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Abstract—Existing approaches to providing high availability
(HA) for virtualized environments require a backup VM for
every primary running VM. These approaches are expensive
in memory because the backup VM requires the same amount
of memory as the primary, even though it is normally passive.
In this paper, we propose a storage-based, memory-efficient
HA solution for VMs, called HydraVM, that eliminates the
passive memory reservations for backups. HydraVM maintairs
a complete, recent image of each protected VM in shared
storage using an incremental checkpointing technique. Upo
failure of a primary VM, a backup can be promptly restored
on any server with available memory. Our evaluation results
have shown that HydraVM provides protection for VMs at a
low overhead, and can restore a failed VM within 1.6 seconds
without excessive use of memory resource in a virtualized
environment.
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may not resume execution from where they left off when
the VM restarts from its disk image. Human intervention is
usually needed as applications atatelessf not specially
designed and instrumented.

A stateful approach is required to reduce application
downtime and lost work from physical host failures. Tra-
ditional state-machine replication [2] and primary-bagzku
replication [3] approaches add complexities to building
highly available applications. Virtualization assistgégluce
this complexity by providing HA support at the infrastruc-
ture level for any application running in a VM. The current
state-of-the-art HA solution for VMs [4] is to provide, for
each primary VM, a backup VM in a different physical host.
The backup VM is normally passive (not operating). It acts
as a receptacle of the primary VM’s state changes, and can
quickly take over execution from the primary’s most recent
state when the primary fails. The cost of this approach is
high, because the backup VM reserves as much memory as
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I. INTRODUCTION

VMs even though the backup is inactive until a fail-over
is required. The reservation of backup memory degrades
resource efficiency in a virtualized environment, offseiti

Virtualization is widely used in contemporary IT infras- some of the benefits gained through consolidation.

tructures for it enables flexible partition and dynamic edio

In this paper, we propose atorage-based, memory-

tion of physical computing resources. In a virtualized envi efficientapproach, callethydraVM, to providing high avail-
ronment, multiple virtual machines (VMs) are consolidatedability support for virtualized environments. Our primary
on a physical server to reduce deployment and managemedésign objective is to protect VMs from failures of their
costs. However, when a physical server failure occurs, fophysical hostsvithoutany idle backup memory reservations.
example, due to unexpected power loss or hardware fault$nstead of creating backup VMs to keep track of the primary
all the VMs running on that server suffer service outagesVM state, we maintain a fail-over image that contains a

Providing high availability (HA) for VMs to survive failuse
of their physical hosts is therefore a crucial task.

complete, recent memory checkpoint of the primary VM in
a networked, shared storage, which is commonly available

Automatically restarting the VMs affected by a physical in a virtualized environment. In the event of primary fagur

host failure in other healthy hosts (e.g., [1]) is usually no a spare host is provisioned, and we restore the failed VM
enough. Users of the VMs notice disruption of services, abased on its fail-over image and a consistent disk state, and
they may need to wait more than 10 seconds for a failedictivate the VM promptly to take over execution.

VM to reboot and become available for use again. The The storage-based HydraVM approach has several bene-
applications that were running in the VM before its failure fits. It uses inexpensive shared storage for maintaining VM



fail-over images in place of expensive DRAM, reducing Our primary design goal is therefore étiminatethe idle

the hardware costs for providing HA support. It frees upreservation of backup memory, and our approach is to “main-
the memory reserved by idle backup VMs for better usagetain” backup VMs in a stable storage instead. HydraVM
improving resource efficiency in a virtualized environment maintains in a networked, shared storage a fail-over image
Spare memory can be replenished to existing VMs forfor each protected (primary) VM, based on which a backup
enhancing performances, or used to host additional VMs andM can be quickly restored and activated to take over
upgrade system throughputs. Since HydraVM maintains the&vhen the primary fails. The shared storage for storing VM
fail-over image in a shared storage instead of a dedicatefhil-over images is fail-independent to the physical sesve
backup machine, in case of a failure, the affected VM mayhosting VMs. Such a shared storage accessible to every VM
be recovered on any physical host that has access to tlserver host is usually provided in a virtualized environten
storage. This allocation flexibility allows fail-over to yan to facilitate management of VMs via, for example, a storage
host that currently has available memory capacity, which isarea network (SAN) or cluster filesystem, and built with
critical given the highly variable utilization of hosts in a storage-level redundancy mechanisms which can be lever-
virtualized environment. aged to guarantee reliability for the fail-over images.

The remainder of this paper is organized as follows. Besides eliminating unnecessary memory reservations,
The next section provides an overview of HydraVM, andHydraVM must also satisfy several other properties to be
describes the rationale of its design. Section Ill and IVpractically useful. It should provide protection for VMs
details the protection and recovery mechanisms of HydraViagainst failures of physical servers at low overheads to be
against failures. Our experimental results are presentdd a deployable in real-world systems. In the event of a host
analyzed in Section V. Section VI summarizes related workfailure, fail-over of the affected VMs must occur quickly,
We discuss future directions and conclude the paper imnd the amount of completed work lost due to the failure
Section VII. should be reasonably small.

Il. DESIGN RATIONALE AND OVERVIEW OF HYDRAVM B. System Overview

HydraVM has two operating modepyotection and re-
covery Figure 1 illustrates the operation of HydraVM.

