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Abstract

We present new nearest neighbor methods for text classification and an
evaluation of these methods against the existing nearest neighbor meth-
ods as well as other well-known text classification algorithms. Inspired
by the language modeling approach to information retrieval, we show im-
provements in k-nearest neighbor (kNN) classification by replacing the
classical cosine similarity with a KL divergence based similarity measure.
We also present an extension of kNN to the semi-supervised case which
turns out to be a formulation that is equivalent to semi-supervised learning
with harmonic functions. In both supervised and semi-supervised exper-
iments, our algorithms surpass traditional nearest neighbor methods and
produce competitive results when compared to the state-of-the-art meth-
ods such as Support Vector Machines (SVM) and transductive SVM on
the Reuters-21578 dataset, the 20 Newsgroups dataset, and the Reuters
Corpus Volume I (RCV1) dataset. To our knowledge, this paper presents
one of the most comprehensive evaluation of different machine learning
algorithms on the entire RCV1 dataset.

1 Introduction

Text classification has been one of the most popular problems in information
retrieval and machine learning. The vast number of its potential applications,
the availability of huge (but mostly unlabeled) data especially on the Web and
the high dimensionality of its feature space make it a particularly interesting
testbed for machine learning methods in general.

Among many approaches to text classification, this paper primarily focuses
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on the nearest neighbor (NN) based approaches. Even the simplest NN meth-
ods such as k-nearest neighbor algorithm (kNN) have been shown to perform
surprisingly well in text classification [7, 24]. Despite this success, little effort
has been made to improve kNN’s performance further. Instead, it has been
used as a popular choice of a baseline in many studies to compare it against the
proposed method.

There are two critical decisions in a NN based learning algorithm. The first
is how the “nearest” neighbors of an instance (document) are determined. The
second is how the category of a document is determined by looking at its nearest
neighbors. In this paper, we present several alternatives to these two problems.
To find the nearest neighbors of a document, we make use of the relevance
measures recently popularized in language modeling based document retrieval
research [1, 11]. We show that this improves the classification results compared
to the classical approach based on the cosine similarity measure.

While combining the labels of the neighbors of a document, we also consider
a semi-supervised version of the kNN algorithm where we look at the unlabeled
neighbors of a document together with its labeled neighbors. This algorithm
turns out to be equivalent to the semi-supervised learning method based on
harmonic functions [29] and greatly improves the classification results when
there are limited number of training documents. The use of semi-supervised
algorithms with limited training data is essential in text classification. This is
not only due to the numerous theoretical and empirical justifications of using
unlabeled data and the cost of getting training data in the machine learning
literature, but also due to the simple fact that some text classification problems
inherently have limited training data. For example, consider the problem of
classifying one’s emails into personal folders [14, 2]. The training dataset for
this problem is the set of emails that already have been received and classified.
There is no way of enlarging this set unless the specific person receives and
classifies more emails. A similar problem is classifying the Web pages into one’s
bookmarks directories.

This paper is organized as follows. Section 2.1 presents a brief overview of
related work. In Section 2.2, we present the popular Naive Bayes text classifi-
cation algorithm. Naive Bayes has important connections to language models
which will be used repeatedly in the subsequent chapters. Section 2.3 presents
several versions of the k-nearest neighbor (kNN) algorithm, alternative similar-
ity measures and a semi-supervised version of kNN. We explain our experiments
and results of comparing several nearest neighbor methods against each other
as well as against Naive Bayes and Support Vector Machines in Section 3.

Nearest neighbor-based methods are also known as instance-based or case-based methods
in the machine learning literature.
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2 Materials and Methods

2.1 Related Work

A large number of statistical classification and machine learning techniques have
been applied to text classification, including regression models, Bayesian clas-
sifiers, decision trees, nearest neighbor classifiers, neural networks, and support
vector machines.

Even a short survey of methods that have been applied to text classification
would be out of the scope of this paper, and it wouldn’t be an exaggeration to
say that nearly all known machine learning methods have been applied where
applicable [21].

In this section, we will briefly review some of the work on integrating back-
ground knowledge, and using alternate similarity functions in nearest neighbor
text classification. We also review some of the work that used the Reuters Cor-
pus Volume I (RCV1)[22, 12]. RCV1 is becoming the new standard benchmark
for text classification. However, it is still not widely used due to its very large
size.

