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ABSTRACT
Mobile Smart Devices (Smartphones and tablets) have be-
come increasingly popular especially in IT based service
management companies. According to IDC, more than 70%
of executives and sale managers are replacing their PCs
with tablets. This is in part due to the agility flexibility
and the availability of diverse network-based and support
applications. Thus network characteristics directly affect
user-perceived performance and a deep understanding of the
properties of contemporary cellular networks for commonly
used platforms is important for smartphone application and
platform optimization.

In this work, we carry out the largest study to date of cel-
lular networks in terms of users, time duration, location,
and networks to understand the performance, infrastruc-
ture, and policy characteristics. With the data set collected
from around 100K users across the world over 18 months,
MobiPerf, a smartphone network measurement tool we
developed and publicly deployed, enables us to analyze net-
work performance along several new dimensions, previously
not examined. Our results indicate that with better infras-
tructure support, large cities appear to have better perfor-
mance than rural areas. Our case study on packet size’s ef-
fect on RTT uncovers a surprising pattern for AT&T’s uplink
RTT. We also show that Internet-based CDN service pro-
vides very limited latency improvement in today’s cellular
networks. We further examine how local DNS servers are
assigned to mobile users. In addition, we scrutinize the car-
riers’ policy towards different types of traffic and success-
fully identify some middlebox behavior of today’s cellular
carriers.

1. INTRODUCTION
Given the wide adoption of smartphone platforms, such

as iOS and Android, there is a growing number of popu-
lar mobile applications designed for these platforms. For
many of these applications, including web browser, email,
VoIP, social networks, network access is required. Even for
games that are often run locally, ranking systems and on-
line peer matching systems are widely adopted which also
requires network access, e.g., Game Center for iOS. As a
result, mobile data traffic volume is sky-rocketing. For ex-
ample, AT&T’s mobile data volumes surged by a staggering
8,000% from 2007 to 2010 [1]. Given the limited network
resources available, it would not be surprising if a carrier

enforces different policies depending on the traffic types or
users. Hence, it is critical to understand performance, infras-
tructure, and policy in cellular networks.

Our previous study [11] comparing cellular network per-
formance among different carriers has already shown indica-
tion that network can be the bottleneck accounting for poor
application performance. In this work, with a data set col-
lected for a much longer period (18 months) and a larger
user set (about 10,000 unique users across three major smart-
phone platforms), we study the correlation between perfor-
mance and several important new dimensions, including net-
work types, location, time, etc. to delve deeper into cellu-
lar network behavior. In addition, we have conducted local
experiments to understand how packet size affects end-to-
end latency. Our study uncovers important characteristics
for cellular network performance.

We are motivated by our previous study on cellular net-
work infrastructure [19]. In this study, with a comprehensive
latency measurement data set, we perform more in-depth
analysis and quantify the effectiveness of CDN servers for
cellular networks. We also provide fine-grained analysis of
the geographical coverage of each individual IP address of
local DNS (LDNS) servers and discuss the implications.

Traffic differentiation has long been studied in the Inter-
net [20, 9] given the controversy surrounding the idea of
network neutrality. For mobile networks, most policies in
cellular networks remain unknown. Our effort shares the
same goal as the WindRider [5] project for monitoring mo-
bile network neutrality, but we are the first to report some
conclusive results. In this work, we make one of the first
attempts to uncover these policies for cellular carriers that
affect application performance.

The key contributions and results in this work include:

• We compare the performance across different mobile
network technologies (WiFi, 3G, EDGE, GPRS) and
within 3G technologies (1xRTT, EVDO, UMTS, HS-
DPA), providing the largest scale and most comprehen-
sive performance comparison to date.

• We analyze the correlation between RTT and packet
size, and find that uplink latency for AT&T’s 3G net-
work is a step function of packet size, in contrast to
packet size independent RTT behavior for T-Mobile.

• We show little correlation between network latency
and physical distance, and rather limited effectiveness
of CDN service in today’s cellular networks.
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• We study traffic policy of cellular carriers and success-
fully detect some middlebox behavior for T-Mobile.
With data collected from global users, we also make
one of the first studies of middlebox behavior across
locations and carriers.

The remainder of this paper is organized as follows: In
§2, we discuss the methodology for local experiments. Then
in §3, results related with cellular network performance are
discussed, followed by our study on network infrastructure
in §4. We discuss policy in cellular networks in §5, before
summarizing related work in §6 and concluding in §7.

