DESIGN VIEWS FOR SYNTHESIS

Providing Both Uniform Data Integration and Diverse Data
Customization

Elke A. Rundensteiner
University of Michigan, Ann Arbor
Deplt. of Flecl. Eng. and Computer Science
Ann Arbor, MI 4/8109-2122
e-mail: rundenst@eecs.umich.edu
phone: 313-936-2971

Abstract

Synthesis is a complex task spanning many levels of abstractions and information domains.
Hence, CAD systems utilize a global design database to achieve the much needed integration
of this diverse design information into one central data model. Such a central database
represents a serious bottleneck for the CAD system. First, it prevents the extensibility
of the CAD system over time, since a change of the global data model requires an (often
prohibitively expensive) modification of all current design tools using the database. Second,
it forces all design tools to work on the same (comprehensive and hence extremely complex)
data model. In this paper, we introduce a solution to this problem. We propose to utilize
the object-oriented view methodology, called MultiView, for specifying customized tool
interfaces (design views) on the CAD database. A design view contains a subset of relevant
information from the global database organized in a fashion most suitable to the needs of a
particular design tool. MultiView automatically maintains the mapping between the global
data model and local design views, thus freeing individual design tools from this burden. Our
approach thus results in a flexible CAD environment that assures the consistent integration
of design data from different tools, while providing each tool with a customized view of the
integrated data. This paper gives numerous examples that demonstrate MultiView and its
advantages for typical tasks in high-level synthesis.

1 INTRODUCTION

As pointed out in [13], up to 40 percent of a group’s engineering resources are expended
on tool integration, which is often more than the capital spent on acquiring the tools
themselves. For this reason, the CAD Framework Initiative [13, 9] focuses on issues such
as standard data exchange formats, reference data models, and standard tool programming
interfaces. While the development of standards in data exchange is an important task,
universally accepted standards are the exception rather than the rule [11]. Also, they are
always being made obsolete by the fast pace of change in IC technology and the type of
design tools.

For this reason, the approach of standard file formats (and the corresponding pairs of
file translators) is viable at best for exchanging data between different stand-alone CAD
systems (from different vendors). Within a CAD system, on the other hand, it is preferable
to have design tools operate on one centralized database. Such a unified CAD database is
essential for insuring the proper integration of design information generated and consumed
by various design tools into one consistent design.

Note that each synthesis task or tool needs a subset of the information maintained by
the global database, usually organized to suit the tool’s particular requirements. For this
reason, we need to be able to support customized design information. Hence, a central
database represents a bottleneck of a CAD system, requiring all design tools to work on the
same global data model. The global data model is comprehensive and generic: the former
implies that individual tools have to wade through huge amounts of irrelevant data to find
data of interest to them; and the latter implies that the data is generally not organized in
a format appropriate for accomplishing the particular task of a design tool.

In short, we are faced with the following conflicting goals:

o the inlegration and wunificalion of the diverse design data into one global database to
explicitly capture all relationships between the diverse pieces of the design, and

o the customization of the global design data into special-purpose data structures to store
the data needed for a particular design task in a format most suitable for the task at

hand.

Existing CAD databases do not address this problem of mismatch between the global
database and the local data needs of individual tools. They thus put the burden of mapping
between these two models onto individual tools. The result of this generally is that tools
will load the data from the central database into a design file; and then they will generate
a local data structure suitable for their particular design task in their workspace. This
approach is undesirable for many apparent reasons: not only does it place an unnecessary
burden on the design tool builders, but it also results in a performance penalty and possibly
a loss of information due to the translation between incompatible models.

In this paper, we propose a solution to this problem. Namely, we propose to extend
the database with the functionality necessary for automatically supporting this mapping
between the global model and the local tool interfaces. More precisely, we introduce a mech-
anism that supports the principled generation of customized tool interfaces (design views) to
the database. This provides the CAD framework developer with a methodology for support-
ing multiple views for a wide range of design tasks. A design view generally contains a subset
of relevant information from the global database reorganized in a fashion most suitable to

the needs of particular users. The proposed mechanism, the object-oriented view method-
ology called MultiView [26, 25], establishes a consistent mapping between the database and
the tool interfaces, such that updates through the tool interface are consistently reflected in
the underlying database. This strategy promises to eliminate the bottleneck, allowing each
tool to work on their customized view of the data while the database assures the consistent
integration of the inputs from different tools into one consistent global model. The support
for the generation of tool interfaces will dramatically improve the development time of tools,
since a major portion of tool development is generally spent on designing and implementing
tool interfaces.

The issue of how the shared database can be extended as new design tools, and with
them new data requirements, are being added to the system is another open problem. If
a change of the global object model is required due to the introduction of a new tool,
then all current tools using the database may have to be revised. This is clearly extremely
costly and therefore prevents the extensibility of the system over time. Until this issue of
system extensibility has been successfully addressed, the CAD industry will be hesitant to
utilize database technology in their CAD systems. In this paper, we provide a solution
to this problem by shielding tools from changes in the global data model. In fact, we will
demonstrate that the proposed view-based approach also solves this problem of extensibility.
In short, as long as the view on which a particular tool operates is maintained, the tool is
not affected by any changes to the global database.

The process of specifying views requires a language for virtual class derivation and
for view schema definition. These languages are used to declaratively specify what design
information should be in a particular view and how the information should be organized.
MultiView provides such languages for deriving local views of global design information.
More precisely, MultiView breaks view specification into three tasks: (1) customization of
virtual classes, (2) integration of virtual classes into one consistent global schema and (3)
the specification of arbitrarily complex view schemata on this global schema. MultiView’s
division of view specification into a number of well-defined tasks, some of which have been
successfully automated, makes it a powerful tool for supporting the specification of views
by non-database experts while enforcing view consistency. This paper briefly introduces
MultiView and the languages for view specification. Emphasis is placed on their utility in
the context of high-level synthesis. In particular, we present numerous examples of design
views constructed for typical tasks in high-level synthesis.

