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Abstract—Botnets are one of the most serious security threats
to the Internet and its end users. In recent years, utilizing
P2P as a Command and Control (C&C) protocol has gained
popularity due to its decentralized nature that can help hide the
botmaster’s identity. Most bot detection approaches targeting
P2P botnets either rely on behavior monitoring or traffic
flow and packet analysis, requiring fine-grained information
collected locally. This requirement limits the scale of detection.
In this paper, we consider detection of P2P botnets at a high-
level—the infrastructure level—by exploiting their structural
properties from a graph analysis perspective. Using three dif-
ferent P2P overlay structures, we measure the effectiveness of
detecting each structure at various locations (the Autonomous
System (AS), the Point of Presence (PoP), and the router
rendezvous) in the Internet infrastructure.

I. INTRODUCTION

A botnet consists of a group of coordinated bots that can
mount attacks such as Distributed Denial of Service (DDoS),
spamming, phishing and identity theft. Botnets are posing a
serious security threat to the Internet users; they can bring
down the entire system and disrupt Internet services. In a
botnet, a Command and Control (C&C) channel, in which a
botmaster disseminates commands to, and get response from
bots, is a key element. Traditional botnets utilize the IRC
or HTTP protocol to implement centralized C&C. Under
this design, bots have to connect to central servers and even
listen on certain channels to retrieve commands. Evidently,
centralized C&C is vulnerable to a single-point-of-failure,
meaning that, whenever the central servers are identified and
removed, the entire botnet will be deactivated. To overcome
this weakness, attackers have recently devised a decentral-
ized C&C infrastructure exploiting the P2P protocol. A few
noteworthy P2P botnets in recent years include Storm [1],
Waledac [2] and Conficker [3]. Their P2P implementations
are either based on an existing protocol (Storm utilized
Kademila [4]) or completely customized.

The decentralized nature of P2P botnets inevitably chal-
lenges detection attempts. Approaches targeting centralized
C&C structures [5], [6], [7], [8] become ineffective under the
new structure in which a botmaster can join, issue commands

and leave at any time at any place. Generic detection ap-
proaches [9], [10] relying on behavior monitoring and traffic
correlation analysis are mostly applicable at a small scale
such as in edge networks and do not scale well because they
require analyzing vast amounts of fine-grained information.
In addition, if there is only a small number of bots in an
edge network, detection based on bots’ coordination may fail
due to the limited number of instances in view. Given the
fact that current botnets’ sizes are in the order of hundreds
of thousands, an effective and efficient large-scale detection
needs to function at a high level without requiring fine-
grained information that can only be obtained locally. As a
P2P botnet has a structured overlay and connectivity patterns
different from other applications from a graph analysis
perspective, naturally, we consider detection at the Internet
infrastructure level by assessing the impact imposed by a
P2P botnet at various network components and measuring
the effectiveness of detection at such places.

In this paper, we evaluate different network components’
capabilities of detecting P2P botnets at the infrastructure
level. We construct three types of P2P-botnet overlays, map
them to the corresponding AS (Autonomous System)-level
underlays by inferring each overlay connection’s AS-path,
and accordingly determine the PoP (Point of Presence)
path and geographical router rendezvous each connection
goes through. We then take a close look at each individual
AS, PoP and router rendezvous based on graph analysis.
In particular, we calculate a few P2P traffic classification
metrics to see whether the portion of botnet connections
observed by a single network component can be identified
as P2P traffic. We would like to answer the following three
questions through our analysis: (1) Which network compo-
nent is the best monitoring point for detection? (2) Which
P2P overlay structure can help hide the botnet traffic well?
(3) What are the limitations of detection at the infrastructure
level? Our main contribution lies in the thorough analysis of
detection potential at the three infrastructure-level network
components for three different P2P overlay topologies. To
the best of our knowledge, there have been only a very
few previous approaches to the detection of botnets at the



infrastructure level. In [11], a method is proposed to detect
and track botnets on a large Tier-1 ISP network; it can only
handle traditional IRC-based botnets. The authors of [12]
focused on P2P botnets, investigating only one type of P2P
topology at the AS level.

Our analysis has led to three key conclusions. First, a
small number of ASes can observe a large fraction of overlay
traffic, but the AS-level detection is less practical. PoPs
cannot capture all traffic but can still identify a reasonable
number of nodes in botnets. Router rendezvous strikes a bal-
ance between detection capability and feasibility. Second, a
botnet has to make a tradeoff between resilience or efficiency
and the ability to evade detection. Third, the infrastructure-
level detection is not a panacea for all large-scale botnets:
it needs to be integrated with detection schemes in edge
networks to complete a detection picture.

The remainder of the paper is structured as follows.
Section II describes the related work. Section III details our
methodology. Section IV presents analysis results. Section
V discusses a few challenges associated with our approach.
The paper concludes with Section VI.

II. RELATED WORK

As botnets have been a major security threat for a while,
numerous approaches have been proposed to detect and
mitigate them. Early detection methods [5], [6], [7], [8] aim
at centralized botnets, i.e., IRC-based and HTTP-based. With
the popularity of P2P botnets, however, defense mechanisms
[13], [14] against this new generation of botnets have
been developed. All of the above-mentioned approaches
only apply to specific types of botnets requiring in-depth
understanding of the C&C profiles prior to their detection. A
few generic approaches can detect different types of botnets
regardless of the C&C structure based on network packet and
flow analysis [9] or combined host and flow analysis [10].
These approaches are effective for small-scale networks,
such as in a campus or an enterprise network, but do not
scale to large networks, because they need to obtain fine-
grained information, such as packet content, flow patterns
and host behavior.

