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Abstract

To enable computer designers to better evaluate the architectural needs of operating sys-
tems, we have develop&tbnster a tool which combines hardware and software monitor

ing techniques to unobtrusively obtain system performance Haiareport is split into

two major parts. In Part |, wegre the need for OS performance evaluation tools, summa-
rize previous hardware and software based monitoring techniques, discuss our design of
Monster and fially present an analysis of compilation workloads which test and demon-
strate Monstés capabilities. In Part 1l, we detail our plans for future studies in which
Monster plays a central role.
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Part |: Monster

1 Introduction

In recent years, a number of architectural and operating system trends have become evi-
dent. In architecture, semiconductor advances have allowed processor SPECmarks to dou-
ble every 18 months [SPEC 91]. Coupling this with denser integration levels, designers
have been able to change and better integrate reglsgerdipelines, memory manage-

ment hardware, dlating point hardware and cacheamizations in ways that previous
semiconductor technologies would not allow [Hennessy and Jouppi 91].

In operating systems, new technologies and demands on system software have also forced
a number of changes. For example, high speed networks have enabled distributed comput-
ing while multiprocessors are bringing parallel programming into the computing main-
stream. Furtherapid computer design cycles have increased the need for more portable
and modular software systems, resulting in a movement toward microkernel structured
operating systems such as Mach [Golub et al. 90].

These trends have caused a considerable change in the way that operating systems and
computer hardware interact which in turn has created a need to reconsider and evaluate
these interactions. In their paper entitled “The InteractioArolitecture and Operating
System Design,” [Anderson et al. 91] discuss some of thésesef

* Interpr ocess Communication (IPC)The decomposition of lge, mono-
lithic kernel operating systems into a microkernel and multiple;lesef
server tasks which communicate across address spaces is making good IPC
performance vitalThis performance is mostly dependent on ho¥i- ef
ciently an architecture supports system calls and interrupts which, in turn,
depends on how quickly processor state can be saved and the appropriate
handlers can be invokeWith IPC performed via remote procedure calls
(RPC), a signifiant portion of time can also be spent performing block
memory operations for checksum computation and parameter marshaling
[Schroeder & Burrows 90].

* Virtual Memory (VM). Microkernel operating systems are increasing the
number of address spaces that reside in a machm®. combined with
increased switching between address spaces can stress hardware resources
such as address translationfbtg (TLBs) and page tables.

» Thread Management.The degree to which future multiprocessors can
exploit fine grained parallelism depends on how inexpensive lightweight
thread context switching will b&his expense is a direct function of how
quickly process state, in the form of CPU registers, can be saved to and
restored from the memory system.
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In summaryAnderson et al. gue that the frequency and duration of time that hardware
spends performing fundamental OS operations is changing. Furthermore, while current
architectural features have done much to improve SPECmark performance, these same
structures are providing little help to applications that are more reliant on operating system
resources. For example, the multistage instruction pipelines @y&d fagister sets of new
microprocessors can adverselfeaf the speed and complexity of trap and interrupt han-
dling. Also, while on-chip data caches can boost performance once a working set becomes
cache resident, they are of little utility when data regularly comes from or goes to
uncached 1/O bdiérs as is often the case with block memory operations. Fitlad\fbat-

ing point unit hardware which has done so much to boost SPECmarks in newer systems is
of little assistance to the operating system.

Computer designers need to begin considering architectural features which better support
the operating system. But to make sensible choices, they need tools that are capable of
viewing both user and kernel modes of execution and which cause minimal disturbance to
the system under analysighis paper seeks to address these issues by predeiotnsier

a new tool which combines hardware and software monitoring techniques to enable the
analysis of systems built from new computer architectures and operating systems.

The rest of Part | is ganized as follows: Section 2 summarizes previous work on hard-
ware and software based analysis tools. Section 3 discusses issues regarding the design of
Monster Section 4 demonstrates some of Moristeapabilities on a test analysis of com-
pilation workloads. FinallySection 5 summarizes major observations from the test analy-

sis.

2 PreviousWork

Previous work in performance analysis falls into two basic categeataiae-basednd
hardware-based Both of these approachesfest advantages and disadvantages. For
example, software techniques providexibility by being easy to port to new machines
and by not requiring any special equipment. Howeseftware techniques cannot make
fine-graine&l measurements without perturbing the system. Convetsafgware tech-
niques are more passive and provide accessdpgiained events not visible to software,

but often require special equipment and are tied to a spedchine architectur@he
following two sections summarize some common software and hardware analysis tech-
nigues.

2.1 Softwae Monitoring Techniques

There are two basic software techniques for performance anaiygjie-step tracingind
execution sampling

1. “Fine-grained measurements” involve the monitoring of events that can change as fre-
guently as once every machine cycle.



Monster: A Tool for Analyzing the Interaction between Operating Systems and Computer chitectures

The UNIX ptrace() facility is an example of single-step traciqgrace() allows a

parent process to collect information about the execution of a child process by stepping
through its execution one instruction at a time. Howebercause the traced process must
pass through the operating system on every instruction (when makeagréined mea-
surements), the slow-down in performance makes ficdif to collect traces that span
more than a few seconds of execution time.

To overcome this speed limitation, several code annotation systems SNEh fisie
andIDtrace have been developed [Larus 90, MIPS 88, PierceTse tools embed

extra code directly into an executable image so that when a program is run, the extra code
will output data describing the prograehaviarThis data can be processed to provide
execution statistics and instruction or memory address trelsedrace data can either be
output to a fe, piped directly into a simulator or stored in a special RAM trackebuf
[Mogul and Bog 91]. By processing the trace on-the-it is possible to analyze billions

of trace addresses or instructions without the need for disk storage [Mogul ané1Bor
Olukotun et al. 91].

Execution sampling is an alternative software technique in which machine state (program
counter execution mode, etc.) is sampled at regular intervals. Usually the sampling rate is
determined by the clock interrupt frequentiiere are a number of UNIX facilities that

are based on this technique. For exampletithe() system call provides a rough esti-
mate of how much time a program spends in user and kernel modes. Similarly
iostat() andvmstat()  provide information on CPU idle time and paging perfor
mance, respectively

In general, software-based techniques are useful for locating gross system bottlenecks.
However because software monitoring distorts the original program, it does not work well
for collecting traces of the operating system or for collecting-irained OS data and
hardware event3o obtain this information, it is sometimes necessary to turn to hardware-
based monitoring techniques.

