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Abstract. Fast-Flux (FF) service networks are botnet-based hosting or redirec-
tion/proxy services for hosting malicious and illegal content while affording bot-
masters a high level of misdirection and protection. With their use as service net-
works among criminals on the rise, researchers and securityexperts have designed
fast and accurate detection systems based on their intrinsic behavior patterns. How-
ever, botmasters have responded, adopting a plethora of countermeasures to evade
detection. In this paper, we explore the escalating “arms race” between FF bot-
net detectors and the botmasters’ effort to subvert them, presenting several novel
mimicry attack techniques that allow botmaster to avoid detection. We first ana-
lyze the state-of-art FF detectors and their effectivenessagainst the current botnet
threat, demonstrating how botmasters can—with their current resources—thwart
detection strategies. Based on the realistic assumptions inferred from empirically-
observed trends, we create formal models for bot decay, online availability, DNS-
advertisement strategies and performance, allowing us to compare how different
mimicry attacks affect the overall online availability andcapacity of botnets.

1 Introduction

A botnet is a vast collection of compromised computers underthe control of a botmaster
utilizing a Command-and-Control (C&C) infrastructure. Among the numerous criminal
uses of botnets, one of the more advantageous is the botnet-based hosting service, which
proxies or redirects unsuspecting users to illegal or nefarious content. This strategy grants
criminals a high level of anonymity while enabling easy and centralized management of
the malicious content. However, because botnets are composed of thousands of disparate
compromised systems from around the globe, all with varyingresources and network
connectivity, it is not uncommon for them to unpredictably go offline. To prevent bots’
unreliable connectivity from disrupting the availabilityof their nefarious service/content,
botmasters must continuously replace offline IPs in their malicious domain’s DNS records
with those of online bots. As a result, they adopt fast-flux (FF) DNS techniques, which
frequently change the domain-name mappings to different bots’ IP addresses. By recruit-
ing a large pool of IPs and supplying a large number of IPs per query, botmasters can
ensure, with high probability, that the malicious domain resolves to an online bot’s IP.
Using this FF technique, botmasters effectively turned their botnets into a global Con-
tent Delivery Network (CDN), providing highly available and reliable content-hosting
services despite frequent node failures/disconnectivity.

While their tremendous success as service networks has spurred researchers and se-
curity experts to develop novel ways for detection, FF botnets remain a persistent threat.



The advent of fast, reliable FF detection systems has not yeteradicated FF botnets; rather,
it coaxed them to evolve, developing more robust, efficient,and stealthy mechanisms for
subverting detection. This cycle continues, with defenders and botmasters caught in an
ever-escalating “arms race”, each side temporarily one-upping the other in a constant
game of give-and-take. Unfortunately for the good guys, bots are free, easy to come by,
capable of giving significant amounts of coordinated processing power, and incredibly ef-
fective sources of revenue. They have, in many ways, transformed the malware landscape
from a place to showcase “1337 h4x0r” skills to a bustling underground economy.

It has come to our attention during our global monitoring of FF botnet domains,
that despite the detection mechanism or mitigation strategy imposed, botnets constantly
evolve methods for subverting them, often at a startling pace. In spite of newly-emerging
detection strategies uniquely targeting them, they are still around and continue to grow
into ever more formidable systems—in many ways resembling enterprise-level CDNs.
This occurs because, while efficient when first introduced, many FF detection systems
quickly become outdated; they are designed to detect the current advertising strategies
of FF botnets, which are all too easily and quickly adapted toavoid detection. It is not
sufficient to base FF detection on the current class of differentiating features. Instead, im-
provements could be made if the botnets’ limitations were also taken into consideration.
Thus, while previous research has focused on identifying behavioral features uniquely in-
trinsic to FF botnets for detection, we have decided to take an alternate approach; to better
know our enemy, we will become our enemy. Analyzing the resources currently avail-
able to FF botnets, we developed models for their bot decay, online availability, DNS-
management strategies, and performance. Using these models, we examined the potential
success of novel mimicry attacks against state-of-art FF detection systems, demonstrating
that such attacks are easily within current botnets’ means.We do this, not to help FF bot-
nets circumvent detection systems (they know how to do this already, quite skillfully), but
to hopefully provide insight into the current arsenal they have at their disposal and how
it can be—and is being—applied to defeat current detection strategies. We hope this will
foster improvements to existing systems, as well as providenew insight into the adaptive
limitations of FF botnets.

2 Background

In this section, we investigate the DNS IP-advertisement patterns of different domain
types, including both malicious FF domains and two benign domain types. First, we will
describe how we set up a globally distributed DNS monitoringsystem and then discuss
unique features discovered through several months’ monitoring of thousands of domains.
This provides us with a unique, global perspective of how thedifferent types of domains
advertise their IP addresses to DNS servers; allowing us to better understand the current
state of FF domains and design effective mimicry attacks.

2.1 Global DNS-Monitoring System

We created a distributed DNS-query engine calledDIGGER, deployed on 312 geograph-
ically disparate nodes in the PlanetLab testbed [9]. The nodes were chosen based on the
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location of the DNS servers they queried, such that DIGGER would issue queries to DNS
servers in different geographic locations around the world. Table. 1 shows the continental
distribution of DIGGER nodes, which is reflective of the overall distribution of available
PlanetLab nodes.

Table 1: Global distribution of DIGGER nodes by continent

On each node, for malicious and benign domains, DIGGER performs DNS queries on
their A (address) records, NS (authoritative name server) records, NA records (A records
on name servers) and thereverse DNS(rDNS) lookup (i.e., PTR records) for the A and
NA record IPs. Based on a domain’s most recently returned DNS-query results, DIG-
GER classifies the domain as either active or offline.1 DIGGER continues to dig active
domains periodically based on their observed TTL, eliminating wasteful DNS-queries
while ensuring fresh DNS-query results. Domains that have been determined to be offline
are intermittently dug every 24 hours, so that DIGGER can discover if they come back
online. Meanwhile, for each domain, DIGGER also collects connectivity information on
both A and NA record IPs by attempting to establish TCP connections on ports 80 and 53.
Notice that although DNS primarily uses UDP on port 53 to serve requests, DNS servers
also accept TCP connections in order to support response data exceeding 512 bytes or
for tasks such as zone transfer [5]. Based on the connection results, DIGGER classifies
each IP as either online or offline, which is used to derive an accurate bot online-decay
model. We aggregate the global DNS-query results for domains compiled from multiple
sources, including online repositories of phishing and malware websites as well as the
top 1000 most popular domains. DIGGER has been deployed and gathering global DNS
data for over 4 months. By applying simple heuristics on the data, we manually identified
and verified 35 CDN domains and 45 FF domains by looking for IP addresses with rDNS
names indicative of popular CDN companies (e.g., Akamai) orcompromised computers.
While FF domains may not always use IPs that return rDNS results, over our 4-month
monitoring period, it becomes highly likely we will observeat least one bot IP with a
rDNS result indicating a compromised computer.