Nearest neighbor methods have been widely used to address the task of
text classification. Simplest NN methods such as k-nearest neighbor algorithm
(kNN) have been shown to perform surprisingly well in text classification [7, 24].

[26] propose a method for integrating background knowledge into nearest
neighbor text classification. Their approach uses the background knowledge
for computing the similarity between training and test instances rather than
assessing the similairty directly. This shows that using background knowledge
helps to determine which training examples are closest to which test examples.
Similar approaches for using background data to improve text classification
using Latent Semantic Indexing (LSI) have been proposed in [25, 27]. They
evaluate their approaches on a set of small datasets including technical papers,
news documents, and web pages.

[6] propose a variant of the kNN method by exploiting negative evidences.
They show that evidences provided by negative examples may help improve kNN
performance under certain conditions. They find out that negative examples
are not always determinal to the learning process. However, they may be useful
under certain conditions, especially when the evidence brought by them is not
very similar to test documents. They do experiments using kNN with different
similarity functions and they report the results on the standard Reuters-21578
benchmark.

Reuters Corpus Volume I (RCV1) is a large dataset of more than 800,000
manually categorized newswire stories. RCV1 is significantly larger than the
older Reuters-21578 dataset, and it is becoming the new standard benchmark
for text classification [22, 12]. However, the large size of RCV1 has made it dif-
ficult to conduct experiments on the whole datasets, hence most papers conduct
experiments on subsets of RCV1.

More related work is mentioned in the experiments section when comparing
our results with previously published results.
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2.2 Naive Bayes

We start with Naive Bayes (NB), one of the simplest yet effective generative
models for text classification. NB classification has interesting properties which
are important in developing our ideas in the sections that follow. Using Bayes
rule, the probability that a document d of length l belongs to the category c is
determined by the following equation:

p(c|d, l) =
p(d|c, l) · p(c|l)∑
c′ p(d|c′, l) · p(c′|l)

(1)

where p(d|c, l) is the probability of observing d given the class c and its length
l. It is often assumed that the probabilities in Equation 1 do not depend on
document length, so l is dropped from the equation. Therefore, p(d|c, l) becomes
p(d|c), and p(c|l) becomes p(c). p(c) is the prior probability of the category c
and can be computed from the training data:

p(c) =
|c|∑
c′ |c′|

(2)

where |c| is the number of documents that belong to category c in the training
data.

In the most popular version of the Naive Bayes model, the words in a doc-
ument are assumed to be drawn from an underlying multinomial distribution
independently of each other. Since all document lengths are assumed to be
equally likely, we have

p(d|c) ≈
∏
w∈d

p(w|c)tf(w,d) (3)

where tf(w, d) is the number of times word w occurs in d. p(w|c) can be
estimated from the relative frequencies of the words in the documents that
belong to category c in the training set. However, to avoid zero probability for
unseen words in a category, a smoothing method needs to be used. We choose
to use Bayesian smoothing with a Dirichlet prior: [28, 13]:

p(w|c) =
tf(w, c) + µ · p(w|Corpus)∑

w′∈c tf(w, c) + µ
(4)

where µ is the Dirichlet smoothing parameter and p(w|Corpus) is the probability
of the word w in the entire training set of documents in all categories:

p(w|Corpus) =
tf(w,Corpus)∑

w′∈Corpus tf(w′, Corpus)
(5)

The denominator in Equation 1 is the same for all categories, thus it does
not affect the category assignment decision for a given document. Therefore,

4



the final category assignment for an unlabeled document is determined by:

yNB(d) = argmax
c

p(c) ·
∏
w∈d

p(w|c)tf(w,d) (6)

2.3 Similarity-based Approaches

2.4 k-Nearest Neighbor

A different class of approaches includes nearest neighbor methods where a doc-
ument is categorized by only looking at the training documents that are most
similar to it. Let U be the set of unlabeled documents, and L be the set of
labeled documents. Given a document d ∈ U , let NNL

k (d) be the set of the top
k documents in L that are most similar to d with respect to some similarity
measure. In the simplest version of the k-nearest neighbor (kNN) algorithm,
d is assigned to the category that the majority of the documents in NNL

k (d)
belong to:

yvoting kNN(d) = argmax
c

∑
d′∈NNL

k (d)

y(d′)=c

1 (7)

We call this method voting kNN.
Another version of kNN, which we will call weighted kNN takes the magni-

tude of the similarity values into account. The weighted kNN decision rule can
be written as:

yweighted kNN(d) = argmax
c

∑
d′∈NNL

k (d)

y(d′)=c

sim(d, d′) (8)

where sim(d, d′) is the similarity between d and d′.