2. METHODOLOGY
In this study, we use measurement data collected from a

publicly deployed tool MobiPerf1 as well as from local
experiments. MobiPerf is designed to collect anonymized
network measurement information directly from end users,
including network type, carrier, GPS, latency to landmark
server, as well as TCP and DNS performance. The key
methodology for designing MobiPerf has been discussed
in our previous work [11, 19]. In this section, we discuss the
improvements and the setup for local experiments.

We have conducted two major sets of local experiments.
These tests are implemented as Android applications run-
ning on our Android smartphones locally. For both exper-
iments, at every second, the device sends and receives a
large packet (MTU) to ensure the radio interface is at high
power state to occupy the high speed data transmission chan-
nel [15].
RTT vs. Packet Size We study the correlation between
RTT and packet size for different carriers using TCP and
UDP (for both uplink and downlink) to explore possible ef-
fect of packet size on end-to-end delay. The packet size in-
creases from 100 bytes (including headers) with an incre-
ment of 25 bytes. The response packet has 1 byte payload to
focus on a single direction at a time.
Port Scanning We use three Android smartphones with
AT&T, T-Mobile, and Verizon 3G service enabled respec-
tively. The ports scanned are either popular Internet ports
or special ports for mobile platforms, e.g., port 5228 is used
by various Android services including Android Market, and
port 5223 is used by Apple’s push notification service. For
each port, there is a TCP server and a UDP server run-
ning on a local host to simply echo back any message re-
ceived. At the client side, an Android app first connects to
the TCP server by sending a short (100 bytes including head-
ers) unique message. The client then sends another short
unique message to the UDP server. The client measures the
time to establish a TCP connection, to get the response back
in TCP or UDP. Besides UDP port 161 (SNMP), no other
port is blocked by the firewall at the server side. We do not
measure TCP data transfer time for TCP ports 22, 80 and
1MobiPerf is the newer version the measurement tool 3GTest we
developed, with various functionality and UI improvements

443 for simplicity. All ports are scanned sequentially with
the entire scanning process repeated for more than 48 hours.

3. MOBILE NETWORK PERFORMANCE
MEASUREMENT AND ANALYSIS

We first describe the public deployment of our mobile net-
work measurement tool, and then present the performance
analysis along dimensions including technology type, time,
and location. In addition, we study in more depth the corre-
lation between RTT and packet size in cellular networks.

3.1 MobiPerf Deployment and User Statistics
We publicly deployed the MobiPerf application in Au-

gust, 2009, distributed via Apple’s App Store, Google’s
Android Market and Microsoft’s Windows Marketplace for
Mobile. Ever since the initial deployment, we have been
continuously improving and releasing updates for iOS and
Android version of our app. Till April, 2011, 99.1K users
from across the world have run our app for 439.5K times.
The number of users and runs for three different platforms,
including iOS, Android, and Windows Mobile, is listed in
Table 1. The average number of runs for each Android user
is larger than the other two platforms, because for the An-
droid version of our app, we give an option to the users to
periodically run the tests. We observe users from 179 coun-
tries or regions according to the collected GPS information.
Among all 93.3K users, 63.7K (68.27%) have GPS readings
and 52.24% of them are from the U.S., and among these
63.7K users, about 1.0K (1.57%) users have run our app in
more than one countries or regions. We also observe more
than 800 carrier names. However, carriers may adopt differ-
ent names in different countries, making it difficult to accu-
rately estimate the actual number of carriers. Figure 2 shows
the user coverage of MobiPerf, with one dot representing
one run of MobiPerf. Given the wide coverage of regions,
we believe our data set is fairly representative of the entire
smartphone population, especially for North America with
denser user distribution. In this study, our analysis mostly
focuses on U.S. users.

3.2 Performance Comparison among Mobile
Network Technologies

In our previous study [11], we have compared network
performance among different major U.S. cellular carriers.
In this study, we focus on comparing performance among
technology types. We first break down technology types
into WiFi, UMTS family, CDMA family, EDGE and GPRS.
Within 3G family, we select 4 major network types, in-
cluding HSDPA, UMTS (without HSDPA), 1xRTT and
EVDO A, since these network types cover most 3G users.