2.2 Hardware Monitoring Techniques
Most hardware monitors fall into one of two categories [Agarwal 89].

» Event counting monitors: The monitor triggers on speafevents and then
increments a counter

* Event tracing monitors: The monitor captures interesting events and
stores them in a trace Ibeif for post processing.

These two diierent approaches have various advantages and disadvariggeally,
event counters can monitor for virtually incete periods of time without having to stall
the system under analysighis compares favorably to tracing monitors that use memory
buffers which may fi within a microsecondThe monitor then must resort either to sam-
pling the complete execution or to stalling the system while the trater miemptied.

3
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Trace bufers provide the advantage that they can be post processed, whereas event count-
ing must be performed in real timeHence, tracing allows more sophisticated data analy-
sis without the cost of elaborate hardware triggering facilities.

One of the best known event counting monitors is the “micro-PC monitor” [Emer and
Clark 84] built for thevVAX-11/780.This monitofis registers formed a histogram of how
many times each microinstruction executed. From this histogram Emer and Clark were
able to compute instruction distributions, memory system stalls, some statistics on user
code behavior and the average number of micro cycleégfpeinstruction.

An example of the event tracing approaci\garwal’s modifcations to the/AX 8200
microcode [Agarwal 89]. Here, microcode was added to produce traces of user and kernel
memory referencedgarwal’s results showed théAX’ s traces contained up to 50% sys-

tem referenceslhese system references can double the cache miss rate when compared
against traces with only user references [Agarwal 88is is one of the st studies to

show that operating system references can substantially impact overall performance.

There are also several examples of hardware monitoring facilities designed directly into a
computels architectureThe CRA’ X-MP has four groups of performance counters that
can measure a variety of machine functions [Nelson/88¢, the IBM RS/6000 [Groves

and Oehler 91] and the DEXIpha [DEC 92] provide high resolution timers that can mea-
sure diferent aspects of the systenperformance.

3 Monster

Monsters primary purpose is to serve as a tool that will enable us to examine the interac-
tion between operating systems and computer architecithiesdesign of Monster is a
hybrid approach that attempts to combine the strengths of traditional hardware and soft-
ware based techniques while avoiding their weaknesses.

The hardware portion of Monster consists of DECstation 3100 physically connected to a
Tektronix DAS 9200 logic analyzeFhe DECstation hardware has been medito make

its R2000 CPU pins accessible to the logic analyizee R2000 cache isfethip, so the

logic analyzer probes dietweerthe processor and cache. Because the probes have access
to every address, data, instruction and control signal emanating from the CPU, it is possi-
ble for Monster to detect a wide variety of hardware events. Mos$tardware is shown

in Figure 1

The software portion of Monster consists of the DECstation operating system, Ultrix,
which has been annotated with markers to indicate the entry and exit pointeendif
regions of codeThese software markers assist the hardware portion of Monster by mak-

1. Byreal timewe mean that the processing must be done at the same speed and concurrently
with the system being monitored.
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Figure I Monster Hardware

ing it easier to detect code boundaries so that monitoring can be turned ohdepkotl-
ing on the current region of execution.

3.1 EventTracing with Monster

Monstets logic analyzer contains a high speed 512K RAM which can be used as a trace
buffer. By using the logic analyzertriggering capabilityit is possible to fier incoming

signals in real time and selectively capture only speeifentsTracing can also be used

to measure the precise time between events by writing both a time stamp and the event to
the trace buér.

3.2 Event Counting with Monster

The logic analyzer component of Monster also contains a programmable hardware state
machine.The main building blocks of this state machine hardware are eight 96-bit pattern
recognizers, two 32-bit high speed counters and 16 statgate machine spedaéition

defines transitions between states and in which states the high speed counters should be
incrementedThe state transitions depend primarily on whether or not the bit pattern rec-
ognizers match certain logical values detected at the pins of the DECstation CPU.

By carefully programming this state machine hardware, it is possible to implement event
counting with MonsterBut because event counting must be performed in real time several
complications can arise. In particylavith the R2000 processopipeline fushes and
cache misses can occur in any cycle, makingfitcdit for the monitor to know if fetched
instructions actually completd@he next section will discuss our solutions to these and
other monitoring problems in greater detail.
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3.3 Monstefs Hardware Component

The most basic monitoring experiment is to count occurrences of a cpgabdeThe

naive solution is to immediately increment a counter in the state machine every time the
opcode is detected by a bit pattern recognirepseudo-code, here is an example state
machine which implements this experiment by immediately counting all occurrences of
the opcodadd :

if (instruction_bus == add)
then counter++;

Unfortunately this counts many momadd opcodes than are actually executéthy? The
problem stems from how the R2000 handles instruction cache nfssgss is detected

one cycleafter the opcode has been fetched from memory and is read into the processor
From Monsters perspective, cache misses and cache hits look the same during the fetch
cycle. Therefore, if only the fetch cycle is monitored, every miss that outputs an invalid
add (a staleadd opcode that is still in the cache), will get counted as a adlid We call
thesephantom opcoddsecause the monitor sees them enter the processohey are not
executed.

To overcome this problem, Monster must keep track of both the current and previous
cycles and only count an opcode that is seen in tsiecycle if a miss signal does not
occur during the next cycl®Ve call this aone-cycle-histor state machine and is shown
below:

st at el: if(instruction_bus == add)
goto state 2:
else
goto state 1,
st at e2: if (miss_signal'= miss)
counter++;
also if (instruction_bus == add)
goto state 2:
else
goto state 1;

The ‘if (miss_signal != miss) " and the ‘also if (instruction_bus ==
add) ” are processed in parallel to handle the possibility of back todsitlopcodes.

Pipeline fushes due to hardware interrupts can alfecafhe accuracy of event triggering.
Upon return from an exception, instructions that arshiéd will be refetched simple

state machine will count these opcodes twice, once beforeuiiieahd once again during
the refetch.To overcome this problem, Monster interprets the R2000 control signals to
detect pipeline fishes and takes corrective action. Basicallis was implemented by
extending the one-cycle-history state machine to adgcle-history state machine.

