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Abstract
Stealthy pixel-perfect attacks on smartphone apps are a class
of phishing attacks that rely on visual deception to trick
users into entering sensitive information into trojan apps.
We introduce an operating system abstraction called Trusted
Visual I/O Paths (TIVOs) that enables a user to securely
verify the app she is interacting with, only assuming that
the operating system provides a trusted computing base. As
proof of concept, we built a TIVO for Android, one that is
activated any time a soft keyboard is used by an application
(e.g., for password entry) so that the user can reliably deter-
mine the app that receives the user’s keyboard input. We
implemented TIVO by modifying Android’s user-interface
stack and evaluated the abstraction using a controlled user
study where users had to decide whether to trust the lo-
gin screen of four different applications that were randomly
subjected to two forms of pixel-perfect attacks. The TIVO
mechanism was found to significantly reduce the effective-
ness of pixel-perfect attacks, with acceptable impact on over-
all usability and only modest performance overhead.

1. INTRODUCTION
We use our smartphones for a variety of tasks including
sensitive actions such as logging into confidential email, en-
tering sensitive personal information in tax filing apps and
using passwords to authenticate ourselves to mobile bank-
ing apps. Phishing attacks, traditionally a problem on the
web, is encroaching into the mobile space. There are several
types of attacks that rely on visual deception and a lack of
user knowledge falling under the umbrella term of phishing.
Stealthy pixel-perfect trojans are a class of phishing attacks
that imitate the look-and-feel of genuine apps, but only un-
der certain conditions. For example, an interesting game
could include code to generate a UI that imitates a bank-
ing app. This trojan is stealthy because it does not present
the imitated UI immediately and blatantly, but utilizes tech-
niques such as activity launch hijacking [4, 8] and UI state
inference [7] to launch its fake UI windows when the user
actually attempts to launch a genuine version of the target
app. The fake UI windows may be presented out of context
as well, borrowing techniques from clickjacking [16].

Phishing attacks often take advantage of UI preemption fea-
tures of an operating system to achieve visual deception [24,
21, 1]. UI preemption is the process where the current fore-

ground app is preempted by a background service and an-
other app is brought to the foreground, without user inter-
vention. This is a way of supporting common features such
as alarms or reminders and is an embodiment of a command
design pattern. Recent work by Chen et al. [7] shows that
launching phishing attacks by taking advantage of UI pre-
emption can be very stealthy.

Besides UI preemption, mobile UI phishing attacks are also
achieved indirectly by hijacking the process which triggers
screen redirection. On Android, the IPC delivery process
(for interaction with Activities, Services or Broadcast Re-
ceivers) was found to be exploitable for hijacking [12, 11, 28].
Besides IPC, Z. Xu et al. [31] find that the Android notifica-
tion delivery can also be exploited to allow an installed tro-
jan application to launch phishing attacks or anonymously
post spam notifications. These attacks depend on the trig-
gering of certain conditions, for example IPC delivery, which
may be limited in attack surface compared to direct UI pre-
emption based phishing.

One solution, used on the web, is to display a security indi-
cator, such as an HTTPS status indicator, security toolbars
that make the current URL explicit, and secret images (e.g.,
SiteKey images that are commonly found on banking sites).
Unfortunately, [22] found that both HTTPS toolbar as well
as secret images at banking web sites were “not effective”.
[30] found that a security toolbar is often missed.

We conclude that designing tamper-resistant and effective
security indicators is a difficult problem that has resisted a
good solution. To get tamper-resistance, the OS could po-
tentially reserve an area of a screen to provide trustworthy
information about the app that a user interacts with, as has
been suggested as far back as in the Terra system [15]. Un-
fortunately, this has not been deemed to be practical even
on desktops. On smartphones, the available screen real es-
tate is significantly smaller and many apps like to use the
entire screen. Finally, as studies with browser-based security
indicators suggest, a user evaluation is important to assess
effectiveness.

Our solution does not require a reserved area on the screen
for security indicators. This results in another challenge —
a malicious app could attempt to fake the security indica-
tors. For example, a browser’s HTTPS security indicators
are not truly tamper-resistant. A malicious app, even an
unprivileged one, could potentially spoof a browser’s look-
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and-feel, including the security indicators. Similar challenge
arises with designing tamper-resistant security indicators for
mobile apps and we address that.

To address the problem of stealthy pixel-perfect phishing
attacks and, more generally, the problem that a user lacks a
robust way to determine the app he/she interacts with, we
propose Trusted Visual I/O paths (TIVOs). TIVOs enable
users to reliably identify the app before providing input.
The design further guarantees a race-free solution from time-
of-check-time-of-use (TOCTOU) errors [29] in that another
app cannot hijack the input by, for example, overlaying a
transparent screen on top of the original app after the user
identifies the app and before the user provides the input.

We implemented a concrete TIVO called AuthAuth on the
Android platform that is based on the most widely used in-
put method for userids, passwords, and credit card numbers
— the soft keyboard. AuthAuth automatically launches a
tamper-resistant security indicator, which we term as a se-
cure annotation, that reliably identifies the foreground app
and ensures that the keyboard input can only go to the iden-
tified app. Under normal usage of apps, when the keyboard
is not being used, secure annotations need not be displayed,
saving screen-estate. On Android, soft keyboards are them-
selves apps. AuthAuth is implemented inside the OS and
is independent of the implementation of the soft keyboard
that may be in use.

