
Automatic Root-cause Diagnosis of Performance
Anomalies in Production Software

Mona Attariyan, Michael Chow and Jason Flinn
University of Michigan

{monattar, mcchow, jflinn}@umich.edu

ABSTRACT
Troubleshooting the performance of complex production software
is challenging. Most existing tools, such as profiling, tracing, and
logging systems, revealwhat events occurred during performance
anomalies. However, the users of such tools must then inferwhy
these events occurred during a particular execution; e.g.,that their
execution was due to a specific input request or configurationset-
ting. Because manual root cause determination is time-consuming
and difficult, this paper introducesperformance summarization, a
technique for automatically inferring the root cause of performance
problems. Performance summarization first attributes performance
costs to fine-grained events such as individual instructions and sys-
tem calls. It then uses dynamic information flow to determinethe
probable root causes for the execution of each event. The cost of
each event is assigned to root causes according to the relative prob-
ability that the causes led to the execution of that event. Finally,
the total cost for each root cause is calculated by summing the per-
cause costs of all events. This paper also describes a differential
form of performance summarization that compares two activities.
We have implemented a tool called X-ray that performs perfor-
mance summarization. Our experimental results show that X-ray
accurately diagnoses 14 performance issues in the Apache HTTP
server, Postfix mail server and PostgreSQL database, while adding
only 1–7% overhead to production systems.

1. INTRODUCTION
Understanding and troubleshooting performance problems in

complex software systems is notoriously challenging. Thischal-
lenge is compounded for software in production for several rea-
sons. To avoid slowing down production systems, analysis and
troubleshooting must incur minimal overhead. Further, perfor-
mance issues in production can be both rare and non-deterministic,
making the issues hard to reproduce.

However, we argue that the most important reason why trou-
bleshooting performance in production systems is challenging is
that current tools only solve half the problem. Troubleshooting a
performance anomaly is essentially the process of determining why
certain events, such as high latency or resource usage, happened in
a system. Unfortunately, most current analysis tools, suchas pro-
filers and logging, only determinewhat events happened during a
performance anomaly — they leave the more challenging question
of why those events happened unanswered. Administrators and de-
velopers must manually infer the root cause of performance issue
from the observed events based upon their expertise and knowledge
of the software. For instance, a logging tool may detect thata cer-
tain low-level routine is called often during periods of high request
latency, but the user of the tool must then infer that the routine is
called more often due to a specific configuration setting.

In this paper, we introduce the technique ofperformance sum-
marizationwhich not only determines what events occurred dur-
ing a performance anomaly but also determines why the anomaly
occurred. Performance summarization first attributes performance
costs such as latency and I/O utilization to fine-grained events (in-
dividual instructions and system calls). Then, it uses dynamic in-
formation flow analysis to associate each such event with a set of
probable root causes such as configuration settings or specific data
from input requests. The cost of each event is assigned to poten-
tial root causes weighted by the probability that the particular root
cause led to the execution of that event. Finally, the per-cause costs
for all events in the program execution are summed together.The
end result is a list of root causes ordered by their performance costs.
In the above example, the outcome of performance summarization
would indicate that one specific configuration setting contributed
the most to the performance slowdown. This output gives the sys-
tem troubleshooter a direct indication of how to fix the problem,
without the need for time-consuming manual analysis.

We also introducedifferential performance analysiswhich is
used to determine why the performance impact of two different
events differed. For instance, differential performance analysis can
be used to understand why two requests to a Web server took differ-
ent amounts of time to complete. Differential performance analysis
identifies branches where the execution paths of the two requests
diverged. It assigns a performance cost to each path taken from
the branch, then uses dynamic information flow analysis to deter-
mine why the two requests diverged at that point. It attributes the
difference in performance costs between the two paths to theiden-
tified root causes according to the likelihood that they caused the
branch condition to evaluate to different values during thetwo ex-
ecutions. The costs of all such divergences during are summed.
The output shows the system troubleshooter a set of reasons why
the performance costs of two requests differ, along with a specific
performance impact for each reason. For example, the outputfor
a Web server might show that 70% of the difference between two
requests is due to the specific file requested, while 30% is dueto a
configuration parameter that caused extra initialization logic to be
run in one request but not the other.

We have built a tool called X-ray that implements performance
summarization. X-ray attributes latency, CPU utilization, disk us-
age, and network utilization to specific root causes. X-ray supports
several different scopes of analysis: intervals of time, specific re-
quests, or a differential analysis of pairs of requests. Thus, X-ray
can answer performance questions such as:

• Why did a particular request take a long time to execute?

• Why is disk utilization high during a specific time period?

• Why did request R take longer to execute than request S?

1

Performance summarization is a high-overhead activity. Inorder
to execute this analysis for production software, X-ray leverages
prior work in deterministic replay to offload the heavyweight anal-
ysis from the production system. A deterministic replay system
provides DVR-like functionality, in which an execution of ahard-
ware or software system is recorded so that an identical execution
can later be replayed on demand. Our use of deterministic replay to
troubleshoot performance issues raised several new challenges. X-
ray must split its functionality among the recorded and replayed ex-
ecutions; for example, timestamps must be captured during record-
ing because the heavyweight analysis substantially perturbs timing.
Further, because of the split analysis, the fidelity of the replay must
be strict enough to guarantee that the two executions are identical at
the granularity observed by X-ray. However, because the replayed
execution includes analysis code that the recorded execution does
not, the fidelity of the replay must be loose enough to allow the re-
played execution to diverge enough to run the analysis. We show
that all these goals can be achieved through careful co-design of the
deterministic replay and analysis systems.

Thus, this paper contributes the following:

• The technique of performance summarization, which at-
tributes performance costs to root causes.

• The technique of differential performance summarization for
understanding why two similar events have different perfor-
mance.

• Co-design methodologies for modifying deterministic replay
systems to support heavyweight performance analysis tools
such as binary instrumentation without imposing substantial
overhead on a production system.

• Development and evaluation of the X-ray tool, which imple-
ments these techniques.

We evaluated X-ray using three applications: the Apache Web
server, the Postfix mail server and the PostgreSQL database.We
have reproduced and analyzed 14 performance issues reported for
these applications. In 12 of 14 cases, X-ray identifies a correct root
cause as the largest contributor to the performance problem; in the
remaining two cases, X-ray identifies a correct root cause asthe
third largest contributor. Our evaluation also shows that X-ray adds
a performance overhead of only 1–7% on the production system.

2. RELATED WORK
While many prior systems help troubleshoot performance issues,

X-ray is the first such system that uses dynamic information flow
analysis to automatically identify the root cause of production per-
formance issues without the need for manual inference.

Profilers such as OProfile [23], VTune [35], DTrace [9], Sys-
temTap [27], ETW [21], Debox [28], and Chopstix [6] allow the
troubleshooter to instrument applications and/or the operating sys-
tem and collect performance data. These tools revealwhat events
(e.g., functions) incur substantial performance costs. However,
their users must manually inferwhy those events executed. In con-
trast, X-ray automatically identifies root causes.

Other tracing systems follow activities across multiple compo-
nents or protocol layers, and use the causal relationships they ob-
serve to propagate and merge performance data. X-trace [17]ob-
serves network activities across protocols and layers in a distributed
system. SNAP [40] profiles TCP-statistics and socket-call logs and
correlates data across a data center. Aguileraet al. [1] use statistical
analysis to infer causal paths between application components and

attribute delays to specific nodes. Pinpoint [12] traces communica-
tion between middleware components to infer which components
are responsible for causing faults. Follow-on work [11] adds the
abstraction of causalpathsthat link black-box components. Like
these tools, X-ray uses causality to propagate data across compo-
nents when processes communicate (although propagation iscur-
rently limited to a single node by its replay system). Unlikethese
tools, X-ray analyzes causalitywithin application components us-
ing dynamic binary instrumentation, so it can determine thespecific
relationship between component inputs and outputs.