Downlink throughput is compared in Figure 1 (a). WiFi
has the best performance with median throughput of 1.46
Mbps. For 3G network, UMTS family appears to outper-
form CDMA family, with median downlink throughput of
964 kbps compared to 368 kbps. EDGE lags with median
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Figure 1: Downlink/Uplink performance comparison among different types of networks
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Figure 2: User coverage of MobiPerf

Android iOS Win Mobile All
User 39.3K 39.7% 47.0K 47.4% 12.8K 12.9% 99.1K
Run 273.8K 62.3% 127.0K 28.9% 38.7K 8.8% 439.5K

Table 1: User and run breakdown of different platforms

downlink throughput 112 kbps and GPRS is the slowest at
45 kbps. The ranking of downlink retransmission rate is con-
sistent with that of downlink throughput, except that UMTS
and CDMA have similar retransmission rate distribution.
In Figure 1 (c), UMTS’s median RTT is 495 ms, smaller
than CDMA’s 680 ms. This helps explain the throughput
gap between UMTS and CDMA, since TCP throughput is
lower with higher RTT and loss rate. Among 3G networks
shown in Figure 1 (d), HSDPA has the highest median down-
link throughput of 1.18 Mbps and 1xRTT has the smallest
throughput of 115 kbps, since it is one of the earliest CDMA
3G technologies. Similarly, we observe high RTT in Fig-
ure 1 (f) and high retransmission rate for 1xRTT correlated

with its low throughput.
We closely study the variation of TCP downlink RTT, of-

ten known as jitter. Compared with WiFi, whose median of
RTT standard deviation is 41 ms, UMTS has a higher value
of 93 ms and 233 ms for CDMA. If applications running on
smartphones fail to tolerate this high variation in RTT, user
experience would be degraded.

In Figure 1 (b) , the uplink throughput difference between
UMTS and CDMA is less obvious compared with downlink.
For example, at 50th percentile, UMTS’s uplink throughput
is 110 kbps and CDMA’s is 120 kbps. Within the 3G family,
as shown in Figure 1 (e), all network types experience less
than 150 kbps median uplink throughput.

3.3 Long-term Trend and Diurnal Pattern
Given the relatively long duration of the data set, we ana-

lyze the trend of cellular network performance over time. We
group users into each individual month and study the perfor-
mance changes for the major U.S. cellular carriers, including
AT&T, T-Mobile, Verizon, and Sprint. However, for all per-
formance related metrics, including downlink/uplink RTT,
RTT standard deviation, throughput and local DNS lookup
time, we do not observe any clear trend of changes for 3G
networks, suggesting that the performance is relatively sta-
ble. For example, the median DNS lookup time to local DNS
servers across all carriers changes by no more than 10%. We
do observe a few LTE, WiMAX users, a topic which we plan
to explore in the near future.

Our previous work [11] showed using local experiments
that performance of some carriers is correlated with time of
day. In this study, we further analyze this pattern using the
data set collected across locations. Figure 3 shows the aggre-
gate time of day analysis of TCP downlink throughput, RTT,
and jitter for all AT&T, T-Mobile, and Verizon 3G users in
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Figure 3: Time of day pattern of downlink performance for major carriers in the U.S. (large packets)
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Figure 4: Delay in AT&T 3G network (small packets)

the U.S. Each data point is median value of all data samples
across locations in the U.S. within an hour based on user’s
local time. This analysis technique avoid potential bias by a
specific small group of users or any particular locations.

Figure 3 (a) shows that AT&T has the most clear time of
day pattern for downlink throughput. Verizon has less obvi-
ous yet still observable diurnal pattern for downlink through-
put and even less obvious for T-Mobile. TCP retransmis-
sion rate for these carriers stays low consistently at different
hours, hence the diurnal pattern of TCP downlink RTT in
Figure 3 (b) explains the throughput fluctuation, especially
for AT&T. The standard deviation for TCP downlink RTT
also demonstrates a clear diurnal pattern for AT&T and Ver-
izon, while less obvious for T-Mobile shown in Figure 3 (c).

These observations suggest that applications with inten-
sive network download requirement and little tolerance on
RTT jitter may experience worse performance during peak
hours. Uplink and LDNS performance are relatively con-
sistent across different hours of day, indicating that the in-
frastructure support is capable of handling peak hours for
such operations. However, for downlink, network resource
at peak hours becomes a bottleneck.