The design of HydraVM is motivated by two key observa- A primary VM runs in a host that may fail. During
tions. First, existing approaches [4], [5] for providingghi  the normal execution of the primary, HydraVM operates in
availability to VMs maintain a backup for each (primary) the protection mode. Protection for the primary VM begins
VM to quickly take over when a failure occurs. The backupwhen HydraVM takes an initial full checkpoint of the VM,
VM consumes as much main memory as the primary, evewhich contains the complete VM execution state. The full
though it stays passive for most of time. This idle reseorati checkpoint is taken only once at the beginning. The complete
effectively doublesthe memory requirement of each VM VM memory state captured is stored as the VM fail-over
without providing any additional productivity in the norma image in the VM checkpoint store, while a VM disk state
course of operation. consistent with the memory state in the image being kept

Our second observation is that it is difficult to either in the VM disk server, which hosts the virtual disks of
take advantages of or adjust the idle reservation of backuthe primary VM. VM checkpoint store and VM disk server
memory. Current platform virtualization technologies¢lsu can be one or separate storage servers in the shared storage
as Xen and VMware ESX, either do not support or do notsystem of a virtualized environment.
prefer machine-wide paging to “schedule” physical page As the primary VM operates, HydraVM keeps track of the
frames across hosted VMs, because a meta-level page rexecution state of the primary by taking VM checkpoints pe-
placement policy can introduce performance anomalies dugodically, so that in case there is a failure, the primany be
to unintended interactions with the memory managementransparently recovered from a recent state. HydraVM takes
systems in the guest VMs [6]. As a result, once a memorycheckpoints of the primary VNincrementally(Section??).
area is reserved (although not actively used) by a backufi doesn’t have to send the full VM memory image everytime
VM, it cannot be utilized by other running VMs. The the VM state is captured, but only changes to the primary
backup VM could possibly be “paged out” when remainingstate since the last checkpoint taken, to be consolidated in
idle [7]. However, it needs to be swapped in very frequentlythe fail-over image in the VM checkpoint store. HydraVM
to synchronize with the primary execution state, creatingalso implements aopy-on-write (CoW) technique (Sec-

a non-trivial overhead. The popular memory ballooningtion 111-B) to minimize the performance disruptions to the
technigue [6] used for run-time management of VM memoryprimary VM from continuous checkpointing.

allocations is not helpful for shrinking backup memory Once a failure of the primary host is detected, HydraVM
reservation either, because the backup VM is not operdtiongwitches to the recovery mode and reacts to the failure. A
and hence cannot exercise its balloon driver. restoration host with sufficient available memory is seldct

A. Motivation and Objectives
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Figure 1. HydraVM overview.

and provisioned, either from the stand-by nodes, or from theve point out that not all applications require a very high
surviving nodes, in which the failed primary VM is restored checkpointing frequency. Users of the applications thatine
based on the fail-over image in the VM checkpoint storeto be checkpointed extremely frequently (and yet, do not
and a consistent persistent state in the VM disk server. Thave a checkpointing mechanism built-in) may be willing
perform fail-over quickly, HydraVM implementslim VM  to accept the cost of existing approaches that maintain a
restore (Section 1V-A) to load the minimum information designated backup VM in memory [4], [9], [5], [10]. Hy-
needed from the fail-over image, instantiate the backup VMdraVM complements existing HA approaches by providing
and immediately activate the VM to take over execution froma memory-efficient solution to providing VM protection
the most recent state recorded before the primary failureagainst host failures that is practically useful and depldy
The VM memory contents not loaded during fail-over arein real-world virtualized environments.
provided to the VMon-demandavhen the VM accesses them  We built a prototype HydraVM system on the Xen hy-
(Section IV-B). pervisor [11]. HydraVM implements its VM protection and
HydraVM maintains fail-over images on stable storage,6COVery mechanisms for high availability as Xen manage-
eliminating the memory reservations made by idle backupn€nt commandsh@acp andhart) to be invoked via the
VMs. In order to limit the amount of completed work lost XM user interface. These commands can be used by HA
upon failure, frequent VM checkpoints need to be takenProvisioning agents to initiate the protection for a prignar
which requires the time to store each incremental checkpoin/M @nd the restoration of a backup VM in case the primary
to be short. We propose to use a solid state device (SSDﬁa'ls_- In the_ next two sactions, we provide detalls_ of the
such as a flash drive, to hold the VM fail-over images. sspdesign and implementation of the HydraVM protection and
are cheaper than DRAM, and faster than hard disks. The£COvery mechanisms.
provide much better performance than mechanical drives, fo
both sequential and random 1/Os [8]. By holding fail-over 1. HYDRAVM PROTECTION
images on a SSD, the average ti_me_ _required to consolidate HydraVM tracks changesto the VM state by taking
incremental checl_<p0|nts can be significantly reduced, and gy, o ot checkpoints. A checkpointing daemon, called
a result, checkpoints of a protected _VM can be taken mor‘ﬁacp, runs in the privileged management VM (Domain
frequently, achieving greater protection of the VM. 0 in Xen’s terminology) in the primary host, as shown in

While we propose deployment of a SSD-enabled checkFigure 1. It takes incremental checkpoints of the primary
point store to further improve system performance, Hy-VM periodically and sends the checkpoint data over the
draVM is not confined to systems that have SSDs availablenetwork to the VM checkpoint store. A receiver daemon,
In Section V, we evaluate HydraVM on both a disk and ahar cv, runs in the checkpoint store and receives check-
SSD-based checkpoint store and demonstrate the fegsibilipoints from the primary periodically. It merges all of the VM
of our approach. Although a SSD-based system enablestate changes included in each checkpoint and maintains a
checkpoints of a primary VM to be taken more frequently,correct and consistent fail-over image for the primary VM.