Other performance troubleshooting tools build or use a model
of application performance. Magpie [5] accurately extracts the
control flow and resource consumption of each request to build a
workload model that can be used for performance prediction.Mag-
pie’s per-request profiling can help troubleshooters diagnose poten-
tial performance problems. Even though Magpie provides detailed
performance information that can be used to manually infer root
causes, it still does not automatically diagnosewhy the observed
performance anomalies occur. Magpie uses schemas to determine
which requests are being executed by various components; X-ray
currently uses a simpler method and thus could benefit from using
Magpie’s schemas for complicated request patterns.

Stewartet al. [31] extract resource usage from multi-component
services to generate performance models for capacity planning and
cost-effectiveness analysis. Urgaonkaret al. [4] use resource us-
age profiling to guide application placement in shared hosting plat-
forms. Cohenet al. [14] use statistical learning techniques to au-
tomatically build system models. They identify a combination of
system-level metrics and threshold values that correlate with high-
level performance states. In contrast to X-ray, none of these sys-
tems tie performance to specific root causes such as configuration
options.

Many research projects tune performance [15, 10, 41] by inject-
ing artificial traffic and using machine learning to correlate per-
formance with specific configuration options. Unlike X-ray,these
tools limit the set of configuration options analyzed, and they must
see controlled traffic in order to learn good configuration values.

Spectroscope [29] diagnoses performance changes by comparing
request flows between two executions of the same workload. Ka-
sick et al. [19] compare similar requests to diagnose performance
bugs in parallel file systems. Unlike X-ray, these tools mustsee
very similar requests in order to diagnose performance problems.
In contrast, our results show that X-ray can correctly identify root
causes even when requests are very dissimilar because it analyzes
the control path of each request.

PeerPressure [36] and its predecessor, Strider [37], use statisti-
cal methods to compare configuration state in the Windows registry
on different machines. These systems analyze static state rather
than observe applications as they execute. Chronus [38] compares
configuration states of the same computer across time using vir-
tual machine checkpoint and rollback. AutoBash [32] helps users
troubleshoot configuration by providing OS-level featuressuch as
causality analysis and speculative execution.

X-ray uses taint tracking [22] to identify the root cause forthe
execution of individual instructions and system calls. Forthis pur-
pose, we use ConfAid [3]. ConfAid is a tool that we originally
designed to debug program failures by helping users and adminis-
trators attribute those failures to erroneous configuration options.
X-ray re-purposes ConfAid to tackle performance analysis.

Potentially, X-ray could instead have used other methods for
inferring causality such as symbolic execution [8]. For instance,
S2E [13] presented a case study in which symbolic execution was
used to learn the relationship between inputs and low-levelevents

2

Allow domain.name (line 164) : 603 usesServerRoot (line 29) : 151 usesTypesConfig (line 298) : 151 uses<IfModule(line 231) : 75 usesalias_module(line 231) : 75 uses<Diretory(line 162) : 55 uses...
Figure 1: Example of X-ray output for Apache

such as page faults and instruction counts. While X-ray and S2E
both use causality to explain low-level events, their focusis very
different. X-ray starts from a specific performance anomalyseen
in production and traces causality to find that event’s root cause,
whereas S2E starts from a specific set of inputs and explores multi-
ple paths to infer the performance impact of different inputchoices.

X-ray uses deterministic record and replay. While many prior
software systems provide this functionality [2, 16, 18, 24,30, 34,
30], X-ray introduces new constraints that prior systems cannot
satisfy. The fidelity of replay must be high enough to exactlyre-
produce application instructions and system calls, while still being
loose enough to execution instrumentation during the replayed ex-
ecution but not during the recorded execution. X-ray modified the
replay system to compensate for the instrumentation code inorder
to achieve the needed fidelity.

3. X-RAY OVERVIEW

3.1 Troubleshooting with X-ray
X-ray pinpoints why performance anomalies, such as high re-

quest latencies or bottlenecks in resources, occurred on a produc-
tion system. Our current system targets servers, though this is not
fundamental to our design.

X-ray does not require application source code because its anal-
ysis operates entirely on application binaries and modifications are
made using dynamic binary instrumentation. X-ray recognizes
configuration tokens and other root causes through a limitedform
of binary symbolic execution. Thus, X-ray can be used on COTS
(common off-the-shelf) applications, making the tool appropriate
for system administrators as well as for developers.

The first step in using X-ray is to record an interval of software
execution on a production system. As the results in Section 7show,
X-ray recording overhead is currently only 1–7%. Thus, a user can
choose to leave X-ray running for long periods of time to capture
rare and hard-to-reproduce performance issues. Alternatively, X-
ray can be dynamically enabled only when specific performance
issues are exhibited.

X-ray uses deterministic record and replay to offload analysis of
the recorded execution from the production system. An X-rayuser
chooses which interval of execution to analyze. The user mayselect
the entire execution, an interval of time, or a specific inputrequest.
X-ray produces a performance summary for the selected interval.
The first two intervals are appropriate when the user noticesde-
graded throughput over a period of time, whereas the latter is best
when one or more requests take an unexpected amount of time to
execute. Alternatively, a user may select two requests to compare,
in which case X-ray does a differential performance summarization
for the selected requests. Typically, a user would select two similar
requests that differ substantially in service time, thoughour results
show that X-ray will provide useful information even when the two
selected requests are very dissimilar.

Replay

Log

Online Phase Offline Phase

List of

Root

Causes

Request

Extraction

Root Cause

Extraction

Recorded

Execution

Figure 2: Overview of X-ray

The X-ray user next selects the set of performance statistics to
summarize. Typically, we expect that a user will use basic per-
formance analysis tools such astop and iostat to identify the
bottleneck resource. X-ray provides a flexible framework for ana-
lyzing arbitrary statistics; our current implementation supports la-
tency, CPU utilization, disk throughput and network bandwidth.

Figure 1 shows an example of X-ray output for Apache. The
output shows the inferred root causes of a performance problem.
X-ray associates a specific cost (in this case, latency) to each root
cause and orders the list by that metric. In the figure, all root causes
are from thehttpd.onf configuration file. Based on X-ray out-
put, users may identify configuration options that are inappropriate
for their workload, they might choose a set of configuration options
that offer a different tradeoff between performance or functionality,
or they may re-provision their system to supply resources inquan-
tities that match the features they desire.

Executions recorded by X-ray can be replayed multiple times.
Therefore, X-ray users can perform many different analysesfor the
same recording. For instance, a user may change the scope of exe-
cution analyzed, choose different metrics to summarize, orswitch
between basic and differential performance summarization. This
means that the X-ray user does not need to decide what type of
analysis will be useful before a performance anomaly is recorded.

3.2 Mechanics of X-ray
Figure 2 shows an overview of how X-ray executes. To minimize

production overhead, X-ray uses deterministic record and replay to
divide its execution into two phases. In its online phase, X-ray ob-
serves the production systemin situ and logs all non-deterministic
inputs for the application so that it can subsequently replay that
application elsewhere. X-ray also records timing information and
other performance-specific data during the online phase because
the subsequent, offline analysis perturbs the execution toomuch to
accurately measure performance.

In its offline phase, X-ray performs two passes, each of whichis a
deterministic replay of the recorded execution. In the firstpass, X-
ray performsrequest extraction, in which it determines the specific
intervals of execution (i.e., the basic blocks executed) during which
each process is handling each input request to the recorded system.
In the first pass, X-ray also assigns the recorded performance costs
to each instruction and system call. In the second pass, X-ray com-
pletes performance summarization by using dynamic information
flow to attribute events to root causes and by calculating thecost of
each root cause. At the end of the second pass, X-ray outputs alist
of root causes ordered by its user’s chosen performance metric.

4. PERFORMANCE SUMMARIZATION
Performance summarization is the heart of X-ray. The goal isto

attribute specific performance costs such as request latency, CPU

3

write 100 bytes

Disk cost: 100

write 200 bytes

Disk cost: 200

Step 1: Cost Attribution Step 2: Root Cause Analysis

option1 costs

 0.5 * 100 = 50 bytes

option2 costs

 0.2 * 100 = 20 bytes

option2 costs

 0.2 * 200 = 40 bytes

option2 costs 60 bytes

option1 costs 50 bytes

If(X){

 // Execution depends on

 // option1 & option2 with

 // probabilities 0.5 & 0.2

 write(100);

}

If(Y){

 // Execution depends on

 // option2 with

 // probability 0.2

 write(200);

}

…

Step 3: Summarization

A

B

Time

A

B

Figure 3: Example of performance summarization

usage, and I/O utilization to one or more root causes. X-ray con-
siders any configuration option or any data received from an input
request as a potential root cause.