6



Monster: A Tool for Analyzing the Interaction between Operating Systems and Computer chitectures

Many of our experiments only monitor within a specrgion of executionlo assist the
monitoring hardware, we surround regions of interest with special “marker” opcodes.
These markers were formed framap instructions and embedded in the OS to mark ker
nel entry kernel exit and other interesting regions of cdaesimplify detection of the
markers by a Monster state machine, they were placed in uncached memory with inter
rupts turned df This technique guarantees that markers will notushéid from the pipe-

line or appear as phantom opcodes. Markers are one way that Moissitware and
hardware work together to simplify monitoringhe next section discusses some of the
other ways that Monster software component assists iardware component.

3.4 Monsters Software Component

Another problem with monitoring is the handling of interrupts and exceptions. For exam-
ple, to monitor a region of code, markers are placed at the regiotny and exit points so

the Monster hardware knows when to start and stop monitoring. Hqwewestr code can

be interrupted, forcing the machine to re-enter the kernel and handle the interrupt. Since it
may be undesirable to monitor the interrupt handlee quick solution is to turnfahter-

rupts in the region of code being monitoréthis, howevercould seriously distort the
behavior of the OS. Furthexhile interrupts can be masked, exceptions caiihetefore,

turning of interrupts does not provide a complete solution.

To solve this problem, several pieces of code were added to the kernel. First, a marker was
placed at the kernel entry so that when an interrupt or exception occurs within the region
of code being monitored, the kernel will reenter itself and emit the entry mateer
Monster hardware looks for this entry marker and stops monitoring until the kernel returns
to the region of code being analyzed. Howeberause the kernel may not return directly
back to that region of code, Monster cannot resume monitoring when it sees any kernel
exit. Therefore, a small piece of address check code was inserted into theskéfhel
routine.This code checks the return address to see if it falls within the bounds of the rou-
tine being monitored. If it does, then another special marker is emitted to alert Monster to
resume monitoringlhis scheme is depicted Higure 2

kernel entry

entry: —entry marker J
region of code 7
to monitor A
exit: exitmarker
if ((ra>entry:) & (ra < exit:))
then enmit_marker(x);
kernel exit

Figure 2 Monitoring Regions of Code
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Figure 3 SPECmarks for 6 Processors

By combining monitoring hardware with light software instrumentation, we achieve high
precision measurements with minimal system distorfldr@ only changes to the system
were markers inserted into the OS. Markers require about 8 to 12 instructions which take
from 24 to 48 cycles to complete. Since few markers are inserted, the kesizel’
changed by less that 1%. Likewise, data measurements with and without markers showed
little variation in behavior

4 Experiments and Results

This section presents some of the initial experimental data we have obtained with Monster
We have focused on collecting information about benchmarks that has previously been
difficult to analyze using other toolBhis includes benchmarks that spend a sicguifi
amount of time in the operating system and those that do not seem to fioemefecent
trends in computer architectur®.common benchmark program that meets these criteria
is a compilerWe will motivate this study by considering recent trends in computer archi-
tecture and benchmarking.

4.1 Architectural and Benchmarking Trends

Figure 3shows the SPECmark ratings for sixfeliént machines, each with increasing
CPU cycle timesThe Y-axis unit is SPECmarks, which is a ratio of execution time of a
benchmark versus a reference time measured\@Xa780. The SPECmark is the geo-
metric mean of all ten SPEC benchmarks combined, while the SPECint and SPECfp num-
bers are composed from the geometric means of the 4 integer aodtifgflpoint
benchmarks, respectivelye have also plotted separately SPECgcc, the SPEC ratio of the
gcc compiler integer benchmarkhis study is primarily interested in the gcc benchmark

8
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Figure 4:Time spent in userand kernel mode

because it shows the least improvement of all the benchmarks in the suite, and because it
is the most dffcult to analyze because of the time it spends kernel mode.

The benchmark data Figure 3show some clear trends. Firsgdting point performance
tends to be much better than the overall SPECmErls is particularly true for the
RS/6000 and the A2RISC based systems. Second, performance of the integer SPEC
benchmarks consistently lags behind the overall SPECihhikis most pronounced for

the SPECint rating of the RS/6000. Finalijpd of most relevance to our stu&PECgcc
performance tends to fall below the SPECint average.

In the remainder of this section, we analyze the reasons for poor gcc performance and
extend this analysis to other compiler workloads. Our technique permits us to view the
entire execution of a benchmark, despite the fact that a good portion of it might execute in
kernel mode. Furthermore, Monster enables us to take a hardware view that includes mea-
surement of events such as cache misses, writertaiélls and @iating point unit stalls.

This data would be unattainable by using purely software based monitoring techniques.

4.2 An Analysis of CompilerWorkloads

All of our experiments were run on a DECstation 3100 using a lightly instrumented ver
sion of Ultrix as described iBection 3 Because of variability in some of the measure-
ments, experiments were run multiple times to obtain several samples. Only the average
values are reported.
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Figure 4shows the fst step of our analysis. Monster was programmed to measure the
time a given workload spends in either user or kernel mode. Gaing point SPEC
benchmark (doduc) and all four of the SPEC integer benchmarks (eqntott, li, espresso and
gcc) were selected for this experimehhie results show that most of the SPEC bench-
marks spend very little time in the operating syst@éire one major exception is gcc
which spends approximately one quarter of its execution time in kernel mode. For doduc,
eqgntott, li and espresso, these results justify an analysis restricted to just user mode; the
kernel portions of their execution will have littldexft on overall performancén analy-

sis of gcc, on the other hand, could miss some sigmifiefects if it only considered user
mode. Referring back tBigure 3 this is precisely what has happened. Performance of
newer machines onaditing point benchmarks such as doduc and several of the integer
benchmarks has steadily increased, while performance on gcc has lagged behind.