A. Incremental Checkpointing to Storage are not made until the entire incremental checkpoint has
arrived at the checkpoint store to ensure that a correct and

_HydraVM implements incremental VM checkpointing consistent image of the primary VM is available for fail-ove
similar to that proposed in Remus [4] and Kemari [9]. Unlike i the shared storage at all times.

these approaches, HydraVM stores the checkpoints taken in
a shared storage rather than in server memory. fdep  B. Copy-on-Write Checkpointing

checkpointing daemon takes an initial full snapshot of the The primary VM is paused for taking each incremental
primary VM and stores the VM image in the VM checkpoint checkpoint to ensure that a consistent set of memory and
store as a regular file. This image file has approximatelyopy state changes are captured together in one checkpoint.
the same size as the amount of memory configured for thgyhile the primary VM is paused, theacp daemon first
primary VM. It stores all memory pages of the primary VM jgentifies the set of memory pages dirtied since the last
sequentially in their order, along with the virtual CPU stat checkpoint, gains access to these dirtied VM pages, and
and contains information describing the configuration @f th tpen copies the contents of the dirty pages to a separate
primary VM, for example, its resource usage and virtualpyffer. The dirty pages need to be copied in order to isolate
device state. their contents from the primary VM while ttreacp daemon

As the primary VM executes, HydraVM tracks the transmits them to the shared storage in parallel with piymar
changes of its memory and virtual CPU state by a seriegxecution. Otherwise, if the primary VM modifies a dirty
of incremental checkpoints. To create an incremental checkhage beforéhacp is able to send the page out, by the time
point, thehacp checkpointing daemon temporarily pausesthe page is transmitted, its contents have changed from what
the primary VM, while it identifies the changed state andwas captured in the checkpoint, and this may corrupt the
copies them to a buffer. We leverage steadow page tables consistency of the checkpoint.
support [12] provided by the Xen hypervisor to identify  Pausing the primary VM for every incremental checkpoint
the state that has changed since the last checkpoint takeiterrupts its normal execution, and hence, it is critica f
Shadow page tables are turned on for the primarfo@+  the duration of these interruptions to be minimized. It take
dirty mode. In this mode, the hypervisor maintains a privatea non-trivial amount of time fohacp to gain access to
(shadow) copy of the guest page tables in the primary andll dirtied VM pages in an incremental checkpoint. Multiple
uses page protection (marking all VM memory read-only)hypercalls are needed to ask the hypervisor to map batches
to track writes to the primary’s memory. After the memory of dirty pages belonging to the primary VM for the daemon.
pages that are dirtied since the last checkpoint are idedfifi We enhance the implementation by requesting access to
they are copied to a buffer along with the changed CPU statghe entire primary memory space once at the beginning of
and the primary VM is un-paused and can resume executiomprotection of the VM, so thahacp need not map regions

While the primary VM continues its execution, thacp of the primary’'s memory repeatedly everytime when the
daemon transmits the buffer containing the changed statgrimary is paused.
to the har cv receiver daemon running in the VM check-  Copying the contents of the dirty pages also significantly
point store. Thehar cv daemon receives each incrementalincreases the VM pause time. In fact, not every dirty page
checkpoint in its entirety, and can either store the cheitckpo in a checkpoint needs to be duplicated. If a dirty page is
as an individual patch file to be merged with the VM fail- not modified by the resumed primary execution, its content
over image during the activation of a bakcup VM, or updateremains consistent with the checkpoint captured and the
the VM image to contain the most recent page contenthiacp daemon can transmit the page directly without making
included in the incoming checkpoint. HydraVM uses thea copy. When the primary VM touches a dirty page, it does
latter approach, since merging a series of checkpoint patchot create any problem if the primary’s modification happens
files involves reading them from disk and committing their after hacp sent the page to the shared storage. The content
contents to various locations in the fail-over image, andof a dirty page needs to be duplicated only if the page has
is a time-consuming process. If the merging is performedot been transmitted to the checkpoint store and is about to
when restoration of a backup VM is required, the fail- be modified by the primary. HydraVM implements Copy-
over time would be unacceptably long. In HydraVM, the on-Write (CoW) checkpoints to copy these pages only.
hacr v daemon updates the fail-over image with the set of CoW checkpointing is implemented by maintaining a
dirtied memory pages and changed CPU states containdsitmap which indicates the memory pages to be duplicated
in a checkpoint as it is received, and commits all changebefore modifying them. While the primary VM is paused,
to the storage media to guarantee durability. It then sendwe mark the bits in the CoW bitmap for all dirty pages
an acknowledgement back to thacp daemon confirming included in the checkpoint captured, and resume primary
the completion of this checkpoint. Note that the set of statexecution without copying the dirty page content. While the
changes captured in one incremental checkpoint is appliegrimary VM is running, if a page marked in the CoW bitmap
to the fail-over image in its entirety; changes to the imageis detected to be modified, we duplicate its content to a



separate buffer before allowing the modification. Taep memory to host the backup VM, establish a communication
daemon is notified, so that it may send the copied page, nathannel between the backup VM and the hypervisor, and
the modified page being used by the primary VM, to theproperly connect virtual devices to the backup VM. A few
checkpoint store. For all other dirty pagéscp transmits memory pages that are shared between the VM and the
the VM pages directly. CoW checkpointing reduces the VMhypervisor are loaded subsequently. These pages contain
pause time by not copying page content while the VM isimportant information about the VM, for example, running
paused. It also reduces page duplication costs, as pages aigual CPU, wall-clock time, and some architecture-speci
copied only for a subset of the dirty pages included in eaclinformation, and are critical to starting VM execution.
incremental checkpoint. The memory space of the backup VM is then initialized

HydraVM focuses on tracking VM memory state in a with all page table pages of the VM. Page tables in the
storage-based fail-over image that can be used to recower tiprimary VM before its failure contain references to the
protected VM in case a failure occurs. For correct recoxry, physical memory frame in the primary host. When check-
VM disk state consistent with the fail-over memory image ispointing a page table page in the primary during protection,
needed. To meet this requirement, our system currentlghoshll such references are translatedpseudo-physical frame
VM virtual disks in LVM [13] logical volumes and uses the numbers[14], which are host-independent indices to the
the snapshot capability of LVM to capture the VM disk statecontiguous memory space as seen by the VM. When the
at the time of an incremental checkpoint. LVM snapshots ardart agent loads a page table page from the VM image,
instant and incur a minimum overhead since it uses a CoVit walks through the page table entries, assigns physical
technique for disk blocks to record only changes made to amemory frames in the restoration host for the VM pages, and
logical volume after a snapshot is created. updates the references to point to the allocated memory in
the restoration host. Finally, the virtual CPU state is kxhd
and the backup VM is switched on for execution.

