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ABSTRACT

Troubleshooting the performance of complex productiorveafe

is challenging. Most existing tools, such as profiling, img¢ and
logging systems, revealhatevents occurred during performance
anomalies. However, the users of such tools must then wifigr
these events occurred during a particular execution; that their
execution was due to a specific input request or configurasibn
ting. Because manual root cause determination is timetrnimg
and difficult, this paper introducgserformance summarizatipma
technique for automatically inferring the root cause ofgenance
problems. Performance summarization first attributesoperdnce
costs to fine-grained events such as individual instrustéom sys-
tem calls. It then uses dynamic information flow to deternitre
probable root causes for the execution of each event. Theo€os
each event is assigned to root causes according to thevegbatib-
ability that the causes led to the execution of that evennalby,
the total cost for each root cause is calculated by summimgéin-
cause costs of all events. This paper also describes aetliffar
form of performance summarization that compares two digvi
We have implemented a tool called X-ray that performs perfor
mance summarization. Our experimental results show thgtyX-
accurately diagnoses 14 performance issues in the ApacA®HT
server, Postfix mail server and PostgreSQL database, wddieg
only 1-7% overhead to production systems.

1. INTRODUCTION

Understanding and troubleshooting performance problems i
complex software systems is notoriously challenging. Thial-
lenge is compounded for software in production for sevesat r
sons. To avoid slowing down production systems, analysik an
troubleshooting must incur minimal overhead. Furtherfquer
mance issues in production can be both rare and non-deistitiin
making the issues hard to reproduce.

However, we argue that the most important reason why trou-
bleshooting performance in production systems is chaitengs
that current tools only solve half the problem. Troubleshmpa
performance anomaly is essentially the process of det@rgnvhy
certain events, such as high latency or resource usagegimegjn
a system. Unfortunately, most current analysis tools, siscpro-
filers and logging, only determinghat events happened during a
performance anomaly — they leave the more challenging murest
of why those events happened unanswered. Administratdrden
velopers must manually infer the root cause of performassee
from the observed events based upon their expertise and &dgev
of the software. For instance, a logging tool may detect ahegr-
tain low-level routine is called often during periods of Imiggquest
latency, but the user of the tool must then infer that theinevis
called more often due to a specific configuration setting.

In this paper, we introduce the techniquepefrformance sum-
marizationwhich not only determines what events occurred dur-
ing a performance anomaly but also determines why the aryomal
occurred. Performance summarization first attributesoperdnce
costs such as latency and /O utilization to fine-grainechesvén-
dividual instructions and system calls). Then, it uses dyinan-
formation flow analysis to associate each such event with afse
probable root causes such as configuration settings orfispaaia
from input requests. The cost of each event is assigned empot
tial root causes weighted by the probability that the pafsicroot
cause led to the execution of that event. Finally, the pase&osts
for all events in the program execution are summed togeffies.
end result is a list of root causes ordered by their perfoonaaosts.

In the above example, the outcome of performance summiarizat
would indicate that one specific configuration setting dboted
the most to the performance slowdown. This output givesyke s
tem troubleshooter a direct indication of how to fix the pesh)
without the need for time-consuming manual analysis.

We also introducdifferential performance analysighich is
used to determine why the performance impact of two differen
events differed. For instance, differential performancalygsis can
be used to understand why two requests to a Web server tdek dif
ent amounts of time to complete. Differential performancalygsis
identifies branches where the execution paths of the twoestgu
diverged. It assigns a performance cost to each path takem fr
the branch, then uses dynamic information flow analysis terde
mine why the two requests diverged at that point. It attebuhe
difference in performance costs between the two paths tmléme
tified root causes according to the likelihood that they eduhe
branch condition to evaluate to different values duringtthe ex-
ecutions. The costs of all such divergences during are sanme
The output shows the system troubleshooter a set of reasons w
the performance costs of two requests differ, along withezific
performance impact for each reason. For example, the ofdput
a Web server might show that 70% of the difference between two
requests is due to the specific file requested, while 30% isaae
configuration parameter that caused extra initializatémid to be
run in one request but not the other.

We have built a tool called X-ray that implements perfornenc
summarization. X-ray attributes latency, CPU utilizatidisk us-
age, and network utilization to specific root causes. X-tgpsrts
several different scopes of analysis: intervals of timecHfr re-
quests, or a differential analysis of pairs of requests.sTburay
can answer performance questions such as:

e Why did a particular request take a long time to execute?
e Why is disk utilization high during a specific time period?

e Why did request R take longer to execute than request S?



Performance summarization is a high-overhead activitpréer
to execute this analysis for production software, X-rayetages
prior work in deterministic replay to offload the heavywedighal-
ysis from the production system. A deterministic replaytsys
provides DVR-like functionality, in which an execution ohard-
ware or software system is recorded so that an identicalutioec
can later be replayed on demand. Our use of deterministiay ép
troubleshoot performance issues raised several new npale X-
ray must split its functionality among the recorded andaget! ex-
ecutions; for example, timestamps must be captured dueicayd-
ing because the heavyweight analysis substantially gestiming.
Further, because of the split analysis, the fidelity of thmaymust
be strict enough to guarantee that the two executions anéd¢déat
the granularity observed by X-ray. However, because thiayed
execution includes analysis code that the recorded execdbes
not, the fidelity of the replay must be loose enough to allosvri:
played execution to diverge enough to run the analysis. \We sh
that all these goals can be achieved through careful caqalesihe
deterministic replay and analysis systems.

Thus, this paper contributes the following:

e The technique of performance summarization, which at-

tributes performance costs to root causes.

e The technique of differential performance summarizatmm f
understanding why two similar events have different perfor
mance.

e Co-design methodologies for modifying deterministic espl

systems to support heavyweight performance analysis tools

such as binary instrumentation without imposing subsaanti
overhead on a production system.

e Development and evaluation of the X-ray tool, which imple-
ments these techniques.

attribute delays to specific nodes. Pinpoint [12] tracesroamica-
tion between middleware components to infer which comptmen
are responsible for causing faults. Follow-on work [11] sdde
abstraction of causglathsthat link black-box components. Like
these tools, X-ray uses causality to propagate data aconspa:
nents when processes communicate (although propagatmn-is
rently limited to a single node by its replay system). Unlikese
tools, X-ray analyzes causalityithin application components us-
ing dynamic binary instrumentation, so it can determinesgrexific
relationship between component inputs and outputs.

Other performance troubleshooting tools build or use a mode
of application performance. Magpie [5] accurately exisaitte
control flow and resource consumption of each request tal lauil
workload model that can be used for performance predictitag-
pie’s per-request profiling can help troubleshooters diagrpoten-
tial performance problems. Even though Magpie provideailedet
performance information that can be used to manually irdet r
causes, it still does not automatically diagnegey the observed
performance anomalies occur. Magpie uses schemas to determ
which requests are being executed by various componentay X-
currently uses a simpler method and thus could benefit frangus
Magpie’s schemas for complicated request patterns.

