Relationship betweey, Ry andDy Fig. 14: Ay WhenRy € [1,Dy] andDy = 4,10

IP-Mimicry Attack: TTL-based Detection Window By applying the improved DNS

strategy usindRy to our previous performance model, we can determine how ithe p
posed IP-mimicry attack against a larger detection windafluénces botnets’ overall

online availability and capacity. For this purpose, we ekenthe same real-world FF
domains as in Section 3.2, again, fixing th&jr to the values originally used by each
domain. Modifying Egs. (5) and (6) to incorporate the insezhdetection window pro-

duces:
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ZF‘:“iTm Nonline(t) (9) Ploss = M (20)

Nonline= &= =/
oniine Rt - Ty Reti - Tiw

To find the optimal values fdRy andN, we maximize Eq. (9), or minimize Eq. (10),
over the search spaé®, € [1,Dy] andN € [(mfﬂ , Nehresh— At ]. While Ry’s search
space is self evidenl's is found from Eq. (8) and the observation that Npew < N. We
setNihresh= 20 and optimized the equations when they reached a steddyatdetection
windows,Dy; = 4,10; the results of these optimizations are shown in Tablehé. first
thing we notice is thaNgniine andPjoss don’t suffer much degradation. In fact, fbent-
lycap.netandold-and-girl.net they achieve better results under the mimicry attack than
their original settings. Whilenountainready.coi® performance goes down marginally,
its Pjoss is still less than 1% foby = 4 and less than 3% whdby, = 10. These slight
decreases in performance are easily justified, consid#ngtigts original DNS strategy
would have resulted in detection, with 34 unique IPsDgr = 4 and 64 forDy; = 10.
Furthermore, the use of an extended detection window woaNe baught all the FF do-
mains under their previous DNS strategies, with the exoapif old-and-girl.netwhen
Dy = 4. Thus, the proposed IP-mimicry attack has only minimalgrhded—and in
many cases improved—the performance of the FF domainse\atgb preventing their
detection against both fast-detection systems and thdakeawiextended detection win-
dow.

Parameter Setup Optimization Results
s A =100 conn/s
[ : Te N Noverlap Re ﬁonli“e Pjoss | =10 conn/s
~ #ofTms Fast-Flux Domain (MaxTTL) |4 of 1ps per query)| (#f overlap #0f TTLs e K=10
in detection window seconds 1Ps) botnet repeats same IPs (Connection Loss Prob)
old-and-girl.net 600 16 15 1 11.20 4.92%
2 bentlycap.net 300 17 16 1 12.71 3.11%
mountainready.com 120 18 16 3 14.40 0.841%
[ 1| 19 18 3 18.56 0.095%
old-and-girl.net 600 14 12 3 8.31 19.8%
10 bentlycap.net 300 15 13 3 10.18 8.42%
mountainready.com 120 17 16 3 12.38 2.58%
[ 2 ] 19 18 9 18.39 0.103%

Table 4: Optimization Results: IP-mimicry attack agaiDgt

In Fig. 15, we show an example of tinjine Optimization plots formountain-
ready.con’s Ty = 120. To better understand these plots, recall the reldtiprizetween
Dy, Ry andAy defined in Eqg. (7) and shown for f@y = 4,10 in Fig. 14. From the
figures, we find that for values & resulting in the sam@y, the lowesRy is optimal,
with higher values resulting in a steady degradatioNgfiine. This is best exemplified
whenDy; = 10 in Figs. 14 and 15-b, with local maximaRy; = 1,2,3,5, and 9. This
occurs because an increaseRyg results in additional bot decay, due to repeating the
same set of IPs over an extended duration. Thus, when inieggRsg, if Ay remains the
same, the number of IPs advertised per qudncannot be increased to offset the decay
without exceeding the threshold, resulting in the obsetred.

As an additional experiment, we determined the optimakedsafor a FF domain
using aly = 1, as it provides the finest granularity for adjusting thedplacement strat-
egy in terms ofRy. This strategy, shown in Table 4 in gray, achieves bettedtethan
mountainready.cois original configuration. With such a shok, a detection window
of 10 will only monitor the domain for 10 seconds, resultingittle bot decay and al-
lowing a largemN. Additionally, we see the optimd&®y, in this case iDy — 1, that is,
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Fig. 15:Ngniine Optimization: IP-mimicry attacKT = 120 andN\ihresh= 20

the minimalRy, for which the detection window sees only a single IP chardge € 1).
An Ry < Dy — 1 results in more IP changes, further limiting the maximNrachiev-
able without going over the threshold. With By > Dy, IPs are subjected to additional
bot decay whiledy remains at its minimum value of 1; regardles$nf, eventually the
detection window always observes a single IP change. Thtise@ost of more diligent
IP management, this technique maximizes the number of @fiita possible per query
while minimizing the effect of bot decay.