When a primary failure is detected, a restoration host with
sufficient memory_is provisione(_j. A VM restore agent, cglledB_ Fetching VM Pages On-demand
hart as shown in Figure 1, is invoked to quickly bring
up the failed VM in the restoration host based on its fail- mmediately after the VM resumes execution, its memory
over image in the checkpoint store. The restored VM start§pace is only partially populated. Only a minimum number
operation immediately after being created, while its mgmor of VM pages (those loaded during slim VM restore) are in-
space is only partially populated during the fail-over. Asplace in the VM memory space and ready for use; no data
the VM executes, it sends requests for the missing memorpages of the VM are loaded from the fail-over image.

IV. HYDRAVM RECOVERY

contents to a memory page fetching daemon, calledf , As the backup VM executes and accesses its memory
which then provides the pages needed from the fail-ovepages, valid contents must be supplied for the execution to
image. proceed. In HydraVM, memory references of the backup
) VM are intercepted by the hypervisor. If a memory page
A. Slim VM Restore accessed by the restored VM is not yet present in the VM’s

To quickly bring up a backup VM is especially challeng- memory space, a page fetch request is sent tootihef
ing for HydraVM, because in our approach, VM fail-over fetching daemon, which loads the contents of the requested
image is not kept in server memory, but on a networkedmemory page from the VM image in the VM checkpoint
stable storage. As a result, we must quickly load the fadlrov store into proper location in the restored VM’'s memory
image into memory in the restoration host and activate thepace; hence, execution of the backup VM can proceed.
backup VM. However, it is impractical to delay the execution Memory references made by the restored VM can be
of the VM until the complete VM image is loaded, as this intercepted in different ways. One approach is to mark all
can take an unacceptable length of time—20 to 40 secondbe resident pages in the backup VM gset-presentin
in our experiments with 1-2GB VM images. We perform their page table entries while loading page tables during
a “slim” VM restore that loads only the minimum amount the slim VM restore. As a result, a page fault exception is
of information from the VM image required to instantiate forced and trapped into the hypervisor whenever the backup
the backup VM, and then resumes the execution of the VMaccesses a page. However, this approach requires sighifican
immediately, without waiting for its memory contents to be changes to the guest OS kernel. Instead, we leverage Xen's
fully populated. support of shadow page tables to detect memory accesses

In the event of a fail-over, theart agent first loads the from the backup VM. Since the “shadow” copy of the guest
configuration information from the fail-over image in the page tables maintained by the hypervisor is initially empty
VM checkpoint store. The configuration of the VM describesand to be filled in as guest pages are accessed, faults on
its allocated resources and virtual devices, and is usetéy t shadow page tables can be used as indicators of VM memory
VM restore agent to create a VM container with sufficientreferences.



Before finishing the slim VM restore, thieart restore experiments, we forcefully stop the primary VM to emulate
agent enables shadow page tables for the restored VM, antle occurrence of a primary failure. The restored VM
the VM is un-paused to resume execution. At this time,continues operation in the restoration host with its memory
the odpf fetching daemon is ready to service page fetchcontents being provided on-demand by thaépf memory
requests from the VM. When a page that is not yet presenpage fetching daemon. The restored VM and page fetching
in the VM’s memory space is accessed, the VM is pausediaemon uses separate network interfaces in the restoration
and a page fetch request is issued to the fetching daemohost.
specifying the index of the requested page. Once the fegchin We installed an Intel 80 GB X25M Mainstream SATA
daemon finishes loading the page contents, the backup VM is MLC SSD in the VM checkpoint store to understand
un-paused and continues executing. By fetching VM pagethe behavior of the HydraVM system using a disk and a
on demand, no unnecessary pages are brought in for tHeSD-based checkpoint store. Note that in all experiments
backup VM, reducing the number of 1/0Os needed. AlthoughVM virtual disks were hosted in the VM disk server on a
backup VM’s execution is inevitably interrupted by page hard drive. Unless otherwise stated, the VM under test was
fetches, the frequency of such interruptions is signifigant configured with 512 MB of memory, one virtual CPU, and
reduced once the working set of the VM is brought in. one virtual NIC. The VM is pinned to use one physical
processor in its hosting machine, while Domain 0, in which

HydraVM executes its protection and recovery tools, is
We built a prototype of HydraVM on the Xen 3.3.2 pinned to use the other one.

hypervisor. In this section, we evaluate the effectiveness \we ran two workloads, respectively, in the VM under
and efficiency of our system. Our evaluation focused on thgest for our evaluation. We compiled a linux kernel source
following two key questions: tree (version 2.6.22.7) using the default configuration and
« What type of VM protection does HydraVM provide the bzimagetarget. Kernel compilation exercises the virtual
without any idle memory reservations, and what arememory system, disk, and processor of the VM. We also
the associated operational overheads? ran a video transcoding workload using ffmpeg [15], which
« When a machine failure is detected, how quickly doess an open-source project that provides a set of librariels an
HydraVM bring a failed VM back alive, and how is the programs for streaming and converting multimedia contents
operation of the restored VM affected by the fail-over In our experiments, we used ffmpeg to convert a series of
performed? MPEG2 videos to AVI format. The total amount of video
Next, we describe the test environment and the workloadgata being converted was 2.3 GB.
used in our experiments. We then present the experiment
results and our analysis.