Contributions:

• We introduce and explore the Trusted Visual I/O oper-
ating system abstraction as a technique to assist users
in identifying stealthy pixel-perfect phishing attacks
(Section 4). We designed AuthAuth security indica-
tors to be tamper-resistant (Section 4.2). In partic-
ular, AuthAuth security indicators are generated by
code that is part of the trusted base and not under the
control of the apps. When displayed, they are shown
above any graphical layer that is produced by an app.

• On Android, we implemented a TIVO abstraction, called
AuthAuth (Section 5), that presents a secure annota-
tion of the current foreground app automatically when-
ever a soft keyboard is used for data input in any appli-
cation without requiring existing Android applications
to be modified.

• We compared the effectiveness of an AuthAuth-based
system on a real device against standard Android in
defending against pixel-perfect phishing attacks (Sec-
tion 7) in a user study with 22 users. AuthAuth was
found to significantly reduce the effectiveness of such
attacks. With AuthAuth, users were almost always
able to correctly determine when an app was being
attacked whereas, on standard Android, users could
not reliably identify when the app was being attacked.
Furthermore, without AuthAuth, all users logged into
fake apps multiple times, indicating trouble in identi-
fying a phishing attack, whereas with AuthAuth, 19
out of 22 users were able to successfully identify all
phishing attacks.

Anonymized TIVO video demos from our implementation

illustrating the attacks and defenses can be found at http:

//sites.google.com/site/authauthdemo/ [2].

The TIVO abstraction is flexible and is applicable to other
scenarios besides soft keyboards. On Android phones, sen-
sitive input may also occur through touch interactions. For
example, the drug helper app WebMD presents a long list of
drugs that the user can select from. An attacker interested in
illegally collecting information about drug usage may launch
a pixel-perfect phishing attack by presenting an identical UI
using activity hijacking. To enable a user to protect herself
in such situations, as proof-of-concept, we also describe a
TIVO that activates on demand when the user presses a key
escape combination. If the user presses the Power + Volume
Up physical buttons, a secure annotation is displayed that
identifies the app and permits input to only go to that app.

2. AN EXAMPLE ATTACK SCENARIO
Here we describe how a pixel-perfect phishing attack works
on Android. Android allows apps to consist of services and
activities. Services can run in the background while other
apps run.

Consider a scenario where Alice finds a new and upcoming
app called “Wave Guide” (written by Bob) that provides
information on where to find the best surfing spots around
a specified location. Alice downloads this app and uses it
normally. Unknown to Alice, this app is a stealthy trojan
and its real purpose is to launch phishing attacks.

When Alice logs into Facebook, the service belonging to
Wave Guide notices this launch by continuously polling the
top of Android’s activity stack1. This service immediately
launches its pixel-perfect copy of Facebook login and the un-
wary user sees something similar to Figure 1, a normal look-
ing Facebook login screen. Alice proceeds to log in. Wave
Guide receives the password, leaks it to Bob, and simply
exits (or presents a login failure screen that appears to be
from Facebook and then exits). To the user, it appears that
login to Facebook did not succeed and retries. This time the
Wave Guide app does not interfere.

Note that activity hijacking is not a requirement for the
attack to succeed. Wave Guide’s service could launch a look-
alike of the Facebook login page on its own at an opportune
time, e.g., when a device is woken up from sleep. If the
user believes the page to be from Facebook, the attack may
succeed.

3. THREAT MODEL AND TRUSTED BASE
Our trusted computing base consists of the Operating Sys-
tem of the phone, standard Android Framework services,
and any alternate keyboards (e.g., Swype [26]) installed by
the user. This work is designed to ensure that the user can
reliably determine the app that receives user’s input.

Apps on the phone are permitted to control the entire screen.
We do not require any screen area to be reserved for the OS

1Scanning the top of the Activity stack is not the only
method available to services on Android to monitor other
app’s activities. Other stealthier methods also exist that do
not require any permissions at all [7].
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to provide security indicators. Furthermore, the user may
have installed one or more malicious apps that launch activ-
ity hijacking attacks on other apps, say, via UI preemption
in order to steal information entered by the user. Our work
does not protect against covert or side channels.

  

alice

********

Alice launches
genuine app

Bob notices launch and instead
launches fake Facebook Alice logs in

Bob steals password and exits

Figure 1: An attack scenario to steal passwords on
Android. Bob provides a malicious app that is use-
ful, but also contains a Trojan service to steal the
user’s Facebook credentials. It launches a Facebook-
lookalike page or a transparent overlay at an op-
portune time, e.g., when the user launches the real
Facebook app. Any input entered by the user is
collected by the malicious app and leaked to Bob.

4. DESIGN
4.1 Security properties of Trusted Visual Paths
A trusted visual I/O path enables a user to securely deter-
mine the app that will receive input. A TIVO is established
when the user requests the OS to bring up a secure annota-
tion that contains information about the current foreground
app. Once a TIVO is established, the security properties
of a TIVO are activated. The properties listed below work
together to ensure that a user will have reliable information
about the foreground app.

1. Annotation Verifiability: The app identity information
displayed in a secure annotation must be verifiable by
the user. The user must be provided sufficient infor-
mation in the secure annotation to identify the app
as well as whether the annotation displayed is trust-
worthy. This also implies that the secure annotation
must be both tamper-resistant (tampering should be
detectable) and hard-to-forge (an app should not be
able to forge an annotation).

2. Atomicity of annotation display and subsequent user
input for an app: Once the system has displayed an
annotation for the foreground app, it must also ensure
that subsequent input by the user can only go that app
(unless the user explicitly switches to another app).