Stewartet al. [31] extract resource usage from multi-component
services to generate performance models for capacity iplgramd
cost-effectiveness analysis. Urgaonkdaral. [4] use resource us-
age profiling to guide application placement in shared hgstiat-
forms. Coheret al.[14] use statistical learning techniques to au-
tomatically build system models. They identify a combioatdf
system-level metrics and threshold values that correlétehigh-
level performance states. In contrast to X-ray, none ofelsys-
tems tie performance to specific root causes such as cortfaura
options.

Many research projects tune performance [15, 10, 41] bgtnje
ing artificial traffic and using machine learning to correlgter-
formance with specific configuration options. Unlike X-réyese

We evaluated X-ray using three applications: the Apache Web tools limit the set of configuration options analyzed, areytmust

server, the Postfix mail server and the PostgreSQL datah&se.
have reproduced and analyzed 14 performance issues reporte
these applications. In 12 of 14 cases, X-ray identifies acoroot
cause as the largest contributor to the performance proliretine
remaining two cases, X-ray identifies a correct root causthas
third largest contributor. Our evaluation also shows thag)Xadds

a performance overhead of only 1-7% on the production system

2. RELATED WORK

While many prior systems help troubleshoot performanageiss
X-ray is the first such system that uses dynamic informatiow fl
analysis to automatically identify the root cause of prditurcper-
formance issues without the need for manual inference.

Profilers such as OProfile [23], VTune [35], DTrace [9], Sys-
temTap [27], ETW [21], Debox [28], and Chopstix [6] allow the
troubleshooter to instrument applications and/or the atpey sys-
tem and collect performance data. These tools rewbal events
(e.g., functions) incur substantial performance costs.wéver,
their users must manually inferhythose events executed. In con-
trast, X-ray automatically identifies root causes.

Other tracing systems follow activities across multiplenpo-
nents or protocol layers, and use the causal relationshgsab-
serve to propagate and merge performance data. X-tracefit7]
serves network activities across protocols and layers istatlited
system. SNAP [40] profiles TCP-statistics and socket-ogft land
correlates data across a data center. Aguéeed [1] use statistical
analysis to infer causal paths between application compsrand

see controlled traffic in order to learn good configuratiolues.

Spectroscope [29] diagnoses performance changes by cogpar
request flows between two executions of the same workload. Ka
sick et al. [19] compare similar requests to diagnose performance
bugs in parallel file systems. Unlike X-ray, these tools naest
very similar requests in order to diagnose performancelenah
In contrast, our results show that X-ray can correctly idgmbot
causes even when requests are very dissimilar becausdyiresa
the control path of each request.

PeerPressure [36] and its predecessor, Strider [37], afstist
cal methods to compare configuration state in the Windowistrgg
on different machines. These systems analyze static sttierr
than observe applications as they execute. Chronus [38paws
configuration states of the same computer across time using v
tual machine checkpoint and rollback. AutoBash [32] helpsrsi
troubleshoot configuration by providing OS-level featusash as
causality analysis and speculative execution.

X-ray uses taint tracking [22] to identify the root cause tioe
execution of individual instructions and system calls. s pur-
pose, we use ConfAid [3]. ConfAid is a tool that we originally
designed to debug program failures by helping users andragimi
trators attribute those failures to erroneous configunatiptions.
X-ray re-purposes ConfAid to tackle performance analysis.

Potentially, X-ray could instead have used other methods fo
inferring causality such as symbolic execution [8]. Fortéamse,
S2E [13] presented a case study in which symbolic executas w
used to learn the relationship between inputs and low-levehts



Allow domain.name (line 164) : 603 usecs

ServerRoot (line 29) : 151 usecs
TypesConfig (line 298) : 151 usecs
<IfModule (line 231) : 75 usecs
alias\_module(line 231) : 75 usecs
<Directory(line 162) : 55 usecs

Figure 1: Example of X-ray output for Apache

such as page faults and instruction counts. While X-ray &2 S
both use causality to explain low-level events, their fosugery
different. X-ray starts from a specific performance anonsagn
in production and traces causality to find that event's raatse,
whereas S2E starts from a specific set of inputs and explanéts m
ple paths to infer the performance impact of different inghdices.

X-ray uses deterministic record and replay. While manyrprio
software systems provide this functionality [2, 16, 18, 2@, 34,
30], X-ray introduces new constraints that prior systemsnoa
satisfy. The fidelity of replay must be high enough to exaotly
produce application instructions and system calls, whileteing
loose enough to execution instrumentation during the yeplax-
ecution but not during the recorded execution. X-ray modiffee
replay system to compensate for the instrumentation codedier
to achieve the needed fidelity.

3. X-RAY OVERVIEW
3.1 Troubleshooting with X-ray

X-ray pinpoints why performance anomalies, such as high re-
quest latencies or bottlenecks in resources, occurred oacau@-
tion system. Our current system targets servers, thoughismot
fundamental to our design.

X-ray does not require application source code becausedls a
ysis operates entirely on application binaries and modifina are
made using dynamic binary instrumentation. X-ray recogmiz
configuration tokens and other root causes through a linficted
of binary symbolic execution. Thus, X-ray can be used on COTS
(common off-the-shelf) applications, making the tool ayprate
for system administrators as well as for developers.

The first step in using X-ray is to record an interval of softva
execution on a production system. As the results in Sectsimow,
X-ray recording overhead is currently only 1-7%. Thus, a aae
choose to leave X-ray running for long periods of time to oegpt
rare and hard-to-reproduce performance issues. AlteahatiX-
ray can be dynamically enabled only when specific performanc
issues are exhibited.

X-ray uses deterministic record and replay to offload anslys
the recorded execution from the production system. An Xussr
chooses which interval of execution to analyze. The usersakect
the entire execution, an interval of time, or a specific imeqguest.
X-ray produces a performance summary for the selectedvadter
The first two intervals are appropriate when the user notitges
graded throughput over a period of time, whereas the lattbest
when one or more requests take an unexpected amount of time t
execute. Alternatively, a user may select two requests itapeoe,
in which case X-ray does a differential performance summasion
for the selected requests. Typically, a user would seleztsimilar
requests that differ substantially in service time, thoaghresults
show that X-ray will provide useful information even wheee tivo
selected requests are very dissimilar.
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Figure 2: Overview of X-ray

The X-ray user next selects the set of performance statistic
summarize. Typically, we expect that a user will use basie pe
formance analysis tools such asp andiostat to identify the
bottleneck resource. X-ray provides a flexible frameworkaioa-
lyzing arbitrary statistics; our current implementatiapports la-
tency, CPU utilization, disk throughput and network bardivi

Figure 1 shows an example of X-ray output for Apache. The
output shows the inferred root causes of a performance qmbl
X-ray associates a specific cost (in this case, latency)db szt
cause and orders the list by that metric. In the figure, allcaases
are from thehttpd.conf configuration file. Based on X-ray out-
put, users may identify configuration options that are imappate
for their workload, they might choose a set of configuratiptians
that offer a different tradeoff between performance or fiomality,
or they may re-provision their system to supply resourcegiam-
tities that match the features they desire.