V. EVALUATION

%I. Storage-based VM Protection

HydraVM stores the fail-over image and periodic VM
A. Testbed, Methodology, and Workloads checkpoints in stable storage. We first evaluate the VM
All of our experiments were run on a set of HP Proliant protection provided by HydraVM based on two types of
BL465c blades, each equipped with two dual-core AMDstorage devices, a hard drive and a SSD. We ran the two
Opteron 2.2 GHz processors, 4 GB RAM, two Gigabitworkloads in the primary VM, respectively. Checkpoints
Ethernet cards, and two 146 GB SAS 10K rpm hard disksof the primary VM were taken periodically throughout the
We set up our testbed as illustrated in Figure 1, one bladexecution of the workloads, and we varied the time between
for each host. All four blades in our testbed are in the sameuccessive checkpoints.
LAN. Table | summarizes the average size of the incremental
The VM under test runs in the primary host while being checkpoints taken during the execution of the workloads,
protected by HydraVM, and uses one dedicated networlas well as the average time required to apply all dirty pages
interface in the hostet h0). The virtual disks of the pro- contained in a checkpoint to the fail-over image and commit
tected (primary) VM are hosted in the VM disk server underthe changes to the storage media under different checkpoint
LVM, and mounted in the primary host via NFS. Thacp ing frequencies. When configured to take checkpoints every
checkpointing daemon runs in Domain 0, takes periodiclO seconds, HydraVM pauses the primary VM and starts
checkpoints of the primary VM at different checkpointing a new checkpoint 10 seconds after the VM was paused
frequencies, and sends the checkpoint content to the VMvhen the previous checkpoint started. Video transcoding
checkpoint store via the other network interface in thetouches twice as many memory pages compared to kernel
primary host €t h1). compilation in the 10-second checkpointing intervals, but
In the event of the primary host failure, the failed primary it does not require a proportionally longer time to commit
VM is brought up in the restoration host based on the fail-the checkpoints. This is because video transcoding touches
over image in the VM checkpoint store, and a consistenmemory mostly sequentially, resulting in series of segaént
version of its disk state in the VM disk server. In our writes when updating the fail-over image, which can be



Kernel Compilation
Configured Checkpointing Frequenci¢sEvery 10 sec| Every 5 sec| Every 2 sec
Checkpoint Storage HD | SSD | HD | SSD| HD | SSD
Checkpoint Size (MB) 46.1| 46.3 | 40.8| 40.5] 40.2 | 36.7
Checkpoint Commit Time (sec) 5.0 3.2 46 | 29 | 46 | 2.7
Actual Checkpoint Frequencies (sed) 10.0| 10.0 | 5.2 | 5.0 [ 5.0 | 3.0

Video Transcoding

Configured Checkpointing Frequenci¢sEvery 10 sec| Every 5 sec| Every 2 sec
Checkpoint Storage HD | SSD | HD | SSD| HD | SSD
Checkpoint Size (MB) 92.4| 919 [ 584 51.7| 405 26.6
Checkpoint Commit Time (sec) 6.1 4.3 46 | 29 | 35 | 17
Actual Checkpoint Frequencies (sec) 10.0 | 10.0 | 5.8 | 5.0 | 3.9 | 2.2

Table |
THE AVERAGE SIZES OF INDIVIDUAL INCREMENTAL CHECKPOINTS ANDAVERAGE TIME REQUIRED TO COMMIT EACH CHECKPOINT TO THEVM
CHECKPOINT STORAGE BASED ON A HARD DISKHD) OR A FLASH DEVICE(SSD).

performed more efficiently. For both workloads, it takes pauerimems)
a shorter amount of time to commit checkpoints to a = rocess Diry Pages

fail-over image hosted on a SSD than a hard drive, and ., ) ¢* e
each checkpoint finishes committing within the configured II 802 773

80

checkpointing interval. . 76'269_9

A checkpoint can contain a larger amount of data than IJI
can be completely written to storage before the configured ©~ | 531 531
checkpointing interval ends. In this case, the next cheickpo  * | e 120
is not started until the previous one has committedto storag “ | = | i‘l

fully, in order to ensure the consistency of the VM fail- =
over image at all time. This delay of successive checkpoints -
creates discrepancies between tenfigured and actual 10 -
checkpointing frequencies. For example, when HydraVM is | ] | il AN
configured to take checkpoints every 5 seconds and use HDSSD  HDSSD  HDSSD HDSSD  HDSSD  HDSSD HDSSD  HDSSD  HDSSD
a disk-based checkpoint store, some of the checkpoint™.* * * . *®» * = = *» *
were not able to finish committing within the 5-second
interval, and the time elapsed between consecutive check-
points are measured to be longer, as indicated by the actufipure 2. The average VM pause times for the kernel compilatiorkload