4.1 Basic performance summarization
Performance summarization is akin to integration in calculus. X-

ray individually analyzes the per-cause performance cost and root
cause of each user-level instruction and system call (referred to as
events in the discussion below), then adds together the per-event
costs to calculate how much each root cause has reflected the per-
formance of the application during the period of observation se-
lected by the X-ray user.

Figure 3 shows an overview of how performance summarization
works. In the first step, X-ray attributes performance metrics to
each event executed by one or more processes comprising a server
application; the figure assumes that the X-ray user has specified
disk bandwidth as a metric. Some metrics such as disk bandwidth
are associated only with system calls, while others such as latency
are attributed to both system calls and user-level instructions.

In the next step, X-ray uses taint tracking to derive a set of pos-
sible root causes for the execution of each event. Essentially, this
step answers the question: "how likely is it that changing a config-
uration option or receiving a different input would have prevented
this event from executing?" Taints are tracked as floating-point val-
ues using algorithms that we developed in ConfAid [3], with the
numerical taint value associated with each root cause reflecting the
belief that the root cause is the reason why the event was executed.

In the last step, X-ray multiplies the performance metrics for
each event by the per-cause taint values to derive the per-event per-
formance cost for each root cause. X-ray sums these costs over
all events that executed during the period selected by the user and
outputs an ordered list of root causes.

4.2 Differential performance summarization
Differential performance summarization is a technique forcom-

paring any two executions of an application activity, such as the
processing of two different request by a Web server. Such activities
have a common starting point (e.g., the receipt of a request)and
termination point (e.g., the sending of a response), but theexecu-
tion paths for different events may diverge due to differences in the
input or specific configuration settings.

Figure 4 shows an example of differential performance sum-
marization. X-ray compares two activities by first identifying all
points where the paths of the two executions diverge. It thenuses

taint tracking to evaluate why each divergence occurred; this rea-
son is given by the taint of the branch conditional at the divergence
point. For each performance metric, X-ray calculates the cost of
the divergence by subtracting the cost of all events on the divergent
path taken by the first execution from the cost of all events onthe
path taken by the second execution. This cost is attributed to root
causes by multiplying the metric values by the taint weight.X-ray
sums the per-cause costs of all divergences and output a listof root
causes ordered by the differential cost.

5. REPLAY FIDELITY
The dynamic instrumentation used by X-ray can slow down the

execution of an application by several orders of magnitude;this
overhead is too high to run X-ray directly on production soft-
ware. Therefore, X-ray employs deterministic record and replay
to offload time-consuming analysis from the production system to
another computer. There exist many systems that provide deter-
ministic replay by recording the initial state of an execution and
logging all non-deterministic events that occur during theexecu-
tion [7, 16, 30, 33]. With such systems, an execution can subse-
quently be reproduced on demand by restarting execution from the
initial state and supplying the previously-recorded values for all
non-deterministic events.

While deterministic replay is a well-studied technique, ween-
countered several new challenges in adapting the techniqueto work
with X-ray. In particular, we found that we needed to carefully bal-
ance thefidelity of the record and replay and that we needed toco-
designthe deterministic replay system to work with the dynamic
instrumentation employed by X-ray.

We define the fidelity of the replay to be the degree to which
the replayed execution is guaranteed to match the recorded execu-
tion. For the purposes of X-ray, replay fidelity must be high enough
to guarantee that the recording and replaying systems execute the
same application instructions and system calls in the same order.

Since performance analysis via binary instrumentation cancause
runtime overheads of several orders of magnitude, timing informa-
tion gathered during an instrumented run is essentially useless for
diagnosing most performance problems. In contrast, timinginfor-
mation gathered during the recorded run captures the exact per-
formance experienced by the production system. X-ray therefore
gathers timing data during recoding and explains the timingdata by
reasoning about the instructions and system calls executedduring
replayed executions. Thus, if the two sequences of instructions and

4

Path A
Path B

Conditional depends on

option1 & option2 with

probabilities 0.5 & 0.2

Cost of Divergence D1: (6 – 5) = 1

Cost of Divergence D2: (8 – 2) = 6

Conditional depends

on option2 with

probability 0.2

option2 costs 0.2+1.2 = 1.4

option1 costs 0.5

Cost: 6

Cost: 2

Cost: 3

Cost: 8 Cost: 2

D1

D2
option2 costs:

0.2 * 6 = 1.2

option1 costs:

0.5 * 1 = 0.5

option2 costs:

0.2 * 1 = 0.2

Figure 4: Example of differential performance summarization

system calls executed were allowed to differ, X-ray could provide
incorrect root cause diagnoses.

On the other hand, the fidelity of replay must be low enough
so that X-ray can execute application instructions and system calls
without dynamic instrumentation during the recorded execution but
executebothapplication and dynamic instrumentation instructions
and system calls during replay. From the point of view of the re-
play system, the replayed execution will contain a large number of
additional events that were not present during recording.

Thus, the design of X-ray walks a fine line. The fidelity of
deterministic replay must guarantee that the sameapplication in-
structions and system calls are executed in the same order inall
executions, but also allow replays to execute additionalinstrumen-
tation instructions and system calls. These requirements preclude
off-the-shelf use of any existing deterministic replay system. Some
systems do not guarantee the same sequence of application instruc-
tions [2, 24], while others do not allow recorded and replayed ex-
ecutions to diverge sufficiently to run instrumentation code in one
execution but not the other [39] or have unacceptably high record-
ing overhead [25].

Our approach to solving this dilemma is co-design: we make the
deterministic replay systeminstrumentation-awareso that it com-
pensates for the specific divergences in replayed executioncaused
by the dynamic instrumentation. The X-ray replay system is de-
signed to work with the Pin dynamic instrumentation tool; the
replay code compensates for extra system calls made by Pin and
the modifications to recorded system calls due to instrumentation.
It also preallocates resources such as memory regions and signal
handlers to avoid conflicts between the instrumentation andthe re-
played application. Instrumentation-awareness enables our replay
system to provide the exact fidelity required by X-ray. Section 6.1.1
describes the detailed implementation. Since our current code only
handles single-threaded applications, this section also explains how
we are extending X-ray replay multi-threaded applications.

6. IMPLEMENTATION
We next describe the implementation of X-ray in detail.

6.1 Online phase
Since the online phase of X-ray analysis runs on a production

system, X-ray uses deterministic record and replay to move any
activity with substantial performance overhead to a subsequent, of-
fline phase. The only two activities performed online are recording
non-deterministic inputs and gathering performance information.

6.1.1 Deterministic record and replay
X-ray implements deterministic record and replay in the Linux

kernel. The unit of replay can be either a single process or a group
of communicating processes. Thus, X-ray records and replays one
or more applications executing on the same computer.

X-ray currently uses a standard design to record and replay
single-threaded processes. It takes a checkpoint (addressspace and
registers) of the process or processes being recorded. For each such
process, X-ray logs the data returned by all system calls theprocess
executes on the production system. The logged values include ad-
dresses modified by the kernel within the process’s address space.
X-ray also records the value and timing of signals deliveredto each
process. When recorded processes spawn child processes, X-ray
records the activities of the children — this is useful for servers
that use children to handle incoming requests.

To replay a recorded execution, X-ray restarts the application
from the checkpoint. When the application makes a system call, X-
ray does not re-execute that call. Instead, it supplies the recorded
values from the log of non-deterministic events. The exception to
this rule is system calls such asmmap that change the address space
of the application — such calls are executed by the replayingker-
nel in a manner that ensures that they produce an identical effect
on the calling process’s address space that was produced during
recording. X-ray also delivers the same signals to each process at
the point the original signal was received in the recorded execution.
This guarantees high fidelity replay; i.e., that the recorded and re-
played processes execute the same instructions and system calls in
the same sequential order.