The rest of the paper is organized as follows. In Section 2, we introduce related work
in the fields of CAD and databases. Section 3 describes view specification in general and
MultiView in particular. This includes a brief presentation of the object algebra, the class
integration algorithm, and the view specification language. Section 4 presents examples
that demonstrate the application of MultiView to high-level synthesis. An evaluation of the
view-based approach is presented in Section 5, while Section 6 provides conclusions.

2 PREVIOUS WORK

2.1 Design databases and CAD Frameworks

Over the last years, many different data models and design databases have been introduced
to support the process of design [10, 11, 14, 15, 2, 3, 6, 21]. Figures 1.a to 1.c demonstrate
how this research has gone through several phases, namely, from the storage of design data
in flat files (Figure 1.a), to the usage of the traditional database technology, in particular,
the relational model (Figure 1.b), up to the adoption of the advanced database systems

such as the object-oriented ones for the maintenance of the design information (Figure 1.c).
In this paper, we are not concerned with developing yet another design data model or a
design database system. On the contrary, we propose a general mechanism for support of
design views that could be added to any of the existing design databases. As discussed in
the previous section, view support would enhance the power of any of the existing CAD
database systems.

In general, design databases have become a fundamental component of a typical CAD
framework [23, 22]. However, all of the existing CAD databases leave the burden of mapping
between the tool’s local data structures and the database’s global data model with the indi-
vidual design tools. In this paper, on the other hand, we address this problem by extending
the database with the necessary functionality required for supporting this mapping. In
other words, we will move the responsibility of mapping between the global database and
the local tool models to the database (Figure 1.d). We thus extend the notion of CAD
frameworks to include a view-based database as central component. To our knowledge, this
is the first time that database view mechanisms have been explored to be applied to CAD.

2.2 Design views in CAD

There is some work in the CAD literature that uses the term ’views’, however, the asso-
clated meaning and with it the usage of the view concept is different than proposed in
this paper [20, 19]. Sometimes the different information domains of an application, such
as the behavioral domain and the structural domain in behavioral synthesis, are referred
to as views of the design [19]. Note, however, that these two information domains are
two different parts of the global schema, each captured by different data structures. The
behavioral-graph and the structural-graph thus are trivial views in MultiView; they both
correspond to simple subsets of the complete information model. Furthermore, note that
the structural view (domain) of the design is generated from the behavioral view (domain)
using design tools, i.e., there are actual design decisions involved in generating one from
the other. Hence, given a behavioral view of a design, the database would and should not
be powerful enough to construct a structural view — rather the generation of these different
(information models) views is what the “process of design” is all about.

In OCT [16], the term view is used to refer to different facets of a frame, each storing
independent pieces of information about the design like the physical characteristics, the
behavior, etc. For this reason, this does not correspond to the concept of design views (of
viewing the same design information in polymorphic ways) as presented in this paper. To
summarize, we propose a general methodology for declaratively specifying new design views
(and to get the associated mappings to the global database for free), whereas other work
has built fixed tool interfaces for a particular design task in a rather ad-hoc manner. Other
systems can therefore not quickly construct new design views nor easily modify existing
ones.

2.3 On Object-Oriented View Mechanisms

View mechanisms for object-oriented databases have been identified as one of the few open
problems in object-oriented database research in [4]. Recently, there have been several
proposals for defining views for OODBs [18, 28, 1, 25]. Most of them use the query language
defined for their respective object model as view specification language, namely, for deriving
a virtual class. They generally do not discuss the integration of derived classes into the
global schema nor do they generate complete view schemata. Instead, the derived classes

XYZZYZYXYXYYzz
YYYzyzyzyZZZXXX
xxy xxYYY ZZYZX

YYYzyzyzyZZZXXX

XY2ZZYZYXYXYYzz
YYY2yzyzyZZZXXX
xxy XxYYY 2ZYZX

PY tooll
B T — m
XYzZYZYXYXYYzz design
xxy XxYYY 2ZYZX f”e
tool2
.—,4’ (b./
[

(a) File based.

(b) Central Database Server (tradition

tooll

.

tool2

L
3?
o

Q

@

o
=~

tooll

.

tool2

¥

(c) Central Object Server (advanced models).

S

w

tooll

.

tool2

¥

(d) Object Server with View Support.

@ Data Translation [[] Data Extraction >

Data Access

Figure 1: Approaches tgwards Tool Integration.

are treated as ‘stand-alone’ objects [18] or they are attached directly as subclasses of the
schema root. MultiView is one of the only view methodologies that generates complete view
schemata. Secondly, algorithms for automating the more tedious parts of view specification
have been developed for MultiView. And, lastly, MultiView takes care of enforcing the
consistency of the view schema. For these reasons, we have chosen MultiView as the most
suitable candidate for this work.

2.4 Relational Views

While object-oriented views are a new database technology, the concept of views for rela-
tional databases has been studied extensively by the database community. The question
thus arises why relational views have not been proposed as tool integration scheme at the
time when relational database technology was suggested for implementing CAD databases.
The remainder of this section provides an answer to this question.