Considering the fact that P2P botnets have structured
overlay topologies, our approach takes a global view, ex-
ploiting structural properties derived from graph analysis
and is thus not limited by the availability of fine-grained
information. In this regard, our work is closely related
to graph-based traffic classification and analysis. Iliofotou
et al. [15] proposed the use of Traffic Dispersion Graphs
(TDGs) to monitor, analyze, and visualize network traffic.
TDGs focus on network-wide interactions among hosts
and show that graph features, such as the average degree
and directionality, can be utilized to distinguish different
applications. Using TDGs, they further classified P2P traffic
at the Internet backbone [16]. Their scheme filters out known
traffic, forms traffic clusters roughly based on applications,

and finally, uses some graph metrics to identify whether
a cluster belongs to a P2P application. In our analysis,
we adopt some of their metrics to determine whether the
portion of traffic observed by a network component is
P2P. BotGrep [17] analyzes structured graph to locate bots
by extracting P2P subgraphs from a communication graph
containing background traffic. This approach assumes the
visibility of the entire botnet communication graph, whereas
our detection is at a single network component where only
a fraction of botnet communication can be seen.

We are aware of two published results on AS-level under-
lays mapped from P2P overlays. Rasti et al. [18] examined
the global impact of the load imposed by a P2P overlay on
the AS-level underlay. They use Gnutella network snapshots
to analyze diversity and load on individual AS-paths, churn
among the top transit ASes and propagation of traffic within
the AS-level hierarchy. Their focus was on the effect of
overlay on the underlay, while our work is concerned with
whether the effect can be utilized for detection. Jelasity et al.
[12] constructed a modified Chord [19] topology and showed
that the visibility of P2P botnet traffic at any single AS is
limited and not sufficient for detection. Our method differs
from theirs in the following aspects. First, we consider bots’
geographical distribution in the overlay topology while they
assume that the number of overlay nodes in each AS is
proportional to the size of the AS. Second, our AS-level
paths are not derived from the shortest-path algorithm they
used, but a more realistic scheme. Third, we simulate three
P2P overlay topologies and observe the traffic not only
at the AS-level but also at PoPs and router rendezvous,
providing a more thorough analysis. We will show later that
our observation is not the same as theirs.

III. METHODOLOGY

A. Overview

We would like to achieve two goals as follows. First,
from a defender’s perspective, we would like to see how
much the botnet traffic can be observed at a single network
component and whether the respective traffic graph has P2P
properties. Second, from an attacker’s perspective, we want
to study which P2P overlay topology is stealthy enough
so that at a single network component the graph-level
information is not sufficient for detection. Our methodology
consists of four main steps as shown in Figure 1. In the
first step, we construct a P2P overlay topology based on
simulation and learn which end-device talks to which, i.e.,
the overlay connections. In the second step, to map the
overlay to the AS-level underlay, we associate a connection’s
two end-devices’ IP addresses with the corresponding ASes
and calculate the AS-level path between the two ASes.
Given the AS paths, we then determine PoP-level paths
and geographical router rendezvous paths. With knowledge
of paths of all connections, in the third step, we break
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Figure 1. Overview

Table I
DATA SOURCES USED IN OUR INTERNET INFRASTRUCTURE AND END-DEVICE MODEL

Model component Data sources
Backbone topology Skitter dataset: http://www.caida.org/tools/measurement/skitter/

Alias clustering data from the iPlane project: http://iplane.cs.washington.edu/data/alias lists.txt
IP geolocation dataset: http://www.ip2location.com/

Internet Point of Presence Telegeography co-location database: http://www.telegeography.com/
Internet end-devices US census data: census-block population in each 250×250m2 grid in US for a 24-hour duration [20]

Internet access routers Dial-up service aggregators per each zip code: http://www.findanisp.com
Broadband ISP market share: http://www.leichtmanresearch.com/press/081108release.html
DSL central office locations: the LERG (Local Exchange Routing Guide) dataset from Telcordia
Cable company service locations: Dun & Bradstreet (D&B) dataset

Internet routing BGP routing information from the University of Oregon Route Views Project: http://www.routeviews.org/
AS prefix sets: http://www.fixedorbit.com/
AS-level path inference: Qiu and Gao’s algorithm [21]

down the connections on per-AS, per-PoP, and per-router-
rendezvous bases. We are especially interested in the top
ASes, PoPs and router rendezvous ranked by the number of
connections going through. In the last step, we inspect those
top network components individually. As in [12], [18], we do
not consider background traffic but focus only on the traffic
coming from the P2P overlay, which is the best scenario,
implying that if the P2P traffic cannot be identified under this
situation, it will definitely not be captured when background
traffic is present. We analyze several graph properties of the
communication patterns at each top network component and
determine whether it has the characteristics of P2P traffic.

B. Internet Infrastructure and End-Device Modeling

Before detailing the four main steps, we would like to
briefly describe the Internet infrastructure and end-device
modeling, which lays a basis for our methodology. We use
multiple real-world datasets to construct a realistic model of
the US Internet infrastructure. Table I lists all data sources
in the model construction. In total, 73,884,296 residential
computers are generated in the entire US (except Hawaii
and Alaska). The distribution of Internet access routers
including dial-up, DSL and Cable is based on the market
share of top US broadband companies and dial-up service
aggregators, and how these access routers connect to the
backbone topology at Internet PoP locations is derived from
AS peering relationships. We refer interested readers to [22]
for details of this modeling.