.. . ! . resulted from different checkpointing techniques undéexnt configured
checkpointing frequency in Table I. The configured every Scheckpointing frequencies.
seconds frequency was achieved on a SSD-based checkpoint
store for both workloads, as 1/0s are more efficient on a
SSD. When configured to take checkpoints every 2 seconds, We first present a detailed evaluation of VM pause time
successive checkpoints are delayed even on a SSD-based. Irst p . vaiuatl pause

system. However, the delays are shorter when using a SSIH,Slng th_e kernel complla_tlon_workload as an example. The
tgtal height of each bar in Figure 2 represents the average

and hence the smaller checkpoints generated during th _ ) . . :
shorter actual checkpointing intervals compared to the cast'me during Wh'F:h the primary VM IS paused for an incre-
of using a hard drive. mental checkpoint to be_taken (also |nd|ca_ted by the numbers
above each bar.) We distinguish two major components of
the VM pause time, the time for thieacp checkpointing
daemon to gain access to the set of dirtied VM pages
When being protected, the primary VM is paused periodthat composes the checkpoint ("Map VM Pages”), and the
ically for each incremental checkpoint to be taken, resglti time to copy the contents of those pages to a buffer to be
in constant disruptions to VM operation. The checkpointtransferred after the VM resumes execution ("Copy Data”).
data are transferred to the checkpoint store when the pyimar We compare the basic incremental checkpointing tech-
resumes running, interfering with primary’s normal opera-nique and the two enhancements of requesting access to the
tion. We therefore evaluate the costs of VM protection usingentire primary memory when the VM protection start and
VM pause time and workload overhead as two importaniCoW checkpoints (described in Section 111-B.) Mapping the

metrics. entire primary VM at the beginning reduces the average VM

5}

Basic Map Entire VM CoW

C. Overheads of VM Protection
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Figure 3. The protection overheads on workload executich tae corresponding levels of protection the workload gaismg the basic and CowW
checkpointing techniques under different configured cpetking frequencies.

pause time by 41% to 46% for the evaluated checkpointingompilation are lowered, slightly for kernel compilati@nd
frequencies, and together with CoW checkpointing, aclsievemore for video transcoding. CoW checkpointing duplicates
a 92% of reduction on VM pause time. only 48% of the checkpointed pages the basic technique
For the first two checkpointing techniques, the VM pausecopies throughout the execution of kernel compilation, and
times are largely in proportional to the checkpointing inte no more than 17% of the pages for video transcoding.
vals; the larger an interval is, the more memory pages are To further understand the workload overheads in different
dirtied during the interval and the longer it takes to map andtases, let us consider the correspondawg! of protection
copy those dirty pages, and hence the longer the VM pausthe workload gains. The primary VM may receive greater
time. When configured to take checkpoints every 2 secondgrotection by being checkpointed more frequently, resglti
the pause times observed on a disk and SSD-based systeémless loss of completed work in the event of a fail-over.
are different because the times actually elapsed betwedn the baseline case when no checkpoints are taken, the
consecutive checkpoints are longer when using a hard drivggrimary gains 0% of protection. Let effective checkpoigtin
as discussed in Sectid?, resulting in more memory pages per second be 100% of protection the primary may receive.
getting dirtied, and hence the longer pause time. When usinghe level of protection can be computed by dividing the
the CoW technique, the VM pause times are flat across thotal number of checkpoints actually taken by the workload
checkpointing frequencies evaluated, since we only mark axecution time. For example, when configured to take check-
bit per dirtied VM page in the CoW bitmap while the VM points every 2 seconds for kernel compilation on a hard
is paused, without actually mapping and copying any pagegirive-based system, a total of 75 checkpoints were taken
We evaluate the workload overheads by comparing theéhroughout the 392 seconds of workload execution. The level
workload execution time measured in a periodically check-of protection for this experiment case is 75/392 = 19%.
pointed VM with the baseline execution time in a VM  Looking at the level of protection the VM actually re-
that is not protected/checkpointed. Figure 3(a) and 3(breived helps us understand the seemingly counter-inguitiv
show the results for kernel compilation and video transcodsituation when a SSD-based system incurs higher workload
ing, respectively. Our experiments compare the basic andverheads than a hard drive. Since checkpoint committing
CoW (included the enhancement of mapping the entire VMs faster on a SSD, more checkpoints are taken throughout
memory) techniques on a disk and a SSD-based systerthe workload execution, and hence the higher degree of pro-
The results show that it does not incur an undue overheatkction achieved. Consequently, the primary VM is paused
on workloads even when HydraVM is configured to takemore frequently, and larger total amount of checkpoint data
checkpoints as frequently as every 2 seconds. In all eveduat are transferred while the workload is running, resultingin
cases, kernel compilation runs less than 13% slower, and larger overhead.
takes no more than 4% longer time for video transcoding to In summary, experimental results show that protection
finish. overheads depend upon the workload characteristics, and
When checkpoints are taken every 10 seconds, workloadae largely in proportional the actual level of protection
incur similar overheads on a disk and a SSD-based syghe primary VM receives. In all our experiments, thacp
tem. When using CoW checkpointing, overheads for kernelaemon uses less than 7% of CPU.
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4 MB of data out of the 512 MB VM memory space) are
loaded during restore. They are loaded more quickly on SSD
Figure 4. The average fail-over time required to bring upiledaprimary by an average of 0.04 seconds for the two workloads. Due to
VM in Which a kernel compilation and video transcoding wogd has the small amount of data being loaded from storage and the
completed 50% of its execution. small percentage of influence storage devices have on total
fail-over time, a hard drive and a SSD-based shared storage
performs almost equally well on failed VM restoration.

D. Restoration of a Failed VM E. Operation of a Restored VM

HydraVM quickly restores a backup VM from the fail-  Immediately after restored, the missing memory pages
over image upon detection of a primary failure performingare fetched from the fail-over image on the shared storage
a slim VM restore. This section evaluates the effectivenesshen needed. To understand the impacts of fetching memory
of this mechanism. We run the two workloads in thecontents on-demand, we compare the time required to finish
primary VM, respectively. The primary was checkpointedexecuting the last 50% of the workloads described in the
periodically. After completing about 50% of each work- previous subsection with the remainder execution time mea-
load (executing 200 seconds for kernel compilation andsured in a VM the memory space of which is fully populated.
110 seconds for video transcoding) and finishing the last The workload overheads are summarized in Table Il. The
incremental checkpoint in this time period, we forcefully results show that fetching memory pages on-demand as the
stop the primary VM, and launch the slim VM restore to VM executes does not introduce a prohibitive overhead,
bring up a backup VM in the restoration host. and therefore, this mechanism is practically deployable to