Since the downlink RTT in Figure 3 (b) is for a large
packet, mostly with a size of MTU, we use the latency
data collected in the local “Port Scanning” experiment (§2)
to understand the diurnal pattern of small packets. For T-
Mobile, similar to Figure 3 (b), we do not observe any time
of day effect on RTT. For AT&T, in Figure 4 showing RTT
of small packets (100 bytes) with boxplot, at the median
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Figure 5: DNS lookup time in 3G networks (ms)

level, there is no diurnal pattern for RTT. At the 75th per-
centile, 12:00PM and 1:00PM have larger RTT values, and
at the 95th percentile, hours between 10:00 AM and 6:00
PM clearly have much larger RTTs. This indicates that dur-
ing peak hours, most small packets do not experience longer
delay, but some (at least 5%) experience much longer RTTs.
By comparing with large packets, our local experiment sug-
gests that small packets have less obvious, yet still observ-
able diurnal pattern for AT&T.

3.4 Location and Performance Correlation
For MobiPerf, our server is located inside the U.S.,

hence users outside the U.S. experience longer Internet de-
lay and the performance measurement might be biased. So
for the worldwide measurement, we only look at local DNS
lookup time, which is not affected by the location of our
central server. In Figure 5, for each cell with a size of 50
kilometers×50 kilometers, the median DNS lookup time of
all 3G users within this region is selected. We can see that for
most parts of the world, the DNS lookup time is around 150
ms to 250 ms. Regions including South Asia, Middle East,
Eastern Europe and some regions in the middle of the U.S.
experience higher DNS delays. For those regions with large
LDNS latency, websites which often use DNS based load-
balancing using services such as Akamai may suffer longer
delays due to relatively higher DNS overhead.

For cellular networks, given that the infrastructure support
differs across locations for different carriers, we intend to
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study how performance correlates with location. We com-
pare TCP downlink performance of major U.S. carriers in
Figure 6. The plotted cell size is 50 kilometers × 50 kilo-
meters, excluding those without enough data points to show
statistically meaningful results. The coverage of each carrier
shown in this figure is clearly affected by the popularity of
our app among its customers. Since we focus on the median
performance at different locations, where we do have data,
our measurements can provide a fairly representative sam-
pled view of the cellular network performance across differ-
ent locations. Comparing across carriers shows large vari-
ation in performance across locations, with a few locations
clearly having better downlink performance. Second, these
locations of different carriers are typically large cities, such
as New York, San Francisco, and Los Angeles. Third, for
each carrier, the eastern part of the U.S. has higher user cov-
erage than the western part, except for the state of California
and Washington. These observations suggest that for regions
with larger user base, carriers may have provided better in-
frastructure support and newer technology, compared with
rural areas with fewer users.

Given the large scale of our dataset across locations, as
future work, we will provide a “performance near me” ser-
vice to help users understand network problems from nearby
users in the same or different networks.

3.5 Case Study on RTT vs. Packet Size
With the local “RTT vs. Packet Size” experiment (§2),
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we study the correlation between RTT and packet size using
both TCP and UDP for AT&T and T-Mobile. For T-Mobile,
RTT for TCP and UDP remains stable with packet size. Fig-
ure 7 shows for AT&T how the packet size including IP and
TCP/UDP headers affects the median RTT from more than
1000 measurements. We make the following observations.

First, similar to T-Mobile, UDP/TCP downlink RTT re-
mains stable as packet size changes. Second, TCP downlink
RTT for AT&T is consistently about 40 ms larger than that
of UDP downlink, indicating a slightly higher overhead for
TCP traffic than UDP, unlike T-Mobile with all very similar
RTT values. Third, AT&T’s uplink RTT is a step function
of packet size for both TCP and UDP, i.e., RTT increases by
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about 40 ms with every packet size increase by roughly 150
bytes until packet size exceeds 1200 bytes triggering a jump
in RTT of 180 ms. Laner et al. [13] shows that for HSUPA,
RTT increases by 10 ms for every packet size increase of
1800 bytes, due to lower layer fragmentation. For our ex-
periments, the delay is longer since HSUPA is not available
on our device. A similar step-based increase has been ob-
served in [6] and our result differs from theirs in that we
do not observe increased delay for packets smaller than 200
bytes, and we observe a bigger jump for packet size exceed-
ing 1200 bytes. Another interesting observation for AT&T
is that UDP trails behind TCP’s jumps by about 50 bytes for
uplink. One possible explanation of this offset is the differ-
ence in header compression between TCP and UDP.