C. Overlay Topology Construction

In recent years, P2P overlays have become popular in
botnet construction due to their decentralized nature. Many

existing P2P overlays can be utilized to facilitate botnets’
C&C. We construct three types of P2P overlays: a widely-
used Kademlia [4], a modified Chord [19] and a simple ring
structure. We will first compare the structural properties of
these three overlay topologies at each network component,
the results of which will be presented in Section IV. Next,
we will briefly introduce each P2P overlay followed by the
way we construct the topology.

1) Kademlia: Kademlia is a Distributed-Hash-Table
(DHT)-based P2P overlay protocol. Under this protocol,
there is no central server and resource locations are stored
throughout the network. Nodes are identified by node IDs
and data items are identified by keys generated from a hash
function; node IDs and keys are of the same length. Data
items are stored in nodes whose IDs are close to data items’
keys. The distance between two IDs, X and Y , is calculated
by bitwise exclusive or (XOR) operation: X⊕Y . To search a
data item, a node queries its neighbors for nodes whose IDs
are closest to this data item’s key. After getting responses
from its neighbors, the node continues to query those nodes
that are closer to the key. This iterative process repeats until
no closer nodes can be found. The benefit of Kademlia is its
resilience to disruptions. Even if a few nodes are shut down
or removed, the network will still be able to function. Kad
network is an implementation of Kademlia. A few major
P2P file sharing networks adopt the Kad implementation,
such as Overnet and eMule. The Storm botnet was built
upon Overnet.

An ideal way to construct the botnet overlay topology
is to collect traffic traces from a real network, such as the
Storm botnet. Since the Storm botnet is decentralized (i.e.,
there are no central venues that all communications can be
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observed), traces captured from the Storm botnet fall into
two categories each of which has its drawbacks. In the first
category, the traffic data were collected from a single or
a few vantage points. They can hardly provide a view of
the entire botnet. In the second category, snapshots of the
network were taken by network crawlers. The snapshots
contain information, such as which IPs are alive or dead but
cannot tell which IP connects to which IP. To characterize
the effectiveness of detection at the underlay, a full picture
capturing the entire network’s connections is indispensable,
so we have to construct a Kad network by using simulation.

We use a high-fidelity botnet simulator BotSim [23]
which integrates a popular P2P client named aMule [24],
an implementation of Kad. Considering the fact that sim-
ulating a large-scale botnet (100,000 bots) on a single or
a few machines will take a prohibitively long time, our
simulator was run on a distributed platform consisting of
400 machines, each with 2 Pentium III CPUs and 4Gb
RAM. The simulator is a component of MIITS [25] which is
built upon PRIME SSF [26], a distributed simulation engine
utilizing conservative synchronization techniques. To make
aMule work on our simulator, several modifications were
made to the original aMule code including intercepting time-
related system calls and substituting them for simulated time
function calls, and replacing socket API calls with network
functions developed in MIITS. The rest of the code remains
intact.

In a botnet, a majority of bots are compromised residential
computers and not necessarily geographically close, and
hence we have to take locations into account. Constrained
by data availability, all bots in our simulation are in the US
and their locations follow the geographical distribution of
73 million residential computers by state. The simulation of
100,000 bots executes for 3 days in simulation time. The
output files log timestamps and connections in the network.
We discard the first day in which bots bootstrap and the
entire botnet stabilizes, and keep the second and the third
day for analysis. Now that we have log files keeping track of
which node talks to which other node and each node’s state
information, we need to obtain the IP address of each end-
device to completely construct the overlay topology. For this,
we randomly choose an end-device address from the state a
bot resides in. This way, we create two 1-day Kad overlay
topologies of 100,000 nodes each.

2) Modified Chord: Chord is a DHT-based P2P protocol
under which nodes form a ring structure. Each node has a
predecessor and a successor and a few long range links.
For example, there are a total of N nodes in the ring.
Node i connects to nodes (i − 1) mod N and (i + 1)
mod N . It also connects to nodes (i + 2k) mod N for
k = 1, 2, . . . , log2N − 1 to form long-range links. In [12],
modifications to Chord are proposed so that it is difficult
to detect through graph analysis at any single AS. The
main modification is to create clusters in the ring each of

which has log2 N consecutive nodes. This way, nodes in the
same cluster can share the same set of long-range links for
routing. This topology is of interest to us because we want
to see whether using a more realistic AS-path calculation
algorithm (as we will describe later) can make a difference
in detection and whether this topology can successfully
hide itself at PoPs and router rendezvous as well. Since
this modified Chord’s topology is relatively simple, we
construct its overlay with 100,000 nodes directly based on
its protocol without simulation. Following the same practice
as in Kademlia, each end-device address is a random draw
from the state a bot belongs to.

3) Simple Ring: We also consider the simplest case:
each node has only two neighbors—a predecessor and a
successor—to construct a ring structure. Presumably, this
structure is stealthier and harder to detect than the modified
Chord due to lack of connections among bots at the overlay.
We will verify this assumption in later analysis. Similar
to the modified chord, this overlay has 100,000 nodes
constructed directly and the bots’ locations follow the same
geographical distribution.