2.4.1 Similarity Functions

By far the single most popular similarity function used in text classification by
kNN is the well-known cosine measure defined on the document vectors in the
tf or tf · idf weighted term space. One is tempted to ask whether using any
other similarity function in kNN would improve the classification results.

One inspiration for alternative similarity measures comes from recent re-
search in information retrieval. The language modeling (LM) approach to doc-
ument retrieval, first introduced by Ponte and Croft [18], has proven to be more
effective than the traditional cosine retrieval model. In its most basic form, the
LM retrieval model assigns a probability to a given query q for each document
d in the collection:

pLM(q|d) =
∏
w∈q

p(w|d)tf(w,q) (9)

We will be using y(d) to denote the category of the document d throughout this paper.
When d is unlabeled, y(d) denotes the category assigned by the learning algorithm. When d
is labeled, y(d) is its actual label in the training data.
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The above equation looks exactly like Equation 3. There we computed the
probability of a document given the term distribution of a set of documents
(category) while in Equation 9 the same probability is computed for a query
given the term distribution of a single document. In LM terms, p(q|d) is called
the generation probability of q given the language model p(w|d) of d.

The generation probability is a measure of how related (or similar) the query
is to a document and has been shown to perform better in document retrieval
than the tf ·idf cosine based retrieval model [18]. We can turn it into a docu-
ment similarity measure by replacing q in Equation 9 with a document so that
pLM(d|d′) becomes the similarity of d′ to d.

Using generation probabilities in weighted kNN has connections to ensemble
methods in machine learning which aim to build a classifier by taking weighted
votes from a “committee” of classifiers [3]. Weighted kNN in combination with
the LM similarity measure can be seen as a special case of Bayesian voting,
one of the simplest ensemble methods, where we construct a Naive Bayes clas-
sifier from individual documents (nearest neighbors) and take their weighted
votes (Equation 8) to make the final classification decision. Previous research
has shown that an ensemble classifier is often more accurate than any of the
classifiers that it is derived from [17, 3].

There is one problem with using language model probabilities in nearest
neighbor classification. Since all the word probabilities are multiplied to find
the generation probability of a given document, small differences among differ-
ent language models may result in huge differences in terms of the ratio of these
different generation probabilities to each other. Indeed, Naive Bayes is known
to produce overconfident probabilities for this reason. Rennie [19] empirically
showed that the (normalized) Naive Bayes probability for the top category is
close to 1.0 for most of the documents in a classification dataset. In our ex-
periments, we have tried to see if this property holds for pairwise document-
document generation probabilities as well. For each document d in the three
datasets we use in this paper (see Section 3.1), we have computed pLM(d|d′)
for all other documents d′ in the dataset to find the 30 nearest neighbors of d.
For 17,879 documents out of a total of 18,828 documents in the 20 Newsgroups
dataset, the top nearest neighbor has a similarity value larger than the sum of
the similarity values of the remaining 29 neighbors (Table 1). This is not the
case for any of the documents if we use cosine as the similarity measure. This
essentially means that we do not gain anything by taking weighted votes from
the neighbors. In other words, using weighted kNN for these 17,879 documents
is effectively the same as assigning each of them to the category that its top
nearest neighbor belongs to.

Another similarity measure used in information retrieval is based on the
Kullback-Leibler (KL) divergence [11]. KL divergence is a measure of the dis-
tance between two distributions. In document retrieval, the KL divergences
between the language model of a query and the language models of each doc-
ument are computed to find the similarity scores. Since KL divergence is a
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distance measure, the negative KL divergence is used to rank the documents:

−KL(q ‖ d) =
∑
w

p(w|q) log
p(w|d)

p(w|q)
(10)

KL divergence has interesting connections to generation probabilities. Con-
sider the following equation:

exp(−KL(q ‖ d)) = e
∑

w p(w|q) log p(w|d)
p(w|q) (11)

=
∏
w∈q

(
p(w|d)

p(w|q)

)p(w|q)

=
∏
w∈q

p(w|d)
tf(w,q)

|q| ·
∏
w∈q

(
1

p(w|q)