One reason is the limit of the semantic modeling power of the relational model itself.
CAD databases based on the relational model capture the design information in a rigid
tabular format, which, being machine-oriented, does not correspond to a direct model of the
real-world design information (Figure 1.b). This gap between the rigid database model and
the structurally much richer design information of course also applies to relational views; i.e.,
there is a semantic gap between the relational database views and the information models
required by design tools. Therefore, CAD tools would not directly operate on relational
views anyways; and hence the purpose of relational views would be void.

The second reason is the view update ambiguily problem of relational databases. Since
updates on relational views can generally not be translated into (unambiguous) updates
on the base schema, most relational databases do not permit update on views. With
updating and refining of design information being an essential ingredient of design databases,
relational views have consequently been found to be of limited use for applications like CAD.
Views in OODBs are more likely to play an important role for defining customized interfaces
for CAD applications, since updates can be handled better due to the following: (1) object
identity; the concept of maintaining the unique identity of an object even if its external
characteristics are modified and/or hidden (in a view), and (2) abstract data types; the
ability to associate type-specific (update) operations with the encapsulated object [26].

2.5 Summary

In summary, there has been no consistent and systematic scheme for generating and main-
taining customized design views on a central database. This paper is the first that addresses
this problem and that suggests the use of object-oriented views for the construction of these
customized tool interfaces in CAD. In fact, we postulate that view support will represent
an important component of future CAD framework technology.

3 DESIGN VIEW SPECIFICATION

In this section, we will introduce the basic issues of view support in object-oriented databases
in general, and an introduction to our solution towards view support, called MultiView, in
particular. Emphasis of this paper is on the potential exploitation of this database view
technology for addressing the tool integration problem in CAD systems. Therefore, this

section gives a general introduction to of MultiView, while a more detailed description can
be found elsewhere [25, 26].

For clarity sake, we distinguish between three groups of humans involved in a CAD
system: the design tool builder, the CAD framework maintainer, and the CAD framework
builder. The CAD framework builder is in charge of constructing the software components
that compose a CAD framework. This includes the development of a user interface, a design
process manager, and a design database [23]. We propose that a view support system
should be a component of such a CAD framework. Once a CAD framework has been
selected as basis for a particular CAD system, then the design tool builder will utilize the
functionalities of the framework to develop particular design tools that will ’live’ within the
CAD framework. We now introduce a middle man, called the CAD framework maintainer,
who will use the view support system to construct design views for particular design tools
(or related tool sets).

) . view
view =~ view - consistency
specification compilation checking
design
database
view access view mapping metadata ~_
& update maintenance dictionary

The MultiView System

Figure 2: Architecture of the View Support System.

An overview of the architecture of MultiView is given in Figure 2. MultiView consists

of:

1. a view specification language,
. a view compilation module,
. a view mapping maintenance module,

. a view consistency checking module, and

[B C N A

. meta data.

The CAD framework maintainer will enter a view specification into the view support
system to specify a new design view. View compilation then processes the view specifi-
cation. For this purpose, it will use the metadata information (data dictionary) to check
for the definition of class names and to establish the necessary information about the new
view classes. This phase also involves automatic view generation, where view generation
algorithms are run to complete the view description, if necessary [26]. For instance, if the
view definer determines that the modify-component-type function must be deleted from the
floorplanning view, then the system will automatically generate a new Component class with
the modified functions. And, the system will also determine how this new class can be inte-
grated into the global class hierarchy. Once a view has been established, then the designer

and/or design tool will operate on the view in the same manner as on the database, i.e.,
through a programming interface with access and update functions (Figures 2 left bottom).

The CAD framework maintainer uses the view specification language, while the rest
of the system will be hidden from him or her. For this reason, we will concentrate in the
remainder of this section on this view specification process. Information on the other parts
of MultiView can be found in [26].

3.1 View Specification in MultiView

MultiView is a methodology for supporting multiple view schemata in OODBs. MultiView
breaks view specification into three independent tasks:

1. the generation of customized classes,
2. the integration of derived classes into one consistent global schema graph, and

3. the specification of arbitrarily complex view schemata composed of both base and
virtual classes on top of the augmented global schema.

The separation of the view design process into these well-defined tasks has several
advantages. First, it simplifies view specification, since each of the tasks can be solved
independently from the others. Second, it increases the level of support by allowing for the
automation of some of the tasks. For the first task, MultiView provides an object algebra
(see Section 3.3). For the second task, an algorithm has been developed that assures the
automatic and consistent integration of all virtual classes into the global database schema.
For the third task, MultiView provides a view definition language and an associated view
completion algorithm. A detailed presentation of these languages and algorithms can be
found in [25], while a brief introduction to each will be given in the remainder of this section.

The example given next presents an overview of the different steps of view specification in
MultiView.

Example 1. In Figure 3 (and in the remainder of the paper), we depict base and virtual
classes by circles and dotted circles, respectively. Given the global schema GS in Figure 3.a,
the view definer specifies the virtual classes ALU and LogicUnits using object-oriented
queries (Figure 3.b). The integration of these classes into GS is given in Figure 3.c. View
schema definition now proceeds by selecting a subset of classes from the augmented GS (Fig-
ure 3.d). Lastly, the chosen view classes are interconnected into one view schema (Figure
3.€) by the view completion algorithm.

3.2 Basic Terminology On Object-Oriented Views

Since MultiView is based on a fairly typical object model, the reader is referred to a standard
book on object-oriented databases for a thorough coverage of this subject [8]. Ounly the
terminology needed for the remainder of the paper is introduced below. A class C; € C has
a unique class name, a type description and a set membership. The type associated with
a class, type(C), consists of a number of property functions, properties(C). A property
function could be a value from a simple enumeration type, an object instance from some
class, an arbitrarily complex function, or an object method. A class is also a container for
a set of objects instances that belong to the class, denoted by extent(C). For two classes

.......
,,,,,,,,,,
““““

Components ALUs

,,,,,,,,,,,,,,,,,,,,, " ¢ (ComponentA
- ctype=arithmetic \

''''
. o
......