X-ray analysis tools use Pin [20] to monitor information flow
and attribute performance costs to specific application activities.
While Pin is designed to be invisible to the application being in-
strumented, it isnot designed to be transparent to lower layers of
the system such as the operating system. For instance, Pin adds
and modifies system calls, modifies signal handlers, and reserves
memory addresses in the application address space.

X-ray compensates for divergences in execution due to binary
instrumentation. It allocates memory for use as a communication
channel between the kernel replay system and the analysis tools run
by Pin. An analysis tool uses this region to inform the kernelwhich
system calls are initiated by the application (and hence should be
replayed from the log) and which are initiated by Pin or the analysis
tool (and should be executed normally). X-ray intercepts all system
calls issued by the applications and sets a flag in this regionprior to
issuing the system call; it clears the flag when the system call ends.
Thus, when the kernel sees a system call with the flag cleared,it
knows that Pin or the analysis tool has issued the system call.

X-ray also compensates for interference between system calls
made by the recorded application and system calls made by Pinor
the analysis tool. For instance, we observed that Pin would some-
times ask the kernel tommap a free region of memory and the kernel
would return a region that would later be requested by the recorded
application, leading to a conflict. We compensated for this by scan-
ning the log to identify all regions that will be requested bythe
recorded application during the replay and reserving theseregions
so that Pin does not ask for them and the kernel does not return
them. We made similar modifications to compensate for conflict-

5

ing requests for signal handlers and other resources that could po-
tentially be requested by both the application and by the dynamic
instrumentation.

We are currently modifying X-ray to support multi-threadedap-
plications. The biggest challenge has been supporting the needed
fidelity of deterministic record and replay while adding lowover-
head to the production system. Several recent deterministic replay
systems have lowered record overhead for multi-threaded processes
running on multiprocessors by searching either online [34]or of-
fline [2, 24] for a replayed execution that is equivalent onlyin ex-
ternal output to the recorded system. Like these prior systems, we
plan to record system calls and user-level synchronizationopera-
tions. During replay, we can enforce the samehappens-beforeor-
der among these operations that was observed during recording. In
the absence of data races, this guarantees that the same sequence
of instructions and system calls is executed by each pair of corre-
sponding record/replay threads.

To deal with data races, we plan to run a dynamic data race de-
tector during offline replay; we expect that the relative performance
impact of this additional step will be small because we already exe-
cute high-overhead dynamic instrumentation during replay. During
performance summarization, X-ray will assign lower confidence to
values accumulated from regions of code in which the executing
thread is racing with another thread. The range of the potential er-
ror can be estimated by sampling different interleavings ofracing
instructions during replay. X-ray users can either use the lower-
confidence results, or they can add annotation or synchronization
to the application to eliminate the data races.

6.1.2 Recording performance information
During the online phase, X-ray also records timing information.

For each system call executed by the application, the X-ray kernel
records the system time at kernel entry and exit. For simplicity,
the kernel writes the timing information for each system call to the
same log that it uses to store non-deterministic events. Analysis
tools read the log directly to extract the timing information dur-
ing replay. Other performance information, such as the number of
bytes read or written during I/O system calls are already captured
as a result of recording sources of non-determinism.

6.2 Offline phase
X-ray executes analysis in two passes. In the first pass, X-ray

performs request extraction to determine when each application
process is handling each request. It also identifies which basic
blocks are executed within the analysis scope chosen by the user
and attributes performance costs to those blocks. In the second
pass, X-ray attributes basic block execution to specific root causes
and summarizes the performance cost for each cause. Since X-ray
operates on a previously-recorded execution, it is trivialto replay
the execution multiple times so that different parts of the analysis
can be executed sequentially (much like a multi-pass compiler).

6.2.1 Request extraction
During the request extraction phase, X-ray identifies the intervals

of application execution during which each request was processed.
For many types of analysis, X-ray must understand how an appli-
cation processes one or more particular requests such as particu-
lar mail messages for the Postfix mail server or Web requests for
Apache. Request extraction traces the causal path of each request
from the point when the request is received by the application to the
point when the request terminates (e.g., when a server sendsthe re-
sponse). Often, requests traverse multiple processes, anddifferent
processes handle different requests at the same time.

Time Dispatcher Worker

Request 2

Request 1

1

1

1

2

Utility

1
2

1 2

1

1

1

1

2

2

Request 1

handled

Request 2

handled

Figure 5: An example of X-ray request extraction. The inter-
vals marked as1 or 2 in each process correspond to the portions
of process execution that X-ray associates with the first andsec-
ond requests, respectively.

The notion of a request is application-dependent. Thus, X-ray
requires a per-application filter that specifies the boundaries of in-
coming requests. The filter is simply a regular expression over in-
coming data. For instance, the Postfix filter looks for the stringHELO to identify incoming mails. A filter only needs to be created
once for each protocol (e.g., SMTP or HTTP).

Request extraction runs as a Pin tool. The tool examines values
returned from all system calls that provide external input such as
those that receive data from the network. When the data returned
from such system calls match the specified filter, X-ray tags the
receiving process with a unique request identifier to show that it is
handling the request in question.

As shown in Figure 5, X-ray propagates request tags among pro-
cesses as they communicate. It currently assumes that each process
handles a single request at a time, but it allows multiple processes to
concurrently handle different requests (for instance, thedispatcher
handles request 2 while a worker handles request 1 in the figure).
When a message with a new tag is received by a process, X-ray
assumes that it ceases to handle the old request and starts tohandle
the new one. This assumption is valid for the server applications
we use in the evaluation.

Note that since these processes are being replayed, the X-ray
kernel does not actually send and receive data when they execute
system calls. Therefore, request extraction cannot use existing
communication channels to propagate request tags. Instead, X-ray
modifies the application binaries to establish and use special side
channels(replay-specific TCP connections) for communicating re-
quest tags with each other. Since side channels are established by
instrumentation and not by the application, the kernel executes side
channel system calls during replay. During replay, when thein-
strumentation sees that one recorded process communicatedwith
another, it uses the side channel to transmit any current request tag
from the sending process to the process that received the data dur-
ing recording. The receiving process blocks until information is
available on the side channel. This means that the replayed pro-
cesses obey the same causal order of execution that they followed

6

during recording.
Although most popular servers such as Apache, Postfix or Post-

greSQL handle a single request per thread of execution, event-
based servers may handle many requests simultaneously using a
single thread. Since X-ray already tracks application dataflow, we
plan to extend X-ray to handle such servers via fine-grained in-
formation flow analysis (i.e., taint tracking). Essentially, we can
identify the memory addresses associated with each requestand
use that information to identify the code intervals in whicha thread
or process is handling a particular request. Alternatively, we could
use per-application schemas as is done during Magpie request ex-
traction [5].

As the replayed application processes execute, the requestex-
traction Pin tool tags each basic block with a request identifier if
it believes the process is handling a request at that time. The final
output of the request-extraction instrumentation is a per-request list
of <process,basic block> tuples in the order that the basic blocks
were executed.

6.2.2 Identifying basic blocks
The first step in performance summarization is to map the scope

of the analysis specified by the user to a set of basic blocks. If the
user specifies the scope as a time interval, X-ray includes all basic
blocks executed by any process within that interval. Identification
is somewhat imprecise because X-ray only records timestamps at
the entry and exit of system calls. The analyzed scope is fromthe
exit of the last system call executed before the specified interval to
the entry of the first system call executed after the specifiedinter-
val. If the analysis scope is a time interval, X-ray omits request
extraction because it is not needed.

If the user specifies a particular request as the scope of analy-
sis, X-ray uses the request extraction results that identify the set
of basic blocks for that request. If the user specifies two requests
to compare using differential performance analysis, X-rayuses the
request extraction results for both requests.

6.2.3 Attributing performance costs
X-ray next attributes specific performance costs to events (appli-

cation instructions and system calls executed). As a performance
optimization, X-ray considers all events in the same basic block to-
gether since they have the same set of root causes (in other words,
if one event is executed, they all must be executed).