The above requirements imply that once a secure annotation

is displayed for an app, another app must not be able to
surreptitiously become the foreground app and receive user’s
input.

As shown in Figure 2, a trusted visual I/O path (TIVO)
is constructed out of two elements: a tamper-resistant and
difficult-to-forge security-indicator, called secure annotation
(SA) that the user can use to identify the foreground app,
and an execution monitor within the operating system that
activates the SA either automatically or upon user request
and ensures Security Property 2. The execution monitor
ensures that once an SA is shown (i.e., a TIVO is active),
another app cannot become the the foreground app without
an explicit user action; the foreground app will be the one
to receive subsequent input.

Graphical subsystems use the notion of Z-index (also called
Z-order) [14]. Graphical objects with higher Z-index appear
on top of objects with lower Z-index. Our design ensures
that the SA is displayed at a higher Z-index than any of
the foreground app’s graphical elements, ensuring that the
SA is fully visible. This is done by maintaining an invari-
ant within the rendering loop of the window manager. The
secure annotation is always maintained at the highest pos-
sible Z value for the current rendering cycle. Furthermore,
we display an SA after and app has gained focus but before
the user provides input.

User

Screen

Foreground
App

Z index: n

Secure 
Annotation Z index: n + 1

Execution Monitor

Figure 2: TIVO architectural overview

4.2 Design of the secure annotation
The secure annotation is a tamper-resistant and hard-to-
forge security indicator whose purpose is to identify the cur-
rent foreground app that will be receiving the user input.
Clearly, for it be hard-to-forge, it has to be based on a shared
secret between the user and the trusted computing base that
the user can easily identify.

Images have been previously used as shared secrets in iden-
tifying web sites in the form of Site Authentication Images
(SAI) for web banking [22]. There are two challenges in
simply using SAIs as they are commonly used on bank web
sites. First, as explained in [9], using stock images are eas-
ier to spoof and harder for users to remember. Second, in
our case, the user also needs to be able to distinguish among
apps. A different image per app could be used, but that also
increases the workload for the user to create and remember
the associations.

Our design extends the SAI concept in a manner that solves
the above issues for mobile apps. We require the user to take
a single personal image (taking advantage of the ubiquity of
smartphone cameras) one-time to enable secure annotations,
preferably when the phone is new or in factory-reset state
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when there is no malware on the device. This image should
be of an object that is easy to identify for the user, but
hard to guess and reproduce for apps. For example, it could
be a photo of a personalized item with an easy-to-recognize
background around one’s home. A single image also frees the
user from having to remember many standard images as with
SAIs in online banking. Since the image is personalized, our
hypothesis is that it will be easier for the user to remember
and avoid the common pitfalls with SAIs for web sites. Our
solution requires this image to be only shared with the OS
on the device – we term it the OS secret image.

The image is phone-wide and exists to prove to the user that
a secure annotation is generated by the OS. The image is not
accessible to apps (see Section 5 on how it is protected from
apps). The OS secret image forms a trust anchor and users
may only trust the other information on a secure annotation
when they have verified the existence of their secret image.

Contents of an SA. Figure 3 depicts the contents of the se-
cure annotation in AuthAuth. The SA has two items whose
contents must be verified by a user: the OS secret image
that is in the middle and some app-identifying information.
We chose both the app’s familiar icon and its name as the
app-identifying information; the app’s icon is shown on the
left of the OS secret image and its name is shown on the
right.

The user has a simple verification procedure: she verifies
that (1) the OS secret image matches the personalized image
that was set and (2) the app’s icon and name match what
is expected for the foreground app (e.g., if displaying the
Facebook’s login screen, the icon and name correspond to
Facebook).

Assuming that the (1) OS secret image can be protected
from the apps and (2) the entire SA, when displayed, is on
the top of any content that can be displayed by an app,
the secure annotation becomes hard to forge. A malicious
app will not be able to display, say, Facebook’s SA since it
would have to create a single image with both elements: the
OS secret image as well as Facebook’s icon and name. The
information about Facebook’s icon and name is public (so
that part can be forged), but the OS secret image is not
public information and hence cannot be forged.

Both conditions (1) and (2) in the previous paragraph are
necessary conditions for security. Regarding (1), If the OS
secret image can be captured by an app, it can obviously
forge an SA for any other application. Regarding (2), the
attack is more subtle. The malicious app could wait for its
secure annotation to come up and then overwrite the left and
right portions with another app’s icon and name, preserving
the middle part. Our implementation is designed to guar-
antees both conditions, as described in the Implementation
section 5.

There are similarities in the above design of secure anno-
tation to public key certificates. One can think of the OS
secret image as certifying the remaining part of the secure
annotation when they are displayed together as shown.

Secure annotation placement and activation. The place-

Figure 3: Secure annotation format

ment of the secure annotation affects the usability of the
system. One option is to always show the secure annotation
near the top or lower portion of the screen. This is similar
to web based approaches such as the HTTPS security indi-
cator but had the disadvantage of taking up valuable screen
real estate on small form factors. There is also the risk that
users might just start ignoring it. Another risk is that full
screen apps such as games will be affected as they receive
lesser screen space.

  

Figure 4: AuthAuth secure annotation for Face-
book. The secure annotation is displayed just above
the soft keyboard whenever the keyboard is dis-
played (left picture). If the user wishes to display
a full-screen version of secure annotation, a simple
tap on the secure annotation does that (right pic-
ture). Tapping the full-screen version returns the
user back to the left picture. Note: these pictures
are at approximately 50% width of real screens.