Adders
(Component N\

ctype=arithmetic N\
fcts ={+,—, +/-})

StorageUnits

(Component A
ctype=storage)

Class Derivations:

class ALUs := SELECT (C:Component)
where (C.ctype=arithmetic)

(a) Base Schema BS. class LogicUnits:=SELECT(C:Component)
..= Where (C.ctype>=arithmetic /\
Ot C.fcts={or,and,xor}).
‘O
*
Components o (b) Class Customization.
Ve
Components
e SN

StorageUnits ALUs AR ,
(Component /\ (Component/A — : %+ StorageUnits
ctype=storage) _ Ctype=arithmetic) e o (Component A\

ctype=storage)

\ " LogicUnits .
""""""""""""""" S (Component\ =

~" LogicUnits .. % ctype=arithmetic \

$ (Component\ - . fets ={or,and,xor}):

ictype=arithmetic A\ e

',,f'(l:'ts —{or,and,xor}‘)‘c, Adders

(Component A

ctype=arithmetic N\
fcts ={+,—, +/-})

o,
o,
'
........

Adders
(Component A

ctype=arithmetic N\
fcts ={+,—, +/-})

., R
. .
. .
......
.........

.*
<fesmmmnnn=”

.....
,,,,,,,,,,
““““

LogicUnits
(Component

. ctype=arithmetic /\

~fcts ={or,and,xor}) -

Adders
(Component A

ctype=arithmetic /\
fcts ={+,—, +/-})

StorageUnits

(Component A
ctype=storage)

''''
. o
......

(e) Desired View Schema.

8
Figure 3: The MultiView Approach: From Base over Global to View Schemata.

Cl and C2 € C, Cl is called a subset of C2, denoted by C1 C C2, if and only if (¥ o
€ 0) ((0eCl) = (0€(2)). For two classes C1 and C2 € C, C1 is called a subtype of
C2, denoted by C1 < C2, if and only if (properties(C1l) D properties(C2)) and (V p €
properties(C2)) (domain,(C'1) C domain,(C2)). For two classes C1 and C2 € C, Cl is
called a subclass of C2, denoted by C1 is-a C2, if and only if (C1 < C2) and (C1 C C2).

Definition 1. An object schema is a directed acyclic graph S=(V,E), where V is a finite
sel of vertices and F is a finite sel of directed edges. Fach element in V corresponds to a
class C;, while E corresponds to a binary relation on V x V. Fach directed edge e from C,
to Cy, denoted by e = <Cy,Cy>, represents the direct is-a relationship (Cy is-a C3).

We refer to the set of is-a relationships of a schema as the generalization hierarchy.
We distinguish between base and virtual classes. Base classes are defined during the
initial schema definition and their object instances are explicitly stored as base objects.
Virtual classes are defined during the lifetime of the database using some object-oriented
queries, i.e., their definitions are dynamically added to the existing schema. A virtual class
has an associated membership derivation function that will determine its membership based
on the state of the database. The content of a virtual class is generally not explicitly stored,
but rather computed upon demand.

Definition 2. The base schema (BS) is an object schema S=(V,E), where all classes in
V correspond to base classes with stored rather than derived instances. The global schema
(GS) is an extension of the base schema BS augmented by the collection of all virtual classes
defined during the lifetime of the dalabase as well as their is-a relalionships. Given a global
schema GS=(V,E), then a view schema (VS), or short, a view, is defined to be a schema
VS= (VV,VE) with (1) VS has a unique view identifier < V.S >, (2) VV.C V, and (3) VE

C transitive-closure(FE).

We call the classes in a view schema (both the base and virtual ones) view classes and
the is-a relationships view is-a relationships. At any given time, there will always be exactly
one base and one global schema but an arbitrary number of view schemata.

Example 2. Figure 3.a shows the base schema BS, Figure 3.c the global schema GS, and
Figure 3.e a view schema VS.

3.3 Task 1: Object Algebra for the Virtual Class Derivation

The first task of view specification in MultiView uses an object algebra [26]. The object
algebra provides basic operators that can be used to define new virtual classes based on
existing information in the database. These operators can be nested to form arbitrarily
complex class derivations. The object algebra consists of six basic operators that are briefly
described below.

The hide operator modifies the type description of a class by hiding some of its property
functions. It has the syntax “<wvirtual-class> = hide [<prop-functions>] from (<source-
class>)” with <prop-functions> being one or more property functions defined for <source-
class>. It removes the property functions listed in the set <prop-functions> from the
source class while preserving all others. The set content of the virtual class is equal to the
set content of the source class.

The refine operator refines the type description of an existing class by adding additional
property functions. It has the syntax “<wvirtual-class> = refine [<prop-function-defs>] for
(<source-class>)” with <prop-function-def> the definition of a new property function in
the form of a new property name and a function body with the latter a legal arithmetic,
boolean or set expression. The set content of the virtual class is equal to the set content of
the source class.

The select operator selects a subset of object instances from a given set of objects. It
has the syntax “<wirtual-class> = select from (<source-class>) where (<predicate>)”
with <predicate> being some possibly complex function on the source class and its type
description. Its semantics are to return a subset of object instances of the source class based
on the evaluation of the associated predicate, namely, all object instances that satisfy the
predicate are collected into the virtual class. The type stays the same.