Executions recorded by X-ray can be replayed multiple times
Therefore, X-ray users can perform many different analieethe
same recording. For instance, a user may change the scope-of e
cution analyzed, choose different metrics to summarizewstrch
between basic and differential performance summarizatibims
means that the X-ray user does not need to decide what type of
analysis will be useful before a performance anomaly isndsxh

3.2 Mechanics of X-ray

Figure 2 shows an overview of how X-ray executes. To minimize
production overhead, X-ray uses deterministic record apthy to
divide its execution into two phases. In its online phasea)X-ob-
serves the production systeémsitu and logs all non-deterministic
inputs for the application so that it can subsequently reftat
application elsewhere. X-ray also records timing inforioratnd
other performance-specific data during the online phasausec
the subsequent, offline analysis perturbs the executiomtazh to
accurately measure performance.

In its offline phase, X-ray performs two passes, each of wisiah
deterministic replay of the recorded execution. In the fiests, X-
ray performgequest extractionin which it determines the specific
intervals of execution (i.e., the basic blocks executednduvhich
each process is handling each input request to the recoydths
In the first pass, X-ray also assigns the recorded perforenensts
to each instruction and system call. In the second passy Xeam-
pletes performance summarization by using dynamic inftiona
flow to attribute events to root causes and by calculatingtise of
each root cause. At the end of the second pass, X-ray outpists a
of root causes ordered by its user’'s chosen performancécmetr

4. PERFORMANCE SUMMARIZATION

Performance summarization is the heart of X-ray. The goal is
attribute specific performance costs such as request jateRtJ



Step 1: Cost Attribution

Step 2: Root Cause Analysis

Step 3: Summarization

) )
Time If (X){
// Execution depends on option1 costs
// option1 & option2 with 0.5 * 100 = 50 bytes
A \w Write 100 bytes | S // probabilities 058&0.2 option2 costs
. . write (100) ;
Disk cost: 100 } 0.2 *100 = 20 bytes
If(Y){
// Execution depends on option2 costs
// option2 with 0.2 * 200 = 40 bytes
; robability 0.2
B w.r|te 200 bytes B —> ‘/,;/rpj_te 208/ . option2 costs 60 bytes
Disk cost: 200 ( )i
J ) } option1 costs 50 bytes

Figure 3: Example of performance summarization

usage, and I/O utilization to one or more root causes. X-tay C
siders any configuration option or any data received frormpanti
request as a potential root cause.

4.1 Basic performance summarization

Performance summarization is akin to integration in calsuk-
ray individually analyzes the per-cause performance aodtraot
cause of each user-level instruction and system call feddp as
events in the discussion below), then adds together theeset
costs to calculate how much each root cause has reflecte@the p
formance of the application during the period of observate-
lected by the X-ray user.

Figure 3 shows an overview of how performance summarization
works. In the first step, X-ray attributes performance nostid
each event executed by one or more processes comprisingea ser
application; the figure assumes that the X-ray user has figmbci
disk bandwidth as a metric. Some metrics such as disk bariawid
are associated only with system calls, while others suchtaady
are attributed to both system calls and user-level insomst

In the next step, X-ray uses taint tracking to derive a seisf p
sible root causes for the execution of each event. Esslgntiak
step answers the question: "how likely is it that changingr#ig-
uration option or receiving a different input would havevaeted
this event from executing?" Taints are tracked as floatioigtpval-
ues using algorithms that we developed in ConfAid [3], witle t
numerical taint value associated with each root cause tiftgihe
belief that the root cause is the reason why the event wasiedc

In the last step, X-ray multiplies the performance metrias f
each event by the per-cause taint values to derive the pert-per-

taint tracking to evaluate why each divergence occurred; rda-
son is given by the taint of the branch conditional at the rdjgace
point. For each performance metric, X-ray calculates ths 0b
the divergence by subtracting the cost of all events on tergeént
path taken by the first execution from the cost of all eventshen
path taken by the second execution. This cost is attribateddt

causes by multiplying the metric values by the taint weightay

sums the per-cause costs of all divergences and outputcd tisbt

causes ordered by the differential cost.

5. REPLAY FIDELITY

The dynamic instrumentation used by X-ray can slow down the
execution of an application by several orders of magnitubes
overhead is too high to run X-ray directly on production soft
ware. Therefore, X-ray employs deterministic record anulane
to offload time-consuming analysis from the production exysto
another computer. There exist many systems that provider-det
ministic replay by recording the initial state of an exeontand
logging all non-deterministic events that occur during éxecu-
tion [7, 16, 30, 33]. With such systems, an execution canesubs
quently be reproduced on demand by restarting execution fine
initial state and supplying the previously-recorded valéer all
non-deterministic events.

While deterministic replay is a well-studied technique, eve
countered several new challenges in adapting the techtoguerk
with X-ray. In particular, we found that we needed to cargfbhl-
ance thefidelity of the record and replay and that we neededao
designthe deterministic replay system to work with the dynamic

formance cost for each root cause. X-ray sums these costs ove instrumentation employed by X-ray.

all events that executed during the period selected by teearsl
outputs an ordered list of root causes.

4.2 Differential performance summarization

Differential performance summarization is a techniquecfamn-
paring any two executions of an application activity, sushttze
processing of two different request by a Web server. Sudbites
have a common starting point (e.g., the receipt of a request)
termination point (e.g., the sending of a response), buekeeu-
tion paths for different events may diverge due to diffeemia the
input or specific configuration settings.