Both workloads resumed execution correctly in the re-enable slim VM restore, switching on a restored backup VM
stored VM from the most recent checkpointed state in thémmediately after loading only critical information frorhet
VM checkpoint store after a brief pause, during which fail- fail-over image, minimizing the fail-over time required.
over is performed. Figure 4 shows our measurements of Our experimental results do not show performance ben-
the fail-over time required. The numbers shown are averagefits when fetching from a fail-over image hosted on a
results over three experimental runs. The results demaiestr SSD-based shared storage. This is surprising, since we
that HydraVM is capable of restoring a failed VM very expected that on-demand fetching of memory pages would
promptly within 1.6 seconds of time, which is usually generate many small random reads from the fail-over image,
acceptable to human users. which are much faster on SSDs. To further understand the

We observe that restoring a VM from a SSD-hosted fail-VM page fetching behavior, we conducted a separate set
over image does not show significant performance improveef experiments. We execute the entire kernel compilation
ments. Therefore, we further break the fail-over time intoworkload in a VM brought up by slim restore. As the
three major components, and find that our implementationvorkload executes, we record the indexes (pseudo-physical
of slim VM restore is efficient and only composes aboutframe numbers) of the memory pages requested by the VM.
one-third of fail-over time. Over 60% of time are spent by In addition, we record using thielktrace [16] tool the I/O
the recycled Xen code to create VM container and await folactivities that actually happen on the storage device in the
virtual devices reconnecting to the restored VM. shared storage to service the VM page fetching requests

Page table pages form the majority of VM data beingfrom the fail-over image.
loaded from storage during slim VM restore. In our experi- Figure 5(b) shows the pattern of VM page requests This
ments, an average of 1033 and 1135 page table pages (abgatge fetching pattern repeats throughout the execution of



VM Page Index
Disk Sector Number 300000

153000000 VM Page Index VM Page Index

. 250000 213780

152500000 g" b = : " l’ T 213775
152000000 b ¢ e ® 200000 213770
200000 ! T
213765
151500000 150000 150000 S
213760

151000000 100000 100000

50000 213750

150500000 = *=

50000 213745

150000000 Time (sec) Time (sec)
0 100 200 300 400
Time (sec)

0
Time (sec)

(a) The I/O activities servicing the page fet@) The page fetching pattern that repeats for (bp A zoomed-in view of the page fetching pattern.
requests. entire benchmark.

Figure 5. The pattern of the page fetches requested by thHaupaéM recorded for the kernel compilation benchmark and anzed-in view of the
pattern.

kernel compilation. (The complete pattern not shown for

clarity.) As can be observed in the zoomed-in view of this

pattern, illustrated in Figure 5(c), page accesses madeey t

VM show substantial spatial locality. Most of the requests 355

fetch the VM page next to the one fetched in the previous 205 205 205
request, which only requires reading an adjacent block in

the VM fail-over image on the shared storage.

M save restore

Figure 5(a) shows the I/O activities on the block device 165
servicing the recorded page fetch requests for the entire 2 7ms 7ms
. . . . VM Save/ Incremental Checkpoints/ ~ CoW Checkpoints/ HydraVMm
execution of the kernel compilation benchmark. The disk Restore VM Restore VM Restore

access pattern also shows substantial spatial locality. Al

though over 30,000 4K memory pages were requested by

the backup VM during the compilation process (about 128

MB of memory contents loaded, as reported in Table II),

only about 3,000 I/O requests were sent to the block device _ _ 3

in the shared storage, as reported by blktrace. Each bubbié%’rraev&'_ A comparafive perspective on the overall conidbu of
in Figure 5(a) represents an 1/O request recorded, and the

size of the bubble represents the size of the request. We

found that instead of a series of 4K block reads, many of

the 1/0 activities fetched 512 disk sectors (256 KB of data,and creates a backup VM to take over. The first set of bars
64 4K blocks) in one request, as shown by the large bubbleis Figure 6 shows that it can take as long as 35 seconds
in the figure. This observation leads to our finding thatto take eachfull checkpoint of a 1G VM and send it to a
optim_izat_iorjs built_in the filesystem (e.g. file prefetchiage  shared storage, and up to 20 seconds to bring such a VM
effective in improving hard drive performance to suppoet th back to operation from the checkpointed image using the
demand page fetching mechanism in HydraVM, bridging theyM save and restore approach.

performance gap between mechanical disks and flash StorageAlthough VM savelrestore does not reserve memory for

devices. the backup until a fail-over is required, the long time dslay
makes it practically unuseful. Instead of saving complete
VM state, incremental checkpointing captures only the
We conclude our evaluation by comparing HydraVM with changed state from the last checkpoint. The “save” bar of
alternative HA solutions for VMs. the second group shows that the time during which the VM
Popular hypervisors usually provide the functionalitiesis interrupted because of checkpointing is greatly reduced
to create complete VM checkpoints as regular files orto milli-second scale. The amount of data that needs to be
persistent storage, and start a VM from its image file. Thes¢ransferred for each checkpoint is reduced from the entire
can be used as the simplest techniques to provide higiM (1 GB) to several MB of dirty pages, depending on
availability. For example, on a Xen platform, “VM save” the workloads running in the VM. HydraVM maintains
takes a full checkpoint of a VM. When a failure occurs, the complete VM image in a shared storage, while other
“VM restore” can be used to load the checkpoint from diskincremental checkpointing approaches, such as Remus and