Set operators manipulate both the type description and the set membership of their
two source classes. The semantics of the union operator are to return a set of object
instances composed of the members of either or both of the source classes. The resulting
type description is equal to the lowest common supertype of the two sources classes. The
intersect operator returns a set of object instances that are members of both source classes.
Furthermore, the type description of the resulting virtual class is equal to the greatest
common subtype of the two sources classes. Lastly, the difference operator returns a set
of object instances that are members of the first but not of the second source class. The
resulting type description is equal to the description of the first source class.

Example 3. In Figure j, the is-a relationships between the virtual and the sources
classes are indicated by bold arrows. Figure 4.a depicts the query “BehaviorGraph —
hide [SetState, GetState] from (StateGraph)”. Then extent(BehaviorGraph) = ez-
tent(StateGraph) and type(BehaviorGraph) = [Domain, NodeOp)].

In Figure 4.b, the query “Comps2 = refine [Area = Height * Width] for (Comps)”
derives Comps2. We have extent(Comps2) = extent(Comps). The type of Comps2
has been extended by the new method Aera, hence Comps2 < Comps. Comps2 is inte-
grated into G'S by placing Comps2 below Comps as direct subclass.

In Figure 4.c, the query “Adders = select from (Comps) where (Plus in
Comps.Ops)” derives Adders from Comps. The Adders class consists of all object mem-
bers of Comps that implement the Plus operator, thus Adders C Comps. Type(Adders)

= type(Comps).

In Figure 4.d, the query “GraphConstructs = uniton(DataFlow,ControlFlow)”
derives GraphConstructs. Then extent(GraphConstructs) = extent(Datallow)
Ueaztent(Control Flow) = {D1,D2,D3,C1,C2}. Alsotype(GraphConstructs) =
type(DataFlow) N type(ControlFlow) = [Domain]. The is-a relationships are indicated
by the edges (DataFlow is-a GraphConstructs) and (ControlFlow is-a GraphCon-
structs).

In Figure j.e, the wntersect operator is used in the query FexLayout = wn-
tersect(DataPathUnits, RandomLogic Units). Then extent(FexLayout) = ez-
tent(DataPathUnits) N extent(RandomLogicUnits) = {01,02}.

And type(FexzLayout) = type(DataPathUnits) | type(RandomLogic Units)= [Comp-
Type, DF-Construct, CF-Construct, get-DF-Graph].

In Figure 4.1, the diff operator s used n “AllOther-
Comps = diff(Components,ALUs)” to derive AllOtherComps from Components
that are not in ALUs. We have extent(AllOtherComps) = extent(Components) —

10

BehaviorGraph GraphConstructs

e e
Domain .- Se . . A
’ > Domain ¢ .

Nodeop :{O1,02,03,04,05}" <~ {{p1,D2,D3,C1 CZ} :
-— % . Sey

. -

ControlFlow
Domam
CF Construct
get—DF Graph

GraphConstructs = UNION (DataFlow,ControlFlow)

DataFlow

StateGraph

Domain Domain

NodeOp

GetState
SetState

{01, 02, 03, 04, 05 }

Behavior-Graph = HIDE [SetState,

GetState] from State-Graph; (d) Union operator
(a) Hide operator.
Name Comps DataPathUnits RandomLogicUnits

___ Comp-Type_
CF Construct

get-DF-Graph

Comp-Type

Height
Width

{01, 02, 03, 04, O5}

Name . L2TP e <. Comp-Type
Height ."' "'. K *+,_DF-Construct
Width :'{01, 02, 03, 04, 05} % ' toL02} ¥ o construct
Area ’*... ‘_x" e .**get-DF-Graph
Comps2 = REFINE(Comps) Fextayout
by [Area := Height * Width]. FexLayout = INTERSECT (DataPathUnits, RandomLogicUnits)
(b) Refine operator. (e) Intersection operator.
Comps
Name Components ALUs Get-Name

Get-Name
Comp-Type {01,02,03,04,05}

Num-Ops

{01, 02, 03, 04, 05} Set-ALU-Type

Get-ALU-Fcts

Adders

.........
- -

Name i .
-—

AllOthgrComps

- KR Get-Name | .
Num-Ops « . - .
o {01, 02, 03} 1 Comp-Type | 103,04,05))
- e _,.o <7\\
Adders =SELECT (Comps) AllOtherComps = DIFF (Components, ALUS)
where (Plus in Comps.Ops);
(c) Select operator. (f) Difference operator.

Figure 4: Examples of Class Derivation Using Object Algebra.

11

extent(ALUs) = {03,04,05}. And type(AllOtherComps) = type(Components) = [
Get-Name, Comp-Type |. The relationship (AllOtherComps is-a Components) has been
added to Figure 4.f.

3.4 Task 2: Class Integration Into The Global Schema

MultiView integrates all virtual classes derived for different views into one global schema
in order to explicitly represent the generalization relationships between virtual and base
classes. In this section we sketch an overall approach for the class integration problem. A
detailed treatment of this topic is beyond the scope of this paper and can be found elsewhere

[26].

Class integration is concerned with finding the most ‘appropriate’ location in the schema
graph G for a virtual class VC in terms of property inheritance and subset relationships
between classes. For this, the classifier determines the is-a relationships between the vir-
tual class VC and all other classes in GS by comparing their type descriptions and their
membership predicates’. The algorithm for finding the correct position for VC in G=(V,E)
can be summarized as follows. First, we find all classes in G that are the direct superclasses
of VC defined by direct-parents(VC) = {C; | (VC is-a C;) A (AC; € V)(j #)(VCis-a
C;) A (Cyis-a C;))}. Similarly, we find all classes in G that are the direct subclasses of VC
defined by direct-children(VC) = {C; | (Cyis-a VC)A(AC; € V)(§ # 1)((Ciis-a C;) AN (Cjis-a
V())}. VC is placed directly below all classes in the direct-parents set and directly above
all classes in the direct-children set. Edges connecting classes in the direct-children(VC) set
with classes in the direct-parents(VC) set are removed, since these relationships are now
represented indirectly via VC. We complete this section by demonstrating the classification
process on a simple example.