Figure 4 shows an example of differential performance sum-
marization. X-ray compares two activities by first idenitify all
points where the paths of the two executions diverge. It thess

We define the fidelity of the replay to be the degree to which
the replayed execution is guaranteed to match the recorcsxie
tion. For the purposes of X-ray, replay fidelity must be higbwgh
to guarantee that the recording and replaying systems exéuel
same application instructions and system calls in the sade.o

Since performance analysis via binary instrumentationceaise
runtime overheads of several orders of magnitude, timifayina-
tion gathered during an instrumented run is essentiallieasdor
diagnosing most performance problems. In contrast, tirmfay-
mation gathered during the recorded run captures the exaet p
formance experienced by the production system. X-ray tbere
gathers timing data during recoding and explains the tirdatg by
reasoning about the instructions and system calls execlutedg
replayed executions. Thus, if the two sequences of instmsand



Conditional depends on
optionl & option2 with
r probabilities 0.5 & 0.2
Cost: 2
option1 costs:
0.5*1=0.5
option2 costs:
02*1=0.2

Cost: 6
Cost: 3

Conditional depends
on option2 with
probability 0.2

option2 costs:

Cost: 2 y
02*6=1.2

Cost: 8

Cost of Divergence D1: (6 -5) =1
Cost of Divergence D2: (8 -2) =6

option2 costs 0.2+1.2 =1.4
option1 costs 0.5

Figure 4: Example of differential performance summarization

system calls executed were allowed to differ, X-ray coulavjue
incorrect root cause diagnoses.

On the other hand, the fidelity of replay must be low enough
so that X-ray can execute application instructions andesystalls
without dynamic instrumentation during the recorded etiealbut
executebothapplication and dynamic instrumentation instructions
and system calls during replay. From the point of view of the r
play system, the replayed execution will contain a large Ioemof
additional events that were not present during recording.

Thus, the design of X-ray walks a fine line. The fidelity of
deterministic replay must guarantee that the saplicationin-
structions and system calls are executed in the same ordsl in
executions, but also allow replays to execute additiamsttumen-
tation instructions and system calls. These requirements preclud
off-the-shelf use of any existing deterministic replayteys. Some
systems do not guarantee the same sequence of applicattarcin
tions [2, 24], while others do not allow recorded and reptage-
ecutions to diverge sufficiently to run instrumentation €ad one
execution but not the other [39] or have unacceptably highnd
ing overhead [25].

Our approach to solving this dilemma is co-design: we mage th
deterministic replay systeinstrumentation-awarso that it com-
pensates for the specific divergences in replayed execotiosed
by the dynamic instrumentation. The X-ray replay systemeis d
signed to work with the Pin dynamic instrumentation toole th
replay code compensates for extra system calls made by Hin an
the modifications to recorded system calls due to instruatiemt
It also preallocates resources such as memory regions gndl si
handlers to avoid conflicts between the instrumentationthede-
played application. Instrumentation-awareness enahleseplay
system to provide the exact fidelity required by X-ray. Sst6.1.1
describes the detailed implementation. Since our curieae only
handles single-threaded applications, this section aislaims how
we are extending X-ray replay multi-threaded applications

6. IMPLEMENTATION

We next describe the implementation of X-ray in detail.

6.1 Online phase

Since the online phase of X-ray analysis runs on a production
system, X-ray uses deterministic record and replay to moye a
activity with substantial performance overhead to a subset of-
fline phase. The only two activities performed online arerding
non-deterministic inputs and gathering performance m#dion.

6.1.1 Deterministic record and replay

X-ray implements deterministic record and replay in theuxin
kernel. The unit of replay can be either a single process oo@apg
of communicating processes. Thus, X-ray records and reiag
or more applications executing on the same computer.

X-ray currently uses a standard design to record and replay
single-threaded processes. It takes a checkpoint (adsjpass and
registers) of the process or processes being recordedaEiosech
process, X-ray logs the data returned by all system callpribeess
executes on the production system. The logged values iacldd
dresses modified by the kernel within the process’s addpmsses
X-ray also records the value and timing of signals deliveceghach
process. When recorded processes spawn child processay, X-
records the activities of the children — this is useful forvees
that use children to handle incoming requests.

To replay a recorded execution, X-ray restarts the apjpbicat
from the checkpoint. When the application makes a systel¢al
ray does not re-execute that call. Instead, it suppliesdherded
values from the log of non-deterministic events. The exoepb
this rule is system calls such asap that change the address space
of the application — such calls are executed by the replalerg
nel in a manner that ensures that they produce an identieadt ef
on the calling process’s address space that was producétydur
recording. X-ray also delivers the same signals to eachegsat
the point the original signal was received in the recordextetion.
This guarantees high fidelity replay; i.e., that the recdrded re-
played processes execute the same instructions and syalisrinc
the same sequential order.

X-ray analysis tools use Pin [20] to monitor information flow
and attribute performance costs to specific applicatioivities.
While Pin is designed to be invisible to the application lein-
strumented, it isot designed to be transparent to lower layers of
the system such as the operating system. For instance, Ban ad
and modifies system calls, modifies signal handlers, andvese
memory addresses in the application address space.

X-ray compensates for divergences in execution due to yinar
instrumentation. It allocates memory for use as a commtinita
channel between the kernel replay system and the analydésrtm
by Pin. An analysis tool uses this region to inform the kevnlgich
system calls are initiated by the application (and hencelshioe
replayed from the log) and which are initiated by Pin or thalgsis
tool (and should be executed normally). X-ray interceptsyatem
calls issued by the applications and sets a flag in this regionto
issuing the system call; it clears the flag when the systehends.
Thus, when the kernel sees a system call with the flag cleéred,
knows that Pin or the analysis tool has issued the system call

X-ray also compensates for interference between systels cal
made by the recorded application and system calls made byrPin
the analysis tool. For instance, we observed that Pin waurkes
times ask the kernel tamap a free region of memory and the kernel
would return a region that would later be requested by therdsd
application, leading to a conflict. We compensated for thisdan-
ning the log to identify all regions that will be requested thg
recorded application during the replay and reserving thegens
so that Pin does not ask for them and the kernel does not return
them. We made similar modifications to compensate for canflic



ing requests for signal handlers and other resources théd po-
tentially be requested by both the application and by theadya
instrumentation.

We are currently modifying X-ray to support multi-threadsz
plications. The biggest challenge has been supporting ¢ékded
fidelity of deterministic record and replay while adding lower-
head to the production system. Several recent deterntimegiay
systems have lowered record overhead for multi-threadscbgses
running on multiprocessors by searching either online [84%f-
fline [2, 24] for a replayed execution that is equivalent anlgx-
ternal output to the recorded system. Like these prior systeve
plan to record system calls and user-level synchronizasjmera-
tions. During replay, we can enforce the sanag@pens-beforer-
der among these operations that was observed during ragoidi
the absence of data races, this guarantees that the sanemeequ
of instructions and system calls is executed by each paiowée
sponding record/replay threads.

To deal with data races, we plan to run a dynamic data race de-
tector during offline replay; we expect that the relativefpenance
impact of this additional step will be small because we alyesxe-
cute high-overhead dynamic instrumentation during refdbaying
performance summarization, X-ray will assign lower conficketo
values accumulated from regions of code in which the exeguti
thread is racing with another thread. The range of the pialest
ror can be estimated by sampling different interleavingsaofng
instructions during replay. X-ray users can either use oeet-
confidence results, or they can add annotation or synclatoiz
to the application to eliminate the data races.