Our design uses an on-demand approach. Whenever the user
is about to perform sensitive input via the soft keyboard,
the OS automatically displays the secure annotation just
above the keyboard and automatically pans the application
UI upwards2, as shown in Figure 4. Upon tapping the secure
annotation, a larger version appears. In this way, we achieve

2Panning happens anyway when the keyboard is displayed.
We are adding a little more panning to what the keyboard
alone requires. Many applications provide a scrollbar or
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a middle ground in screen space reservation – the secure
annotation above the keyboard can be relatively modest in
size, but a full-screen version is available if the user has
trouble identifying the contents of the SA clearly.

The display life-cycle of the secure annotation matches the
life-cycle of the keyboard. The advantage of this method is
that we minimize the number of times a user has to verify
the secure annotation contents and only show the secure
annotation at the most appropriate time, i.e. when the user
is about to perform possibly sensitive data input via a soft
keyboard. The number of times the secure annotation is
displayed may be further reduced as explained in Section 8.

4.3 The Execution Monitor
As stated in Section 4.1, to prevent time of check time of
use errors, we require atomicity once the secure annotation
is first rendered for a particular foreground app. Our design
utilizes an execution monitor which is a set of hooks at loca-
tions crucial to the launch of application code. Considering
Android specifically, the execution monitor is invoked when
an Activity, Service or Broadcast Receiver is executed. The
execution monitor consults the OS internal state to figure
out whether the TIVO has been activated. As shown in
Figure 5, the TIVO is activated when the SA is displayed as
a consequence of the OS bringing up a keyboard. Any nav-
igation within that app is treated as the same session until
the user exits the app by pressing the HOME or BACK but-
ton or by tapping a notification on the status bar. Note that
if a secure annotation is hidden, a TIVO still remains active.
When a TIVO is active, the execution monitor converts any
background app’s attempt to display itself to a notification
on the status bar of the phone; this is important to prevent
TOCTOU errors and ensure atomicity (see Section 4.1). If
the user wishes to launch this app, she will tap the notifica-
tion and the OS moves the TIVO to an inactive state.

Figure 5: TIVO state machine

Going back to our Facebook example (Figure 1), Figure 6
shows the interaction. The user launches Facebook and the
attacker notices the launch and displays a fake UI. The user
then pulls up the keyboard, and alongwith it, a secure anno-
tation. In this instance, the user notices that the OS secret
image is valid and then notices a discrepancy in the app
name/icon. Therefore, the user chooses to not log in.

One the other hand, if there was no attack, then the app
icon/name indicates “Facebook” and the user would have
logged in normally. At that point, the TIVO is active (see
Figure 5). Now, it is still possible for the attacker to launch

leave sufficient space around the input area to handle the
panning. Scaling, along with panning, would have been an
alternative design option.

a hijacking attack if the user navigates to another activ-
ity within Facebook. Since the TIVO is active, the execu-
tion monitor notices the new launch attempt and pauses it.
Then, a notification appears on the status bar telling the
user that an app tried to preempt the UI. The other app’s
launch is only resumed when the user taps on the notifica-
tion in the status bar at which point, the TIVO is moved
to an inactive state by the OS. Then the OS will render a
possibly different secure annotation when the keyboard is
brought up again in the newly launched app.

  

Figure 6: Keyboard-based TIVO in action for the at-
tack scenario that was shown in Figure 1. When the
user brings up the keyboard on the hijacked Face-
book, secure annotation provides a reliable indicator
regarding the application that is going to receive the
input.

5. IMPLEMENTATION
We implemented the AuthAuth service for Android 4.4.2
(KitKat). We modified the InputMethodManagerService and
WindowManagerService to notify AuthAuth of the changes
in the display. Our implementation is approximately 1200
lines of code. Video demos in [2] show our implementation
of AuthAuth and its security properties on a real device.

Figure 7 depicts the implementation architecture. We added
a new system service to Android called the AuthAuthService.
The InputMethodManagerService notifies the AuthAuthSer-
vice when a soft keyboard is displayed on the screen. An-
droid uses the Input Method Framework (IMF) and any
generic soft keyboard implementation3 extends the Input-
MethodService and the Android framework calls the meth-
ods in the class when it is time to display an input method.
AuthAuth hooks at these points and calls into the AuthAuth-
Service such that a secure annotation may be generated and
rendered.

A modified WindowManagerService helps in panning the ap-
plication UI when it is time to render a secure annotation.

Protection of the secure annotation. We ensure that a

3either the system keyboard or a third party keyboard
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AuthAuthService

InputMethodManagerServiceWindowManagerService

panWindow()
onKeyboardShown()
/Hidden()

ipc: setOSSecret()

Phone UI

Keyboard

Status Bar

Application UI
original
app 
height

panned
height

Secure Annotation

Figure 7: AuthAuth architecture displaying secure
annotation when data is entered via a soft keyboard

screenshot of the secure annotation cannot be taken. We
create the secure annotation in a separate Layer. A layer
is a unit of management of the UI and several layers are
composited together by a service called the SurfaceFlinger.
We set the FLAG SECURE parameter for the secure anno-
tation’s layer, guaranteeing that this layer is removed from
screenshots and screen recordings. Even if an app manages
to get the screenshot permission [18] (which is a signature
only permission4), the system will prevent the secure anno-
tation from appearing in a screenshot.