IP-Mimicry Attack: Time-based Detection Window Thus far, we have defined the
detection window in terms in terms @ fresh DNS queries, showing that it can be
subverted through the use of a repetition wind&u,. However, a detection window
can also be defined in terms of absolute time (Dg.seconds). In this case, a repetition
window doesn'’t help mask the addition of new IPs, requirtmgyEF domain to adhere to
the IP threshold imposed over the durati®q, Thus, the longer the duration, the more
the FF domain’s IPs are subjected to bot decay, worseninfgmpeaince. We modeled
this detection technique to evaluate its susceptibilityPtanimicry attacks under current
botnet resources. For the purposes of this evaluation, wptadD; equal to 1 week and
an IP threshold oNyeek Certainly, requiring longer than a week to arrive at a détec
decision grants botnets sufficient time to perpetrate 8e@ms under a given domain. To
find a suitable value foR,eekthat will provide minimal false-positives, we analyzed the
number of unique IPs accrued by benign CDN domains over 1 weksurprisingly,
due to load-balancing techniques, CDN domains can adeeatiarge number of unique
IPs. For example, we observed 171 IPs usecdhtbgom The amount was even greater
for www.myspace.conwith many DIGGER nodes witnessing the use of over 400 unique
IPs, and in one case, over 700. We analyzed the model forngamalues ofNyeex €
[100,800, to see how increasing the threshold—to reduce falseipesit-will affect a
botnet’s performance. To ensure that the mimicry attacklgvalso continue to subvert
fast-detection systems, we imposed the additional canswé Nipresh IPS over 2 DNS
queries as before. Then, for each valudNgfe,, we calculate the maximum queries for
which Dy can observe new IPs without violatifgyeex as Al = L%J, such that

N + Nnew < Ninresh If we assume IPs are changed every TTL, then we can calculate
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the optimalTy asTopt = Tweek whereTyeekis the number of seconds in a week. Under

these constraints, the FF d“omain won't exceed the threstidgecxunique IPs over the
detection windowD; = 1 week. Furthermore, for any 2 queries, the number of unique
IPs will satisfy the thresholtinresn Finally, notice that a repetition window;,, can be
applied toTop to defeat ey detection window.

Table 5 shows our optimized results Mt Noveriap andTopt With Nenresh = 20 and
varying thresholds dfl,eek For all values ofNyee We achieved the same optimal values
of N = 19, Noveriap = 18, and thudNnew = 1. This is because it is necessary to provide
as many IPs per query as is possible to account for the enthdnateet decay present
under the longef,p. From the table, it is apparent that even ffeek= 100, which is
well below the number of IPs seen fofl.comand www.myspace.conthe botnet will
continue to have online IPs. Despite the high probabilitjost connections, the botnet
is still reachable and thus can continue to generate revémaeldition, we find that for
Nweek= 200, the botnet capacity is nearly the same as thatdfind-girl.netunder its
original configuration. Because benign CDN domains legitety advertise such large
amounts of unique IPs over time, current botnet resourcassafficiently mount IP-
mimicry attacks despite an increased detection windw,

WWW.cosmo-relaxx.ru
e R
Nyeek Topt N Pjoss | 1=10conn/s T
max # unique IPs /| (optimal TTL) ?nlme 05 k= 10 nin
week seconds | (#online IPs) (Connection Loss Prob) 151 i
100 7,466 2.89 71.10% % nmm m
200 3,341 4.97 50.30% e (1]
250 2,618 579 42.20% é 10F 1nnn i
400 1,587 7.7 24.40%
700 888 9.95 9.37% L[]}
800 774 10.5 7.11% 5

Table 5: Optlmlzatlon results: IP-mimic INERNENNANNND . NERERENNENRNNENNENENENNNEND

attack againsD; = 1 week (ihresh = 20: oo 2060 4600 6060 sdoo 10600 12600 14600
Time (s)
N =19, Noverlap: 18)

Fig. 16: Empirical observation of FF domain adopting
certain evasion technique{ = 10 seconds)