Example 4. In Figure 3.b, the virtual class ALU is derived using the query “ALU = se-
lect from (Component) where (clype=arithmetic))”. We can thus deduce the relation-
ships: (ALU C Component), (ALU < Component), and (ALU is-a Component).
We therefore insert the edge (ALU is-a Component) into GS. Next, we search for the
most specialized classes that are still is-a related with the ALU class. We find thal the
Adders class is both a subset and a subtype of the ALU class; therefore we add the is-a
relationship (Adders is-a ALU) in form of an edge to the graph.

3.5 Task 3: View Schema Definition Using the View Definition Language

MultiView divides the third task of view specification into two subtasks:

1. the selection of view classes, and

2. the generation of view relationships between the view classes.

'In general, the classification problem is not decidable for OODB models since it may involve the com-
parison of arbitrary functions and predicates. In the worst case, if some is-a relationship is not discovered,
then the virtual class is placed higher in the class hierarchy than would theoretically be possible. This would
be a correct but not the most informative class arrangement.

12

For the first subtask, it provides a view definition language that can be utilized by the
view definer for the specification of view schemata. For the second subtask, it provides
algorithms that will automatically generate a generalization hierarchy from a given set of
view classes [26]. This automatic generation of view is-a arcs is preferable over their manual
entry since it simplifies the task of the view designer and guarantees the consistency of the
resulting view schema [26].

The view definition language consists of two groups of operators: the first group initiates
or terminates a transaction on a view schema while the second group discussed in the next
paragraph modifies a given view schema. The DEFINE-VIEW command initializes a new
view schema and assigns a unique view identifier to it, while the MODIFY-VIEW command
prepares an already defined view schema for modification. All operators specified within
a view definition transaction, i.e., after a DEFINE-VIEW or a MODIFY-VIEW command and
before the END-VIEW command, will modify only the designated view VS. The view definers
conclude the view definition phase by issuing the SAVE-VIEW command. MultiView then
automatically augments the set of classes by the necessary view is-a arcs [26].

The second group of commands modifies the view VS by adding or deleting view
classes. The “ADD-CLASS(<class-name>)” command adds a class <class-name>
to VS. The “ADD-CLASS-DAG(<class-name>)” command adds all classes to VS that
are classes in the subschema of GS rooted at the class <class-name>. Finally, the
“ADD-VIEW-SCHEMA (< wview-name>)” command adds all classes of the view <view-name>
to VS. The commands REMOVE-CLASS, REMOVE-CLASS-DAG, and REMOVE-VIEW-SCHEMA do
the same as the just described operators but rather than adding they delete the respective
classes.

Example 5. A view creation script for the view VS depicted in Figure 3.e is given below.

DEFINE-VIEW VS
class ALU = select (C:Component) where (C.ctype=arithmetic);
class LogicUnits = select (4:ALU)
where (A.ctype=arithmetic) and (A.fcts={or,and,zor});
ADD-CLASS (LogicUnits);
ADD-VIEW-SCHEMA (BS);
SAVE-VIEW;
END-VIEW

First, the DEFINE-VIEW VS command creates an empty view schema with the identi-
fier VS. We then define the virtual classes ALU and LogicUnaits (Figure 3.b) and in-
tegrate them into GS (Figure 3.c). LogicUnats is added to the view with the command
ADD-CLASS (LogicUnits). Then the three classes of the base schema are added to VS using
the command ADD-VIEW-SCHEMA (BS) (Figure 3.d). When VS is saved, the is-a arcs shown
in Figure 3.€ are automalically derived by MulliView.

4 DESIGN VIEWS FOR HIGH-LEVEL SYNTHESIS

4.1 Introduction

In the following, we present some design view examples for behavioral synthesis tools con-
structed using MultiView (Figure 5). The goal of this section is (1) to demonstrate the

13

usefulness and power of the view paradigm, (2) to show how MultiView can be used in
a typical CAD application, and (3) to present a solution to the tool integration problem
for behavioral synthesis systems. The design views specified in this section are defined on
the behavioral design object model (composed of an extended control-flow/data-flow graph
augmented with state transition graph information and structural binding and of an ex-
tended component graph augmented with behavioral binding and floorplan information), a
typical design representation for high-level synthesis systems [2]. Due to space limitations,
we refer the reader to [26] for a definition of this underlying global CAD schema.

4.2 A Design View For Component Binding

In this section, we discuss the construction of a design view for the (operator) binding design
task. Binding establishes a mapping between the operators in the data flow graph and the
hardware units in the component graph that are to implement the operator (Figure 6.a).
Binding typically has constraints, such as: (1) every operator in the data flow graph should
be bound to exactly one hardware unit, and (2) two operators can be bound only to the
same unit if they are mutually exclusive by being in different states.

The binding tool needs information about the operators in the data flow graph, their
assigned state, and components available for a given state. The global schema does of
course contain this type of information. It is however spread over several graph structures
(namely, the state graph, the data flow graph, and the component graph). For the binding
view, this information should be grouped together into a table-like structure, such as the
binding table shown in Figure 6.a. In addition, there is the requirement that the binding
tool should not modify any of these graph structures. For instance, it should not change the
state assignment, the connectivity of the data flow graph, or the set of allocated components.
The only legal operations for the binding design task are to establish a binding (i.e., to add
a row into the table in Figure 6.a) or to undo a binding (i.e., to remove a row from the
table in Figure 6.a).