Execution monitor hooks. The execution monitor ensures
that any background apps that try to become the foreground
app are converted to a notification when the secure annota-
tion is active. To implement this, for Activities and Toasts,
hooks inside ActivityStackSupervisor notify AuthAuthSer-
vice when an Activity is about to be launched and hooks
inside NotificationManagerService notify us when a tran-
sient notification is about to be shown (Toast). The hooks
save the state of the method call (launch or show Activity/-
Toast) into a map and post a notification to the status bar.
When the notification is tapped, the saved method is exe-
cuted. We have similar hooks at other places that generate
UI for display – For instance, WindowManager.addView.

Protecting the OS Secret Image. The OS secret image is
stored on the filesystem in a location that is only accessible
to the “system” user. As each app on Android runs as a
different UID, filesystem permissions prevent unauthorized

4Only code signed by the device vendor can obtain signature
permissions.

accesses of the OS secret image. The image is set securely
via an IPC from a system app we built. The system app is
executed the first time the phone is booted or just after a
factory reset during the phone customization process.

Secure annotation’s Z-index: To maintain the invariant
that the secure annotation is above any graphical elements
created by the app, we added code to reorder secure anno-
tation to be above the apps’ display buffers in Surface-

Flinger::handleMessageRefresh, which is the rendering
cycle of the SurfaceFlinger. It is not possible for apps to
gain a higher Z-index than the secure annotation because
the apps are clients to the SurfaceFlinger and hand over
their display buffers, which are then composited outside the
app’s control.

6. PERFORMANCE
Runtime Characteristics. All experiments are carried
out on a LG Nexus 4 running a version of Android KitKat
modified with TIVO support. AuthAuth, the soft keyboard
TIVO, creates and adds a UI element to the view hierarchy
of the system whenever a soft keyboard is displayed. We
quantified the overhead of the extra code by launching the
Messaging and Browser apps alternatively, and pulling up
and hiding the soft keyboard. At every step the app pro-
cess was terminated completely before a new run. We mea-
sured the time taken by the code to create and display the
secure annotation using the SystemClock.elapsedRealtime()
method. We averaged the results over 30 runs. The over-
head caused by AuthAuth was found to be 11.3ms ± 2.2ms
with 95% confidence. Given that this is only incurred when
performing input, interactivity is not affected. The frame
rate of graphics-intensive apps such as games are not af-
fected since a keyboard is not used during game play.

App Compatibility. As expected, our keyboard TIVO
(AuthAuth) was found to be backward compatible with ex-
isting apps. The display of the secure annotation is con-
trolled by a system service and does not require any changes
to app-facing APIs. We ran several standard and popular
apps (Facebook, Twitter, Skype, Chase, Messaging, Browser,
Email, Search, etc.) from the Google Play Store. All of them
performed normally.

On a very careful look, we did notice that one app UI (Chase)
when panned, was partially obscured by the keyboard (and
SA) and did not scroll. Upon further investigation, we found
the Chase app to have the same misbehavior on standard
Android. We analyzed the decompiled app and found that
it did not use the windowSoftInputMode XML tag as per An-
droid developer guidelines [3]. Moreover, the other apps such
as Facebook and Skype wrapped their layout in a Scrol-

lView. We wrapped the decompiled Chase’s UI in a Scrol-

lView and the UI started scrolling freely.

7. USER STUDY
We conducted a user study to evaluate the effectiveness of
TIVOs in enabling users to detect pixel-perfect phishing at-
tacks. We recruited study participants5 by posting to mail-
ing lists as well as posting fliers. All participants who com-
pleted the study were entered into a lottery with a chance

5IRB Approval HUM00085708
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to win a $100 Amazon gift card. We received a total of 46
replies out of which 32 fit our requirements that the users
own an Android phone. Out of the shortlisted candidates,
we asked 3 users to participate in a pilot study to help us
refine the study design. Out of the 29 participants, seven
participants’ data was discarded due to errors in the data
collection process. We report on the results of 22 partici-
pants for whom data collection was error-free.

Our sample population consisted of 19 males and 3 females.
82% were graduate students, 14% were undergraduate stu-
dents and 4% were not students. Out of the students, 72%
were CS majors. 20 participants had used at least one app
from our test set. Two users had not used any apps from
our test set before.

Ethics. We obtained signed consent before inviting users to
the lab for the study. We reminded users that no personal
information would be used or reported. Additionally, we
asked users to not use their real user names and passwords
if they had accounts for the apps in our test set. We also
assured users that if they mistakenly entered their real login
information, that data would be immediately destroyed and
the experiment be restarted.

7.1 Study Design
We conducted a controlled within-subjects experiment wherein
each participant was asked to launch four apps (Chase, Skype,
Facebook and Twitter) in a sequence and at each stage de-
cide whether they would login to the app or not.

We educated the participants by explaining the nature of
pixel-perfect phishing attacks, i.e., some apps could present
the exact screens of another app. An example that was given
was that a scenario where the user has both a mobile banking
app and a game. When the user launches the mobile banking
app, the game (malware) replaces the banking app’s login
screen with an identical-looking login screen and steals the
password. The attack was not demonstrated to the users
during training but we did tell the users that the attack can
occur when launching the genuine versions of the apps. To
create baseline data, we then instructed each participant to
launch the four apps four times yielding 16 data points on
a stock Android phone (without TIVO defenses installed).
The data points count how many times users logged into
each app. In the background, two out of the four launches
of each app was attacked at random by executing an activity
hijacking attack, in which another app detected the launch
of the genuine app and launched an identical looking UI
quickly. This gave us baseline data on the susceptibility of
users to fall for a phishing attack on a normal phone, even
when they were aware that such attacks could occur.