6.1.2 Recording performance information

During the online phase, X-ray also records timing inforiorat
For each system call executed by the application, the X-eaek
records the system time at kernel entry and exit. For sintyplic
the kernel writes the timing information for each systent wathe
same log that it uses to store non-deterministic events.lyAisa
tools read the log directly to extract the timing informatidur-
ing replay. Other performance information, such as the rarob
bytes read or written during I/O system calls are alreadyweag
as a result of recording sources of non-determinism.

6.2 Offline phase

X-ray executes analysis in two passes. In the first passyX-ra
performs request extraction to determine when each apiplica
process is handling each request. It also identifies whigicha
blocks are executed within the analysis scope chosen byste u
and attributes performance costs to those blocks. In thensec
pass, X-ray attributes basic block execution to specifit caoses
and summarizes the performance cost for each cause. Sirag X-
operates on a previously-recorded execution, it is trisoaleplay
the execution multiple times so that different parts of thelgsis
can be executed sequentially (much like a multi-pass campil

6.2.1 Request extraction

During the request extraction phase, X-ray identifies theruals
of application execution during which each request wasessed.
For many types of analysis, X-ray must understand how an-appl
cation processes one or more particular requests such @supar
lar mail messages for the Postfix mail server or Web requests f
Apache. Request extraction traces the causal path of equbse
from the point when the request is received by the applindtidhe
point when the request terminates (e.g., when a server seads-
sponse). Often, requests traverse multiple processesliff@ent
processes handle different requests at the same time.

Time Dispatcher Worker  Utility
Request 1
Request 2 \1>
2 1
2| .
Request 2
handled
Request 1
v handled

Figure 5: An example of X-ray request extraction. The inter-
vals marked asl or 2in each process correspond to the portions
of process execution that X-ray associates with the first ansec-
ond requests, respectively.

The notion of a request is application-dependent. ThusayX-r
requires a per-application filter that specifies the bourdaf in-
coming requests. The filter is simply a regular expressiar ov
coming data. For instance, the Postfix filter looks for théngtr
HELO to identify incoming mails. A filter only needs to be created
once for each protocol (e.g., SMTP or HTTP).

Request extraction runs as a Pin tool. The tool examinegsalu
returned from all system calls that provide external inpudhsas
those that receive data from the network. When the datanedur
from such system calls match the specified filter, X-ray tdgs t
receiving process with a unique request identifier to shawittis
handling the request in question.

As shown in Figure 5, X-ray propagates request tags amonrg pro
cesses as they communicate. It currently assumes that essesp
handles a single request at atime, but it allows multiple@sses to
concurrently handle different requests (for instance dispatcher
handles request 2 while a worker handles request 1 in thesjigur
When a message with a new tag is received by a process, X-ray
assumes that it ceases to handle the old request and stiaaisdie
the new one. This assumption is valid for the server apjtioat
we use in the evaluation.

Note that since these processes are being replayed, thg X-ra
kernel does not actually send and receive data when thewtexec
system calls. Therefore, request extraction cannot ussirgxi
communication channels to propagate request tags. Insteay
modifies the application binaries to establish and use apsicie
channelqreplay-specific TCP connections) for communicating re-
quest tags with each other. Since side channels are ebebly
instrumentation and not by the application, the kernel etescside
channel system calls during replay. During replay, whenitke
strumentation sees that one recorded process communieéted
another, it uses the side channel to transmit any currenestdag
from the sending process to the process that received theddat
ing recording. The receiving process blocks until inforioratis
available on the side channel. This means that the replased p
cesses obey the same causal order of execution that theyéall



during recording.

Although most popular servers such as Apache, Postfix or Post if (e

greSQL handle a single request per thread of execution,t-even
based servers may handle many requests simultaneously asin
single thread. Since X-ray already tracks application tlave, we
plan to extend X-ray to handle such servers via fine-graimed i
formation flow analysis (i.e., taint tracking). Essentiallve can
identify the memory addresses associated with each requnelst
use that information to identify the code intervals in whicthread
or process is handling a particular request. Alternatjwely could
use per-application schemas as is done during Magpie regxes
traction [5].

As the replayed application processes execute, the reguest
traction Pin tool tags each basic block with a request ifientif
it believes the process is handling a request at that time.fifilal
output of the request-extraction instrumentation is arpguest list
of <process,basic blocktuples in the order that the basic blocks
were executed.

6.2.2 Identifying basic blocks

The first step in performance summarization is to map theescop
of the analysis specified by the user to a set of basic blo¢kkel
user specifies the scope as a time interval, X-ray includésaaic
blocks executed by any process within that interval. Idigatiion
is somewhat imprecise because X-ray only records timestanp
the entry and exit of system calls. The analyzed scope is fham
exit of the last system call executed before the specifiadvat to
the entry of the first system call executed after the specifiei-
val. If the analysis scope is a time interval, X-ray omitsuest
extraction because it is not needed.

If the user specifies a particular request as the scope of-anal
sis, X-ray uses the request extraction results that idettig set
of basic blocks for that request. If the user specifies twoiests
to compare using differential performance analysis, Xrsgs the
request extraction results for both requests.

6.2.3 Attributing performance costs

X-ray next attributes specific performance costs to everppli-
cation instructions and system calls executed). As a pedoce
optimization, X-ray considers all events in the same balsickito-
gether since they have the same set of root causes (in othdswo
if one event is executed, they all must be executed).

Currently, users may choose one or more of the following
metrics: latency, CPU utilization, disk bandwidth, andwuak
throughput. During recording, X-ray records the start amdi ttme
of every system call in the log of non-deterministic eveighen
it encounters the same system call during replay, the Pin¢ads
the log and subtracts the two values to determine the sysiétac
tency. The latency is then attributed to the basic blockithatked
the system call.

X-ray next considers latency not attributable to systenscét
currently uses a simple method that attributes latencyopqtion
to the number of user-level instructions executed. X-ranttakes
the total process execution time, subtracts the time spesystem
calls, and divides the remaining time by the number of irtdions.
The result is the latency per instruction. Multiplying thialue
by the number of instructions in a basic block and adding iy an
system call latency for that block gives the block’s toté¢tey.

To calculate CPU utilization, X-ray simply counts the numbe
instructions executed by each basic block. To calculate alisl
network usage, it inspects the replay log as it is replayédiatify
file descriptors associated with the resource being ancly&énen
a system call reads or writes data for these descriptorgyXat-

/* a, b, c and d are read from the config filex*/
== 0) { /* c set to O in config file */

X = a;
} else {

y = b;

N

Figure 6: Example to illustrate data and control flow tracking

tributes the total number of bytes processed to the basak it
invoked the system call.