2.2 Domain Types

Fast-Flux Domain FF domains are malicious domains utilizing a FF DNS-advertisement
strategy, typically built atop botnets. These domains are often used for phishing scams or
hosting malicious contents. Thus, the profits botmasters can gain from their botnets de-
pend directly on the availability of the hosted services/content. However, because botnets
are composed primarily of compromised home computers with unreliable connectivity,
it is not uncommon for them to unpredictably go offline (e.g.,the computer is turned off
or the installed malware is discovered and removed). To ensure the availability and sta-
bility of the hosted service/content, botmasters adopt FF DNS techniques and advertise
numerous IPs in their DNS-query results with frequently changing mapping between the
domain name and different bots’ IP addresses.
1 a domain is offline if its DNS query returns no A record.
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(a) FF domain (b) CDN domain

Fig. 1: Global DNS-query results for Fast-Flux and CDN domains

Figure 1-a illustrates the global IP usage—across all DIGGER nodes—for an example
FF domain. In the figure, theTimeaxis represents the time (in seconds) since DIGGER
started monitoring the domain;Node Indexrepresents the PlanetLab node that the IP
was observed on, with positive values indicating an A recordIP and negative values an
NA record IP;IP Indexis a unique index incrementally assigned to each newly-observed
IP. From the figure, we can see that FF domains slowly and nearly continuously accrue
unique IPs (in its A, NA or both records) over its entire online lifetime. Over the 4-month
monitoring period, we have observed that a typical FF domainusually advertises thou-
sands of unique IP addresses, with the most aggressive botnets advertising over 35,000.
As we will demonstrate later, this huge IP pool affords the botmaster great flexibility and
abundant resources to mimic a wide range of benign DNS behaviors for evading detec-
tion.

Benign Domains CDN domains are benign domains that use a Content Delivery Net-
work (CDN), such as Akamai, to improve the delivery of their content. CDNs—consisting
of a system of computers networked together for the purpose of improving the perfor-
mance and scalability of content distribution—produce DNS-query results resembling
those of malicious FF domains: numerous, changing IPs per query with short TTL val-
ues. For instance,nfl.com, a CDN domain shown in Fig. 1-b, has very short TTL (20
seconds) and constantly changes its A record IPs, resultingin the accumulation of almost
1200 IP addresses during our monitoring period. This affinity between CDN and FF do-
mains is a consequence of their similar goal to provide reliable content delivery despite
node failures, as well as their shared assumption that any node can temporarily or perma-
nently fail at any time. This affinity can allow botmasters tocloak their malicious DNS
advertise strategy as normal behavior.

Non-CDN domains are benign domains that do not use a CDN for delivery of their
content. Typically, non-CDN domains use a few stable content servers and a modest num-
ber of name servers (NSes). Some popular non-CDN domains mayadvertise more than 18
IPs in a single DNS query, using the same set of IPs in each query and rotating the order
across queries for load-balancing purposes. This type of DNS strategy is often referred to
asround robin DNS(RRDNS).
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3 Fast-Detection Systems (2 queries)

3.1 Good Guys

The original FF detection system proposed by Holzet al.[1] (i.e., Holz detector) and RB-
Seeker’s first-tier detector [2] are considered fast-detection systems, as they are capable
of detecting FF domains with high accuracy from only 2 DNS queries. This is achieved
through the use of a linear decision function containing weighted terms derived from
the DNS queries and a bias term. The functions for the Holz detector and RB-Seeker’s
first-tier detector can be found in Eq. (1) and Eq. (2), respectively.

f (x) = 1.32·nA+18.54·nASN−142.38 (1)

f (x) = −1.257·NuniqueIPs−26.401·NASN−13.024·NDNSbad words+162.851 (2)

In Eq. (1), the number of unique A records and Autonomous System Numbers (ASNs)
are represented bynA andnASN, respectively. In Eq. (2),NuniqueIPs represents the number
of unique IPs seen in the A records,NASN the unique ASNs, andNDNS bad wordsthe number
of reverse DNS(rDNS) lookups (i.e., PTR records) containing “bad words” indicative of
compromised home computers, such as comcast, charter, dynamic, dialup, etc. In both
equations, the magnitude off (x) represents the degree of confidence when classifying
domainx as FF or benign, with positive values indicating a FF domain for Eq. (1) and a
benign domain for Eq. (2).

3.2 Bot Guise

ASN-Mimicry Attack From Eqs. (1) and (2), we can see that the dominant factor in
identifying FF domains is the number of unique ASNs; for RB-Seeker, it is twice as
influential asNDNS bad words, and for both detectors, it is an order-of-magnitude more
significant than the number of unique A records (i.e., uniqueIPs). Clearly, an effective
mimicry attack against these fast-detection systems should reduce the number of ASNs
to levels seen for benign domains.

Since DNS queries on benign domains (e.g.,www.avast.com) often contain A record
IPs from 2 ASNs, let us assume that a fast-detection system adopts the following overly
strict policy:over 2 DNS-queries, any domain containing IPs from more than2 ASNs will
be flagged as malicious.This policy will result in false-positives for benign domains with
IPs from more than 2 ASNs, such as some CDN domains. However, if this Draconian
approach can be effectively subverted, so can more lenient constraints.