The second stage measures the ability of our keyboard based
TIVO (AuthAuth) to help users in detecting pixel-perfect
phishing attacks. We helped each user setup an OS secret
image by taking a picture of their choice from the phone’s
camera. We explained how the AuthAuth mechanism worked
using the Messaging app and the Chrome browser app –
two apps on which they were not going to be evaluated.
Specifically, we launched the messaging app and activated
the AuthAuth TIVO by tapping on a text field. We then
explained the verification procedure telling the users that

they must first verify the central OS secret image. Once
that is confirmed to be their own, they must look at the
app icon/name and then co-relate that with the UI in the
foreground. If the two correspond, then verification is com-
plete, otherwise, it is not and they cannot trust what the
foreground app has displayed. There was no attack carried
out during this process. The users were then allowed to use
the phone with AuthAuth installed on their own without
our intervention and free from attacks, trying out any ap-
plications they wished. Finally, to collect the data for the
second stage, we instructed users to launch the four test
apps in a sequence of their choice and attacked two out of
four launches of each app at random using activity hijack-
ing from a background app. This gave us comparative data
on susceptibility of users to phishing attacks via activity hi-
jacking when AuthAuth is deployed. The second stage of
the experiment yields 16 data points corresponding to the
16 data points from the first stage.

We then carried out further experiments in which we eval-
uated whether users pay attention to the secure OS image,
which forms the anchor for verifying the secure annotation.
We describe further details of this in Section 7.3.

Subjects took a post study questionnaire (4 questions) at the
conclusion of the study, and then we took any questions.

7.2 Result Analysis
Our null hypothesis is the number of times users log in to
fake and genuine versions of the apps is similar, i.e. Au-
thAuth does not increase the user’s ability to detect the
pixel-perfect attacks.

We used a Wilcoxon signed rank test6 to compare for dif-
ferences in the number of times users logged in to fake apps
on Android (median = 4.5) and a system with AuthAuth
(median = 0), with the null hypothesis that the median dif-
ference among the pairs is 0. The test showed a significant
effect (W = 253, Z = 4.2, p < 0.001), thus rejecting the null
hypothesis.

Figure 8 summarizes our findings. We conclude that Au-
thAuth has a favorable and significant effect in steering users
away from phishing apps. While 21 out of 22 users had a
100% accuracy (zero fake app logins) in identifying phish-
ing apps using AuthAuth, one user missed attacks on the
first two instances and then started giving correct responses
subsequently, perhaps figuring out how to use the secure
annotation effectively.

Some keen users in our study later reported noticing a slight
flickering when the real screen was overlaid by the activity
hijacker. When users detected flickering, they were able to
take advantage of that to detect an attack even without Au-
thAuth. This would make the results only more conservative
as it would bias the results in favor of the baseline. We our-
selves were not aware of the flickering prior to the study.
Even users who were looking for flickering were not able to
reliably detect all activity hijacking attacks. No users had
zero errors in the baseline.

6We could not confirm that the data fit a normal distribution
based on a histogram and Shapiro-Wilk test.
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Figure 8: For 8 fake apps presented per user, logins
to fake apps in standard Android (out of 8: me-
dian = 4.5, mean = 4.5, SD = 2.1) compared with
logins to fake apps in TIVO/AuthAuth-based An-
droid (median = 0, mean = 0.1, SD = 0.4) for n
= 22 users. Note: The graph shows the y-axis as a
percentage.

7.3 Spoofing secure annotations
We next evaluated if users could identify a future activity
hijacking app that attempts to overcome AuthAuth by not
using the system’s soft keyboard at all (thus preventing the
secure annotation from coming up) and spoofing the secure
annotation with its own version. Users have to pay attention
to the OS secret image since it forms the trust anchor that
enables the user to verify the rest of the information on the
secure annotation. We simulated a version of this attack
by creating a keyboard UI and a fake secure annotation on
the malicious app’s window. We used a pre-selected image
as the OS secret image. The app identity information was
identical to genuine apps. The only difference is the OS
secret image.

We instructed users to launch the four test apps two more
times in a sequence of their choice while we executed the
attack. This gave us an additional 8 data points counting
the number of times the users are tricked by the spoofed
secure annotation attack. A Wilcoxon signed rank test of
the differences in the number of times users logged into fake
apps on stock Android (median = 4.5, see Figure 9) and
on an AuthAuth system with the OS image attack (median
= 0) showed a significant effect (W = 223, Z = 3.8, p <
0.001), rejecting the null hypothesis that the median of the
differences was 0. Note that fake apps were shown exactly
8 times to each user on both stock Android and with the
spoofed secure annotation.

With AuthAuth deployed, 19 out of 22 users did not log into
any of the fake apps under when the secure annotation was
spoofed by malware. This is desired behavior because the
OS secret image is the trust anchor and users are expected
to verify its presence before trusting any other information
on the secure annotation. However, two users did not notice
the replaced OS secret image at first, each logging into the
fake versions 5 and 4 times, respectively, before realizing the
change. One user never noticed the change at all and logged
into all the fake versions.