Before we proceed, some explanation of how the gcc benchmark works is irAdygber

ical C compiler consists of three basic phases: a source code pre-processing phase, a com-
pile phase which generates object modules, and a linking phase that combines the object
modules into an executabléefiThe SPEC gcc benchmark only performs part of the mid-

dle compile phase on already pre-processed injest ft's output is a collection of Sun
assembly languagdds, so the fial linking step is not performe]dSince we were inter

ested in a more complete representation of the compilation process, we designed three
other compilation benchmarks: ccl, cc2 and cc3. ccl uses the MIPS cc compiler to pre-
processes and compile all of the C soures fior the SPEC espresso benchmark and then
links the resulting object modules into adi executable. cc2 compiles just one of the
espresso object modules and then links all of the espresso object modules.together
Finally, cc3 simply links all of the espresso object modules into an executable fi

The same experiment that measured the time spent in kernel and user mode- was per
formed on these three additional compiler worklodglgure 5. The data clearly show

that benchmarks that spend less time compiling and more time linking (cc2, cc3) tend to
spend more time in the kerndlhe data also show that since the SPEC gcc benchmark
consists of only the middle phase of the compitestrips away a good portion of kernel
execution time that would have to be spent for a real compilationrial@&kecutable .

The next experiment decomposes kernel execution by determining in which regions of
code the kernel spends most of its tiffikis is the same sort of function that a piadi

utility provides when analyzing user applicatioifiese measurements were made by
adding markers at the entry and exit points of various regions of code. Monster was then
programmed to detect these markers and turn its counters drasragfpropriate.

The regions of execution shown kigure 6include the kernel idle loofcopy , bzero
andbcmp. The kernel idle loop is entered whenever there is no ready process waiting to

1. Only performing the middle phase of a compilation and stopping at assembly language
files makes the SPEC gcc benchmark easier to port to other machines.

10
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Figure 5 Time spent in kernel forcompile workloads

execute on the process run quelibe primary reason for this condition is that the
machine is waiting for an 1/O transfer to compldtkis provides the ffst clue to explain-

ing the SPEC gcc benchmaskagging performance; it is more 1/0 bound than the other
SPEC benchmarks. Note that the SPEC gcc benchmark removes a good deal of 1/0O opera-
tions when compared with real compilation benchmarks that generate execugable fi
Evidence for this is given by the greater proportion of time spent in the idle loop with cc2
and cc3.The other three regions of executidtmwopy , bzero and bcmp are memory
block operations that copyero fil and compare regions of memeorgspectivelyLater

we will see that although they comprise relatively little of the kesrestecution time on

the 16MHz DECstation, there is reason to believe that future machines will spend signifi
cantly more time performing these operations.

It should be noted that the experiments described so far could also be performed using
software methods alone. For example, the dakagare 4andFigure 5could be obtained
through the use of the UNIDXme commandApproximations to the data iRigure 6

could be obtained by embedding pliafj code in the kernel. But both of these software-
only techniques are subject to some error and excessivengratn result in distorting

the kerneb true behavioMonsters light software instrumentation, combined with exter

nal hardware monitoring result in measurements that are precise to a nanosecond and
cause little distortion of kernel behavidihe data from the next experiment gives an
example of results that cannot be obtained by using software-only techniques.

11
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Figure 7shows the average cycles per instruction (CPI) démiht benchmarks in user
and kernel modelThese measurements were taken by counting the number of run cycles
and stall cycles in each region and then applying the formula:

runCycles + stallCyclesg
CPl = 0
runCycles

Because the idle loop cycles do not represent useful computation, they were subtracted
from the run and stall cycles used to compute the kernel CPI [Emer and Clark 84].

The data irFigure 7expose several points. First, on a DECstation 3100, the CPloaita fl
ing point dominated code (such as doduc) is Higis shows the room fordating point
performance improvement over th&X-780! that processors like the RS/6000 and the

60
50f W ide
40
% of time in kernel modEO{
zoé
10
o]
gce ccl cc3
6: Il bcopy
5: 7] bzero
B bemp
4
% of time in kernel mod@
2
il
.
gee ccl cc2 ce3

Figure 6 Decomposition ofTime Spent in Different Kernel Regions
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PA-RISC have exploited. Second, CPI for the integer codes (egntott, li, espresso and gcc)
is low. Even with superscalar instruction issue, processors like the RS/6000 havdihad dif
culty improving integer code performanéepuzzling fact is that with a user CPI of 1.50,

gcc seems the most open to performance improveméstisas previously noted, gcc per
formance is scaling the worst with respect to processor spese$nal point is that ker

nel CPI is consistently higher than user CPI for all of the benchmbis.is of most
significance to the compile benchmarks which spend the greatest portion of time in the
kernel. Applying Amdahl's law to these results allows us to conclude that as CPUs get
faster and fastethey must spend greater proportions of time in kernel mode because of
this CPI diferential.

The results from the next experiment show one of the reasons why kernel CPI tends to be
higher than user CPigure 8shows CPI in the kernétopy , bzero andbcmp regions

of execution while running the four compile benchmaikse measurements expose a
memory bandwidth problem on a machine that operates at only 16 MHz. Future systems
with cycle times 10 times this rate can expect to spend signify more time in these
regions of execution unless architects pay more attention to the interface between main
memory and the cache.

The next experiment shows precisely which hardware resources are the bottleneck for dif-
ferent types of code&igure 9. We classifed stalls into four basic categories: write stalls,
read stalls and dhting point unit stalls. Read stalls are caused by instruction and data
cache misses which result in a 5 cycle penalty to access main mé&vnibeystalls occur

57 O user

B Kemel

CPI 2.5;

doduc egntott i espresso gcc ccl cc2 cc3

Figure 7. CPI in user and kernel mode

1. TheVAX-780 is the SPECmark reference machine.
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when the 4-entry write btdr fills to capacityThe DECstation 3100 uses a write-through
policy, so all stores must be placed into the writddyUfefore being retired to main mem-
ory at a rate of one word per 5 cycles. Findllyating point stalls are due to thedting

point coprocessor

Figure 9shows that the kernel stalls primarily on memory requébtss, improving that-
ing point performance will do nothing to improve overall kernel performahioe.data
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[ read stalls
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Figure 9 Stall Breakdown (percent)

Il bcopy
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CPI 25
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Figure 8 CPI in dif ferent kernel regions
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also provide more information regarding performance bottlenediksojpy andbzero .