D. Overlay to Underlay Mapping

1) AS-Path: Given all overlay connections, the next step
is to map each connection to an AS-level path. Note that
each end-device IP address is associated with an AS number
and determining an AS-path of a connection is actually to
determine the AS-path between two ASes. We use the AS-
path inference algorithm in [21] for inter-domain routing.
The key idea is to infer AS paths from existing BGP routing
tables. For intra-domain routing, we use the shortest path
algorithm.

2) PoP-Path: A PoP is an access point to the Internet.
It is a physical location owned by an ISP or located
at Internet exchange points and co-location centers. The
computation of a PoP-level path is based on the respective
AS-level path. Given a pair of source and destination end
device IPs, the algorithm first determines the AS-level path
AS1AS2 . . . ASn and then iteratively finds the shortest IP-
level path between PoPs connecting every neighboring pair
of ASes. We refer interested readers to [22] for details of
this algorithm.

3) Router Rendezvous Path: Given an IP-level path, the
geographical router rendezvous along this particular path
can be determined. Thus, we can know all physical router
rendezvous a connection goes through.

E. Traffic Breakdown

Since our work focuses on structural properties of traffic
graph at a single network component (AS, PoP or router
rendezvous), not the entire botnet overlay per se, with all
the path information, we need to break the traffic down on
a per AS, per PoP and per router rendezvous basis. This
breakdown process is straightforward. We then rank the three
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types of network components by the number of connections
going through, and take a closer look at the graph properties
observed at each top 10 ASes, PoPs, and router rendezvous
in our analysis.

F. Graph Analysis

After breaking down the traffic, we know all connections
that traverse a particular AS, PoP and router rendezvous.
We can then generate directed graphs in which bots are
represented by vertices and connections among them are
represented by edges. For simplicity, all edges carry the
same weight. Graph metrics to determine whether the traffic
is P2P are proposed in [16] and adopted in analyzing the
modified chord in [12]. In our analysis, we inspect the same
set of features as in [12] for consistency. The features used
to characterize P2P traffic include the number of weakly-
connected components, size of the largest weakly-connected
component, average node degree and InO (In Out) ratio. We
introduce each of them as follows.

Number of Weakly-Connected Components: A weakly-
connected component is a maximal subgraph of a directed
graph such that in the subgraph replacing all of its directed
edges with undirected edges produces a connected undi-
rected graph. For effective detection, we expect a small num-
ber of weakly-connected components. As one can imagine, a
large number of connected components usually means small-
size components that are less likely to exhibit typical P2P
patterns.

Size of the Largest Weakly-Connected Component:
This metric is meaningful to us because as pointed in [15]
the graph formed by a P2P network tends to be densely
connected and have a large connected component including
the majority of participating nodes.

Average Node Degree: This metric counts both the
incoming and outgoing edges of a node, i.e., ignoring the
directionality. A graph with a high average degree tends to
be tightly-connected and P2P networks normally have high
average node degrees.

InO Ratio: The metric calculates the percentage of nodes
in the graph that have both incoming and outgoing edges.
This metric is of interest because under client-server proto-
cols such as HTTP and SMTP, clients usually initiate con-
nections (outgoing edges) whereas servers normally accept
connections (incoming edges). But nodes in P2P networks
usually serve as both clients and servers so that P2P’s InO
is distinctively higher than others.

IV. ANALYSIS RESULTS

This section presents our analysis results. Recall that we
construct three different P2P overlay topologies, namely,
Kad, the modified Chord and the simple ring, and ex-
amine their traffic graphs, respectively, at three types of
network components. As introduced in Section III-F, the
graph features characterizing P2P patterns are the number

of weakly-connected components, size of the largest weakly-
connected component, average node degree and InO ratio.
We conduct graph analysis first at the AS-level, then the
PoP-level and finally, the router-rendezvous-level, and show
the graph features at the top 10 places of each level.

A. AS-Level Analysis

We first take a look at the AS-level graphs of three
different topologies. Table II shows the Kad graph properties
for day1 and day2, respectively, at top 10 ASes, ranked
by the number of unique connections going through. We
map the AS numbers to ISPs using the AS-name lookup list
[27]. It turns out that from day1 to day2 the top 10 order
changes slightly but the 10 AS numbers remain the same. As
expected, these top ASes belong to large ISPs such as AT&T
and Verizon. Note that the traffic percentage at a single AS
is calculated by the number of unique connections observed
at that particular AS divided by the total number of unique
connections in the entire overlay topology. In both days,
top 10 ASes aggregated together can observe 98.95%—
almost all of the Kad overlay’s unique connections. We count
unique connections not all connections across top 10 ASes,
as one connection can be seen at multiple ASes. In particular,
the top 1 AS (3356/Level3) alone can see two thirds of
the overlay traffic with all nodes (100000) in the picture in
both days. Even for ASes carrying less traffic, they have at
least 99912 nodes’ traffic traverse through. Most importantly,
at each top AS, all nodes are weakly-connected with each
other, forming one giant weakly-connected component. This
property can facilitate detection because a huge portion of
the overlay traffic captured in one single graph is more likely
to demonstrate P2P characteristics and easier to get caught
than a disconnected graph with many connected components
with small sizes. As suggested in [16], two metrics can
characterize P2P traffic. One is a high average degree (larger
than 2.8), and the other is a high InO ratio (large than 1%).
In both days, at all top ASes, the average degree and InO
values are high enough for P2P classification: the lowest
value of average degree is 56.8 and that of InO is 87.76%.
Thus, as we can see, all top AS venues have high visibility of
Kad traffic with P2P graph features, sufficient for detection.