4.3 Empirical Observations

We discovered several FF domains in the wild adopting sontieeofnimicry attacks we
have presented, many of which were able to defeat the HolR&8eeker detectors in
Section 3.3. While the strategies employed by FF domairtsamild aren’t as regular as
those in our models, they are very close, only deviating ftheir average values rarely
and in small amounts. An example FF domain is shown in Figwii, each box in the
plot representing a unique IP seen in its DNS results. Obstvat it adds 1 or 2 IPs
every= 1,000 seconds, replacing older IPs to keep the total nunthel o 5 per query;
thus, it uses all = 5 and arNoyeriap = 3,4. Since it has &y = 10, it's essentially using

a repetition window oR; = 100. Under this DNS strategy, the FF domain can defeat
a fast-detection system with &nesh= 7, as it occasionally introduces 2 new IPs per
query. Furthermore, it will also defeat an extended detdactiindow withDy;; = 100 and
Nihresh = 7. By taking an averagoyeriap = 4, we can use our model to predict that the
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domain will achieve aMNgniine = 3.73, resulting in an average of 75% of its advertised
IPs being online. Clearly, FF domains are beginning to ipotate some of the mimicry
techniques we have examined—a trend we expect will contasudetection systems
improve.

5 Redated Work

Recently, a number of techniques have been proposed tdieflgadetect FF domain
names|[1,7, 2, 8]. They all studied a number of unique feattitbe detailed set of which
varies across different techniques—that can be used tactesize FF domains. To ex-
tract the values for these features, they collected DNSiegiéar a large number of sus-
picious domains through either active or passive monitpraver time periods ranging
from 2 TTLs to weeks. Classification algorithms, such as supctor machines (SVM)
and decision trees, were then applied to the features ¢attrom the DNS traces, de-
termining if each domain under consideration is FF or notivicprobing approaches
like Holz's detector [1], RB-seeker [2] and FIuXOR [7] havedn detailed in Sections 3
and 4. Compared to these active methods, the passive ningigproach proposed by
Perdiscet al. [8] provides a different vantage point and offers the unigdeantage of
detecting FF domains via stealthy means, without drawitagkérs’ attention. However,
for good coverage of FF domains, it requires monitoring reige DNS traces on mul-
tiple large networks, which can only be done by large ISPditi@hally, as a passive
approach, a decision can'’t be reached until multiple visthmave visited the suspicious
site and exposed themselves to the potentially maliciontec.

The concept of a mimicry attack was first proposed for hosedantrusion detection
systems (IDSes) which typically monitor application babain terms of system-call
sequences. To slip under the radar, mimicry attackers pttéancloak malicious sys-
tem calls with innocuous-looking system-call sequencexyVér and Soto [10] proposed
a method that embeds nullified pre-existing system-callieeges (i.e., “semantic no-
ops”) between malicious system calls. Kruegehl. [4] devised techniques that allow
an attacker to regain control after a system call by corngptiine memory locations and
manipulating code pointers. This allows attackers to ekteansitional mimicry attacks
on more sophisticated IDSes. More recently, Paramegdll. [6] proposed the persistent
control-flow interposition techniques that make mimicriaeks simpler, more reliable
and stealthy. Similar to previous work, the goal of our warka design and evaluate, us-
ing current FF botnet resources, potential mimicry attagdanst FF detection systems.
By anticipating the attackers’ next moves, defensive sgstean be better instrumented
and remain effective for a longer period of time.

6 Conclusionsand Future Work

In this paper, we have examined the current state-of-art étEctbrs, analyzing their
effectiveness in detection. In doing so, we developed ateunodels for bot decay, on-
line availability, DNS advertisement, and performanceichwe used to evaluate novel
mimicry attacks against FF detection systems. Based or tmeglels, empirical evi-

dence, and logical assumptions, we have demonstratedutrant botnet resources are
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sufficiently capable of subverting state-of-art FF detetthechanisms. We have discov-
ered evidence of current FF domains adopting aspects ofroppped mimicry attacks.
While botmasters don’t appear to be monitoring their batastassiduously as our mod-
els assume, they are clearly incorporating similar—thdeg optimal—DNS strategies
for detection evasion. As detection systems continue taorgy we expect to see an
increased diligence in IP management as botmasters moeeddhese optimal strate-
gies in an effort to extract the most from their botnets’ teses. We hope showing the
mimicry potential currently attainable by FF domains wilkfer improvements to exist-
ing detection systems, as well as provide new insight in¢catthaptive limitations of FF
botnets. Our future work includes extending these modeisaitwlle a spatial dimension,
allowing us to evaluate FF domains’ current ability to mirthie location-aware advertise-
ment strategies of CDNs. By extending detectors in spacéope to impose additional
constraints, straining current botnet resources beyaiddhpability to perform success-
ful mimicry attacks.
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