6.2.4 Information flow analysis

X-ray next determines why each basic block executed. X-ray
uses taint tracking [22], a form of dynamic information floned
ysis, to associate each block with a set of root causes. Memwfs
ically, it uses our tool ConfAid [3] to generate a set of priolea
root causes for each block. We next provide some backgroond o
ConfAid.

ConfAid assigns a unique taint identifier to registers anchory
addresses when data is read into the program from configaorati
files and incoming request sockets. It identifies specifidigan
ration tokens through a simple form of symbolic executiorar F
instance, if data read from a known configuration file is corega
to the string “FOQ”, then ConfAid marks that data as assediat
with tokenF00.

As the program executes, ConfAid propagates taint iderdifie
to other locations in the process’s address space accotalidg-
pendencies introduced via data and control flow. Rather tiiaak
taint as a binary value, it associates a weight with each igém-
tifier that represents the strength of the causal relatipristween
the tainted value and the root cause. X-ray builds on ConfAid
also assigning a weighted set of taint values to each basakbl
that is executed; membership in this set indicates that lihek’s
execution depends on the specified root cause, and the atesbci
weight indicates the strength of the dependency.

ConfAid specifies the taint of each variable as a set of con-
figuration options. For instance, if the taint set of a vdgais
{F00,BAR}, ConfAid believes that the value of that variable could
change if the user were to modify either th@0 or BAR tokens in
the configuration file.

When a monitored process executes an instruction that rasdifi
a memory address, register, or CPU flag, the taint set of each m
ified location is set to the union of the taint sets of the valtead
by the instruction. For example, consider the instructieay+ z
where the taint set af becomes the union of taint sets ypfand
z. Intuitively, the value o might change if a configuration token
were to causg or zto change prior to the execution of this instruc-
tion.

ConfAid tracks control flow dependencies as well since they
propagate the majority of configuration-derived taint. To b,
ConfAid takes into account the basic block structure of gpliap
cation. Consider the example in Figure 6. Asswme, ¢, andd
were read from a configuration source and have taint setgreesbi
to them. The taint of variable not only includes the taint dd via
data flow, but also the taint of conditian since the value of con-
dition c could affect the execution path and consequently the value
of variablex. The taint of variablez, however, only includes the
taint ofd and notc, since the execution @f= d statement happens
regardless of value af

ConfAid also tracks implicit control flow dependencies. g+



ure 6, the values ofandy both depend on since the occurrence of
their assignments @andb depend on whether or not the branch is
taken. Note thay is still dependent on even though thelse path

is not taken by the execution since the valug/ofiight change if

a configuration token is modified such that the condition ueatals
differently.

In contrast to prior taint tracking tools, ConfAid track#itaas a
floating-point weight ranging in value between zero and @wmn-
fAid uses two heuristics. First, it assumes that data flonedep
dencies are more likely to lead to the root cause than cofitial
dependencies. Second, it assumes that control flow depeeden
are more likely to lead to the root cause if they occur clogghée
basic block being executed.

We modified ConfAid to better suit the needs of X-ray. Our first
modification was to broaden the source of tainted data. Xacdy
only tracks data read from configuration sources; it alstckgaata
read from input requests. X-ray uses the same filter thaeg dar-
ing request extraction to determine when the applicatioaasling
data from a request. The taint identifier in this case indgdhe
particular request on which a memory address or registesratp

ConfAid originally transmitted taint values over the sarharm-
nels that are used to send the tainted data between prockleses
ever, these channels do not exist during replay since timekdoes
not re-execute recorded system calls for inter-processraarica-
tion. We therefore modified ConfAid to create and use sidecha
nels to transmit taint values, as described in the previecs® on
request extraction.

Finally, we modified how ConfAid uses taint values. The origi
nal ConfAid implementation only outputs taint values wheaeri-
counters an application failure. However, X-ray is intéedsn the
taint values of all instructions and system calls executihimthe
scope of analysis. During execution, our modified versioGah-
fAid generates a taint set that contains root causes andiat=m
weights for every basic block that has been marked as beittinwi
the scope of analysis.

As an example, our modified version of ConfAid might emit the
following taint set for a basic block{F00: 1.0, BAR: 0.5}. This
represents the belief that the basic block would definitelytrave
been executed if root caug@0 were different and the belief that
the block is 50% likely not to have been executed if root caise
were different. Note that these are two independent prtibiabi
potentially changing either of the two options might caumsetiasic
block to not have been executed. Thus, the values in a tdinesel
not sum to one.

6.2.5 Integration

Next, X-ray attributes the performance cost of executinchea
basic block according to specific root causes. For each engtec
in the block’s taint set, X-ray multiplies the per-block tay the
weight associated with the root cause. Each process manai
running sum of the costs associated with each root causésagit
played. The final cost for each root cause is determined bingdd
together the sums from all replayed processes. At the endadf a
ysis, X-ray prints out a list of root causes and shows thenedéd
performance cost for each. X-ray can simultaneously apatyal-
tiple performance metrics.

6.2.6 Differential performance summarization

thediff tool to compare the two paths and understand where they
diverged from one another and where the divergence enddtas t
paths merged back together.

X-ray then determines the root cause of each divergenced: It a
tributes the cost of the divergence to the conditional thrahedi-
ately preceded the divergence. It calculates a performemstefor
the divergence by first summing the performance costs ofaalich
blocks along the divergent path for one request and themaibt
ing the sum of the performance costs of all basic blocks atbag
divergent path for the other request. It attributes therdimece to
root causes by multiplying the cost of the divergence by taigts
in the taint set for the conditional that caused the divecgen

7. EVALUATION

Our evaluation of X-ray answers the following questions:

e How accurately does X-ray identify the root cause of perfor-
mance problems?

e How fast can X-ray troubleshoot a performance problem?

e How much overhead does X-ray add to a production system?

7.1 Experimental Setup

We used X-ray to diagnose performance problems in three ap-
plications: the Apache Web server version 2.2.14, the Rawsidil
server version 2.7 and the PostgreSQL database versigh 9rD.
Apache, each request is handled by one process. Postfix Has mu
tiple utility processes, each of which is responsible fandilmg a
certain part of a request. On average, a Postfix request ddthn
by 5 different processes. In PostgreSQL, each request idthhy
one process. However, PostgreSQL has multiple time-baségd u
processes such as a write-ahead log writer and an auto+vaitiat
handle requests in batches. We ran all experiments on a pell O
tiPlex 980 with a 3.47 GHz Intel Core i5 Dual Core processat an
4 GB of memory, running a Linux 2.6.26 kernel modified to suppo
deterministic replay.