Table III presents modified Chord graph features at top
10 ASes. Compared to Kad, top 10 AS numbers remain the
same but their ranks change a bit. They in total observe
99.61%, an enormous fraction of overlay connections and
the top 1 AS is still 3356 witnessing 64.25% of total traffic.
Note that the AS observing the most can see 80620 while
the one observing the least can only see 13900 nodes. As
for the number of connected components, to the contrary
of Kad, each AS’s graph is not well connected and has
thousands of connected components. Figure 2 shows in log
scale the sizes of 10 largest weakly-connected components at
top 5 ASes. Top 1 AS 3356’s largest component has 36532
nodes but all other components are very small containing 15
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Table II
KAD AS-LEVEL

Kad Day1
ISP AS Percentage # of Nodes # of Edges Avg Degree # of Conn Comp InO

Level3 3356 65.25% 100000 38192566 763.9 1 99.02%
AT&T 7018 35.33% 100000 20679083 413.6 1 99.02%

XO 2828 23.39% 100000 13691127 273.8 1 99.02%
Sprint 1239 8.32% 99983 4872140 97.5 1 99.01%

Verizon 19262 8.30% 100000 4859686 97.2 1 100.00%
Qwest 209 8.28% 100000 4848724 97.0 1 99.02%
NTT 2914 7.78% 99993 4556302 91.1 1 99.02%

BellSouth 6389 7.78% 100000 4554972 91.1 1 99.01%
AT&T 7132 6.78% 99995 3965587 79.3 1 100.00%

UUNET 701 5.38% 99937 3148400 63.0 1 88.13%

Kad Day2

Level3 3356 66.69% 100000 39628509 792.6 1 99.02%
AT&T 7018 34.96% 100000 20772860 415.5 1 99.02%

XO 2828 24.18% 100000 14367036 287.3 1 99.02%
Qwest 209 8.35% 100000 4959076 99.2 1 99.02%
Sprint 1239 7.76% 99969 4611389 92.3 1 99.01%

BellSouth 6389 7.59% 100000 4509341 90.2 1 99.01%
Verizon 19262 7.23% 100000 4294952 85.9 1 100.00%

NTT 2914 7.06% 99988 4196433 83.9 1 99.02%
AT&T 7132 6.33% 99990 3761651 75.2 1 100.00%

UUNET 701 4.78% 99912 2839591 56.8 1 87.75%

Table III
MODIFIED CHORD AS-LEVEL

ISP AS Percentage # of Nodes # of Edges Avg Degree # of Conn Comp InO

Level3 3356 64.25% 80620 112431 2.8 9639 66.22%
AT&T 7018 38.09% 54272 66650 2.5 10534 51.62%

XO 2828 22.73% 36234 39784 2.2 7470 47.03%
Verizon 19262 9.43% 17365 16494 1.9 3726 37.01%

NTT 2914 8.09% 15339 14151 1.8 3384 34.45%
Sprint 1239 7.64% 14908 13366 1.8 3602 31.16%
Qwest 209 7.20% 14642 12594 1.7 3757 27.99%
AT&T 7132 7.13% 13849 12482 1.8 2956 33.29%

BellSouth 6389 6.82% 13486 11934 1.8 3080 30.47%
UUNET 701 6.27% 13900 10978 1.6 4305 16.41%

Table IV
SIMPLE RING AS-LEVEL

ISP AS Percentage # of Nodes # of Edges Avg Degree # of Conn Comp InO

Level3 3356 64.76% 79327 64755 1.6 14522 63.31%
AT&T 7018 37.51% 51316 37511 1.5 13805 46.20%

XO 2828 22.81% 32148 22805 1.4 9343 41.88%
Verizon 19262 9.30% 13632 9297 1.3 4335 36.40%

NTT 2914 8.05% 11867 8046 1.3 3821 35.60%
Sprint 1239 7.53% 11604 7532 1.3 4072 29.82%
Qwest 209 7.36% 11494 7362 1.3 4132 28.10%
AT&T 7132 7.07% 10430 7066 1.3 3364 35.49%

BellSouth 6389 6.73% 10193 6728 1.3 3465 32.01%
UUNET 701 6.17% 10831 6166 1.1 4665 13.86%
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Figure 2. Modified Chord: 10 largest components at top 5 ASes
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Figure 3. Simple ring: 10 largest components at top 5 ASes

Figure 4. Top 10 PoPs (pins) and router rendezvous (arrows)

nodes or so. Top 2 AS 7018 has two large components with
8729 and 7506 nodes respectively and other components’
sizes drop significantly. The component sizes remain stable
at other ASes, all in the order of hundreds. Due to the
topology’s intent of hiding its traffic, unsurprisingly, the
average degree at each AS is low—from 2.8 to 1.6, though
the InO values are high—from 66.22% to 16.41%. Taking
all metrics into account, AS 3356 is able to detect the P2P
overlay since it can see a large portion of the overlay with
typical P2P patterns, if not the entire one. If we relax the
average degree threshold a bit, AS 7018 may also be a good
venue to make detection efforts considering the two large
connected components. We think it is hard for the rest of
the ASes to do so due to their relatively fragmented views.
Note that our observations on modified Chord are slightly
different from those in [12] which concludes that even at
the most central (top) ASes the average degrees are less
than 2 and connected components are mostly of size 2 and
3 with the maximal containing 29 nodes. This difference
may be attributed to the way of mapping the overlay to the
underlay: they make the number of overlay nodes in each
AS proportional to the size of the AS whereas we consider
the geographical distribution of nodes. In addition, our AS-
path inference algorithm is also different from theirs: they
assume shortest paths while our inter-domain AS-pathes are