To discover if this is feasible with current botnet resources, we aggregated the IPs
for each FF domain globally monitored by DIGGER, determinedtheir ASNs, and then
analyzed their IP distribution across ASNs. We found that, despite the size of the botnet,
the distribution was long-tailed, with at least one ASN containing a disproportionably
large number of IPs. This trend is demonstrated in Fig. 2 for 3representative FF domains
of varying sizes; to keep the graph readable, we have only plotted the distribution for
the top 20 ASNs from which the botnets have the most IPs. Whilethere are many ASNs
from which the botnets control moderate to few IPs, there invariably exists at least one
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ASN with a large number of IPs. This is possibly due to certainASNs containing a large
proportion of vulnerable computers, such as Internet cableproviders, or from botmasters
targeting certain institutions. In any case, assuming botnets contain a suitable number of
IPs from at least a single ASN (as our data indicates), there is a simple IP-advertisement
strategy for mimicking the ASN behavior of benign domains.

This mimicry strategy is demonstrated in Fig. 3, with each TTL (i.e., fresh DNS
query) showing the distribution of IPs from various ASNs. For example, at TTL1, the
majority of advertised IPs are from AS1 with a smaller subsetfrom AS2. In this case,
the botnet controls a large number of IPs from AS1 and a moderate to small number of
IPs from AS2. During the next TTL, some of the IPs that have gone offline are replaced
with new IPs from either AS1 or AS2. While there exists a sufficiently large pool of
online IPs from AS1, this is not the case with AS2, eventuallyrequiring the introduction
of IPs from a different ASN. However, because the detection window is 2 DNS-queries,
the botmaster must ensure that all the IPs seen over 2 consecutive queries belong to no
more than 2 ASNs. Thus, before IPs from a new ASN can be introduced, she must first
advertise only IPs belonging to one of the ASNs present in theprevious TTL, as shown
in TTL3. Then, at TTL4, she is free to utilize IPs from the new ASN, AS3. If she happens
to control a large number of IPs in AS3, she can slowly replaceAS1 as the dominant
ASN, as shown in TTL4–TTL7. In this way, botmasters can successfully mask their use
of numerous ASNs from fast-detection systems.

Fig. 2: IP distribution for top 20 ASNs

Fig. 3: ASN-mimicry strategy (2 DNS
queries)

rDNS-Mimicry Attack From Eq. (2), we see that the second most influential term
when identifying FF domains isNDNS bad words. However, RB-Seeker asserts that a rDNS
lookup on an IP will not always return a result, although whenit does, it can be useful.
Despite its inconsistency, the term is still an order-of-magnitude more important than the
number of unique IPs. Therefore, an effective mimicry attack should include a mechanism
for subverting this detection metric.

Let us assume the following aggressive detection policy:over 2 DNS-queries, any
domain with more than 2 “bad words” in its rDNS results will beflagged as malicious.
Certainly, this policy is overkill, as many legitimate domains (e.g.,www.comcast.com)
will have rDNS results that contain “bad words”. However, ifbotnets can defeat this harsh
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limitation, more realistic thresholds can also be subverted. If current FF botnets contain
enough IPs without rDNS results (i.e., rDNS=NONE IPs), thena mimicry strategy similar
to that proposed for ASNs in Section 3.2 could be applied. To determine the feasibility of
this approach, we aggregated the IPs for each FF domain monitored globally by DIGGER
and determined the percentage of rDNS=NONE IPs. We discovered that for all the FF
domains, at least 15% of their total IPs lacked a rDNS result.Furthermore, for≈24%
of the domains, over 50% lacked a rDNS result. Considering the large proportion of
rDNS=NONE IPs and the fact that rDNS results for bots that aren’t compromised home
computers will be free of “bad words,” the mimicry strategy proposed earlier for ASNs
can easily be applied: IPs without rDNS results (or without “bad words”) can be used in
conjunction with IPs containing “bad words”, such that only2 “bad words” are observed
over 2 queries.

However, to be truly effective, we need to ensure that this strategy can be combined
with the previous ASN-mimicry attack. Thus, for each FF domain, we analyzed the distri-
bution of rDNS=NONE IPs across ASNs, once again observing the long-tailed distribu-
tion. This phenomenon is shown in Fig. 4 for 3 representativedomains of varying sizes.
When only looking at the rDNS=NONE IPs, some of the smaller, shorter-lived botnets
would have a hard time achieving the combined mimicry attackwithout diligent main-
tenance. However, this was not the case for the majority of botnets we observed, which
possessed enough IP-dense ASNs to sufficiently mount the dual mimicry attacks.

Fig. 4: rDNS=NONE IP distribution for top 20 ASNs

Fig. 5: DNS IP-advertising strategies

IP Mimicry Having determined that current botnet resources are capable of instigating
ASN- and rDNS-mimicry attacks, we turn our attention to the final attribute utilized by
the fast-detection systems in Eqs. (1) and (2), the number unique IPs. It stands to reason
that the more IPs a FF domain advertises per query, the more likely some of the bots
will be online. Furthermore, because most DNS servers perform round-robin schedul-
ing within a given TTL, advertising more IPs per query decreases the load imparted on
each bot, thereby increasing the botnet’s total service capacity. Since benign non-CDN
domains often advertise a large number of stable IPs (e.g.,hostingprod.comuses 18 IPs
per DNS query), FF domains are afforded a fair amount of freedom in the number of bots
they can advertise; this is supported by Eqs. (1) and (2), where the number of unique IPs
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is the least influential classification feature. However, benign non-CDN domains adver-
tise the same set of IPs for every DNS-query, causing their total unique IPs to remain
bounded and facilitating the use of a maximum IP threshold for detection.

Regardless of the chosen detection threshold, there are twobasic strategies available
to FF domains performing an IP-mimicry attack. The first, shown in Fig. 5-a, has no IP
overlap, with the botnet advertising a completely new set ofIPs every TTL. The alternate
strategy, shown in Fig. 5-b, has IP overlap, with some of the IPs being advertised for mul-
tiple TTLs. Each strategy has certain pros and cons. Having no IP overlap allows for the
rapid replacement of offline IPs, increasing the availability of advertised bots. However,
as can be seen from Fig. 5, this reduces the number of IPs that can be used for any given
TTL, which, in turn, increases the load per bot and decreasesthe botnet’s service capac-
ity. On the other hand, with an increase in IP overlap, more IPs can be advertised per
TTL, decreasing the load per bot; however, this reduces the rate at which offline IPs can
be replaced, resulting in a greater proportion of dead bots and failed victim connections.
Considering bots’ unreliable connectivity, finding the optimal IP-advertisement strategy
for FF domains requires a better understanding of the underlying bots’ online availability.