Currently, users may choose one or more of the following
metrics: latency, CPU utilization, disk bandwidth, and network
throughput. During recording, X-ray records the start and end time
of every system call in the log of non-deterministic events.When
it encounters the same system call during replay, the Pin tool reads
the log and subtracts the two values to determine the system call la-
tency. The latency is then attributed to the basic block thatinvoked
the system call.

X-ray next considers latency not attributable to system calls. It
currently uses a simple method that attributes latency in proportion
to the number of user-level instructions executed. X-ray then takes
the total process execution time, subtracts the time spent in system
calls, and divides the remaining time by the number of instructions.
The result is the latency per instruction. Multiplying thisvalue
by the number of instructions in a basic block and adding in any
system call latency for that block gives the block’s total latency.

To calculate CPU utilization, X-ray simply counts the number of
instructions executed by each basic block. To calculate disk and
network usage, it inspects the replay log as it is replayed toidentify
file descriptors associated with the resource being analyzed. When
a system call reads or writes data for these descriptors, X-ray at-

/* a, b, and d are read from the onfig file*/if (== 0) { /* set to 0 in onfig file */x = a;} else {y = b;}z = d;
Figure 6: Example to illustrate data and control flow tracking

tributes the total number of bytes processed to the basic block that
invoked the system call.

6.2.4 Information flow analysis
X-ray next determines why each basic block executed. X-ray

uses taint tracking [22], a form of dynamic information flow anal-
ysis, to associate each block with a set of root causes. More specif-
ically, it uses our tool ConfAid [3] to generate a set of probable
root causes for each block. We next provide some background on
ConfAid.

ConfAid assigns a unique taint identifier to registers and memory
addresses when data is read into the program from configuration
files and incoming request sockets. It identifies specific configu-
ration tokens through a simple form of symbolic execution. For
instance, if data read from a known configuration file is compared
to the string “FOO”, then ConfAid marks that data as associated
with tokenFOO.

As the program executes, ConfAid propagates taint identifiers
to other locations in the process’s address space accordingto de-
pendencies introduced via data and control flow. Rather thantrack
taint as a binary value, it associates a weight with each taint iden-
tifier that represents the strength of the causal relationship between
the tainted value and the root cause. X-ray builds on ConfAidby
also assigning a weighted set of taint values to each basic block
that is executed; membership in this set indicates that the block’s
execution depends on the specified root cause, and the associated
weight indicates the strength of the dependency.

ConfAid specifies the taint of each variable as a set of con-
figuration options. For instance, if the taint set of a variable is
{FOO,BAR}, ConfAid believes that the value of that variable could
change if the user were to modify either theFOO or BAR tokens in
the configuration file.

When a monitored process executes an instruction that modifies
a memory address, register, or CPU flag, the taint set of each mod-
ified location is set to the union of the taint sets of the values read
by the instruction. For example, consider the instructionx = y+z
where the taint set ofx becomes the union of taint sets ofy and
z. Intuitively, the value ofx might change if a configuration token
were to causey or z to change prior to the execution of this instruc-
tion.

ConfAid tracks control flow dependencies as well since they
propagate the majority of configuration-derived taint. To do so,
ConfAid takes into account the basic block structure of an appli-
cation. Consider the example in Figure 6. Assumea, b, c, andd
were read from a configuration source and have taint sets assigned
to them. The taint of variablex not only includes the taint ofa via
data flow, but also the taint of conditionc, since the value of con-
dition c could affect the execution path and consequently the value
of variablex. The taint of variablez, however, only includes the
taint ofd and notc, since the execution ofz= d statement happens
regardless of value ofc.

ConfAid also tracks implicit control flow dependencies. In Fig-

7

ure 6, the values ofx andy both depend onc since the occurrence of
their assignments toa andb depend on whether or not the branch is
taken. Note thaty is still dependent onc even though theelse path
is not taken by the execution since the value ofy might change if
a configuration token is modified such that the condition evaluates
differently.

In contrast to prior taint tracking tools, ConfAid tracks taint as a
floating-point weight ranging in value between zero and one.Con-
fAid uses two heuristics. First, it assumes that data flow depen-
dencies are more likely to lead to the root cause than controlflow
dependencies. Second, it assumes that control flow dependencies
are more likely to lead to the root cause if they occur closer to the
basic block being executed.

We modified ConfAid to better suit the needs of X-ray. Our first
modification was to broaden the source of tainted data. X-raynot
only tracks data read from configuration sources; it also tracks data
read from input requests. X-ray uses the same filter that it uses dur-
ing request extraction to determine when the application isreading
data from a request. The taint identifier in this case indicates the
particular request on which a memory address or register depends.

ConfAid originally transmitted taint values over the same chan-
nels that are used to send the tainted data between processes. How-
ever, these channels do not exist during replay since the kernel does
not re-execute recorded system calls for inter-process communica-
tion. We therefore modified ConfAid to create and use side chan-
nels to transmit taint values, as described in the previous section on
request extraction.

Finally, we modified how ConfAid uses taint values. The origi-
nal ConfAid implementation only outputs taint values when it en-
counters an application failure. However, X-ray is interested in the
taint values of all instructions and system calls executed within the
scope of analysis. During execution, our modified version ofCon-
fAid generates a taint set that contains root causes and associated
weights for every basic block that has been marked as being within
the scope of analysis.

As an example, our modified version of ConfAid might emit the
following taint set for a basic block:{FOO : 1.0, BAR : 0.5}. This
represents the belief that the basic block would definitely not have
been executed if root causeFOO were different and the belief that
the block is 50% likely not to have been executed if root causeBAR
were different. Note that these are two independent probabilities:
potentially changing either of the two options might cause the basic
block to not have been executed. Thus, the values in a taint set need
not sum to one.

6.2.5 Integration
Next, X-ray attributes the performance cost of executing each

basic block according to specific root causes. For each root cause
in the block’s taint set, X-ray multiplies the per-block cost by the
weight associated with the root cause. Each process maintains a
running sum of the costs associated with each root cause as itis re-
played. The final cost for each root cause is determined by adding
together the sums from all replayed processes. At the end of anal-
ysis, X-ray prints out a list of root causes and shows the estimated
performance cost for each. X-ray can simultaneously analyze mul-
tiple performance metrics.

6.2.6 Differential performance summarization
X-ray uses a different method to compare the performance of

two requests. It first identifies the points where the execution paths
diverged from one another. It uses the results of request extraction
to output each path as a sequence of basic blocks executed by the
request. Each path may span multiple processes. X-ray then uses

thediff tool to compare the two paths and understand where they
diverged from one another and where the divergence ended as the
paths merged back together.

X-ray then determines the root cause of each divergence. It at-
tributes the cost of the divergence to the conditional that immedi-
ately preceded the divergence. It calculates a performancecost for
the divergence by first summing the performance costs of all basic
blocks along the divergent path for one request and then subtract-
ing the sum of the performance costs of all basic blocks alongthe
divergent path for the other request. It attributes the divergence to
root causes by multiplying the cost of the divergence by the weights
in the taint set for the conditional that caused the divergence.

7. EVALUATION
Our evaluation of X-ray answers the following questions:

• How accurately does X-ray identify the root cause of perfor-
mance problems?

• How fast can X-ray troubleshoot a performance problem?

• How much overhead does X-ray add to a production system?

7.1 Experimental Setup
We used X-ray to diagnose performance problems in three ap-

plications: the Apache Web server version 2.2.14, the Postfix mail
server version 2.7 and the PostgreSQL database version 9.0.4. In
Apache, each request is handled by one process. Postfix has mul-
tiple utility processes, each of which is responsible for handling a
certain part of a request. On average, a Postfix request is handled
by 5 different processes. In PostgreSQL, each request is handled by
one process. However, PostgreSQL has multiple time-based utility
processes such as a write-ahead log writer and an auto-vacuum that
handle requests in batches. We ran all experiments on a Dell Op-
tiPlex 980 with a 3.47 GHz Intel Core i5 Dual Core processor and
4 GB of memory, running a Linux 2.6.26 kernel modified to support
deterministic replay.