derived from real-world BGP routing tables.
When it comes to the simple ring structure (Table IV),

the top AS numbers do not change, and their ranks are
the same as those for modified Chord. 99.62% of overlay
connections traverse through top 10 ASes. Though the top1
AS 3356 can see 64.76% of the total traffic, the number
of nodes visible (79327) are more than the number of
edges (64755), resulting in a great number of connected
components (14522) and small component sizes. As seen in
Figure 3, 3356’s largest component only has 34 nodes. We
also verify that a majority of 3356 connected components
have less than 10 nodes. The average degrees are all below 2,
which is expected because each node only has a predecessor
and a successor so that the average degree of the entire graph
is only 2. Even though the InO values are high enough,
detection based on scattered information at a single AS is
difficult.

B. PoP-Level Analysis

At the PoP level, we also present graph features at each
top PoP of three P2P structures. PoPs are represented by ID
numbers and ranked by the number of unique connections
going through as well. In Table V, as we can see, both the top
10 PoP numbers and their ranks change slightly from day1
to day2. Top 10 PoPs account for 80.88% of total traffic

7



Table V
KAD POP-LEVEL

Kad Day1
PoP Percentage # of Nodes # of Edges Avg Degree # of Conn Comp InO

74 53.78% 100000 31479094 629.6 1 100.00%
7 10.29% 100000 6024939 120.5 1 99.94%

435 8.27% 100000 4837622 96.8 1 98.50%
11 8.14% 99998 4763870 95.3 1 99.86%
128 7.77% 99981 4550316 91.0 1 99.52%
282 7.37% 99995 4315967 86.3 1 100.00%
4 7.27% 99977 4257513 85.2 1 99.73%

267 6.72% 99992 3934199 78.7 1 100.00%
291 6.26% 99975 3661420 73.2 1 100.00%
295 6.25% 99997 3658911 73.2 1 99.97%

Kad Day2

74 54.84% 100000 32588327 651.8 1 100.00%
7 10.06% 100000 5976120 119.5 1 99.97%

128 8.22% 99991 4883282 97.7 1 99.66%
11 8.06% 100000 4790115 95.8 1 99.87%
291 7.49% 99997 4450255 89.0 1 100.00%
435 7.41% 100000 4404198 88.1 1 98.60%
267 7.20% 99996 4279914 85.6 1 100.00%
4 7.19% 99967 4271196 85.5 1 99.67%

282 7.07% 99992 4199285 84.0 1 99.99%
239 5.88% 99879 3491615 69.9 1 99.65%

Table VI
MODIFIED CHORD POP-LEVEL

PoP Percentage # of Nodes # of Edges Avg Degree # of Conn Comp InO

74 54.07% 77488 94629 2.4 16735 48.00%
7 9.27% 19927 16222 1.6 6095 21.91%

267 7.99% 14764 13981 1.9 3092 34.80%
11 7.98% 17225 13957 1.6 5334 18.75%
128 7.46% 17169 13058 1.5 5673 17.39%
4 7.25% 15962 12686 1.6 4834 20.36%

435 6.94% 13649 12151 1.8 3067 32.38%
282 6.81% 13677 11913 1.7 3184 31.41%
291 6.36% 12433 11137 1.8 2683 32.68%
295 5.84% 11877 10228 1.7 2803 29.32%

Table VII
SIMPLE RING POP-LEVEL

PoP Percentage # of Nodes # of Edges Avg Degree # of Conn Comp InO

74 54.51% 75999 54506 1.4 21493 43.44%
7 9.40% 16165 9400 1.2 6765 16.30%
11 7.78% 13648 7779 1.1 5869 13.99%
128 7.63% 13765 7631 1.1 6134 10.88%
267 7.52% 11079 7521 1.4 3558 35.77%
4 7.31% 12505 7305 1.2 5200 16.83%

435 7.13% 10568 7127 1.3 3441 34.88%
282 7.08% 10587 7078 1.3 3509 33.71%
291 6.37% 9392 6373 1.4 3019 35.71%
295 5.77% 8829 5774 1.3 3055 30.80%
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Figure 5. Modified Chord: 10 largest components at top 5 PoPs
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Figure 6. Simple ring: 10 largest components at top 5 PoPs

in day1 and 81.58% in day2, a slightly drop compared to
traffic observed at top 10 ASes that can see more than 98%.
This makes sense because PoPs, normally as traffic exchange
points, are not able to see intra-domain traffic taking place
within ASes. The top PoP 74 alone is able to observe 53.78%
and 54.84% of traffic respectively in each day. Similar to the
AS-level, not only almost all nodes (more than 99967) can
be seen at each top PoP, but also they are weakly connected
forming one single component. The average degrees and InO
ratios are well above the P2P classification thresholds.

In the modified Chord’s case as shown in Table VI, with
a bit reordering, top PoPs are almost the same as those of
Kad, taking up 80.29% of overlay connections in total. 74
is still the top 1 PoP observing 54.07% of total connections
containing 77488 nodes, but all other PoPs observe less than
20000 nodes. As for sizes of weakly connected components,
shown in Figure 5 in log scale, PoP 74’s largest component
is of size 23153 and others are quite small. Other PoPs’
component sizes are less than 300. Considering average
degree, InO ratio and the largest component size, if we tune
the average degree threshold a bit, PoP 74 can be a good
place for detection.