Figure 9shows that inbcopy , the limiting factor is memory reads which account for
about 90% obcopy stalls. Inbzero , on the other hand, the bottleneck is with memory
writes which account for nearly 80% of stalls in that regi@nclear out an entire region

of memory bzero quickly fills the write bufer which limits performance to the rate at
which stores can be retired to main memdFhis explainsbzero 's 4.5 CPI value.
Althoughbzero andbcopy only account for about 1.5% and 5.0% (respectively) of total
execution time on the DECstation 3100, a machine with a processor that is 10 times as fast
could spend a signdantly greater portion of time performing this function if its memory
bandwidth does not increase proportionatéty avoid this, architects need to consider
ways to provide higher main memory bandwidth or perhaps move to write-back caching
policies, despite the memory coherency complications that they cause.

For the regions of execution that contairgéapercentages of read stalls, we performed
another experiment to further decompose this actifAtyufe 10. We classifed read stalls

90 E W ! cache refill
80 71 D cache refil
70 [ Uncachable

60
50

% of read stalls |

30

20

10

0

cc2 in user cc2 in kernel cc2 in bcopy

Figure 10 Read Stall Breakdown (in percent)

into three categories: those that result in an instruction cache lihetlege that refi a

data cache line and those that are associated with references to non-cacheable memory
The most notable data Figure 10are the high percentages of uncacheable references
when running in the kernel in general andaopy in particular Over 80% of the reads
performed bybcopy are not eligible for cachinghis once again underscores the impor

1. All references from user mode are cacheable, but the kernel epeeifions of memory
(I/O buffers in particular) that are not cacheable.
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Type of Instruction cc2 user cc2 kernel
nops 19.46 26.06
jumps 3.50 6.20
branches 11.37 10.28
loads 24.10 17.78
stores 11.18 14.16
alu 30.02 23.60
integer multiply and divide 0.06 0.25
floating point 0.00 0.00
system 0.00 1.86
marker 0.00 0.49

Table 1 :Instruction Mix for cc2 (in percent)

tance of improving main memory bandwidth, or perhaps considering some form of snoopy
DMA which preserves cache consistency when performing I/0O.

Our last experiment was to study the relative frequency of instructions in user and kernel
mode to determine if there are anyfeliencesTable 1shows an instruction mix for cc2
when executing in user and kernel motlee measurements were made by programming
Monster to detect and count the frequency dédiint classes of instructions when execut-

ing in either user or kernel modehe same measurements where taken while executing in
the idle loop (not shown here) so that the idle loop instructions and cycles could be sub-
tracted from the other kernel instructions. In other words, the kernel mix shows the rela-
tive frequency of instructions executing in kernel mode, but not in the idle loop.

The numbers reveal severalfdiences between the dynamic frequency of instructions in
kernel mode and user mode. First, the kernel executes 6%nomsehan user code does.
Over one fourth of all kernel instructions areps. Second, the kernel does not seem to
execute signiiantly more branch or jump instructions, at least relative to a compile
benchmarkThird, in user mode the ratio of loads to stores is close to 2:1, while in kernel
mode it is closer to 1:This refects the kerned’'role as a “mover of data” in contrast with
user codes role of operating on that dafehis observation is also supported by the rela-
tive infrequency oAALU, floating point unit and integer multiply/divide operations in the
kernel. Finally notice that the frequency of marker instructions added for the purpose of
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triggering supports our claim that the impact of our instrumentation to the kernel is very
slight.

5 Summay

The previous section has shown the sort of system data that Monster is capable of obtain-
ing. The analysis of compiler workloads was performed to validate our approach and has

exposed some of the reasons for poor compiler performance relative to other applications.
These include:

» Kernel CPI is almost a full point higher than user @lanalysis of stall
types showed that high kernel CPI is due mostly to a very high CPI in
bcopy andbzero caused by inadequate main memory bandwidth and a
write-through caching policy

* When in kernel mode, a sigr@éint portion of time is spent spinning in the
idle loop, waiting for disk I/O to complete.

* Even when disk blocks are found in tHe block cache, they must be cop-
ied from uncachable memorlhis results in a surprisingly high number of
uncachable memory references which place a bound on the maximum
achievable hit rate for the CPU caches.

* Instruction mixes show some interestingfeliénces between the kernel
and user modes of execution. In particule ratio of loads to stores
shows that the kernel functions primarily as a “mover of datais is an
indication that the perhaps the best way for hardware to support the operat-
ing system is to make it easier to quickly move data from place to place.

With our future work, we hope to examine more complex interactions between architec-
tures and operating systems. Part Il of this report presents in greater detail our immediate
plans.
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Part Il - Pr oposal for Future Work

1 Introduction

Monster was developed because of our interest in architectural support for operating sys-
tems. We would like to study the needs of applications which rely heavily on operating
system services and then determine what hardware features best support these needs. Our
work is motivated primarily by [Anderson et al. 91] and [Ousterhout 90] wipoeathat
operating systems and computer architectures are evolving in somewhat incompatible
directions.

To get started, we will restrict the scope of our studies to improving application-perfor
mance with respect to a machine's instruction and data CPU caches. In panewdr

focus on complex applicationdVhen we sayomplex applicationwe mean a program

which is implemented using multiple address spaces, multiple threads of control and tends
to spend a lge fraction of time executing operating system codée. contrast this with

other cache studies that consider "simple" applications which use only one address space,
one thread of control and spend little time invoking operating system setvices.

We will focus on reducing condt? misses in both the instruction and data caches by using
two basic techniques:

(a) The use of page allocation policies to cafully map pages into CPU
caches. If a cache is physically addressed and igdathan the virtual
memory page size, then the selection of physical page frames determines
where data will be physically placed in the caclecareful page alloca-
tion policy attempts to evenly distribute pages in the cache to minimize
potential cache conéts.

(b) The use of static analysis and dynamic execution giiles during code
generation to caefully place instructions and data in CPU cachesA
compiler that knows which instructions and data are frequently accessed
could use this information to spread out references to the cache (in space
and time) and thus reduce cactfimisses.

Technique (a) is most naturally implemented by an operating system, while technique (b)
is best realized by a compiléfhroughout this papgewe will refer to technique (a) aare-

1.A typical example of application of this sort can be found in the SPEC 1.0 benchmark suite studied
in Part . Each of these applications runs in a single UNIX process and usually makes very few sys-
tem calls. [SPEC 91]

2. Conflct misses occur when an item is evicted from the cache by a referencefémemtiifem,

but then must be re-fetched later drhis is in contrast with compulsory (cold-start) and capacity
misses.
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ful mapping while technique (b) will be referred to eareful placementWe also plan to
study ways to combine careful mapping and careful placement:

(c) Information stored with the pages of an executable image could be used
by the page allocation algorithm to avoid overlapping'ncompatible1
pagesWhen forced to map pages that will overlap in the cache, the operat-
ing system could use information provided by the compiler to select pages
that minimize cache coidts. Information that would guide page place-
ment might include marking portions of the page which are "hot spots”, i.e.
those portions of the page which are likely to be frequently accessed.