7.2 Root cause identification
We evaluated X-ray by recreating known performance issues re-

ported in application performance tuning and troubleshooting Web
pages, forums, and blog posts. To recreate each issue, we either
modified configuration settings or sent a problematic sequence of
requests to the server. In total, we recreated the 14 problems de-
scribed in Table 1 (7 for Apache, 3 for Postfix, and 4 for Post-
greSQL).

For each test case, we recorded server execution while we sent
several application requests. We used standard lightweight perfor-
mance monitoring tools such as top, iostat, netstat and log files to
identify the bottleneck resource and identify requests during which
resource usage was high. Later, we executed X-ray offline analysis
of the recorded runs to explain the performance anomalies.

For each test case, Table 2 shows the scope and metric we used
for X-ray analysis. The next column shows the top three root causes
identified by X-ray, along with X-ray’s analysis of how much the
cause contributed to the performance metric under observation.
The correct answers for each test case is shown in bold. The last
column shows how long X-ray offline analysis took.

7.2.1 Apache
In the first Apache test case, the threshold for the number of

requests that can reuse the same TCP connection is set too low. Re-
establishing a connection causes some requests to exhibit higher
latency than others. To exhibit this problem, we sent 100 various

8

App # Description of performance test cases

1,2
Apache sets a threshold for the number of requests that are handled in one TCP connection using the KeepAlive
and MaxKeepAliveRequests setting. A low threshold causes Apache to shut down and rebuild the connections
too often, causing a significant delay in handling some requests.

3
In Apache, access to various directories can be controlled in the config file based on the domain name of the
client sending the request. This setting causes extra DNS calls for verifying the domains and leads to high
latency in handling the requests.

Apache 4
Apache can be configured to log the host names of clients sending requests to specific directories for adminis-
trative purposes. This setting causes extra DNS calls and leads to high latencies in handling requests for those
directories.

5 Apache can be configured to require authentication for some directories. Authentication causes high CPU usage
peaks.

6
Apache can be configured to generate content-MD5 headers calculated using the message body. This header
provides an end-to-end message integrity with high confidence. However, for larger files, the calculation of the
digests causes high CPU usage.

7 By default, Apache sends eTags in the header of HTTP responses. The eTags can be used by the client in future
requests for the same file to only receive the file if its contents have changed.

1 Postfix can be enabled to log more information for a list of specific hosts, using debug_peer_list option. The
extra logging causes excessive disk activity.

Postfix 2
Postfix can be configured to examine the body of the messages against a list of regular expressions known to
be from spammers or viruses. This setting can significantly increase the CPU usage for handling a received
message if there are many expression patterns.

3
Postfix can be configured to reject requests that are sent fromblacklisted domains. Postfix uses DNS mechanism
to query blacklist operators to determine if the message should be rejected. Based on the number of operators
specified, Postfix performs extra DNS calls, which significantly increases the latency of the handled message.

1 PostgreSQL tries to identify the correct time zone of the system for displaying and interpreting time stamps if
the time zone is not specified in the configuration file. This increases the startup time of PostgreSQL by 5x.

PostgreSQL 2
PostgreSQL can be configured to synchronously commit the write-ahead logs to disk before sending the end
of the transaction message to the client. This setting can cause extra delays in processing transactions if the
system is under a large load.

3
The frequency of taking checkpoints from the write-ahead log can be configured in the PostgreSQL configu-
ration file. Having more frequent checkpoints decreases crash recovery time but significantly increases disk
activity for busy databases.

4
The delay between the activity rounds of the write-ahead logwrite process can be configured in PostgreSQL
configuration file. Setting this delay higher causes potential loss of transactions. However, lower delays cause
extra CPU usage.

Table 1: Description of the Apache, Postfix and PostgreSQL performance test cases

requests to the Apache server using theab Apache benchmarking
tool. The requests used different HTTP methods (GET and POST)
and asked for files with different sizes.

We first used X-ray to perform a differential performance sum-
marization of two similar requests (HTTP GETs of small files),
one of which had a small latency and one of which had a high la-
tency. X-ray correctly identified theMaxKeepAliveRequests andKeepAlive On tokens as the largest root causes. As with many
issues we examined, there are multiple ways to fix the problem:
in this case, changing either token value removes the performance
anomaly.

Next, we explored how sensitive X-ray is to the similarity of
the compared requests (Apache test case 2). We compared two
very dissimilar requests using differential performance summariza-
tion: a small HTTP POST and a large HTTP GET. As would be
expected, X-ray reported that the largest cause of the divergence
in processing time was due to the input data from the requests.
TheDoumentRoot parameter is also reported as a large cause of
the divergence because the root is appended to the input file name.
However, X-ray still reported that theMaxKeepAliveRequests is
a substantial reason for divergence. Further, the estimated perfor-
mance impact ofMaxKeepAliveRequests is not affected much by

the similarity of the requests.
This test case highlights the power of differential performance

summarization. X-ray does not require two requests to be substan-
tially similar in order to identify performance anomalies.Because
it analyzes program control flow, X-ray can correctly differentiate
performance differences due to diverging input from those due to
other root causes such as configuration options.

The remaining Apache test cases use both basic and differential
performance summarization for a variety of metrics (latency, CPU
usage, and network throughput). In every case, X-ray identified the
correct root cause (or causes) of the performance problem. While
the root cause of the first six performance problems were configu-
ration setting, the high network usage in the last test case was due
to one client’s failure to use the eTag header. This last caseshows
that X-ray’s analysis of server performance can sometimes identify
inefficient client behavior.

X-ray analysis time for the 7 test cases varies between 2 and 3
minutes. This is very reasonable considering that analysisis per-
formed offline and does not affect the online production software.

7.2.2 Postfix
The first Postfix test case reproduces a problem reported in a

9

App # Analysis scope Analysis Metric Results : Expected contribution Exec. time

1 Differential Latency
MaxKeepAliveRequests: 17.2 usecs.
KeepAlive On: 8.6 usecs.
<Directory: 4.7 usecs.

2m 40s

2 Differential Latency
User’s request: 311.6 usecs.
DocumentRoot: 311.5 usecs.
MaxKeepAliveRequests: 16.8 usecs.

2m 41s

3 Differential Latency
Allow domain.com: 603 usecs.
ServerRoot: 151 usecs.
TypesConfig : 151uses

2m 14s

Apache 4 Differential Latency
HostNameLookups On: 254 usecs.
<Directory: 127 usecs.
HostNameLookups: 127 usecs.

2m 4s

5 Request CPU
AuthUserFile: 9M instrs.
User’s request: 600K instrs.
Listen: 80K instrs.

2m 6s

6 Differential CPU
ContentDigest On: 217K instrs.
ContentDigest: 108K instrs.
<Directory: 108K instrs.

2m 6s

7 Differential Network
User’s request: 35 KB
DocumentRoot: 35 KB
<Listen: 4 KB

2m 4s

1 Request Disk
User’s request: 100 KB
debug_peer_list: 28 KB
queue_directory: 5 KB

1m 18s

Postfix 2 Request CPU
body_checks: 1M instrs.
User’s request: 900K instrs.
myhostname: 300K instrs.

2m 49s

3 Request Latency
reject_rbl_client: 3.5 secs.
reject_rbl_client: 1.9 secs.
smtpd_client_restrictions: 0.9 secs.

1m 24s

1 Time interval CPU
timezone: 28M instrs.
default_text_search_config: 11M instrs.
datestyle: 11M instrs.

15+m

PostgreSQL 2 Request Latency
shared_buffers: 0.42 secs.
max_connections: 0.26 secs.
wal_sync_method: 0.26 secs.

2m 50s

3 Time interval Disk
checkpoint_timeout: 16 KB
shared_buffers: 11 KB
max_connections: 11 KB

4m 48s

4 Time interval CPU
shared_buffers: 2.6M instrs.
max_connections: 2M instrs.
wal_writer_delay: 1.4M instrs.

5m 27s

Table 2: The results for our performance test cases.