In simple ring’s case (Table VII), the PoP numbers are
exactly the same as those of modified Chord. Figure 4 shows
the geographical locations of the top 10 PoPs denoted by
pin icons. Note that they hardly change across the three
structures and their locations are distributed throughout the
US. 89.25% of total traffic reaches top 10 PoPs with 54.51%
traversing PoP 74. Despite the fact that half of overlay
connections can be observed at PoP 74, similar to AS-Level,
the number of edges is smaller than the number of nodes.
The largest component of PoP 74 is very small containing 22
nodes (Figure 6). It is the same case for all other top PoPs.
Though InO values are moderate, low average degrees and
a good many small connected components can prevent the
P2P structure from being captured at any PoP.

C. Router-Rendezvous-Level Analysis

At the router-rendezvous level, we present results the
same way as before. For the Kad structure, as shown in
Table VIII, router rendezvous are denoted by ID numbers
and ordered by the number of unique overlay connections

observed. The top 10 router rendezvous are the same
throughout the two days, altogether, see 89.75% of traffic
in day1 and 89.27% in day2. The top 1 router rendezvous
number 2 is reached by 68.77% of total connections in day1
and 68.91% in day2. A majority of nodes (more than 98579)
appear in the graph as one giant component at each top
router rendezvous. In addition, high average degrees and InO
values make detection feasible.

Let us take a look at the modified Chord at the router-
rendezvous level (Table IX). There is one new router ren-
dezvous in the top 10 list that does not appear in that of
Kad’s and the ranks of the two lists are quite similar. Top 10
router rendezvous carry 89.96% of total connections and the
top 1 router rendezvous is still 2 accounting for 68.76% of
the traffic including 88913 nodes. As for the sizes of weakly
connected components, the trend does not differ much from
that at the AS- and PoP-level. The top 1 router rendezvous’s
largest connected component is of a big size—35943 nodes
(Figure 7 in log scale) and other components have small
sizes (less than 15). With a distinctive average degree and
high InO value, this router rendezvous is a reasonable venue
for capturing the modified Chord.

Finally, for the simple ring structure (Table X), the set of
top router rendezvous is the same as that of Kad. Figure 4
illustrates all top router rendezvous for the three structures,
each represented by an arrow with a star. Note that some
of them are co-located with the top PoPs: in fact, PoPs are
a subset of router rendezvous. Top 10 router rendezvous
observe 80.54% of total traffic and router 2 sees 68.89% of
traffic. With more nodes than edges at each top router ren-
dezvous, it is difficult to get a full picture of the P2P overlay.
Similar to AS- and PoP-level, the top 1 router rendezvous’s
largest component contains 33 nodes. The average degrees
are unsurprisingly low, insufficient for detection.

D. Insights from Analysis

From the above analysis, we have several key observations
worth noting. First, the visibility of Kad’s overlay traffic
and structure at all levels’s top places is good enough
for detection; the modified Chord’s P2P characteristics can
be captured by a few top locations but not all; and the
information of the hypothetical simple ring’s topology at all
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Table VIII
KAD ROUTER-RENDEZVOUS-LEVEL

Kad Day1
Router Percentage # of Nodes # of Edges Avg Degree # of Conn Comp InO

2 68.77% 100000 40251799 805.0 1 100.00%
2164 14.91% 99959 8728267 174.6 1 98.96%
12 11.90% 99997 6967203 139.3 1 84.22%
98 11.75% 100000 6874621 137.5 1 100.00%
222 9.26% 100000 5419174 108.4 1 99.99%
8919 8.30% 100000 4855632 97.1 1 98.50%
745 7.82% 99997 4579803 91.6 1 99.85%
82 7.33% 99978 4288889 85.8 1 99.74%
47 6.99% 98858 4090556 82.8 1 92.32%
88 6.67% 99997 3904395 78.1 1 99.71%

Kad Day2

2 68.91% 100000 40945772 818.9 1 100.00%
2164 14.52% 99959 8626011 172.6 1 99.32%
12 11.57% 99989 6876147 137.5 1 83.77%
98 11.28% 100000 6702210 134.0 1 100.00%
222 9.05% 100000 5379049 107.6 1 99.98%
8919 7.41% 100000 4404198 88.1 1 98.60%
745 7.67% 100000 4559186 91.2 1 99.86%
82 7.24% 99973 4304038 86.1 1 99.68%
88 6.53% 99996 3881327 77.6 1 99.61%
47 6.18% 98579 3671730 74.5 1 90.15%

Table IX
MODIFIED CHORD ROUTER-RENDEZVOUS-LEVEL

Router Percentage # of Nodes # of Edges Avg Degree # of Conn Comp InO

2 68.76% 88913 120337 2.7 13816 59.33%
2164 15.00% 29299 26245 1.8 8964 25.60%
12 11.57% 23682 20247 1.7 7629 20.07%
98 11.33% 21641 19821 1.8 5586 31.07%
222 8.73% 17779 15280 1.7 4771 27.68%
745 7.59% 16673 13275 1.6 5286 17.14%
82 7.29% 16133 12758 1.6 4926 19.98%

8919 6.94% 13649 12151 1.8 3067 32.38%
88 6.26% 12913 10962 1.7 3364 25.96%
57 6.16% 13606 10784 1.6 4029 19.42%