Given that T-Mobile does not exhibit such behavior based
on the same experimental setup, this implies that neither the
device nor the server is accountable for it. Experiments on
another device using the same SIM card but only AT&T’s
EDGE network show observations consistent with those in
3G, though with larger variations. So this phenomenon
should be related with AT&T network’s infrastructure and
configuration. If this observation is consistent across loca-
tions, users would experience much longer delay when up-
loading contents using AT&T’s 3G service.

4. CELLULAR NETWORK INFRASTRUC-
TURE AND IMPLICATIONS

In this section, we study LDNS assignment and quantify
the effectiveness of CDN service in cellular networks.

4.1 LDNS Servers
How LDNS servers are assigned to customers is an inter-

esting and important design decision made by carriers. It
reflects how loading balancing is done and affects LDNS
lookup performance. It also impacts the effectiveness of
DNS-based server selection. With a representative data set
for the major American carriers, we study how they assign
LDNS servers to their customers. We observe 12 different
LDNS IPs for AT&T in 4 different /24 address blocks, each
consisting of 3 IPs. For T-Mobile, 11 LDNS IPs are observed
in 5 /24 blocks, and for Verizon, 12 LDNS IPs in 3 /24 blocks
are detected. In Figure 8, we present the correlation between
users’ location and the assigned LDNS IPs. For both AT&T
and Verizon, we can observe that clients for each LDNS ad-
dress block tend to cluster geographically. This suggests that
both carriers assign LDNS servers to clients based on geo-
graphic regions. However, for T-Mobile, all identified LDNS
IPs are used across the country. These results confirm the
unsupervised clustering results of our previous work [19].

To further understand how different individual IPs among
a /24 address block are used, we show in Figure 8 the ge-
ographic distributions of four representative LDNS IP ad-
dresses. We can observe that even at the individual IP level,
there exists clear correlation between location and LDNS as-
signment, despite some overlapping regions. Through local
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Figure 9: Handshake RTT vs. spherical distances

experiments for AT&T, we confirm that the assigned LDNS
IP remain constant for over 48 hours. Having one LDNS IP
for a region allows the flexibility to customize DNS caches
according to the users’ interests within the region. The com-
parison of the LDNS latency distribution for AT&T and T-
Mobile shows no clear performance difference when query-
ing LDNS servers at different locations. As we discuss fur-
ther below in §4.2, we conjecture that the bottleneck of net-
work latency is along the wireless hop, making the server
location less important. Note that DNS-based server selec-
tion cannot effectively choose nearby servers if the LDNS
server assignment is not based on geographic regions.

4.2 CDN Service for Cellular Networks
Using landmark test results, we study the effectiveness of

CDN service in cellular networks. First, we select the users
with GPS information and calculate the physical spherical
distance 2 to the list of 20 landmark servers. The distribution
of TCP handshake latency is show in Figure 9. We observe
high variation in RTT between users and landmark servers
with no clear correlation with physical distance. This sug-
gests that the latency in the 3G wireless hop is dominant in
determining the end-to-end latency, rather than the Internet
latency.

To quantify the effectiveness of CDN services in cellular
networks, we assume the 20 landmark servers to be CDN
servers. Then we study 5 different scenarios, assuming 20,
10, 5, 2 and 1 CDN servers are used, respectively. We select
the CDN servers to maximize the geographic spread. For
each scenario, each user chooses the physically closest CDN
server based on its GPS information, and the latency to this
server is regarded as the user perceived latency. Figure 10
shows the distribution of the user perceived latency in all
studied scenarios. Additional CDN servers have very lim-
ited effect on reducing user perceived latency. Comparing
the best and worst scenario with 20 and 1 CDN servers each,
we found the median RTT difference to be 20 ms, only 10%
of the median RTT of 200 ms. However, the equivalent RTT
2Spherical is the accurate distance in the great circle of the earth
based on latitude and longitude.
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Figure 8: Coverage of local DNS servers
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saving can be more significant in LTE 4G networks with a
much shorter latency at the wireless hop. Given that today’s
cellular network routing is heavily restricted due to limited
number of gateways to the Internet which are the closest lo-
cations to the clients for deploying CDN servers, caches can
be pushed closer to the user to reduce latency in LTE 4G
network, which uses a flatter architecture [16].