The rest of this proposal motivates this work, summarizes previous work in the area and
describes the above techniques in greater défaithen present a plan for implementing
these techniques anadily conclude with the possible impact of the work.

2 Context

Caching data and instructions in fast memories close to the CPU has long been recognized
as an dective technique for improving performance. Receitly importance of this tech-

nigue has grown due to the dramatic decrease in CPU cycle times. In a next generation
computer system, it is possible that a memory access which misses the cache could result
in a penalty of hundreds of CPU cycles to fetch the data from main memory [Olukotun et
al. 91] [Hennessy & Jouppi 91]This trend underscores the importance ofliig new
techniques to more fetctively use CPU caches.

2.1 PreviousWork

The policies that dictate where data is placed in a CPU cache are usually implemented in
hardware. Because of the speed at which decisions must be made, the policies tend to be
very simple. For example, it has been suggested that a direct-mapped scheme is often the
most efective placement policy for a CPU cache [Hill & Smith 89]. But many researchers
have observed that even higher performance can be obtained by combining the various soft-
ware based techniques (such as those discussed in the introduction) with a simple hardware
implemented cache placement policy

The confict misses caused by multiple processes competing for room in a cache has been
studied by [Stone &hiebaut 86] and [Mogul & Bgy91] using mathematical analysis and
trace-driven simulation. In [Kessler & Hill 90], trace-driven cache simulations are used to
investigate dfierent page mapping policies designed to minimize mbnfiisses from
overlapping pages in the CPU cach#is work corresponds to technique (a) (careful map-
ping) as described in the introductididthough the policies described by Kessler attempt

to minimize conikts within a single address space, they could be extended to minimize

1. Pages are moommpatiblewith each other if their contents are not likely to interfere with each
other (in space or time) during the execution of the application.
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conflicts between the multiple address spaces of several processeayldn €T al. 90], a
heuristic called page-coloring is used to assign page frames so that physical pages tend to
be distributed in the same way that virtual pages are. Page coloring is actually one of the
heuristics that Kessler uses.

In [Hwu & Chang 89], dynamic execution pieB are used by an optimizing compiler to
place instructions in a way that minimizes ciotél in the cache. Experiments based on
trace-driven simulation show that miss rates for carefully placed code in a direct mapped
instruction cache (I-cache) are consistently lower than unoptimized codgenlkmaches

and I-caches with greater degrees of associativitijLam et al. 91], static code analysis

and blocking algorithms are used to re-order accessegydata structures (e.g. dar
arrays) so that they are operated on in chunks or bldobksreduces conéit misses in the

data cache (D-cache) due to repeated reloading of array items. Experimental results (again,
based lagely on simulation) show speed-ups of between 3 and 4.3 on matrix multiply code.
This compiler based work corresponds to technique (b) (careful placement) from the intro-
duction. Hwus work focuses on I-cache improvements, while lsawdrk concentrates on
D-cache improvements.

2.2 OurContributions
We would like to extend the previous work described in Section 2.1 in several ways.

First, most of the previous work uses purely simulation models or mathematical analysis.
We would like to validate the previous work with experimental data from an actual

machine. Monsteenables us to perform these experiments because we can directly mea-
sure I-cache and D-cache misses (among other hardware events) on a DECstation 3100.

Second, many of these previous studies have been restricted to applications which spend
very little time executing operating system code (or they factor OS code out) and consist of
only a single UNIX-style process (one address space and one thread of control). Some
studies have considered théeefs of multiple processes, but they neglect the OS code that
schedules and manages the proce3$ese are many interesting complex applications that
consist of multiple address spaces, multiple threads of control and spendaigmubr

tions of time executing operating system codé& intend to examine these complex
applications in our studies.

Third, to our knowledge, no one has studied technigue (c) which combines careful mapping
and placement\Ve believe that in order for careful mapping and placement to work well in
actual systems, the operating system and compiler must cooperate. For example, we antic-
ipate potential problems with Lamblocking techniques if the operating system maps
different virtual pages onto the same physical cache page, thus thwarting the ¢empiler
careful data placement attempls. avoid this, the operating system must be made aware

of the compiles eforts. We also believe that only if careful mapping and placement are
integrated will they be applicable to the complex applications we wish ta study
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Finally, we would like to pay special attention to the operating system kernel. For example,
we would like to study the fefcts of dedicating portions of the D and I-caches solely to the
kernel.This is a variation of careful mappirjso, because Monster can monitor execution

in kernel mode, we can use technique (b) to leraind then carefully place and optimize

the execution of frequently referenced kernel code and data. Because the kernel plays a role
in the execution of all applications, it makes sense to apply exbra tef optimizing it. A

faster kernel will automatically make many applications run faster

3 More Details

3.1 Technique (a): Caeful Page Mapping

A basic design choice for operating systems that implement virtual memory is the page
replacement policyPage replacement involves selecting a page to evict when main mem-
ory starts to get full. Usually the new page is mapped to a physical page frame according
to an approximation of a LRU or MRU policy and without regard to where the page will
reside in the CPU cachgihe goal of careful mapping is to slightly modify the page replace-
ment policy so that the CPU caadkdaken into consideration.

In a direct-mapped cache, multiple main memory page frames map to the same physical
cache page frame. So, cache page frames can be viewed as "bins" for holding multiple page
frames. By distributing pages among the cache bins as evenly as possible, the frequency of
cache conitts can be minimized. For examptegure 1L shows two possible mappings of
virtual pages to physical page frames. In th&t fmapping (a), some cache bins are not
mapped at all (thus rendering entire portions of the cache useless), while other cache bins
are ovetutilized (which is likely to cause more cache catd). The second mapping (b)
evenly distributes pages among the cache bins and is clearly more desShehié&imate

goal of careful page mapping is to arrive at distributions more like the second type.