Postfix user’s blog [26]. The user noticed that emails with attach-
ments sent from his account transferred very slowly, while every-
thing else, including the mail received by IMAP services, had no
performance issues.

The user employediotop to monitor the Postfix server, and
observed that one child process was generating a lot of disk ac-
tivity. He poured through the server logs and realized that the
child process was logging large amounts of data. Finally, heran
through his configuration file, and eventually found out thatthedebug_peer_list, which specifies a list of hosts that triggered
the logging, included his own IP address.

Our results show that X-ray can make this diagnosis automati-
cally. We simply analyzed a specific request that was associated
with a period of high disk usage. X-ray identifies both the request
(since it contains the IP address that caused excessive logging) and

the erroneous parameter as the top two root causes, pinpointing the
specific reasons for the high disk activity. Note that we did not have
to identify which child process was responsible for the logging, nor
did we have to read any log files. Since X-ray produced these re-
sults in a little over a minute, our tool could have saved the blogger
considerable time.

The remaining two Postfix test cases reproduce CPU and latency
problems. X-ray identifies the correct root cause for each problem
in only a few minutes.

7.2.3 PostgreSQL
The first PostgreSQL case study is based on our own experi-

ence. Our evaluation started and stopped PostgreSQL many times.
We noticed that our scripts were running slowly due to application
start-up delay, and decided to try to use X-ray to improve perfor-

10

Apache Postfix PostgreSQL
0.0

0.5

1.0
N

or
m

al
iz

ed
 T

hr
ou

gh
pu

t

Without X-ray
With X-ray

This figure compares server throughput with and without X-ray
recording. Results are normalized to the number of requests per
second without X-ray. Higher values are better. Each result is the
mean of 10 trials; error bars are 95% confidence intervals.

Figure 7: X-ray online overhead

mance. Sincetop showed 100% CPU usage, we performed a X-
ray CPU analysis during the interval before PostgreSQL received
the first request.

Unexpectedly, X-ray identified thetimezone configuration op-
tion as the top root cause. In the configuration file, we had setthetimezone option tounknown. This caused PostgreSQL to expend
a surprising amount of effort to attempt to identify the correct time
zone. We updated the configuration to specify our time zone, and
were pleased to see that the application startup time decreased by
over 80%. While this problem is admittedly esoteric since most
PostgreSQL users will not start and stop the application several
times in succession, we were happy to see that X-ray could help
identify performance issues that we did not specifically inject into
the application.

Since PostgreSQL utility processes are mostly asynchronous
(they sleep for a while and then wake up to perform tasks such as
flushing write-ahead log to disk, taking checkpoints, or vacuuming
the database) time interval analysis is the best fit for this applica-
tion. When we examined three other performance issues that affect
PostgreSQL throughput, X-ray identified the correct root cause in
one instance and ranked the correct cause third in the other two
cases. Theshared_buffers andmax_onnetions parameters
appear to taint many branches during PostgreSQL execution caus-
ing them to always rank as top causes of resource usage.

X-ray analysis time is currently capped at 15 minutes; analysis
of the first test case hit this limit but still returned meaningful re-
sults since the analysis executed almost all the code used during
startup. The remaining PostgreSQL issues required 2–5 minutes to
analyze. We have not yet put much effort into optimizing X-ray
analysis performance, since these times are still substantially faster
than manual performance debugging.

7.3 X-ray online overhead
We measured online overhead by comparing the throughput and

the latency of our three applications when they are recordedby X-
ray to results running the applications on the default Linuxkernel
without recording.

Figure 7 shows that X-ray adds a 1–7% throughput overhead for
the three applications. For Apache, we usedab to send 5000 re-
quests for a 35 KB static Web page with a concurrency of 50 re-
quests at a time over an isolated network. X-ray recording reduced
throughput by 0.6%. Per-request latency increased by 0.6%.The

recording log size for this experiment was 7 MB, containing 115K
system calls.

For Postfix, we used thesmtp-soure tool to send 10000 mail
messages of size 1 KB from another machine on the isolated net-
work. Postfix processing is asynchronous, so there is no meaning-
ful latency measure. X-ray recording reduced server throughput by
1.1%. The log size was 453 MB, containing 6 million system calls.

We benchmarked PostgreSQL usingpgbenh. We measured the
number of transactions completed in 60 seconds with concurrency
of 10 transactions sent at a time. Each transaction involvesoneSELECT, threeUPDATEs, and oneINSERT command. X-ray record-
ing reduced throughput by 7% and increased per-request latency by
7%. The log size was 820 MB, containing 17 million system calls.
We conjecture that the higher overhead for PostgreSQL was mostly
due to the increased log size and larger number of system calls.

8. CONCLUSION
Diagnosing performance problems in production systems is chal-

lenging. X-ray helps system administrators by identifyingthe root
cause of observed performance problems. X-ray first recordsthe
execution of the production system and collects performance in-
formation. In an offline phase, X-ray deterministically replays the
recorded execution and performs heavyweight analysis. X-ray uses
dynamic information flow analysis to attribute the recordedperfor-
mance information to root causes that include configurationoptions
and request inputs. Our results show that X-ray accurately iden-
tifies the root cause of several real-world performance problems,
while imposing only 1–7% overhead on a production system.

Acknowledgments
We thank the anonymous reviewers of this report. This research
was supported by NSF award CNS-1017148. The views and con-
clusions contained in this document are those of the authorsand
should not be interpreted as representing the official policies, either
expressed or implied, of NSF, the University of Michigan, orthe
U.S. government.

9. REFERENCES
[1] A GUILERA, M. K., MOGUL, J. C.,WIENER, J. L., REYNOLDS, P.,

AND MUTHITACHAROEN, A. Performance debugging for distributed
systems of black boxes. InProceedings of the 19th ACM Symposium
on Operating Systems Principles(Bolton Landing, NY, October
2003), pp. 74–89.

[2] A LTEKAR , G., AND STOICA, I. ODR: Output-deterministic replay
for multicore debugging. InProceedings of the 22nd ACM
Symposium on Operating Systems Principles(October 2009),
pp. 193–206.

[3] ATTARIYAN , M., AND FLINN , J. Automating configuration
troubleshooting with dynamic information flow analysis. In
Proceedings of the 9th OSDI(Vancouver, BC, October 2010).

[4] B. URGAONKAR, P. S.,AND ROSCOE, T. Resource overbooking
and application profiling in shared hosting platforms. InProceedings
of the 5th Symposium on Operating Systems Design and
Implementation(Boston, MA, December 2002), pp. 239–254.

[5] BARHAM , P., DONNELLY, A., ISAACS, R., AND MORTIER, R.
Using Magpie for request extraction and workload modelling. In
Proceedings of the 6th Symposium on Operating Systems Design and
Implementation(San Francisco, CA, December 2004), pp. 259–272.

[6] BHATIA , S., KUMAR , A., FIUCZYNSKI , M. E., AND PETERSON,
L. Lightweight, high-resolution monitoring for troubleshooting
production systems. InProceedings of the 8th Symposium on
Operating Systems Design and Implementation(San Diego, CA,
December 2008), pp. 103–116.

[7] BRESSOUD, T. C.,AND SCHNEIDER, F. B. Hypervisor-based fault
tolerance.ACM Transactions on Computer Systems 14, 1 (February
1996), 80–107.

11

[8] CADAR , C., DUNBAR, D., AND ENGLER, D. KLEE: Unassisted
and automatic generation of high-coverage tests for complex systems
programs. InUsenix Symposium on Operating System Design and
Implementation (OSDI)(December 2008), pp. 209–224.

[9] CANTRILL , B. M., SHAPIRO, M. W., AND LEVENTHAL , A. H.
Dynamic instrumentation of production systems. InProceedings of
the USENIX Annual Technical Conference(Boston, MA, June 2004),
pp. 15–28.

[10] CHEN, H., JIANG , G., ZHANG, H., AND YOSHIHIRA, K. Boosting
the performance of computing systems through adaptive
configuration tuning. InProceedings of the 2009 ACM symposium on
Applied Computing(Honolulu, Hawaii, March 2009),
pp. 1045–1049.