In the following, we show the steps involved in generating a binding view that meets the
described characteristics. We start with the initial global schema shown in Figure 6b. Recall
that the binding tool should not be allowed to modify the set of allocated components, e.g.,
the type of components or their connectivity. Therefore, the design view must protect the
Comp class. In MultiView, this is accomplished by hiding all update functions from the
Comp class using the following command:

class CompB := hide [setcomptype, setconn, getconn, ...] from Comp;

The hide command generates the virtual class CompB. CompB has the same object
instance set as the Comp class, but a restricted type description. The CompB class thus
limits access to the components in a design. The binding tool can for instance scan the
class of available components using the CompB class, but it cannot modify individual
components. The integration of the CompB class into the global schema in Figure 6.b
results in the global schema depicted in Figure 6¢c. (The class integration algorithm is
discussed in Section 3.4).

Next, note that the binding tool should not be able to change the state assignment (a
task accomplished by a scheduling tool). For this, we use the following command:

class Dfopl := refine Dfop with
[boundstate() :={return(self.instate.statename) };];

14

global view for view for view for

CAD view | |HDL-graph operator floor-

(schema) compilation binding planning
V|aN mapp| ngs.,... :' \“ "."’ :.' "."‘ ::
between, S vigw
global database R ": spegification
and local vPews ’ §

]
«
a

.
. o
.y

physical
design
data
rel ationshi ps

rel ationshi ps

MultiView

Figure 5: View Support System From the User’s Point of View.

The boundstate() function allows the user to retrieve the name of the state associated
with a given data flow node, but not the actual state object. Using the new boundstate()
function in place of the instate() function will assure that the design tool cannot manipulate
the state graph. Class integration of the virtual class Dfopl results in the global schema
shown in Figure 6.d.

The setbinding() function allows for the binding of an arbitrary data flow node to any
component. If, instead, the view definer wants to assure that only legal bindings are being
generated, he or she may want to augment the binding design view with application-specific
binding functions that include appropriate consistency checks. So we may want to define
the DFopl class in the following manner:

class Dfopl := refine Dfop with
[boundstate() := { return(self.instate.statename) };
ssetbinding(c:CompB) := {if compatible(self,c) then setbinding(c);};
sgetbinding() := {if compatible(self,c) then sgetbinding(c);}; 1;

The result of integrating Dfop1 into the global schema is shown in Figure 6.d.

Next, to assure that the design tool cannot manipulate the state graph, we need to
remove the instate() function from the design view. In MultiView, this is done using the
hide operator:

class DfopB := hide [instate, setbinding, ...] from Dfopi;

This command generates the virtual class DfopB, which has the new boundstate()
function but not the instate() function in its type description. The integration of DfopB
into the global schema results in the creation of an intermediate class, which we call Dfop2,
as shown in Figure 6.e. While the algorithm for class integration is outlined in Section 3.4,
the reason for creating these intermediate classes is beyond the scope of this paper [26].

15

OM

Einding
[o A FG
S LR R NN .
 sigte] _ob 1 comp Legal Operations: tatecon: fmame
statenam /detblndlng compna
S1 opl]| C1 - instate J selconn
setbinding(state,op,comp); STwans<— stnose Dfop —>optype Comp
S1 | op2| C3 getbinding(state,op,comp); nxistate comams setbmd,ng getconn
setcomptype
S2 op3| C1 Required Design Data:)
s2 opa| c2 (b) Global Schema of the Behavioral Schema Graph.
operator, assigned state,
Binding Table: bound component o
A
(a) The Binding Design Task.
BDOM DFG cG
A FZ\Y

‘\ :a:eco /dfname
statenam -
etbindin
|nstate H setconn
STtranﬁ— ST 3P _/,—Hmtype Comp d N
indi etconn
CompB [name setbinding \ g
dfname P contams setcomptype
tatecon
statenam |nstate getbinding o
—_—

setconn
STtranﬁ— ST ode “4~ " Dfop = Ioptype - Comp \C& boundstate Dfopl

nxtstat getconn _ =
Toomane. Se‘b'”d'”g Setcomptype class Dfop1 := refine Dfop with

[boundstate(String) :=
, {return(self.instate.statename);};
| ssetbinding(c:CompB) :=

class CompB := hide [setcomptype, getconn,...] from Comp;

(d) Adding Refined Operators.

BDOM

BDOM

DFG CG / \
tatecon
tatecon statenam
statenam - mstate

mstate STtrans<+— STnode

.
-
setconn

Comp CBN

setconn ot
STtrans<— STnode Comp d N nxistate Contalns getconn
nxtstate getcoon /[TPl N o eeeea. ~setedmptype
conlalns
setcomptype '
L]
1
'
D
N boundstate Dfopi~ e
Dfopl. *.__________-—"

| class DfopB := hide [instate, setbinding, ...] from Dfop1; |

ADD-CLASS(DfopB); ADD-CLASS(CompB);

(e) Removing lllegal Operator from Dfop Class (f) Selecting Cl far the View.

Figure 6: The View Specification Steps for the Binding Design View.

16

DEFINE-VIEW BindingView

class CompB := hide [setcomptype, connto,...]
from Comp;

class Dfopl := refine Dfop with
[boundstate(); ssetbinding(c:CompB);];

class DfopB := hide [instate, setbinding, ...]
from Dfop1;

ADD-CLASS(DfopB);

ADD-CLASS(CompB); \\\ optype

/ boundstate

sgethinding compname

SAVE-VIEW

END-VIEW dfname

(9)_View Specification Script of the Binding View (h)LVi

Figure 7: The View Specification of the Binding Design View.