Bot Online-Decay Model We developed an accurate bot online-decay model,Ponline(t),
to predict the probability a bot will be online after timet. In building the model, we first
aggregated all the bot IPs seen for FF domains globally monitored by DIGGER, record-
ing the time they were observed and if they were online and reachable at that time (i.e., a
connection could be established). Unfortunately, DIGGER only observes the IPs of bots
that have been advertised to the queried DNS server, resulting in a partial view of the
botnet. Furthermore, to be efficient, DIGGER only performs queries when the domains’
TTLs have expired, ensuring fresh results. It is at this timethat DIGGER performs an
online test by attempting to connect to the bots seen in the query. Thus, our view of the
bots’ online time is at the granularity of the FF domain’s TTL. However, this shortcoming
can be overcome due to the observation that many botnets are used for multiple online
scams; thus, many of the same bot IPs will be observed in queries on different FF do-
mains. Additionally, DIGGER is a globally distributed system on a shared resource (i.e.,
PlanetLab). As such, DIGGER nodes will perform queries for the same domain at slightly
different times, depending on the other PlanetLab workloads vying for process time. By
combining all available data points for each bot IP—regardless of the DIGGER node’s
location or the FF domain it was observed for—we can build a fairly complete picture of
the online times of bots currently used by FF domains. When analyzing the data, if an IP
is not seen by any DIGGER node for over 12 hours, we assume thatit has gone offline
during that time. The resulting bot online-decay model has along-tailed distribution, with
a non-zero probability that some bots will remain continuously online for over 2 months.
In Fig. 6, which plots the first 72 hours of this model, the y-axis represents the probability
that a bot is continuously online for more than some timet, represented by the x-axis.
From the plot, it is clear that the probability of a bot being online decays exponentially
with time, such that, after a day, there is less than a 10% chance it’s still online. These
findings reassert the notion that a bot’s connectivity is highly unreliable, resulting from
the varied usage patterns of the compromised computers’ owners.
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Fig. 6: Bot online-decay model (first 72
hours)

Fig. 7: Persistence of overlapped IPs

Performance Model Using our online-decay model, we can determine the optimal IP-
mimicry strategy in terms of performance, which we evaluatebased on the number of
victim connections per unit time the botnet can handle. If the mimicry attack drastically
reduces this amount, then the bots will become overwhelmed,resulting in dropped con-
nections and decreased revenue for the botmaster. Table 2 defines the terms we will be
using throughout the evaluation process. We assume both theinter-arrival time of vic-
tim connections and the bots’ service time are Poisson processes with Markovian (i.e.,
exponential and memoryless) distributions; therefore, they have a cumulative distribu-
tion function ofA(t) = 1−e−xt and a probability density function ofa(t) = xe−xt, where
t is time andx = λ or µ for the inter-arrival and service times, respectively. Within a
given TTL, most DNS servers perform round-robin schedulingwhen responding to DNS-
queries. As a result, incoming victim connections will be evenly dispersed among theon-
line bots advertised for that TTL. While each bot’s processing and network resources will
vary, the distribution will be essentially random and we cantreat the online IPs advertised
in a given TTL asNonline parallel and identical servers. We can then calculate anindivid-
ual online bot’s incoming connection rateλi as the ratio of the total rateλ to the number
of online bots for that TTL. Usingλi , we can model the online bots asNonline identical
M/M/1/K queues, where K is the online bots’ queue length, that is, the maximum connec-
tions each can queue before dropping additional connections. Applying queuing theory
to this model, we can calculate theconnection loss probability, i.e., the probability that
an online bot will drop connections due to a full queue as:

Ploss=

{

ρK−ρK+1

1−ρK+1 : ρ 6= 1
1

K+1 : ρ = 1
whereρ = λ

Nonline·µ

Because we must assume that each online bot is identical, an individual bot’sPloss

is equivalent to that of the entire botnet, allowing us to compare the various IP-mimicry
attacks’ performance; a higher probability of dropped connections results in fewer ex-
ploitable victims and decreased revenues.

DNS-Strategy Model Before we can successfully use this model for performance com-
parisons, we must be able to estimate the potential number ofonline IPs during a given
TTL. This requires a formal relationship between an IP-mimicry attack’s DNS-advertisement
strategy and our online-decay model,Ponline(t), which predicts the probability a bot will
still be online after timet. This relationship is straightforward when there is no IP over-
lap, as in Fig. 5-a. Since each TTL contains a fresh set of IPs under this strategy (i.e.,
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Table 2: Performance modeling terms

N = Nnew), they can only decay for the time,t, that has elapsed in the current TTL; thus,
Nonline(t) = N ·Ponline(t), where 0≤ t < Tttl .

DeterminingNonline(t) becomes more complicated for a strategy utilizing IP overlap,
as in Fig. 5-b. Because IPs are persistent for multiple TTLs,they suffer an increased
probability of going offline. For the modeling purpose, we can’t query the bots’ online
state to aid in our replacement decisions, as an actual botmaster might. Instead, we must
rely on reasonable assumptions, in this case, that older IPs—being more likely to be
offline—will always be replaced before newer IPs. Additionally, to best distribute load
among their bots, we can assume that botmasters will choose to advertise as many IPs
as possible without exceeding the detection thresholdNthresh. These two assumptions im-
ply an optimal replacement strategy from which we can deducethe following intrinsic
properties: in any given TTL, (1) there exist a total ofNnew IPs also present in the pre-
vious 0,1,2, . . . ,⌊ N

Nnew
⌋− 1 TTLs, and (2) there exist a total of(N modNnew) IPs also

present in the previous⌊ N
Nnew

⌋ TTLs. The effect of these properties can be seen in Fig. 7
for two examples. Thus, for any given DNS-query, we can determine the number of pre-
vious queries for which the IPs were used, allowing us to formulateNonline(t) in terms of
Ponline(t) as:

Nonline(t) = (N modNnew) ·Ponline(t +⌊
N

Nnew
⌋ ·Tttl )+

⌊ N
Nnew

⌋−1

∑
n=0

Nnew·Ponline(t +n·Tttl ) (3)

whereTttl is the max A record TTL in seconds andt is the number of seconds elapsed
in the current TTL (i.e., 0≤ t < Tttl ). Having definedNonline(t) in terms of the IP-
advertisement strategy, we can use it in our definition ofPloss(t):