User confidence while logging in. We counted the num-
ber of times users logged into to the genuine versions of the
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Figure 9: For 8 fake apps presented per user, logins
to fake apps in standard Android (out of 8: median
= 4.5, mean = 4.5, SD = 2.1) compared with logins
to fake apps in AuthAuth-based Android, when the
fake app carries out a pixel-perfect attack with a
spoofed version of secure annotation (median = 0,
mean = 0.8, SD = 2.1) for n = 22 users. Note: The
graph shows the y-axis as a percentage.

apps in our test set. On standard Android, 10 users logged
into the genuine versions of apps all the time (2 times for
each genuine app, giving a count of 8 logins to genuine ver-
sions). With AuthAuth-based Android, 20 out of 22 users
logged in correctly all the time.

7.4 Post Study Analysis
At the end of the main study, we conducted a post study
questionnaire. The first two questions were 5-point Likert
scale questions on whether the secure annotation hindered
the user’s workflow and whether the subjects would use the
AuthAuth mechanism if it were available on Android.

For the first question (1 - Strongly Agree that the secure
annotation disrupts workflow, 5 - Strongly Disagree), the
average response was 2.9 (SD = 1.0) and the most common
response was 2. This suggests that most users found the se-
cure annotation to be a slight hindrance. This could be due
to users not being to used to using the secure annotations.
Interestingly, on the second question (1 - Strongly Disagree
and would not use the mechanism, 5 - Strongly Agree and
would use the mechanism if available), the average response
was 3.7 (SD = 0.8) with the most common response being
4. This means that users are willing to accept the secure
annotations in exchange for better security after realizing
the damage such attacks cause. We summarize the results
of the Likert scale analysis in Figure 10.

We also asked the users what was the most important sec-
tion of the secure annotation to them when deciding the
authenticity of an app. Since the OS secret image forms the
trust anchor, users have to learn to verify that image always.
As depicted in Figure 11, 10 people preferred to look at all
the three indicators, 8 people preferred only the OS secret
image and the app name, and one preferred to look at the
OS secret image and the app’s icon. This shows that most
users indeed considered the OS secret image and at least one
piece of the app’s identifying information. Interestingly, two
out of three users who did not notice the spoofed version of
secure annotation stated that they paid attention to only
the app label.
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7.5 Study Limitations
Here we briefly explain the limitations of our study. Some of
our users were not familiar with some of the apps that were
used in the experiment, though all the apps were reasonably
popular. This may have caused the users to trust an app
they would have otherwise not trusted even though we gave
time to the users to explore the phone and the apps on it
before the experiment started.

For privacy reasons, we asked the users to not enter their
real passwords and user names. Users might have been more
careless in our study since there was no real danger of infor-
mation theft.

People who volunteered to participate in our study were gen-
erally students (undergraduates and graduates) and many
of them from computer science. The results could differ if a
study were carried out with other populations of users.

We educated the participants on both the nature of pixel-
perfect attacks as well as on interpreting a secure annota-
tion. Past work [22] has investigated the effects of security
priming, and did not find a significant effect for their popu-
lation. Nevertheless, without education of participants, re-
sults could have been different.

We only had the opportunity to observe each user for a lim-
ited time. It is possible that the results would differ if users
could be observed using AuthAuth over a longer time hori-
zon. For example, users could become less careful over time
or become better at using secure annotations over time.

8. DISCUSSION
TIVOs provide a significant advantage over stock Android
in that users can associate a specific app to a phishing at-
tempt. They can then delete the app, thus making repeated
phishing attacks by an app more difficult.

8.1 Generalization: non-keyboard TIVOs
This paper primarily focused on automatically creating a
trusted input path for soft keyboards, a common mechanism
for providing sensitive input such as user ids and passwords.
In general, sensitive input may also be in other forms, e.g.,
selecting privacy-related items via tapping touch screen UI
elements. An example is a list of drugs in drug helper app
WebMD asking for the user’s selection. We implemented a
proof-of-concept implementation to show that TIVOs can
be generalized to other forms of inputs. To enable the user
to confirm the source of the popup box, we introduced a
Secure Annotation Key Escape (SAKE), which is a physical
key combination. The user presses the Power + Volume Up
key, a secure annotation renders on the screen that displays
information about the current foreground app and provides
the same guarantees for subsequent inputs going to that app,
as we provided with soft keyboards. In this instance, we
overlaid the secure annotation above the app window. A
video demo for SAKE is in [2]. Further investigating the
design of such TIVOs, the best way to display their security
indicators, and evaluating them with users is future work.

8.2 App-requested TIVO
For some apps, developers may want an OS mechanism that
automatically displays a secure annotation all the time in a
reserved portion of the application window. We prototyped
a TIVO that automatically resizes an application window
and renders a secure annotation when the developer requests
the OS for it. Note that the developer does not have to ex-
plicitly reserve screen space in her app layout. We imple-
mented a preliminary version of selective resizing of app win-
dows by modifying SurfaceFlinger::doComposeSurfaces()

inside Android’s SurfaceFlinger. We added code to perform
a scaling transformation in the Y direction.

8.3 TIVO improvements
Some users requested that the AuthAuth based TIVO be
displayed only for apps of their choosing. This can be done
easily by implementing a policy within the AuthAuthService
and we defer its implementation to future work.

8.4 Limitations of TIVOs
Web site spoofing within the browser app: Our solution does
not address the problem of identifying a web site to a user.
When using the Google Chrome app, a user could use Au-
thAuth to ensure that any keyboard input is received by
Chrome, and not by another app. But that does not guar-
antee that Chrome sends the input to the intended web site.