)p(w|q)

We can ignore the second factor in the product as it does not depend on the
document, so it is a constant scaling factor for a given query. The first factor in
the multiplication looks very similar to the pLM value in Equation 9. The only
difference is the 1/|q| factor in the exponent, where |q| is the number of words in
q. Thus, instead of multiplying the probabilities of all the words in q in Equa-
tion 9, we take the geometric mean of these probabilities in Equation 11. Note
that for a given query, Equation 9 and 11 will produce exactly the same ranking
of documents (the second term and the 1/|q| factor in Equation 11 depend only
on the query and do not change the ranking.) Therefore, there is no practical
difference between the two equations from the document retrieval perspective.
This also means that if we use Equation 11 as a document similarity measure
by replacing q with a document (as we have done for pLM), the set of k nearest
neighbors of a given document will be exactly the same as the set of k nearest
neighbors that we get from pLM. Thus, the voting kNN classification will also
produce the same results for both similarity measures. However, the similarity
values computed by exp(−KL) will be “tighter” because of the geometric mean
operation involved. This is obvious in Table 1 where we see that although the
set of 30 nearest neighbors for a document is the same with respect to both pLM
and exp(−KL), similarity values computed using KL divergence are closer to
each other. The exp(−KL(·|·)) function has been used as a document-document
similarity in recent research and has helped improve the quality of document
retrieval [10] and document clustering [5].

Table 1. The number of documents for which the similarity of their top
nearest neighbor with respect to different similarity measures is larger than
the sum of the similarities of the next 29 nearest neighbors.

Dataset cosine pLM exp(−KL)
20 News (18828) 0 17879 8
Reuters (10789) 0 8985 0
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2.4.2 Semi-supervised kNN and Harmonic Functions

Consider a binary classification problem where each document in the training
set is labeled as 0 or 1. For this special case, we can write the weighted kNN
equation as follows:

y(d) =

∑
d′∈NL

k (d) sim(d, d′)y(d′)∑
d′∈NL

k (d) sim(d, d′)
(12)

In other words y(d) is set to the weighted average of its neighbors’ labels y(d′) ∈
{0, 1}. Note that y(d) can take any real value in the [0, 1] interval. If we
classify each unlabeled document d that has y(d) < 0.5 as negative (class 0),
and y(d) > 0.5 as positive (class 1), Equation 12 functions exactly the same as
the weighted kNN classification of Equation 8 for binary classification.

Equation 12 suggests a generalized semi-supervised version of the same al-
gorithm by incorporating unlabeled instances as neighbors as well:

y(d) =

∑
d′∈NL∪U

k (d) sim(d, d′)y(d′)∑
d′∈NL∪U

k (d) sim(d, d′)
(13)

Unlike Equation 12, the unlabeled documents are also considered in Equation 13
when finding the nearest neighbors. We can visualize this as a graph, where each
data instance (labeled or unlabeled) is a node that is connected to its k nearest
neighbor nodes. The value of y(·) is set to 0 or 1 for labeled nodes depending
on their class. For each unlabeled node x, y(x) is equal to the average of the
y(·) values of its neighbors. Since the labels of the unlabeled documents appear
on both sides of Equation 13, it is not obvious whether a solution for y(d)
exists. Such a function that is set to fixed values ({0, 1} in this case) for labeled
nodes, and satisfies the averaging property on all unlabeled nodes is called a
harmonic function. Fortunately, harmonic functions on a graph are known to
have a unique solution [4]. Harmonic functions were first introduced as a semi-
supervised learning method by Zhu et. al. [29]. They also showed interesting
connections between harmonic functions and several physical and mathematical
models. For example, consider a random walk that starts on an unlabeled node
d on the similarity graph induced by the similarity function as described by
Equation 13. Then y(d) is equal to the probability that this random walk will
hit a node labeled as 1 before it hits a node labeled as 0. In electrical

3 Results

3.1 Datasets and Preprocessing

To test the similarity functions and the learning methods introduced in previous
chapters, we use three standard text classification datasets. The first one is a
version of the 20 Newsgroups dataset (20news-18828) that contains 18, 828 doc-
uments after removing the duplicates in the original dataset which has 19, 997

http://people.csail.mit.edu/jrennie/20Newsgroups/
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documents. All the headers except for “From” and “Subject” are removed in
the newsgroup articles. Each document belongs to exactly one newsgroup cate-
gory. There are a total of 20 categories that are almost evenly distributed over
the documents.