F. A Comparative Perspective



Kemari, reserve in another host as much memory as ththe backup VM image kept in memory with the incremental
primary to store the VM image. checkpoints taken at the primary. Throughout the protected
Interruption of the primary VM is reduced further using execution of the primary, additional memory is reserved for
CoW checkpointing, as shown in the third group of theits backup VM, even though the backup is normally passive
figure. However, a 20-second fail-over time, resulted from(not operating). Our approach adapts a periodic, increahent
loading the entire VM image for restore, is prohibitively checkpointing technique that is most similar to Remus’.
expensive. The last set of the bars in the figure showslowever, we trade off main memory with shared storage
that by integrating slim VM restore and fetching memoryto store the backup VM image, resulting in better cost- and
pages on-demand as the VM executes, the fail-over time igesource-efficiency.
significantly reduced. The results in this group differatei
HydraVM from other similar approaches: without reserving The concept of copy-on-write checkpoints was also dis-
additional memory, HydraVM take continuous checkpointscussed in Remus, and we are aware of multiple imple-
to protect a VM with minimal interruption of the VM, mentations of this well-known systems technique. Celp
and restores a VM within 1.6 seconds in the event of aal. developed VM Snapshots [17] which provides a set of
failure, achieving the goals of low-overhead checkpomtin API's for fast snapshoting of a VM. Different from our
and responsive fail-over. approach, their implementation uses FUSE (Filesystem in
Userspace) [18] driver support, and involves modifications
to the guest kernel. Suet al. [19] also implemented copy-
To the best of our knowledge, this is the first attempton-write for lightweight VM checkpointing. However, their
to provide high availability in virtualized environmentst  system currently focuses on taking complete snapshots of a
takes into account both recovering a VM from its recentVM, instead of incremental checkpoints, which are required
execution state and reducing the computing resources conm the context of VM high availability.
mitted to the protection of the VM. Our approach focused
on elimination of the passive reservation of main memory Our approach to rapid VM fail-over using on-demand
for the backup VMs set up for high availability. fetching of memory pages draws on the work on post-
Hypervisor vendors offer high-availability solutions tha copy-based VM migration [20] and SnowFlock [21]. Post-
rely on restarting the failed VM in another node [1]. Unlike copy VM migration is an alternative approach to live VM
HydraVM, these solutions simply reboot the failed VM from migration [12]. Without copying the entire VM image over
its disk image. Although they do not require additionalto the target node, it resumes VM execution at the target
resources until a failure occurs, they do not recover the apright after shipping the processor state from the source VM,
plication state, and take significantly longer than HydraVMand as the VM runs in the target node, memory pages
to perform a fail-over. are fetched/pushed from the source VM to populate the
Various other hypervisor-based approaches have beenemory space of the target VM. SnowFlock is a system that
proposed to keep track of VM execution state and performimplements “VM fork” similar to “process fork”. SnowFlock
a stateful fail-over, minimizing the work lost in the event creates VM replicas (child VMs) rapidly by shipping a
of a failure. Bressoud and Schneider [5] proposed lock-stepondensed (parent) VM image, called\&M descriptor
execution of a backup VM. In their approach, a hypervisorto the target hosts and instantiating multiple child VMs
intercepts the instructions and interrupts executed on thbased on the descriptor. As the child VMs execute, they
primary VM, and sends them for a lock-step replay onfetch memory contents from the parent VM on-demand. Our
the backup VM. VMware Fault-Tolerance [10] has recentlyapproach applies a similar concept to address a completely
been offered as a commercial product based on a similadifferent problem in the context of high VM availability;
idea of letting two VMs execute an identical sequence ofwe load minimum VM state from the fail-over VM image
instructions so that one may take over the other if it fails.in the shared storage into server memory to quickly restore
These approaches require the participating VMs to hava backup VM, minimizing the fail-over time required, and,
identical memory configurations to execute alongside, andimilarly, supply memory pages for the backup VM on-
therefore, are not resource-efficient. demand.
Remus [4] and Kemari [9] continuously take incremental
checkpoints of a protected VM to record its execution state. Our approach is very effective in reducing the excessive
Remus checkpoints the primary VM at fixed, sub-secondcost of computing resources committed to providing high
intervals, while Kemari takes a checkpoint whenever thevM availability. While other memory-saving techniques
primary VM is about to interact with external devices, such as compression [22], differencing [23], and page
such as disk and network interfaces. These approachesching can be used to reduce the memory pressure caused
maintain a backup VM in RAM and keep the backup VM by the creation of backup VMs, none of these techniques
synchronized with its primary VM by continuously updating will completely eliminate it.

VI. RELATED WORK



VIl. CONCLUSIONS

In this paper, we proposed HydraVM, a storage-based,
memory-efficient way of achieving high availability in vir-
tualized environments. Unlike current VM fail-over ap-
proaches, which require twice the memory the VM uses, our
approach requires minimal extra memory. HydraVM stores
VM fail-over images in a shared storage, and can promptly

restore a failed VM on any host that has access to the shardt0]

storage, which allows any host with available capacity to be

used as the backup.

We adapt a continuous, incremental checkpointing tech-
nigue to track the state of the protected VMs and keep their

fail-over images in the shared storage recent. We implement
copy-on-write checkpoints to further reduce the checkpoin [12]

ing overhead. Our experimental evaluation demonstrates th

effectiveness of the proposed techniques. In the event of a

fail-over, our slim VM restore mechanism brings a backup
VM back to operation within 1.6 seconds, by loading only

the critical VM state data from the VM image kept in the [13]

shared storage. Execution of the backup VM is resumed

[9]

(11]

promptly, and proceeds by fetching memory contents fron{“]
the VM image as needed. Experimental results also show
that our methods do not introduce excessive overhead ofi5]

the protected primary VM during normal execution, or on

the backup VM after restored. Using HydraVM, a VM can [16]
be restored quickly enough to meet the requirements of most

users and applications at a minimal cost in resources.
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