Table X
SIMPLE RING ROUTER-RENDEZVOUS-LEVEL

Router Percentage # of Nodes # of Edges Avg Degree # of Conn Comp InO

2 68.89% 88161 68885 1.6 19276 56.27%
2164 15.12% 25513 15122 1.2 10391 18.54%
12 11.35% 20126 11351 1.1 8775 12.80%
98 11.28% 17720 11275 1.3 6445 27.26%
222 8.93% 14243 8933 1.3 5310 25.44%
745 7.42% 13218 7419 1.1 5799 12.26%
82 7.36% 12653 7356 1.2 5297 16.27%

8919 7.13% 10568 7127 1.3 3441 34.88%
88 6.10% 9762 6102 1.3 3660 25.02%
47 6.06% 9669 6061 1.3 3608 25.37%
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Figure 7. Modified Chord: 10 largest components at top 5 locations
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Figure 8. Simple ring: 10 largest components at top 5 locations

levels is quite fragmented and hardly useful for detection.
From the attacker’s viewpoint, in terms of efficiency, Kad
has the most efficient routing: contacting O(log N) nodes
during a search (where N is the size of the network); the
modified Chord can achieve O(log2 N) hops; and the simple
ring is the worst, requiring O(N) steps. From resilience’s
perspective, the Kad network is shown to be robust to a few
types of mitigation strategies such as cutting off random
nodes and removing peers learnt from bots’ peerlists [28];
the simple ring structure is evidently fragile—removing a
couple of nodes can disconnect the overlay; and the modified
Chord structure hits the middle ground: not as resilient as
Kad but better than the simple ring. We believe that, while
constructing a P2P botnet, the attacker needs to strike a
balance between resilience or efficiency and the ability to
evade detection. Although the simple ring can hide its traffic
well at various network components, to build upon this
structure the botnet has to compromise resilience and C&C
efficiency. The modified Chord makes a tradeoff though its
structural properties cannot be concealed at some locations.
Kad has been successfully utilized by the Storm botnet, but
given our detection strategy, to use it for a future botnet,
the attacker has to come up with techniques to mask its P2P
patterns.

Second, from detection’s perspective, AS-level provides
better overlay traffic views overal than PoP- and router-
rendezvous-level, but is less practical than the other two for
actual detection deployment. Since AS is a logical concept
and to capture all connections within one single AS requires
collaboration and synchronization among multiple physical
devices at different geographical locations, it may take some
effort. PoPs normally function as traffic exchange points.
From our analysis, we can see that at the PoP-level, detecting
Kad and the modified Chord is very likely though the latter
is only visible to the top 1 PoP. Compared to ASes and router
rendezvous, PoPs observe less traffic due to the invisibility
of traffic within ASes (intra-domain traffic). Moreover, the
number of PoPs is small so that the points of monitoring are
limited. Among the three, router rendezvous make a tradeoff.
Their detection capabilities are comparable to PoPs’ and they
can observe intra-domain traffic with more monitoring points
available, making detection more feasible.

V. DISCUSSIONS

Thus far, we have measured the effectiveness of identi-
fying P2P overlay traffic at various network components.
For actual implementation of the detection at the Internet
infrastructure, several challenges remain to be addressed.

First, since P2P networks implementing the same protocol
may not be distinguishable at the structure-level via graph
analysis, our techniques will also identify regular P2P file-
sharing topologies. To differentiate between the two, our
approach needs assistance from detection mechanisms at the
edge networks for validation. If one node, in the traffic graph
we observe, is identified as a bot by a local approach due
to its malicious behavior demonstrated at the host or the
network or both, we can infer that nodes in the same graph
are part of the same botnet. Admittedly, although none of the
state-of-the-art botnets shares the same network as a regular
P2P file sharing does, if they do, more advanced detection
techniques will be required to distinguish between the good
and the bad.

Second, after identifying nodes of a botnet, to further mit-
igate or contain bots, we need to come up with efficient and
effective techniques that can accommodate a large volume of
traffic at the infrastructure level with minimal impact on the
legitimate traffic. In the edge or local networks, fine-grained
information of a particular node is available to detection
mechanisms, and all incoming and outgoing traffic of the
node can be controlled. Thus, after detection, taking the
suspected node offline is not a difficult task. However, at
the infrastructure level, a single network component may
not have the ability and the confidence to remove a node
completely so that advanced response mechanisms other
than simply filtering or blacklisting are needed.

Finally, our models regarding the Internet infrastructure
are abstracted from real-world datasets, so the accuracy
depends on how well the datasets characterize the behavior
and the state of the Internet, which could be error-prone.
Moreover, some datasets may be outdated and may not
reflect the current state of the Internet due to its fast-evolving
nature. Therefore, these factors have to be taken into account
when the infrastructure-level detection is put in practice.
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VI. CONCLUSION

As P2P structures become a popular choice for recent bot-
nets, especially large-scale ones, detection mechanisms have
to keep up with this change and identify bots in an efficient
and effective manner. In this paper, we propose detection of
P2P botnets at a high-level—the infrastructure-level by an-
alyzing their structural properties from a graph perspective.
We construct three different P2P overlay topologies: Kad,
the modified Chord and the simple ring. These overlays are
mapped to the AS-level underlays and their respective AS-,
PoP- and router-rendezvous-paths are inferred. Finally, we
inspect these network components individually to measure
their capability in identifying the P2P botnets. We find
that detection at any of the three network components has
its advantages and drawbacks. Overall, router-rendezvous-
level detection is able to strike a balance between detection
capability and feasibility. Also, a botnet needs to make a
tradeoff between resilience and stealthiness.
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