The second dataset is the Reuters-21578 dataset that consists of documents
collected from the Reuters newswire in 1987. Following previous research [7,
24, 15, 20], we use the “ModApte” split of this dataset and then consider only
90 categories which have at least one training and one test document in the
split. This leaves us with a total of 10789 documents (7770 training and 3019
test documents in the ModApte split). Unlike the 20 Newsgroups dataset, some
of the documents in Reuters-21578 belong to more than one category. The
categories are also not evenly distributed: some categories have as few as two
documents while others may have few thousands of documents.

The third dataset is the Reuters Corpus Volume I (RCV1). RCV1 con-
sists of over 800,000 manually categorized newswire stories made available by
Reuters,Ltd. for research purposes[22, 12]. RCV1, is significantly larger than
the older Reuters-21578 dataset. It includes all English news stories produced
by Reuters in the period between August 1996, and August 1997. Like Reuters-
21578, RCV1 documents may belong to more than one category, and the cate-
gories are not evenly distributed.

We removed the stopwords and stemmed all the words in all datasets us-
ing the Porter stemmer. While computing the generation probabilities and KL
divergence, the Dirichlet smoothing parameter µ is set to 1000. All this pre-
processing has been performed using the Lemur toolkit [16]. We used cross
validation to select a value for the Dirichlet smoothing parameter while com-
puting the generation probabilities and KL divergence. We tried different values
for this parameter ranging from 500 to 3000 using the Reuters-21578 dataset.
We used statistical significance tests to compare the performance at different
values. We found out that the differences due to varying this parameter in this
range are statistically insignificant. We set this parameter to the default value
suggested by the Lemur toolkit [16], 1000, through all our experiments.

3.2 Implementation Details

Note that the generation probabilities and the KL divergence based similarity
measure are not symmetric. As mentioned in Section 2.4.1, for a given document
d, we use pLM(d|·) and exp(−KL(d|·)) (not pLM(·|d) and exp(−KL(·|d))) to find
the nearest neighbors of d with respect to the generation probability and the
KL divergence based similarity measures, respectively. However, for harmonic
functions, we consider both directions and we make two documents neighbors
of each other if either of them is in the k-nearest neighbor set of the other. The
similarity value is set to the maximum of the two values for different directions.
This makes the underlying graph of the harmonic function undirected.

Although previous research focused on undirected graphs, it can be shown that the so-
lution of the harmonic function still exists on a directed graph. However, undirected graphs
have consistently performed better in our experiments.
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We do cross-validation on each method/dataset pair to compare the perfor-
mance at different values of the number of neighbors k. We used the follow-
ing values for k: 10, 20, 30, and 40. We did 10 fold cross-validation on each
method/dataset pair for each value of k. We compared the performance at each
value of k using statical significance tests. We found out the following:

1. For some method/dataset pairs, the difference between k = 20, 30, or 40
is statistically insignificant and all are better than k = 10.

2. For other method/dataset pairs, the difference between k = 20, or 30 is
statistically insignificant and all are better than k = 10, or 40.

3. For the rest of method/dataset pairs, the difference between k = 30, or 40
is statistically insignificant and all are better than k = 10, or 20.

As a result we set the number of neighbors k to 30 in all of our nearest neighbor
based experiments.

To find the solution of the harmonic function in Equation 13, we use the
Iterative Template Library , which is an efficient C++ library to solve linear
equations.

After computing y(·) in Equation 13 for each document, using 0.5 as the
threshold value to classify a document as positive or negative does not always
yield the best result. This is especially the case for datasets such as Reuters-
21578 where the class sizes vary a lot. Therefore, following Zhu et. al. [29], we
use class mass normalization to adjust the threshold for a given binary classi-
fication problem. Suppose the ratio of the training documents in the positive
class to all the training documents is r. Class mass normalization classifies a
document d as positive if and only if

z(d) = (1− r) · y(d)∑
d′∈U y(d′)

− r · 1− y(d)∑
d′∈U 1− y(d′)

≥ 0 (14)

Since we have defined the semi-supervised kNN (harmonic functions) method
as a binary classification algorithm, it needs to be extended to the multi-class
case. For each class c in the training data, we construct a one-vs-all classifier
where the training documents in c are labeled as positive and all other docu-
ments are labeled as negative. After running all these classifiers using class mass
normalization, we classify each document d to the class whose classifier yields
the maximum z(d) value given by Equation 14. This extension to the multi-class
case is done only for the 20 Newsgroups dataset. Since some of the documents
in the Reuters corpus belong to more than one class, we construct only binary
one-vs-all classifiers for each class and then evaluate them separately.