9



Display icon/name similarity attacks: A malicious app could
spoof another app, e.g., Facebook, if it has a similar-looking
icon and name as Facebook on the App Store. TIVOs do
not prevent such attacks – the burden of distinguishing the
real Facebook versus a fake Facebook app on the App Store
remains with the user or with the App Store operator. We
did ask the 22 users in our study about what their actions
would be if they were to notice two similarly-named apps
(and possibly with similar icons) on their device. 17 out of
22 users (77%) stated that they would be conservative and
uninstall both the apps. Out of the 17, one person gave an
interesting response “I would uninstall both apps to which
the icons belong and re-install from play store – the one
which has highest number of downloads”. Four people said
that they would find out which is the older one and uninstall
the newer one, presumably assuming that the older one was
more likely to be authentic.

Privilege escalation attacks: An attacker with root capa-
bility on the OS will succeed in negating the security guar-
antees of a TIVO. We note that at this point, all security
guarantees made by the OS are nullified.

Side channel attacks: Side channels may exist that reveal
contents of the secure annotation to a malicious app, leaking
the OS secret image. Our solution does not rule out covert
or side channel attacks.

9. RELATED WORK
Security Indicators. The concept of rendering security
information on a display dates back to the Compartmented
Mode Workstation [6] and Terra [15]. The concept has been
applied on the web but designing reliable security indica-
tors has remained a challenge. Nitpicker [13], a kernel based
OS window manager, proposes a floating security indica-
tor wherein all windows not in focus are dimmed out and
security information is displayed in a reserved area of the
in-focus window, possibly covering contents of the window.
We achieve a verifiable security indicator without obscuring
window contents, without reserving screen space and impor-
tantly prevent time of check, time of use errors [16].

Web browsers today render URL information and HTTPS
connection status. Users click the HTTPS lock icon to pull
up information about certificate of the website and use it to
confirm authenticity. Several security toolbars (SpoofGuard
[25]) make the current URLs explicit. Unfortunately, this so-
lution is not adequate against pixel-perfect attacks. Nothing
prevents an unprivileged application from using the OS win-
dowing primitives to create a full screen web page that also
creates a spoofed version of the HTTPS security indicator.

The use of secret images is popular among online bank-
ing websites and are known as Site Authentication Images
(SAIs). Schechter et al. [22] performed an empirical study
on the effectiveness of SAIs and found that 23 of 25 partici-
pants decided to log-on in spite of the images being replaced
with something else. Furthermore, an SAI is susceptible to
man-in-the-middle attacks [23] because all that is required
to retrieve an SAI is the user name and sometimes response
to a challenge question. Our solution avoids these pitfalls of
SAIs that are used on the web, taking advantage of the dif-
ferent context of use. We incorporate the recommendations

of [9] by using personalized images as the OS secret image
instead of standard graphics or predefined text strings.

Akhawe et al. [5] measured the click-through (of field data)
rates of active security indicators such as the SSL warn-
ing messages and phishing warnings. The study found that
click-through rates for phishing warnings were between 9.1%
and 18.0% for Mozilla Firefox and Google Chrome respec-
tively. Other studies [30, 22, 10] have made similar measure-
ments of warning messages. The TIVO mechanism is not a
warning mechanism but a reliable information tool. It is
active only when the system detects that a user is about to
perform input of data and it always shows up on keyboard
input, unless the app is under attack, providing a consistent
experience.

Security indicators on smartphones. Reserving screen
space [11, 17] at the OS level is one method of securely
displaying information about the UI currently in the fore-
ground. Crossover [17] reserves a portion of the screen space
at the framebuffer level to display the currently active vir-
tual machine in a multi-VM phone. This solution perma-
nently reduces available screen real estate as well as risks
users missing the information in the reserved portion be-
cause its always there.

Password theft prevention. GuarDroid [27] uses a trusted
system keyboard to encrypt any passwords typed. The sys-
tem asks users to set a “secure string” at boot time by se-
lecting words from a predefined set. The purpose is to prove
to the user that the soft keyboard is indeed system gener-
ated. GuarDroid then intercepts outbound network traffic
and rewrites packets to replace the encrypted form of the
password with the decrypted form. ScreenPass [20] is a sim-
ilar system that uses OCR to determine whether a keyboard
is rendered on screen and then verifies that they keyboard
is indeed the trusted keyboard. ScreenPass then performs
heavyweight taint tracking to ensure that passwords are not
leaked. In contrast, TIVOs do not require OCR or taint
tracking and are not restricted to password data.

Trusted Path. Historically, Linux and Windows have in-
cluded support for a session login trusted path which is a key
combination that brings up a trusted login dialog. On Linux
it is called the Secure Attention Key [19] and on Windows
its the Ctrl-Alt-Del combination. TIVOs are not restricted
to login prompts, and function with any app window requir-
ing user input. Zhou et al. [32] address a different threat
model and aim to provide trusted communication between
devices and a process when the OS is compromised. They
require a trusted hypervisor and did not discuss phishing
and pixel-perfect attacks.

10. CONCLUSION
We introduced an operating system abstraction called Trusted
Visual I/O Paths (TIVOs) that enables a user to securely
verify the app she is interacting with and described an im-
plementation for Android. The TIVO in the Android imple-
mentation is activated any time a soft keyboard is used by
an application (e.g., for password entry) so that the user can
reliably determine the app that will be receiving the user’s
keyboard input. The TIVO is designed to be a tamper-
resistant, difficult-to-forge security indicator and does not
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require a reserved area on the screen. In a controlled user
study, the soft keyboard TIVO was found to make a sig-
nificant improvement in users being able to identify pixel-
perfect attacks. We also describe other forms of TIVOs that
can be launched on demand by users or by apps.
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