[11] CHEN, M. Y., ACCARDI, A., K ICIMAN , E., LLOYD , J.,
PATTERSON, D., FOX, A., AND BREWER, E. Path-based failure and
evolution management. InProceedings of the 1st Symposium on
Networked Systems Design and Implementation (NSDI)(San
Francisco, CA, March 2004).

[12] CHEN, M. Y., K ICIMAN , E., FRATKIN , E., FOX, A., AND
BREWER, E. Pinpoint: Problem determination in large, dynamic
Internet services. InProceedings of the International Conference on
Dependable Systems and Networks (DSN)(Bethesda, MD, June
2002), pp. 595–604.

[13] CHIPOUNOV, V., KUZNETSOV, V., AND CANDEA , G. S2e: A
platform for in vivo multi-path analysis of software systems. In
ASPLOS(March 2011).

[14] COHEN, I., GOLDSZMIDT, M., KELLY, T., SYMONS, J.,AND

CHASE, J. Correlating instrumentation data to system states: A
building block for automated diagnosis and control. InProceedings
of the 6th Symposium on Operating Systems Design and
Implementation(San Francisco, CA, December 2004), pp. 231–244.

[15] DIAO , Y., HELLERSTEIN, J. L., PAREKH, S.,AND BIGUS, J. P.
Managing Web Server Performance with AutoTune Agent.IBM
Systems Journal 42, 1 (January 2003), 136–149.

[16] DUNLAP, G. W., KING, S. T., CINAR , S., BASRAI, M. A., AND

CHEN, P. M. ReVirt: Enabling intrusion analysis through
virtual-machine logging and replay. InProceedings of the 5th
Symposium on Operating Systems Design and Implementation
(Boston, MA, December 2002), pp. 211–224.

[17] FONSECA, R., PORTER, G., KATZ , R. H., SHENKER, S.,AND

STOICA, I. X-trace: A pervasive network tracing framework. In
Proceedings of the 4th NSDI(Cambridge, MA, April 2007),
pp. 271–284.

[18] GEELS, D., ALTEKAR , G., SHENKER, S.,AND STOICA, I. Replay
debugging for distributed applications. InProceedings of the USENIX
2006 Annual Technical Conference(Boston, MA, June 2006).

[19] KASICK, M. P., TAN , J., GANDHI , R., AND NARASIMHAN , P.
Black-box problem diagnosis in parallel file systems. InProceedings
of the 8th USENIX Conference on File and Storage Technologies
(San Jose, CA, February 2010).

[20] LUK , C.-K., COHN, R., MUTH, R., PATIL , H., KLAUSER, A.,
LOWNEY, G., WALLACE , S., REDDI, V. J.,AND HAZELWOOD, K.
Pin: Building customized program analysis tools with dynamic
instrumentation. InProgramming Language Design and
Implementation(Chicago, IL, June 2005), pp. 190–200.

[21] http://msdn.microsoft.com/en-us/library/bb968803(v=VS.85).aspx.
[22] NEWSOME, J.,AND SONG, D. Dynamic taint analysis: Automatic

detection, analysis, and signature generation of exploit attacks on
commodity software. InIn Proceedings of the 12th Network and
Distributed Systems Security Symposium(February 2005).

[23] http://oprofile.sourceforge.net/.
[24] PARK , S., ZHOU, Y., X IONG, W., YIN , Z., KAUSHIK , R., LEE,

K. H., AND LU, S. PRES: Probabilistic replay with execution
sketching on multiprocessors. InProceedings of the 22nd SOSP
(October 2009), pp. 177–191.

[25] PATIL , H., PEREIRA, C., STALLCUP, M., LUECK, G., AND

COWNIE, J. PinPlay: A framework for determinisrtic replay and
reproducible analysis of parallel programs. InProceedings of the 8th
Annual IEEE/ACM International Symposium on Code Generation
and Optimization(March 2010).

[26] http://www.karoltomala.com/blog/?p=576.

[27] PRASAD, V., COHEN, W., EIGLER, F. C., HUNT, M., KENISTON,
J.,AND CHEN, B. Locating system problems using dynamic
instrumentation. InProceedings of the Linux Symposium(Ottawa,
ON, Canada, July 2005), pp. 49–64.

[28] RUAN , Y., AND PAI , V. Making the "box" transparent: System call
performance as a first-class result. InProceedings of the USENIX
Annual Technical Conference(Boston, MA, June 2004), pp. 1–14.

[29] SAMBASIVAN , R. R., ZHENG, A. X., ROSA, M. D., KREVAT, E.,
WHITMAN , S., STROUCKEN, M., WANG, W., XU, L., AND
GANGER, G. R. Diagnosing performance changes by comparing
request flows. InProceedings of the 8th NSDI(Boston, MA, March
2011), pp. 43–56.

[30] SRINIVASAN , S., ANDREWS, C., KANDULA , S.,AND ZHOU, Y.
Flashback: A light-weight extension for rollback and deterministic
replay for software debugging. InProceedings of the 2004 USENIX
Technical Conference(Boston, MA, June 2004), pp. 29–44.

[31] STEWART, C., AND SHEN, K. Performance modeling and system
management for multi-component online services. InProceedings of
the Second Symposium on Networked Systems Design and
Implementation (NSDI)(Boston, MA, May 2005).

[32] SU, Y.-Y., ATTARIYAN , M., AND FLINN , J. AutoBash: Improving
configuration management with operating system causality analysis.
In Proceedings of the 21st ACM Symposium on Operating Systems
Principles(Stevenson, WA, October 2007), pp. 237–250.

[33] VEERARAGHAVAN, K., FLINN , J., NIGHTINGALE , E. B.,AND

NOBLE, B. quFiles: The right file at the right time. InProceedings of
the 8th USENIX Conference on File and Storage Technologies(San
Jose, CA, February 2010), pp. 1–14.

[34] VEERARAGHAVAN, K., LEE, D., WESTER, B., OUYANG , J.,
CHEN, P. M., FLINN , J.,AND NARAYANASAMY , S. DoublePlay:
Parallelizing sequential logging and replay. InProceedings of the
16th International Conference on Architectural Support for
Programming Languages and Operating Systems(Long Beach, CA,
March 2011).

[35] http://software.intel.com/en-us/articles/intel-vtune-amplifier-xe/.
[36] WANG, H. J., PLATT, J. C., CHEN, Y., ZHANG, R., AND WANG,

Y.-M. Automatic misconfiguration troubleshooting with
PeerPressure. InProceedings of the 6th Symposium on Operating
Systems Design and Implementation(San Francisco, CA, December
2004), pp. 245–257.

[37] WANG, Y.-M., VERBOWSKI, C., DUNAGAN , J., CHEN, Y., WANG,
H. J., YUAN , C., AND ZHANG, Z. STRIDER: A black-box,
state-based approach to change and configuration management and
support. InProceedings of the USENIX Large Installation Systems
Administration Conference(October 2003), pp. 159–172.

[38] WHITAKER , A., COX, R. S.,AND GRIBBLE, S. D. Configuration
debugging as search: Finding the needle in the haystack. In
Proceedings of the 6th Symposium on Operating Systems Design and
Implementation(San Francisco, CA, December 2004), pp. 77–90.

[39] XU, M., MALYUGIN , V., SHELDON, J., VENKITACHALAM , G.,
AND WEISSMAN, B. ReTrace: Collecting execution trace with
virtual machine deterministic replay. InProceedings of the 2007
Workshop on Modeling, Benchmarking and Simulation (MoBS)(June
2007).

[40] YU, M., GREENBERG, A., MALTZ , D., REXFORD, J., YUAN , L.,
KANDULA , S.,AND K IM , C. Profiling network performance for
multi-tier data center applications. InProceedings of the 8th NSDI
(Boston, MA, March 2011), pp. 57–70.

[41] ZHENG, W., BIANCHINI , R., AND NGUYEN, T. D. Automatic
configuration of Internet services. InProceedings of the European
Conference on Computer Systems(Lisbon, Portugal, March 2007),
pp. 219–229.

12