RCV1 is a very large dataset with more than 800,000 documents. We ap-
plied 8 different algorithms variants on RCV1: Harmonic Functions with KL
similarity, Harmonic Functions with cosine similarity, Weighted kNN with KL
similarity, Weighted kNN with cosine similarity, Voting kNN with KL similarity,

http://www.osl.iu.edu/research/itl/
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Voting kNN with cosine similarity, NaiveBayes classifier, and SVM classifier. For
each algorithm, we used 13 different training data sizes. For each training data
size, we chose a random subset of the documents as the training set, we repeated
this for ten times and reported the average of ten random runs. This results in
130 runs for each algorithm and a total of 1040 runs. This large number of runs
on such a huge dataset requires a prohibitively long running time. Hence, we
used 30 machines from a large parallel cluster to deploy the different runs. To
our knowledge, the evaluation this paper presents on the RCV1 dataset, is the
most comprehensive evaluation of different text classification algorithms on the
entire dataset.

Table 2. The F1 score of various algorithms on the ModApte split of the 10
largest categories of the Reuters-21578 dataset. Microaverages of these
categories and all of the 90 categories are also shown. v-kNN: voting kNN,
w-kNN: weighted kNN, Harm.: Harmonic functions, NB: Naive Bayes, SVM:
Support Vector Machines TSVM: Transductive Support Vector Machines with
normalized tf ·idf document representation and linear kernel.

Class v-kNN w-kNN v-kNN w-kNN Harm. Harm. Naive SVM TSVM
(cos) (cos) (KL) (KL) (cos) (KL) Bayes

acq 87.82 85.71 91.93 88.34 89.26 92.65 89.41 93.82 83.66
corn 72.06 76.47 66.67 63.64 66.67 63.49 49.21 82.54 84.54
crude 79.04 79.04 86.35 83.81 80 81.18 77.06 82.94 82.54
earn 94.69 92.53 96.65 95.93 94.56 97.1 94.37 98 97.91
grain 81.6 83.44 85.02 82.57 83.91 80.76 73.19 90.85 82.94
interest 72.79 71.32 78.23 73.8 76.98 79.25 61.13 81.51 73.85
money-fx 76.54 79.01 82.18 79.7 78.87 80.41 67.01 81.44 90.22
ship 76.83 76.83 74.36 74.36 76.36 77.58 75.15 83.64 83.02
trade 69.7 72.73 80.9 75.66 73.85 72.31 53.08 74.62 86.06
wheat 68.79 70.06 77.3 77.3 73.2 71.9 64.05 83.66 93.82

microavg. (10) 86.02 85.17 89.67 87.52 87.13 88.92 83.08 91.47 91.72
microavg. (90) 80.37 80.26 82.42 80.72 80.68 82.25 73.14 86.1 86.15

Evaluation Metrics

Achieving high accuracy for each binary classification on the Reuters and RCV1
corpora is trivial since the negative class dominates the dataset. Therefore we
consider precision and recall for each binary classification defined as follows:

Precision =
# of correct positive predictions

# of positive predictions
(15)

Recall =
# of correct positive predictions

# of positive documents
(16)

To combine precision and recall, we report the F1 score; which is the harmonic
mean of precision and recall.
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Table 3. The F1 score of various algorithms on a random split (2/3 training
and 1/3 testing) of the 10 largest categories of the 20news dataset.
Microaverages of these categories and all of the categories are also shown.
v-kNN: voting kNN, w-kNN: weighted kNN, Harm.: Harmonic functions, NB:
Naive Bayes, SVM: Support Vector Machines TSVM: Transductive Support
Vector Machines with normalized tf ·idf document representation and linear
kernel.