Ploss(t) = ρ(t)K−ρ(t)K+1

1−ρ(t)K+1 whereρ(t) =
λ

Nonline(t) ·µ
(4)

Empirical Evaluation Using our online-decay model and Eq. (4), we can now compare
the performance of various IP-advertisement strategies interms of bothNonline andPloss.
To establish a basis for current FF botnet performance, let us examine the 3 FF domains
shown in Table 3. As can be seen from the table, the domains utilize very different DNS
strategies. With both a largeN andNoverlap, it seems thatmountainready.comis attempt-
ing to capitalize on the load-balancing benefits provided bya large number of advertised
IPs, while also keeping the total number of unique IPs over 2 queries relatively low to
avoid detection; additionally, its use of a fairly smallTttl indicates a proactive approach to
countering the bot decay phenomena, which will be accentuated due to its largeNoverlap.
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Conversely,old-and-girl.netmakes use of a far different strategy. With itsNoverlap con-
stituting only a small fraction of itsN, the effect of bot decay due to IP overlap is less
severe, permitting less diligent IP replacement and allowing for a longerTttl . Interestingly,
its decision to use a smallN appears to be a double-edged sword; while keeping the total
unique IPs over 2 queries low despite its small IP overlap, italso results in fewer IPs per
TTL for load-balancing purposes, reducing the botnet’s overall capacity. Lastly,bently-
cap.netseems to have found some middle ground between the other techniques, with a
Tttl andN almost exactly between the those of others. However, likeold-and-girl.net, it

has chosen a small ratio of
Noverlap

N
, reducing the amount of bot decay and the need for

more rapid IP replacement.

Table 3: Current FF DNS strategies and performance
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To compare the performance of these various strategies, we first applyN andNnew

to Eq. (3), findingNonline when the system reaches a steady state, as shown in Fig. 8 for
mountainready.com. The resultingNonline values for each domain can be found in Table 3.
From the results, botmasters appear quite adept at configuring their DNS strategies to
minimize the effect of bot decay. Through the skillful manipulation of theirTttl , N and
Noverlap, these remarkably different strategies were all able to achieve greater than 90%

online availability (i.e.,Nonline
N

).
Next, we wished to examine the influence each type of strategyhas on the botnet’s

overall capacity. Because botnet capacity translates to potential victims and revenue, max-
imizing it should be of great importance to botmasters. However, before we could apply
their DNS strategies to Eq. (4), we needed to determine values for λ andµ. For compar-
ison purposes, the actual choice for these values is trivial, so long as we are consistent
and use the same values when evaluating each strategy. Basedon the spam click-through
rate reported in [3], which actually managed to control a small portion of a botnet, we
estimate an incoming connection rate of≈ 100 per minute. Since flash crowds could
cause the entire 100 connections to occur in a short period oftime, and botmasters would
want to support such onslaughts of victims for the potentialearnings, we assume (for
comparison purposes) an overall incoming connection rate,λ, of 100 connections per
second. We then choseµ = 10, as its reasonable to assume the entire botnet can handle
an order-of-magnitude more connections per second than an individual bot. Using these
incoming rates and a bot queue length ofK = 10, we applied Eq. (4) to each of the 3
botnets’ DNS strategies. We then determinedPloss once the system achieved a steady
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state. The domains’ results are shown in Table 3. Interestingly, while the varying DNS

strategies offered comparable performance in terms ofNonline
N

, they clearly differ in the
total capacity each botnet can support. This is a direct consequence of the number of bots
available during a given TTL. While the ratio of online IPs isroughly the same for each
FF domain, the magnitude is not, withmountainready.comhaving approximately twice as
many asbentlycap.netand 4x as many asold-and-girl.net. From the table, it is apparent
thatmountainready.com, with Ploss< 0.15%, can easily support our assumed connection
rates; it is possible that this is even its expected victim load, necessitating its choice of
DNS strategy. However, whilebentleycap.netperforms modestly under these conditions,
old-and-girl.netdoes not. It’s likely that neither botnets’ DNS strategy wasdesigned with
this sort of load in mind.
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Fig. 10:Ploss optimization: IP-mimicry attack

IP-Mimicry Attack Having modeled the performance for various DNS strategies cur-
rently employed by FF domains in the wild, we can now determine if adapting them to
our proposed IP-mimicry attack achieves comparable onlineconnectivity and capacity.
Since our mimicry attack manipulatesN andNoverlap to evade detection while maximiz-
ing online time and capacity, we cannot restrict these to thecurrent values imposed by
each FF domain. Instead, we will retain the domains’Tttl values, assuming that they were
chosen by the botmasters in response to how diligently they were willing to monitor and
replace IPs. In order to reduce false-positives from benign, non-CDN domains advertising
a large number of stable IPs, such ashostingprod.com, let us assume—for the purposes of
this mimicry attack—a detection threshold ofNthresh= 20 IPs, resulting in the following
policy: over 2 DNS-queries, any domain with more than 20 unique A record IPs will be
flagged as malicious.

It is clear from the results in Section 3.2, that the more online IPs available during a
given TTL, the greater the botnet’s overall capacity. Therefore, an optimal DNS strategy
will necessarily advertise the maximum IPs allowed by the detector’s threshold,Nthresh.
This reduces the problem to determining whatNoverlap results in the most online IPs,
which can be found by either maximizing Eq. (5) or minimizingEq. (6), such that 2·N−

Noverlap= Nthreshand∑Tttl
t=1 is performed when a steady state is achieved.