5. CELLULAR NETWORK POLICY
In this section, we study cellular network policies to-

wards different types of traffic. Compared with our previous
work [18] on analyzing NAT and firewall policies in cellu-
lar networks, this study focuses on performance related poli-
cies exposing traffic differentiation behavior. Figure 11 sum-
marizes local “Port Scanning” (§2) experiment for AT&T,
T-Mobile, and Verizon 3G networks using boxplot. “TCP
Connect” represents the time between the sending of a TCP
SYN packet and the receipt of SYN-ACK at the client. “TCP
Data” is the time for the client to send a short unique mes-
sage to the server and receive the echoed response. “UDP
Data” is the corresponding data transfer time for UDP. Veri-
zon and AT&T share similar behavior in Figures 11 (a) and
(c). There is no obvious difference across all ports. For T-
Mobile in Figure 11 (b), first, there are two levels of TCP
connect time, one around 70 ms and the other around 100
ms. Second, port 22 (FTP) and port 8080 (HTTP proxy) are
blocked. For the other ports, their median TCP and UDP

data transfer time are both around 100 ms.
To understand the root cause of these abnormal behaviors

in T-Mobile, we collect packet traces at both the client and
the server side. All packets sent from the server have an ini-
tial TTL value of 64. But at the client side, it receives packets
from server’s IP with a TTL of 197 for ports 25 (SMTP), 80
(HTTP), 110 (POP), 143 (IMAP), 443 (HTTPS), and 8080
(HTTP proxy). For port 21 (FTP), the TTL in the packets
received at the client side is 253, also larger than the server’s
initial TTL value. These ports are also exactly the ones with
smaller TCP connect time of around 70 ms. All these ob-
servations support the existence of a middlebox that rewrites
packets going through.

We analyze packets traces to understand the detailed
blocking behavior of T-Mobile. While nothing abnormal
is observed for UDP traffic on port 21, TCP traffic on port
21 is blocked. The client can successfully establish a TCP
connection to our server via three-way handshake. How-
ever, after the client sends a packet containing data payload
to the server, the client receives an ACK packet with the
server’s IP as the source IP, which however, did not originate
from the server, verified by the packet traces collected at the
server. The server also did not receive any data packet from
the client after the three-way handshake. We further verify
that the ACK comes from a middlebox based on TTL. The
spoofed ACK has a TTL of 253 (larger than the server’s ini-
tial TTL value of 64), indicating that the actual sender of this
packet is at most 2 hops away. So there must be a middle-
box intercepting data packets and sending spoofed ACK to
the client without letting data packets through. For compar-
ison, we use a standard FTP client on Android and it works
in T-Mobile’s 3G network, suggesting that the middlebox
does deep packet inspection (DPI) and selectively blocks
our measurement traffic which does not contain a valid FTP
command, possibly due to security concerns.

The HTTP proxy port 8080 is also blocked in T-Mobile’s
3G network. Different from port 21, the server does not re-
ceive any packet from the client throughout the flow. But
interestingly, the client still receives the SYN-ACK packet.
Subsequently, when the client sends data packets to the
server, it can also receive spoofed ACK packets, making it
believe that the server has received the data, which is actu-
ally not the case. Also, packets from the spoofed server’s IP
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(a) AT&T 3G (b) T-Mobile 3G (c) Verizon 3G
? Among all ports, only UDP port 161 (SNMP) is blocked by the firewall of our server.

Figure 11: RTT for different ports in 3G cellular networks

address has a TTL of 197. To verify whether our traffic is
blocked due to invalid payload in port 8080, we use the web
browser on an Android device to visit a website hosted on
port 8080. Though the website is accessible through WiFi,
it is blocked in T-Mobile’s 3G network, suggesting that port
8080 is completely blocked.