Class v-kNN w-kNN v-kNN w-kNN Harm. Harm. Naive SVM TSVM
(cos) (cos) (KL) (KL) (cos) (KL) Bayes

C2 87.53 93.12 86.63 92.87 90.97 91.15 91.06 91.34 91.21
C3 74.18 82.84 72.49 85.57 87.99 88.62 86.04 89.00 88.66
C7 84.94 87.39 84.14 90.55 89.57 89.95 90.21 90.39 90.29
C8 87.74 90.03 86.71 91.18 90.24 90.81 90.89 91.02 90.73
C9 74.13 82.56 72.83 84.61 88.82 88.90 89.10 89.63 89.45
C10 87.37 90.39 86.77 91.15 89.80 90.18 89.58 90.51 90.30
C11 87.33 91.33 86.82 91.74 90.39 90.02 90.95 90.46 90.89
C13 87.02 91.01 86.99 92.40 90.56 90.61 90.68 91.02 91.27
C14 87.36 92.60 86.74 90.76 90.90 91.33 91.19 91.50 91.14
C15 87.81 90.32 86.71 92.81 89.77 89.89 91.15 90.42 90.51
microavg. (10) 84.54 89.16 83.68 90.36 89.90 90.15 90.09 90.53 90.44
microavg. (All) 83.34 87.52 82.44 89.10 89.65 89.85 89.55 90.22 90.18

To combine the scores of different binary classifications for the Reuters
dataset, we use microaveraging [23], that is, pool per-document decisions across
classes, and then computes the F1 score on the pooled contingency table. We
test statstical significance using the the paired t-test.

Discussion

Comparison of Nearest Neighbor Methods and Similarity
Functions

As we have mentioned above, using accuracy for the Reuters-21578 dataset
produces very high scores for all the algorithms because the negative class in
each binary classification is too large. For this reason, we report the F1 scores on
the 10 largest classes in the Reuters-21578 dataset as well as the microaverages
for these 10 binary classifications and for all of the 90 binary classifications in
Table 2. We see that for a given similarity measure, weighted kNN performs
slightly (but not significantly) worse than voting kNN, and harmonic functions
perform better than both weighted and voting kNN overall and on most of the
individual classes. KL divergence based similarity performs better than cosine
for a given learning method.

To see the effects of semi-supervised learning, we also run several experiments
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Table 4. The F1 score of various algorithms on a random split (2/3 training
and 1/3 testing) of the 10 largest categories of the RCV1 dataset.
Microaverages of these categories and all of the categories are also shown.
v-kNN: voting kNN, w-kNN: weighted kNN, Harm.: Harmonic functions, NB:
Naive Bayes, SVM: Support Vector Machines TSVM: Transductive Support
Vector Machines with normalized tf ·idf document representation and linear
kernel.

Class v-kNN w-kNN v-kNN w-kNN Harm. Harm. Naive SVM
(cos) (cos) (KL) (KL) (cos) (KL) Bayes

CCAT 65.8 66.28 65.65 66.01 93.13 94.39 90.51 92.50
M13 92.99 93.13 93.01 93.08 94.11 94.82 91.49 93.50
GPOL 91.69 91.84 91.68 91.59 88.53 88.97 87.36 89.42
GCAT 77.04 77.84 77.76 78.33 92.87 94.21 91.93 92.80
C152 88.96 89.62 88.81 89.61 81.29 84.57 82.17 83.62
MCAT 78.2 78.52 78.74 78.91 93.37 94.42 90.83 91.68
ECAT 84.91 85.17 85.03 85.25 89.16 90.68 90.38 89.89
C15 81.51 82.21 81.44 82.23 86.61 90.27 88.39 88.76
M14 89.77 89.81 89.84 89.76 96.52 96.96 96.36 96.92
C151 89.19 89.51 89.21 89.46 86.25 89.55 90.61 90.92

microavg. (10) 86.26 86.01 89.81 89.31 90.37 92.02 90.07 93.68
microavg. (All) 80.07 79.89 82.61 82.18 92.02 92.45 94.54 93.62