Nonline =
∑Tttl

t=1Nonline(t)

Tttl
(5) Ploss=

∑Tttl
t=1Ploss(t)

Tttl
(6)
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For the FF domains in Table 3, Figs. 9 and 10 show the results ofEqs. (5) and
(6) across the search spaceN ∈ [⌈Nthresh

2 ⌉,Nthresh−1]. From the figures, we can see that
while mountainready.comandbentlycap.netachieve optimal performance withN = 18,
for old-and-girl.net, N = 17. Apparently, its longerTttl of 600 seconds results in addi-
tional bot decay, causingN = 17—with its 2 fewer overlapped IPs—to provide better
performance. We also find that forbentlycap.netandold-and-girl.net, their Nonline has
increased to 14.62 and 13.4, while theirPloss has decreased to 0.72% and 1.43%, re-
spectively. While neither of these FF domains would have been detected by the imposed
Nthreshunder their original DNS strategies, utilizing the IP-mimicry attack has kept them
from being detected while also greatly increasing their performance and capacity. On
the other hand, the mimicry attack causedmountainready.comto suffer a reduction in
Nonline, dropping from 17.8 to 15.99. The attack also caused itsPloss to more than double,
increasing from 0.14% to 0.34%. However,mountainready.com’s original DNS strategy
advertised 24 unique IPs over 2 queries, exceeding the detection threshold. Thus, the IP-
mimicry attack has allowed it to successfully evade detection with only a minor decrease
in performance—its average probability of a connection loss remains under 1% and its
average online IPs has been reduced by less than 2.

3.3 Empirical Observations

Curious how the proposed Holz and RB-Seeker detectors wouldfare against today’s FF
botnet threat, we implemented the detectors and applied them to our set of 45 FF do-
mains (which we manually verified as FF). Both detectors identified the same set of 6
FF domains, with the RB-Seeker detecting an additional 6 that were missed by the Holz
detector. The resulting false-negative rates are 86.7% and73.3% for the Holz and RB-
Seeker detectors respectively. Both papers realize their weights and thresholds used for
detection must be periodically retrained to counter futuremimicry attacks. However, the
poor results of the original detectors on current FF domainsdemonstrates the extent to
which botnets have evolved since they were proposed, strengthening the need to better
understand the extent of FF botnets’ mimicry capabilities and limitations.

4 Increased Detection Window (more queries)

4.1 Good Guys

A logical extension to the fast-detection systems of the previous section is to increase their
monitoring window to analyze more queries. Examining multiple TTLs when making a
decision exploits a commonly known property of FF domains: they need to continuously
advertise fresh IPs to account for their unstable constituent bots. Thus, while non-CDN
domains may advertise a large number of IPs in their queries,they will be stable IPs
and will not change over time. FF domains, previously able tohide behind non-CDN
domains’ numerous IPs to subvert fast-detection systems, will quickly be exposed once
additional queries are examined. Furthermore, while CDN domains often demonstrate
the fluxy behavior characteristically attributed to FF botnets, for many CDNs, a longer
detection window can allow their more stable nature to emerge from the chaos.
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Current detectors, such as FluXOR [7] and RB-Seeker’s second-tier detector, make
use of longer detection windows to increase accuracy and support the detection of stealthy
FF domains, which use slower DNS advertisement strategies aimed at fooling fast-detection
systems. For example, RB-Seeker monitors suspected stealthy FF domains for up to a
week. Besides using an increased monitoring window, FluXORalso incorporates addi-
tional metrics in its detection decision in an effort to makeits classification more accurate
and harder to subvert. Unfortunately, how these features are actually used in detection
is omitted from the paper. In any case, like the Holz and RB-Seeker detectors, FluXOR
examines the number of unique A records and ASNs. These are augmented with addi-
tional features such as TTL and the number of return qualifieddomain names, or top-
level domains (TLDs), to try and capture the quickly changing and dispersed nature of
FF domains.

4.2 Bot Guise

ASN Mimicry Attack Unfortunately, extending the detection window in time doeslit-
tle to weaken the ASN mimicry attack described in Section 3.2. Because botnets seem
to invariably control a sizable number of bots from within atleast one ASN, the same
essential attack can be performed by simply accommodating the larger detection window
as shown in Fig. 11.

Fig. 11: ASN mimicry strategy (multiple queries)

Fig. 12: IP disribution for top 20 TLDs

rDNS Mimicry Attack While the specifics of FluXOR’s returned qualified domain met-
ric are not revealed, we can assume it operates as any TLD metric would. Essentially, for
any rDNS results returned, the number of unique TLDs are calculated—the insight being
that FF botets, consisting of bots scattered across many networks, will return numerous
TLDs. However, while botnet IPs do belong to many different TLDs, ultimately, this fea-
ture cannot be reliably used for detection. Like the rDNS metric in Section 3.2, it suffers
from the inherent shortcoming of the rDNS lookup process, which doesn’t always return
a result. This results in a sufficient quantity of rDNS=NONE IPs (adequately distributed
across ASNs) to perform a similar dual-mimicry attack. Additionally, we analyzed the
distribution of bot IPs across TLDs and found a similar distribution as across ASNs, in
that there exist some TLDs from which a large number of bots belong. In Fig. 12, we
have plotted this distribution for representative FF domains of varying sizes. Like the
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ASN distribution, it is long-tailed. While rDNS=NONE IPs dominate, there are clearly
other TLDs with a sufficient number of IPs to similarly be usedin the aforementioned
mimicry attack, providing botmasters additional freedom in DNS advertisement strate-
gies. Consequently, we find rDNS results to be an inadequate metric for detecting FF
botnets, based on their current resources.

Improved DNS-Strategy Model Before examining IP-mimicry attacks, we must first
extend the DNS-strategy model developed in Section 3.2 to accommodate the larger de-
tection window. First, let us assume a detection window ofDttl fresh DNS queries of
lengthTttl . Let us further assume the detector applies a threshold,Nthresh, on the number
IPs seen during this detection window. Under these constraints, the botnet could add at
least one new IP everyTttl , so long asDttl ≤ Nthresh; However, ifDttl > Nthresh, the bot-
master can no longer introduce new IPs eachTttl without exceedingNthreshand triggering
detection. Nevertheless, botnets can still keep their total IPs below the threshold by re-
peating the same set of IPs over multipleTttl . We term this the botnet’srepetition window
and define it asRttl DNS queries (of lengthTttl ) for which the botnet repeats the same set
of IPs. This effectively extends the duration ofTttl while taking up more of the detection
window, meaning we can determineNonline(t) by substitutingRttl ·Tttl for Tttl in Eq. (3). If
a botnet introducesNnew IPs everyRttl , a detection windowDttl will at mostobserveAttl

DNS queries with new IPs, whereAttl is definiens in Eq. (7). This relationship is shown
for Dttl = 4 andRttl = 2 in Fig. 13, where we see thatAttl = 2. Thus, botnets can addNnew

IPs everyAttl , so long as Eq. (8) is satisfied.