7.2 Root cause identification

We evaluated X-ray by recreating known performance issetes r
ported in application performance tuning and troubleshgadiveb
pages, forums, and blog posts. To recreate each issue, ez eit
modified configuration settings or sent a problematic secpi@f
requests to the server. In total, we recreated the 14 prabtem
scribed in Table 1 (7 for Apache, 3 for Postfix, and 4 for Post-
greSQL).

For each test case, we recorded server execution while vie sen
several application requests. We used standard lightivpthor-
mance monitoring tools such as top, iostat, netstat and lieg) tth
identify the bottleneck resource and identify requestsnduwvhich
resource usage was high. Later, we executed X-ray offlinsina
of the recorded runs to explain the performance anomalies.

For each test case, Table 2 shows the scope and metric we used
for X-ray analysis. The next column shows the top three raases
identified by X-ray, along with X-ray’s analysis of how mudiet
cause contributed to the performance metric under obsemnvat
The correct answers for each test case is shown in bold. Bhe la
column shows how long X-ray offline analysis took.

X-ray uses a different method to compare the performance of /-2.1 Apache

two requests. It first identifies the points where the exeoypiaths
diverged from one another. It uses the results of requesdaidn

In the first Apache test case, the threshold for the number of
requests that can reuse the same TCP connection is set toRdew

to output each path as a sequence of basic blocks executée by t establishing a connection causes some requests to exfghirh

request. Each path may span multiple processes. X-ray ges u

latency than others. To exhibit this problem, we sent 10@usar



App # | Description of performance test cases

Apache sets a threshold for the number of requests that adédubin one TCP connection using the KeepAlive
1,2 | and MaxKeepAliveRequests setting. A low threshold caugesche to shut down and rebuild the connections
too often, causing a significant delay in handling some reigue

In Apache, access to various directories can be contratieda config file based on the domain name of the
3 | client sending the request. This setting causes extra DINSfoa verifying the domains and leads to high
latency in handling the requests.

Apache can be configured to log the host names of clientssgmeguests to specific directories for adminjs-
Apache 4 | trative purposes. This setting causes extra DNS calls aut$ @ high latencies in handling requests for thpse
directories.

5 Apache can be configured to require authentication for sareetdries. Authentication causes high CPU usage
peaks.

Apache can be configured to generate content-MD5 headenslat@ld using the message body. This hegder
6 | provides an end-to-end message integrity with high conéiderlowever, for larger files, the calculation of the
digests causes high CPU usage.

7 By default, Apache sends eTags in the header of HTTP respombe eTags can be used by the client in future
requests for the same file to only receive the file if its cotstérave changed.

1 Postfix can be enabled to log more information for a list ofcifiehosts, using debug_peer_list option. The
extra logging causes excessive disk activity.

Postfix can be configured to examine the body of the messagé@ssag list of regular expressions known [to
Postfix 2 | be from spammers or viruses. This setting can significantyeiase the CPU usage for handling a received
message if there are many expression patterns.

Postfix can be configured to reject requests that are sentfiacklisted domains. Postfix uses DNS mechanism
3 | to query blacklist operators to determine if the messagaldhze rejected. Based on the number of operators
specified, Postfix performs extra DNS calls, which signifiaimcreases the latency of the handled message.

f

1 PostgreSQL tries to identify the correct time zone of theesysfor displaying and interpreting time stamps
the time zone is not specified in the configuration file. Thigéases the startup time of PostgreSQL by 5x

PostgreSQL can be configured to synchronously commit thievatiead logs to disk before sending the end
PostgreSQL| 2 | of the transaction message to the client. This setting casecaxtra delays in processing transactions if the
system is under a large load.

The frequency of taking checkpoints from the write-aheapdan be configured in the PostgreSQL configu-
3 | ration file. Having more frequent checkpoints decreaseshcracovery time but significantly increases disk
activity for busy databases.

The delay between the activity rounds of the write-aheadaidte process can be configured in PostgreSQL
4 | configuration file. Setting this delay higher causes poaéttss of transactions. However, lower delays calise
extra CPU usage.

Table 1: Description of the Apache, Postfix and PostgreSQL pformance test cases

requests to the Apache server using dbeApache benchmarking the similarity of the requests.
tool. The requests used different HTTP methods (GET and FOST  This test case highlights the power of differential perfance
and asked for files with different sizes. summarization. X-ray does not require two requests to bstanb
We first used X-ray to perform a differential performance sum tially similar in order to identify performance anomaliddecause
marization of two similar requests (HTTP GETs of small files) it analyzes program control flow, X-ray can correctly diéfetiate
one of which had a small latency and one of which had a high la- performance differences due to diverging input from those @
tency. X-ray correctly identified théaxKeepAliveRequests and other root causes such as configuration options.
KeepAlive On tokens as the largest root causes. As with many  The remaining Apache test cases use both basic and difgrent
issues we examined, there are multiple ways to fix the prablem performance summarization for a variety of metrics (laye@PU
in this case, changing either token value removes the pedoce usage, and network throughput). In every case, X-ray itledtihe
anomaly. correct root cause (or causes) of the performance problehileW
Next, we explored how sensitive X-ray is to the similarity of the root cause of the first six performance problems were gonfi
the compared requests (Apache test case 2). We compared twaation setting, the high network usage in the last test casedue

very dissimilar requests using differential performanoamariza- to one client’s failure to use the eTag header. This last sheers
tion: a small HTTP POST and a large HTTP GET. As would be that X-ray’s analysis of server performance can sometiohestify
expected, X-ray reported that the largest cause of the ghnee inefficient client behavior.

in processing time was due to the input data from the requests  X-ray analysis time for the 7 test cases varies between 2 and 3
TheDocumentRoot parameter is also reported as a large cause of minutes. This is very reasonable considering that analggier-

the divergence because the root is appended to the inpugfile n formed offline and does not affect the online productionvgafe.
However, X-ray still reported that thaxKeepAliveRequests iS

a substantial reason for divergence. Further, the estihzgor- 7.2.2 Postfix

mance impact dffaxKeepAliveRequests is not affected much by The first Postfix test case reproduces a problem reported in a



Analysis scope| Analysis Metric

App

Results : Expected contribution Exec. time

Differential Latency

MaxKeepAliveRequests 17.2 usecs.
KeepAlive On: 8.6 usecs.
<Directory: 4.7 usecs.

2m 40s

Differential Latency

User’s request 311.6 usecs.
DocumentRoot 311.5 usecs.
MaxKeepAliveRequests 16.8 usecs.

2m 41s

Differential Latency

Allow domain.com: 603 usecs.
ServerRoot: 151 usecs.
TypesConfig : 151uses

2m 14s

Apache Differential Latency

HostNameLookups On 254 usecs.
<Directory: 127 usecs.
HostNameLookups 127 usecs.