by varying the size of the training data and using the rest of the dataset as
the test data. For each training data size, we choose a random subset of the
documents as the training set, and then we report the average of 10 such random
runs. We make sure that each class is represented by at least one document in
each training set. Therefore, the minimum number of training documents can
be 20, 90, and 103 for the 20 Newsgroups, Reuters-21578, and RCV1 datasets,
respectively, since there are that many classes in each case. In Figure 1, it
is clear that weighted kNN performs better than voting kNN, and harmonic
functions perform better than weighted kNN on the 20 Newsgroups dataset.
Not surprisingly, the differences in the accuracies of these methods tend to
shrink as we introduce more training documents. One interesting observation is
that KL divergence based similarity performs somewhat worse than the cosine
similarity using the supervised kNN methods especially with limited training
data. However, it performs the best in conjunction with harmonic functions
consistently at all training data sizes. Figure 2 shows the results of the same
experiment on the Reuters-21578 dataset using the microaveraged F1 score of
90 classes. Similar observations can be made here except that the absolute
differences among the performances are smaller. However, harmonic functions
using KL divergence based similarity still perform the best especially where
there is little training data. Figure 3 shows the results of the same experiments
on the RCV1 dataset. Like the the 20 Newsgroups dataset, harmonic functions
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perform better than both weighted and voting kNN. We also notice that KL
divergence based similarity performs better than the cosine similarity. Again
the differences in the performance tend to shrink as we introduce more training
documents.

Comparison against Other Methods

To compare the nearest neighbor methods against other standard text classifi-
cation methods, we chose two of the most popular learning algorithms: Naive
Bayes and Support Vector Machines (SVM). We use the multinomial naive
Bayes as explained in Section 2.2. We also perform experiments with the trans-
ductive SVM (TSVM) algorithm since it is one of the leading semi-supervised
learning algorithms for text classification [9]. For SVM classification, we choose
the linear SVM and use the SVMlight package as implemented by Joachims [8].
We compute the tf ·idf vector representation of each document normalized to
unit length before running the SVM classifier.

Table 2 shows that the nearest neighbor methods perform better than Naive
Bayes on the Reuters-21578 ModApte split. SVM performs the best.Table 3
shows the same results for the 20news dataset.

Figures 4 and 5 show the comparison of these algorithms at varying train-
ing data sizes on the 20 Newsgroups and Reuters-21578 datasets, respectively.
For simplicity, we only include harmonic functions and weighted kNN with KL
divergence based similarity from Figures 1 and 2. Semi-supervised harmonic
functions perform much better on the 20 Newsgroups dataset than all other al-
gorithms at smaller training data sizes. This is a remarkable performance espe-
cially considering the performance of the other state-of-the-art semi-supervised
algorithm, TSVM. SVM and TSVM seem to catch up only when a lot more
training documents are introduced. Weighted kNN’s performance is competi-
tive and parallel to Naive Bayes’s.

On the Reuters-21578 dataset, however, SVM is the best algorithm at all
training sizes. We also notice that TSVM performs quite similar to SVM.

Figure 5 shows that harmonic functions perform better than TSVM when
there is limited training data. TSVM surpasses the harmonic functions when
the size of the training data is increased. As in the 20 Newsgroups dataset, all
the supervised and semi-supervised nearest neighbor methods are still better
than Naive Bayes. Figure 6 compares the performance of harmonic functions
and weighted kNN with KL divergence, Naive Bayes, and SVM on the RCV1
dataset. It shows that harmonic functions are very competitive to SVM. Har-
monic functions do better than SVM for some points where the number of
training document is limited. SVM is better when the number of training doc-
uments increases. We also tried to run TSVM on the RCV1 dataset but we
were not able to see the algorithm terminate after running it for several days.
It seems that TSVM, or at least the SVMlight package we use, does not scale
well for this large dataset.
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Figure 1. The performances of the voting kNN, weighted kNN, and
semi-supervised kNN (harmonic functions) algorithms with cosine and KL
similarity on the 20 Newsgroups dataset.

4 Conclusion

We have presented an extensive evaluation of several nearest neighbor meth-
ods for text classification. Despite their simplicity, nearest neighbor based ap-
proaches perform quite well on text classification. We have shown that this
performance can be improved even more by making use of new similarity met-
rics motivated by the language modeling approach in information retrieval. The
results are much better than Naive Bayes and very competitive with the state-of-
the-art SVM and TSVM. This paper has shown that nearest neighbor methods
are not simple baselines but actually strong competitive learning algorithms for
text classification.

The nearest neighbor framework can be extended to the semi-supervised
case. We have shown that this results in an algorithm that is equivalent to the
semi-supervised learning harmonic functions and presented an extensive evalua-
tion of this algorithm on text categorization. The results show that the proposed
algorithm performs competitively to SVM and TSVM on all the datasets. It
also surpasses them when the the training data is limited.
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