3.2 Technique (b): Carful Instruction and Data Placement

Careful memory use is an important class of compiler optimization technijaespiler

that understands the memory system can often use this knowledge to advantage. For our
studies, we are interested in optimizations that involve an understanding of either a
machine$ | or D-cache.

For example, a compiler that knows about the I-cache can use the following instruction
placement algoritht
(1) An execution profe of the program is obtained.

(2) Using the execution prtdi a weighted call graphs generatedA call
graphis a directed graph where every node is a function (procedure) and

1. Borrowed fron]HwWu & Chang 89]
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every arc is a function calh weighted call graphs a call graph in which
all the nodes are marked with their execution frequencies.

(3) The weighted call graph is used to place functions with overlapping life-
times into memory locations which do not contend with each other in the
cacheThis has the &ct of reducing cache mapping cacts.

Figure 12shows a weighted call graph and two possible instruction placerfbetsall

graph shows that functid) repeatedly calls functiog() , perhaps from within a loop.

Thus, the instructions that make fifp andg() will repeatedly be fetched close together

in time. The figure also shows two instruction placements. In i filacement (a), the
compiler has positioned the functions in the upper portion of separate pages so that they
could overlap in the cache. Usualilye operating system will map the pages inttecknt

cache bins (c), but if the pages are mapped into the same cache bin, as in situation (d), then
the two functions will conitt in the cache and performance will drop dramatically
Although this situation is unlikelywhen it does occuthe penalty can be severe; nearly
every instruction fetch may have to go to main memnikdmng compiler can avoid this prob-

lem by using the simple heuristic of placing the two functions on the same page, as shown

A Poor Mapping A Good Mapping

A Cache Bin I

—

Page Frames

Figure 11: Two Possible Mappings of Pages into a Physical Cache
(Borrowed from [Kessler& Hill 90])
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Three Possible Page Mappings / A Cache Conflict
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90 B \I

Page Frames

;\ A Cache Bin
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Figure 12 Examples of Instruction Placement Options

in placement (b)This ensures that they warconfict in the cache as shown in placement

().

As a second example, consider a compiler which knows about the D-cache. Suppose that
static analysis reveals that an arragéarthan the D-cache is being accessed in some reg-
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ular striding pattern (say for a matrix multiply)ithout optimizations, dferent parts of
the lage array would continually be re-fetched into the cagheoptimization known as
"blocking" or "tiling" can avoid this situation by doing the foIIoMng

(1) Reoganize (block) the data so that only a small section ofge ldata
structure is loaded into the D-cache at a time.

(2) Operate on the blocked, cached portion of the data structure.
(3) Block another portion of the data structure into the cache and repeat (2).

Note that blocking can only be applied to very regular and predictable code such as that
typically found in scientifi applicationsAlso note that if the operating system maps pages
into the cache without regard for the compgerarefully data placementfefts, much of

the performance gain could be lost.

3.3 Technique (c): Integrating Careful Page Mapping and Placement

The description of techniques (a) and (b) was derived from what we know about the work
of other researcher$o our knowledge, these techniques have only been studied in isola-
tion. There have been no studies of interactions between these optimizations, nor of the
possibility of integrating them togethdihere are at least three reasons why we think such

a study would be interesting:

* By making the operating system and the compileaware of each oth-
er's optimization eforts, they are less likely to interfee with each
other. For example, if the OS knows that the compiler has based an optimi-
zation on the assumption that two virtual pages will not overlap physically
in the cache, then the operating system can try to make the assumption true.

* By sharing information, the operating system and compileccan sim-
plify each others optimization eforts. For example, if the OS knows
that two virtual pages are unlikely to interfere with each other in the cache
(i.e., they are compatible), it has some additional freedom when mapping
pages (name)yit can overlap the compatible pages in the same cache bin
without concern for performance). Ofrthe compiler can mark two pages
as incompatible, then it can be reasonably certain that instructions from
those pages won'confict in the cache and relax its attempts to group
related instructions on the same page.

* Integrating the operating system and compil€ls optimizations enables
more complex applications to benefir om careful placement optimiza-
tions. Although many older applications are constrained to a single UNIX-
style process, some more recent applications utilize multiple address
spaces and threads of control. Howeuscause the compiler careful

1.As suggested bjLam et al. 91pnd others.
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— Compatible Pages
mm s

— :
- - «—— Incompatible Pages 1

Partially Incompatible Pages

(a) Page Shading (b) Page Numbering

Figure 13 Some Page Marking Schemes

placement optimizations operate within a single address space, they are
incapable of avoiding comdts between address spacEsis may become

an important limitation if the trend to decompose programs into multiple
address spaces continues to be used as a program structuring tedimnique.
overcome this problem, the compiler could mark spepifiges according

to some "universal compatibility policyThen, the operating system can
dynamically map the pages of manyfelieént addresses spaces into the
cache so that comdts are minimized.

The above points gue for cooperation between operating system and compiler based
cache optimizations. But how can the OS and compiler share information about their opti-
mizations?We propose two mechanisms by which the compiler could communicate

information to the OSpage numberingndpage shading

Figure 13shows how compiler hints might be used by the OS to improve page mapping.
With page shading, dérent fragment’sof a page would be sha&ldy the compiler to
indicate compatibilityTwo page fragments are considered compatible if they are shaded
differently The frst two cache bins ikigure 13a) show page mappings that are com-

1. The pages are divided into thirds for this example.
2. This example uses three shades: black, grey and white.
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pletely compatibleThe third cache bin, on the other hand, shows a mapping in which pages
are completely incompatibl&arying degrees of page compatibility are also possible, as
shown by the mapping in the fourth cache bin. Page shading gives the compiler a way to
tell the operating system which pages showltbe overlapped in the cache or which pages
could freely be overlapped withoufedting performance.

With page numbering, sets of pages are ordered in a sequence ranging from 1 to N, where
N is the number of cache binBhe operating system would then attempt to order these
pages in the same sequence when it maps them to cache bins. Note that the sequence need
not begin in the fst cache bin. It can begin in a middle bin and then "wrap around" the end

of the cache. Page numbering would be useful for a compiler that uses data blocking tech-
niques and relies on pages being spread out in the cache.