Using packet traces in MobiPerf data set collected from
global users at the server side, we compare the TTL of pack-
ets from the client to the server. Given that for each run,
within a short period, the TTL of packets from the same
client across different ports should not be significantly dif-
ferent from each other, since each device has a fixed initial
TTL for its outgoing packets and the routing paths across dif-
ferent ports are comparable in length. However, we observe
that for all T-Mobile users in the U.S., the TTL for port 80
is larger than TTL for other ports by at least 75. The gap
of TTL is 117 for majority of T-Mobile users. This agrees
with our local experiments, suggesting that T-Mobile uses
middlebox for some ports including port 80. We do not ob-
serve this phenomenon for most users of AT&T, Verizon or
Sprint in the U.S. However, this does not necessarily mean
that middlebox is not used by these carriers, because mid-
dlebox does not necessarily modify TTL. Besides the U.S.,
we also observe the big TTL gap phenomenon for users in
other regions including Australia and Singapore.

The reasons of using middlebox can be multifold. Carri-
ers may use middlebox to increase end user performance and
to block suspicious traffic for security in cellular networks.
As a case study, we download a text file hosted on port 80
containing a long string of character “a”s in WiFi and T-
Mobile 3G, respectively. Although the file is downloaded as
plaintext through WiFi, gzip compression is used in 3G, in-
dicating that the middlebox compresses web content for 3G
users. However, some carriers may also use middlebox to in-
tercept, monitor, and modify traffic and differentiate specific
types of traffic or groups of users.

6. RELATED WORK
Existing studies have compared 3G and WiFi perfor-

mance on smartphones [10] and studied the influence of the
packet size on the delay in 3G networks [6]. In a previous
study [7], the correlation among IP address, location and

network latency has been analyzed for smartphones. Our
previous study [11] has compared cellular network perfor-
mance among carriers and shown indications that the net-
work can be the bottleneck accounting for poor application
performance. In this work, with data set collected for a pe-
riod of 18 months and a large set of 10,000 unique users, we
study cellular network performance along several important
new dimensions, including network types, location, time,
etc. This is the first work studying cellular networks with
a data set covering such a long period.

There are existing measurement applications such as
Speedtest.net [4] and FCC’s broadband test [2] measuring
throughput on end-user’s devices, similar to our study. How-
ever, our study is more comprehensive looking at various
network performance metrics including DNS lookup time
and TCP retransmission rate. Netalyzr [3] carries out net-
work measurement for Internet users, not for smartphone
users.

In our previous work [19], we made qualitative observa-
tions on the effectiveness of CDN service in cellular net-
works and the geographical coverage of LDNS servers. In
this study, with a comprehensive end-to-end latency mea-
surement data set, we quantify the effectiveness of adopting
different CDN servers for cellular networks. We also pro-
vide fine-grained analysis of the geographical coverage of
each individual IP address of LDNS servers and discuss the
implication on performance and reliability.

Existing work has built tools to infer traffic differentia-
tion policies from either local experiments or public deploy-
ment [20, 9, 5]. And our work is among the first to uncover
previously unknown policies in cellular networks. Our work
is among the first attempts to systematically understand the
network policy inside cellular networks.

Our work is inspired by numerous network measurement
studies [8, 21, 17, 7], e.g., Trestian et al. characterized the
relationship between users’ application interests and mobil-
ity [17], Balakrishnan et al. examined the dynamics of cel-
lular IP addresses in 3G networks [7], Zhuang et al. investi-
gated application-aware acceleration to improve application
performance [21], and Liu et al. studied the interaction be-
tween the wireless channels and applications [14]. Unlike
these studies, we analyze the network performance along di-
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verse dimensions, e.g., continents, geographic locations, car-
riers, platforms, cellular technology, and time.

Previous studies [14, 8, 12] use cellular network data
cards or phones tethered through USB to measure network
performance on desktop or laptop systems. In this study, the
data is collected directly from end-users’ devices, thus more
accurately reflecting the real perceived performance and al-
lowing us to study location-wise performance differences.

7. CONCLUSION
In this study, we analyze the data collected from our glob-

ally deployed network measurement tool MobiPerf over
18 months and local experiments. We examine various fac-
tors, such as locations, time, network types by investigat-
ing how each factor impacts the user-perceived performance.
We also characterize the cellular network infrastructure to
understand how LDNS servers are assigned and quantify the
effectiveness of deploying CDN servers for today’s cellular
networks. Given the lack of openness in cellular networks,
we further explore the traffic policy of cellular carriers and
have successfully detected different middlebox behaviors.
We believe that our study can help uncover the key char-
acteristics of cellular networks in various dimensions.
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