2m4s

Request CPU

AuthUserFile: 9M instrs.
User’s request 600K instrs.
Listen: 80K instrs.

2m 6s

Differential CPU

ContentDigest On 217K instrs.
ContentDigest 108K instrs.
<Directory: 108K instrs.

2m 6s

Differential Network

User’s request 35 KB
DocumentRoot 35 KB
<Listen: 4KB

2m 4s

Request Disk

User’s request 100 KB
debug_peer_list 28 KB
queue_directory: 5KB

1m 18s

Postfix Request CPU

body_checks 1M instrs.
User’s request 900K instrs.
myhostname: 300K instrs.

2m 49s

Request Latency

reject_rbl_client: 3.5 secs.
reject_rbl_client: 1.9 secs.
smtpd_client_restrictions 0.9 secs.

1m 24s

Time interval CPU

timezone 28M instrs.
default_text_search_config: 11M instr
datestyle: 11M instrs.

15+m

v

PostgreSQL| Request Latency

shared_buffers: 0.42 secs.
max_connections: 0.26 secs.
wal_sync_method 0.26 secs.

2m 50s

Time interval Disk

checkpoint_timeout 16 KB
shared_buffers: 11 KB
max_connections: 11 KB

4m 48s

Time interval CPU

shared_buffers: 2.6M instrs.
max_connections: 2M instrs.
wal_writer_delay: 1.4M instrs.

5m 27s

Table 2: The results for our performance test cases.

Postfix user’s blog [26]. The user noticed that emails withcit-
ments sent from his account transferred very slowly, whiterg
thing else, including the mail received by IMAP servicesd in@
performance issues.

The user employedotop to monitor the Postfix server, and
observed that one child process was generating a lot of disk a
tivity. He poured through the server logs and realized that t
child process was logging large amounts of data. Finallyame
through his configuration file, and eventually found out ttet
debug_peer_list, which specifies a list of hosts that triggered
the logging, included his own IP address.

Our results show that X-ray can make this diagnosis autemati
cally. We simply analyzed a specific request that was assatia
with a period of high disk usage. X-ray identifies both theuesy
(since it contains the IP address that caused excessivg)gnd
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the erroneous parameter as the top two root causes, pimapthe
specific reasons for the high disk activity. Note that we dithave
to identify which child process was responsible for the inggnor
did we have to read any log files. Since X-ray produced these re
sults in a little over a minute, our tool could have saved tlogdper
considerable time.

The remaining two Postfix test cases reproduce CPU and latenc
problems. X-ray identifies the correct root cause for eachlpm
in only a few minutes.

7.2.3 PostgreSQL

The first PostgreSQL case study is based on our own experi-
ence. Our evaluation started and stopped PostgreSQL nmaag.ti
We noticed that our scripts were running slowly due to ajapiin
start-up delay, and decided to try to use X-ray to improveagoer



mm Without X-ray
— With X-ray

Normalized Throughput

Apache  Postfix PostgreSQL

This figure compares server throughput with and without X-ray
recording. Results are normalized to the number of requests per
second without X-ray. Higher values are better. Each result is the
mean of 10 trials; error bars are 95% confidence intervals.

Figure 7: X-ray online overhead

mance. Sinceop showed 100% CPU usage, we performed a X-
ray CPU analysis during the interval before PostgreSQLivede
the first request.

Unexpectedly, X-ray identified theimezone configuration op-
tion as the top root cause. In the configuration file, we hadhset
timezone Option tounknown. This caused PostgreSQL to expend
a surprising amount of effort to attempt to identify the eatrtime
zone. We updated the configuration to specify our time zoné, a
were pleased to see that the application startup time desulday
over 80%. While this problem is admittedly esoteric sincesmo
PostgreSQL users will not start and stop the applicatiorersév
times in succession, we were happy to see that X-ray coulfd hel
identify performance issues that we did not specificallgénjinto
the application.

Since PostgreSQL utility processes are mostly asynchsonou
(they sleep for a while and then wake up to perform tasks sach a
flushing write-ahead log to disk, taking checkpoints, orwxaning
the database) time interval analysis is the best fit for thidica-
tion. When we examined three other performance issuesffeat a
PostgreSQL throughput, X-ray identified the correct roatseain
one instance and ranked the correct cause third in the otfter t
cases. Thehared_buffers andmax_connections parameters
appear to taint many branches during PostgreSQL execudias:
ing them to always rank as top causes of resource usage.

X-ray analysis time is currently capped at 15 minutes; aialy
of the first test case hit this limit but still returned meagfir re-
sults since the analysis executed almost all the code useagdu
startup. The remaining PostgreSQL issues required 2-5tesina
analyze. We have not yet put much effort into optimizing X-ra
analysis performance, since these times are still sulistigrfaster
than manual performance debugging.

7.3 X-ray online overhead

We measured online overhead by comparing the throughput and
the latency of our three applications when they are recobgex-
ray to results running the applications on the default Likaxel
without recording.

Figure 7 shows that X-ray adds a 1-7% throughput overhead for
the three applications. For Apache, we usedto send 5000 re-
quests for a 35 KB static Web page with a concurrency of 50 re-
quests at a time over an isolated network. X-ray recordidgeed
throughput by 0.6%. Per-request latency increased by 0'Hé.
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recording log size for this experiment was 7 MB, containidgK
system calls.

For Postfix, we used thentp-source tool to send 10000 mail
messages of size 1 KB from another machine on the isolated net
work. Postfix processing is asynchronous, so there is no imgan
ful latency measure. X-ray recording reduced server thipugby
1.1%. The log size was 453 MB, containing 6 million systentscal

We benchmarked PostgreSQL uspgbench. We measured the
number of transactions completed in 60 seconds with coacoyr
of 10 transactions sent at a time. Each transaction invaives
SELECT, threeUPDATES, and ondNSERT command. X-ray record-
ing reduced throughput by 7% and increased per-requentiats/
7%. The log size was 820 MB, containing 17 million systemscall
We conjecture that the higher overhead for PostgreSQL wagdlyno
due to the increased log size and larger number of systes call

8. CONCLUSION

Diagnosing performance problems in production systemsdbs c
lenging. X-ray helps system administrators by identifyihg root
cause of observed performance problems. X-ray first reciels
execution of the production system and collects performane
formation. In an offline phase, X-ray deterministically lays the
recorded execution and performs heavyweight analysisyXises
dynamic information flow analysis to attribute the recorgedor-
mance information to root causes that include configuraifions
and request inputs. Our results show that X-ray accuratkdy-i
tifies the root cause of several real-world performance Iprob,
while imposing only 1-7% overhead on a production system.
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