4 Approach

This section explains how we plan to proceed with this work. Our basic strategy is to bor
row hardware and software developed by others as much as pos&itaee interested in
studying diferent optimization techniques and their interactions, not in completely re-
implementing an operating system and compiection4.1 lists the hardware and soft-
ware that we have and Sectibi2 describes how we hope to pull everything together

4.1 Hardware, Software and OtherTools
We have a DECstation 3100 (nicknamed Frankenstein) with the following components:

* A direct mapped, physically addressed 64K D-cache.
* A direct mapped, physically addressed 64K I-cache.
* ATLB that supports 4K pages.

* 3 disk drives.

These parameters show that Frankenstein is well suited for the studies. First, each cache can
be viewed as having 16 bins for holding physical pableste are two caches (instruction

and data) for a total of 32 cache bins, and because the caches are physically addressed, they
are suitable for careful page mapping algorithms. Second, since the caches are direct-
mapped, they are ideal for careful placement technidguesd, the three dierent disk

drives enable us to easily rebuild operating system kernels and to boot the machine under
different operating system versions (Ultrix, OSF/1 and Mach 3.0). Fittadlynotherboard

of the machine has been moedito make it accessible to Monster

We also have access to the following operating systems, compilers and optimization tools:

» Source code for an old version of Ultrix.
 Source code for OSF/1 (Mach 2.5).

26



Monster: A Tool for Analyzing the Interaction between Operating Systems and Computer chitectures

* Source for the Mach 3.0 kernel from CMU.

* Thepixie MIPS code profer.

 An optimizing MIPS compiler which accepisie profile data.
» Source code for the GNgtc 2.0 compiler

Both OSF/1 and Ultrix run on Frankensteiide have studied portions of the Ultrix and
OSF/1 sourceddcore.s in particular) well enough to be able to rebuild a kernel with
markers installed\Ve are currently porting Mach 3.0 and a tisgel UNIX server on Fran-
kenstein. Having access to the source code for thdseethif operating systems enables us
to implement the careful page placement algorithms.

Thepixie profiing tool uses program annotation techniques to construct dynamic execu-
tion profies. The MIPS optimizing compiler can be invoked with a speciald option
which uses this prdé data to carefully place instructions in the progsawirtual address
space to improve cache performantleis tool provides us with a full implementation of
careful instruction placement.

The GNUgcc 2.1 compiler generates code for MIPS based machines (among others) and
has many procedural hooks for ughcing the code generation phase. Because the source
code is freely available and is reasonably well documented, we hope that it might serve as
a starting point for implementing careful data placement (blocking) algorithms.

4.2 PullingThings Together

As you can see, we have a hodgepodge of hardware and software at our disposal. Some of
it can easily be adapted to perform our experiments, but some will require moderate to
extensive modifiation to meet our needkhis section spec#s the experiments we plan to
perform and the necessary mochtions to our tools.

4.2.1 Experiments
Here are the diérent classes of experiments we would like to perform:

» Experiment Class 1: Studies of caful page mapping in isolation We
will implement the diferent mapping policies proposed by [Kessler & Hill
90] and then use Monster to measure changes in cache hit rates.

» Experiment Class 2: Studies of caful page placement in isolationWe
will implement the placement algorithms proposed by [Hwu & Chang 89]
and [Lam et al. 91] and then use Monster to measure changes in cache hit
rates.

» Experiment Class 3: Studies on integrating caful page mapping and
placement We will implement our proposed page shading and page num-
bering mechanisms so that the compiler and operating system cooperate to
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improve cache performance. f@ifent policies involving the granularity
and levels of shading will be evaluated by measurements made with Mon-
ster

» Experiment Class 4: Studies of kernel specdioptimizations. We will
use the page mapping mechanisms developed for experiment Class 1 to
investigate policies such as reserving portions of the cache for the kernel.
Also, we will use Monster to proé execution of the kernel and then use
the careful page placement mechanisms developed for Class 2 experiments
to optimize kernel execution in the I-cache.

4.2.2 Implementing the Experiments

To perform the experiments of Class 1, we need taantie the page replacement algo-
rithms on the DECstatioff.here are two ways we could tackle this:

* For Ultrix, we can modify the page replacement algorithms in the kernel.
Specifcally, we have looked at some of the code and it appears that the
modifications could be made by changing tmemall() and vme-
mall()  routines.

* For OSF/1 (Mach 2.5) and Mach 3.0, we can modify a-leset pager
processWe hope to draw on work by [Sechrest & Park 91] and [McNamee
& Armstrong 90] in which the Mach external pager interface is extended to
allow the page replacement policy to be implemented in alexselr pro-
cess.

To perform the experiments in Class 2, we need taenfie the way a compiler places
instructions and data. For instructions, this will be e@f/have a comprehensive set of
compiler optimization tools [MIPS 88]. In particulave can:

» Generate dynamic execution plesdi usingorof andpixie

* Translate theixie andprof outputs into theord format by using the
ftoc tool. Thecord format is just an encoding of the information needed
to construct a weighted call graph. It is used by the MIPS C compiler to
carefully place instructions in the I-cache.

Carefully placing data will be more @ifult. We dont have any tools that already do this,
SO we must resort to two basic options:

» Study thegcc 2.1  compiler A cursory examination of the documenta-
tion seems to indicate that there are many procedural hooks into the code
generation phase that might enable us to work in the blocking algorithms.

» Another alternative is to work on source-to-source restructuring tools. For
our purposes, it may be $igient for us to block the code by hand at the
source level.
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To perform the experiments of Class 3, we need to solve the basic problem of getting page
shading or page numbering information from the compiler to the operating sy$tism.
could be implemented by modifying the objetd format and the loader

Finally, to implement the experiments of Class 4, wst fieed to collect some dynamic
execution profes for the kerneM/e cant usepixie andprof for this because they only
work on useilevel applications. Howevgwe can use Monster to obtain this dslfa.have
studied thecord format required by the MIPS C compiler for its instruction placement
optimizations. Itis a very simple format that should make it easy for us to encode tlee profi
data we obtain with MonsteReserving portions of the cache for the kernel should also be
straightforward once we have the page mapping controls in place.

S5 Summay

The second part of this report has presented a collection of optimizations which reduce con-
flict misses in instruction and data CPU caches. Most of these optimizations have only been
evaluated with simulation techniqu&ge intend to use Monster to obtain realistic data on
actual implementations of these optimizations to determine whether and under which cir
cumstances they make sense.
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