Attl = ⌊
Dttl −2

Rttl
⌋+1 (7) N+Attl ·Nnew≤ Nthresh (8)

Fig. 13: Relationship betweenAttl , Rttl andDttl Fig. 14:Attl whenRttl ∈ [1,Dttl ] andDttl = 4,10

IP-Mimicry Attack: TTL-based Detection Window By applying the improved DNS
strategy usingRttl to our previous performance model, we can determine how the pro-
posed IP-mimicry attack against a larger detection window influences botnets’ overall
online availability and capacity. For this purpose, we examine the same real-world FF
domains as in Section 3.2, again, fixing theirTttl to the values originally used by each
domain. Modifying Eqs. (5) and (6) to incorporate the increased detection window pro-
duces:
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Nonline =
∑Rttl ·Tttl

t=1 Nonline(t)

Rttl ·Tttl
(9) Ploss=

∑Rttl ·Tttl
t=1 Ploss(t)

Rttl ·Tttl
(10)

To find the optimal values forRttl andN, we maximize Eq. (9), or minimize Eq. (10),
over the search spaceRttl ∈ [1,Dttl ] andN ∈ [⌈Nthresh

Attl+1⌉,Nthresh−Attl ]. While Rttl ’s search
space is self evident,N’s is found from Eq. (8) and the observation that 1≤ Nnew≤N. We
setNthresh= 20 and optimized the equations when they reached a steady state for detection
windows,Dttl = 4,10; the results of these optimizations are shown in Table 4. The first
thing we notice is thatNonline andPloss don’t suffer much degradation. In fact, forbent-
lycap.netandold-and-girl.net, they achieve better results under the mimicry attack than
their original settings. Whilemountainready.com’s performance goes down marginally,
its Ploss is still less than 1% forDttl = 4 and less than 3% whenDttl = 10. These slight
decreases in performance are easily justified, consideringthat its original DNS strategy
would have resulted in detection, with 34 unique IPs forDttl = 4 and 64 forDttl = 10.
Furthermore, the use of an extended detection window would have caught all the FF do-
mains under their previous DNS strategies, with the exception of old-and-girl.netwhen
Dttl = 4. Thus, the proposed IP-mimicry attack has only minimally degraded—and in
many cases improved—the performance of the FF domains, while also preventing their
detection against both fast-detection systems and those with an extended detection win-
dow.

Table 4: Optimization Results: IP-mimicry attack againstDttl

In Fig. 15, we show an example of theNonline optimization plots formountain-
ready.com’s Tttl = 120. To better understand these plots, recall the relationship between
Dttl , Rttl andAttl defined in Eq. (7) and shown for forDttl = 4,10 in Fig. 14. From the
figures, we find that for values ofRttl resulting in the sameAttl , the lowestRttl is optimal,
with higher values resulting in a steady degradation ofNonline. This is best exemplified
whenDttl = 10 in Figs. 14 and 15-b, with local maxima atRttl = 1,2,3,5, and 9. This
occurs because an increase inRttl results in additional bot decay, due to repeating the
same set of IPs over an extended duration. Thus, when increasing Rttl , if Attl remains the
same, the number of IPs advertised per query,N, cannot be increased to offset the decay
without exceeding the threshold, resulting in the observedtrend.

As an additional experiment, we determined the optimal strategy for a FF domain
using aTttl = 1, as it provides the finest granularity for adjusting the IP replacement strat-
egy in terms ofRttl . This strategy, shown in Table 4 in gray, achieves better results than
mountainready.com’s original configuration. With such a shortTttl , a detection window
of 10 will only monitor the domain for 10 seconds, resulting in little bot decay and al-
lowing a largerN. Additionally, we see the optimalRttl in this case isDttl − 1, that is,
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Fig. 15:Nonline optimization: IP-mimicry attack,Tttl = 120 andNthresh= 20

the minimalRttl for which the detection window sees only a single IP change (Attl = 1).
An Rttl < Dttl − 1 results in more IP changes, further limiting the maximumN achiev-
able without going over the threshold. With anRttl ≥ Dttl , IPs are subjected to additional
bot decay whileAttl remains at its minimum value of 1; regardless ofRttl , eventually the
detection window always observes a single IP change. Thus, at the cost of more diligent
IP management, this technique maximizes the number of online IPs possible per query
while minimizing the effect of bot decay.

IP-Mimicry Attack: Time-based Detection Window Thus far, we have defined the
detection window in terms in terms ofDttl fresh DNS queries, showing that it can be
subverted through the use of a repetition window,Rttl . However, a detection window
can also be defined in terms of absolute time (i.e.,Dt seconds). In this case, a repetition
window doesn’t help mask the addition of new IPs, requiring the FF domain to adhere to
the IP threshold imposed over the duration,Dt . Thus, the longer the duration, the more
the FF domain’s IPs are subjected to bot decay, worsening performance. We modeled
this detection technique to evaluate its susceptibility toIP-mimicry attacks under current
botnet resources. For the purposes of this evaluation, we adopt aDt equal to 1 week and
an IP threshold ofNweek. Certainly, requiring longer than a week to arrive at a detection
decision grants botnets sufficient time to perpetrate theirscams under a given domain. To
find a suitable value forNweek that will provide minimal false-positives, we analyzed the
number of unique IPs accrued by benign CDN domains over 1 week. Not surprisingly,
due to load-balancing techniques, CDN domains can advertise a large number of unique
IPs. For example, we observed 171 IPs used bynfl.com. The amount was even greater
for www.myspace.com, with many DIGGER nodes witnessing the use of over 400 unique
IPs, and in one case, over 700. We analyzed the model for varying values ofNweek∈
[100,800], to see how increasing the threshold—to reduce false-positives—will affect a
botnet’s performance. To ensure that the mimicry attack would also continue to subvert
fast-detection systems, we imposed the additional constraint of Nthresh IPs over 2 DNS
queries as before. Then, for each value ofNweek, we calculate the maximum queries for
which Dt can observe new IPs without violatingNweek as A′

ttl = ⌊Nweek−N
Nnew

⌋, such that
N + Nnew ≤ Nthresh. If we assume IPs are changed every TTL, then we can calculate

17



the optimalTttl asTopt = Tweek
A′

ttl
, whereTweek is the number of seconds in a week. Under

these constraints, the FF domain won’t exceed the thresholdof Nweekunique IPs over the
detection windowDt = 1 week. Furthermore, for any 2 queries, the number of unique
IPs will satisfy the thresholdNthresh. Finally, notice that a repetition window,Rttl , can be
applied toTopt to defeat aDttl detection window.

Table 5 shows our optimized results forN, Noverlap, andTopt with Nthresh= 20 and
varying thresholds ofNweek. For all values ofNweek, we achieved the same optimal values
of N = 19, Noverlap = 18, and thusNnew = 1. This is because it is necessary to provide
as many IPs per query as is possible to account for the enhanced botnet decay present
under the longerTopt. From the table, it is apparent that even forNweek= 100, which is
well below the number of IPs seen fornfl.comandwww.myspace.com, the botnet will
continue to have online IPs. Despite the high probability oflost connections, the botnet
is still reachable and thus can continue to generate revenue. In addition, we find that for
Nweek= 200, the botnet capacity is nearly the same as that ofold-and-girl.netunder its
original configuration. Because benign CDN domains legitimately advertise such large
amounts of unique IPs over time, current botnet resources can sufficiently mount IP-
mimicry attacks despite an increased detection window,Dt .

Table 5: Optimization results: IP-mimicry
attack againstDt = 1 week (Nthresh = 20:
N = 19,Noverlap= 18)
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Fig. 16: Empirical observation of FF domain adopting
certain evasion techniques (Tttl = 10 seconds)

4.3 Empirical Observations

We discovered several FF domains in the wild adopting some ofthe mimicry attacks we
have presented, many of which were able to defeat the Holz andRB-Seeker detectors in
Section 3.3. While the strategies employed by FF domains in the wild aren’t as regular as
those in our models, they are very close, only deviating fromtheir average values rarely
and in small amounts. An example FF domain is shown in Fig. 16,with each box in the
plot representing a unique IP seen in its DNS results. Observe that it adds 1 or 2 IPs
every≈ 1,000 seconds, replacing older IPs to keep the total number equal to 5 per query;
thus, it uses anN = 5 and anNoverlap= 3,4. Since it has aTttl = 10, it’s essentially using
a repetition window ofRttl = 100. Under this DNS strategy, the FF domain can defeat
a fast-detection system with anNthresh= 7, as it occasionally introduces 2 new IPs per
query. Furthermore, it will also defeat an extended detection window withDttl = 100 and
Nthresh= 7. By taking an averageNoverlap = 4, we can use our model to predict that the
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domain will achieve anNonline = 3.73, resulting in an average of 75% of its advertised
IPs being online. Clearly, FF domains are beginning to incorporate some of the mimicry
techniques we have examined—a trend we expect will continueas detection systems
improve.

5 Related Work

Recently, a number of techniques have been proposed to effectively detect FF domain
names [1, 7, 2, 8]. They all studied a number of unique features—the detailed set of which
varies across different techniques—that can be used to characterize FF domains. To ex-
tract the values for these features, they collected DNS queries for a large number of sus-
picious domains through either active or passive monitoring, over time periods ranging
from 2 TTLs to weeks. Classification algorithms, such as support vector machines (SVM)
and decision trees, were then applied to the features extracted from the DNS traces, de-
termining if each domain under consideration is FF or not. Active probing approaches
like Holz’s detector [1], RB-seeker [2] and FluXOR [7] have been detailed in Sections 3
and 4. Compared to these active methods, the passive monitoring approach proposed by
Perdiscet al. [8] provides a different vantage point and offers the uniqueadvantage of
detecting FF domains via stealthy means, without drawing attackers’ attention. However,
for good coverage of FF domains, it requires monitoring recursive DNS traces on mul-
tiple large networks, which can only be done by large ISPs. Additionally, as a passive
approach, a decision can’t be reached until multiple victims have visited the suspicious
site and exposed themselves to the potentially malicious content.

The concept of a mimicry attack was first proposed for host-based intrusion detection
systems (IDSes) which typically monitor application behavior in terms of system-call
sequences. To slip under the radar, mimicry attackers attempt to cloak malicious sys-
tem calls with innocuous-looking system-call sequences. Wagner and Soto [10] proposed
a method that embeds nullified pre-existing system-call sequences (i.e., “semantic no-
ops”) between malicious system calls. Kruegelet al. [4] devised techniques that allow
an attacker to regain control after a system call by corrupting the memory locations and
manipulating code pointers. This allows attackers to extend transitional mimicry attacks
on more sophisticated IDSes. More recently, Parampalliet al. [6] proposed the persistent
control-flow interposition techniques that make mimicry attacks simpler, more reliable
and stealthy. Similar to previous work, the goal of our work is to design and evaluate, us-
ing current FF botnet resources, potential mimicry attacksagainst FF detection systems.
By anticipating the attackers’ next moves, defensive systems can be better instrumented
and remain effective for a longer period of time.

6 Conclusions and Future Work

In this paper, we have examined the current state-of-art FF detectors, analyzing their
effectiveness in detection. In doing so, we developed accurate models for bot decay, on-
line availability, DNS advertisement, and performance, which we used to evaluate novel
mimicry attacks against FF detection systems. Based on these models, empirical evi-
dence, and logical assumptions, we have demonstrated that current botnet resources are
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sufficiently capable of subverting state-of-art FF detection mechanisms. We have discov-
ered evidence of current FF domains adopting aspects of our proposed mimicry attacks.
While botmasters don’t appear to be monitoring their botnets as assiduously as our mod-
els assume, they are clearly incorporating similar—thoughless optimal—DNS strategies
for detection evasion. As detection systems continue to improve, we expect to see an
increased diligence in IP management as botmasters move toward these optimal strate-
gies in an effort to extract the most from their botnets’ resources. We hope showing the
mimicry potential currently attainable by FF domains will foster improvements to exist-
ing detection systems, as well as provide new insight into the adaptive limitations of FF
botnets. Our future work includes extending these models tohandle a spatial dimension,
allowing us to evaluate FF domains’ current ability to mimicthe location-aware advertise-
ment strategies of CDNs. By extending detectors in space, wehope to impose additional
constraints, straining current botnet resources beyond their capability to perform success-
ful mimicry attacks.
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