Finally, the appropriate classes must be selected from the global schema to be included
in the design view. This is accomplished using the view definition language described in
Section 3.5, in this case using the commands ADD-CLASS (DfopB) and ADD-CLASS (CompB).
The selected view classes DfopB and CompB are indicated in Figure 6.f by encircling them
by a dotted line. The view generation algorithm (Section 3.5) extracts the view classes from
the global schema and interconnects them into a view schema. The resulting view schema
for the Binding view is depicted in Figure 7.h. For completeness sake, the view specification
script to accomplish the specification of the Binding view is listed in Figure 7.h. The Binding
view has all features required for the binding design task (and no others). First, the binding
triplets can be retrieved and updated using the sgetbinding() and ssetbinding() functions.
Second, the list of components can be scanned to determine what components are available,
but the allocation of existing components cannot be modified. Third, since each data flow
node is assigned to one state, we can retrieve the state associated with a data flow node
using the boundstate() function. We can however not modify this state assignment. Clearly,
the Binding view protects the design information from being changed in an illegal manner
during the binding design task.

4.3 A Design View For Simplying the Data Flow Graph

Some tools, such as the graph compiler and the graph critic, arbitrarily restructure the
control/data flow graph [26]. Therefore, an appropriate design view for these tools would
simply be the complete set of all behavioral object classes shown Figure 9.a. The allocation
tool, on the other hand traverses the data flow graph to determine the number and type of
operators. It does not change the structure of the data flow graph, and hence should not
have access to the graph-manipulation operators. In addition, the allocation tool may be
less interested in the details of how the data flow graph structure is implemented in terms
of nets and ports.

This idea of varying levels of detail is best explained using an example. The data
flow graph in Figure 8.a represents the design data of the behavioral design specification
“C = A 4+ B” in a very detailed manner. It depicts for instance the net objects and the
port objects. The net objects represent the data values that flow between data flow node
objects. The port objects are (independent) subobjects of data flow nodes and nets that
model the interconnection points of these nodes. The other two graphs in Figure 8.b and 8.c

17

2
> READ(B) > READ(A) > READ(B) > READ(A) > READ(B)

READ(A)

©

WRITE(C) WRITE(C) WRITE(C)
(a) An example (b) Simplified DFG (c) Simplified DFG
DFG graph object. with ports hidden. with nets hidden.

Figure 8: Looking at the Data Flow Graph for the Behavioral Specification “C <= A +
B” through Three Different Design Views.

18

/)

dfgraphid~e—— Dfpbject mepon
back

nodetype -#— Dfnode Dfnet —® nettype
Dfnode Dfnet

(b) Integration of Virtual C asses into G obal Schema.
(a) Gobal Schema for DFG Mbdel (And DFGL View).

dfgraphid-e—— Dfopject2
dfgraphid-e—— Dfobject2

}etZ — nettype /
nodetype

nodetype Dfnet

~
~
Sanae®

(c) Integration of Virtual Cass Dfnode3 into GS.. (d) Selecting View Cl asses for DFQ View.

/ \ dfgraphid-e—— Dfobject2
nodelype j

Dfnode3 __ o Dfnet2 — nettype

dfgraph|d prv
(e) The DF& Vi ew Schena. /f }etz —® nettype
nodetype Dfnet
Dfnode3

dfgraphid-e—— Dfopject2

(f) Integration of Virtual Cass Dfnode4 into GS..

K ...
’
4 Dfnode. ~e
! . DFG
1 1
I
Jprvdfnodes nxtdfnod es oD }étz = nettype
.
Scanamm==" - .
nodetype Dfnet dfgraphid @Dfno\de@

Df
node3 prvdfnodes nxtdfnodes

(g) Integration of Dfnode5 into GS; and Sel ection (h) The DFG3 Vi ew Schena.
of View C asses for the DFG3 Vi ew Schena.

Figure 9: The Construction of Three Design View Schemata for the Data Flow Graph
Model.

19

demonstrate how the same data flow graph may be represented using less detail. The data
flow graph in Figure 8.b, for instance, no longer represents the ports of the data flow nodes
and nets. In the data flow graph in Figure 8.b even the data flow nets are removed. The
goal of this section is to develop three design views that correspond to these three different
perceptions of the data flow graph model depicted in Figure 8.

As basis of this design view construction we assume the global schema depicted in
Figure 8.a. We first specify the design view DFG1 that presents the design data at the level
of detail depicted in Figure 8.a. This is equivalent to the behavioral information model
captured by the global schema. Hence, DFG1 is simply a subset of the global schema
containing all classes related to the data flow graph structure (Figure 8.a). This can be
specified by:

View Creation Script for the DFG1 View:

DEFINE-VIEW DFG1
ADD-SCHEMA (DFG);

SAVE-VIEW;

END-VIEW

Next, we want to construct a design view (called DFG2) that presents the design data
at the level of detail depicted in Figure 8.b. Since the example data flow graph in Figure 8.b
does not model the ports, we must remove the Dfport class from the design view DFG2.
This also includes the hiding of all references to the Dfport class. Since the Dfobject
class has references to the Dfport class, its subclasses Dfnode and Dfnet also inherit
these references. Therefore, the two functions inports() and outports() have to be removed
from all three classes. In MultiView, this can be achieved by a macro-operator that works
on a complete subgraph of the schema rather than on an individual class (see [26]). For
this purpose, we use the hide macro-operator as follows:

class Dfobject2* := hide* [inports(),outports()] from Dfobjectx*;

This query generates three virtual classes Dfobject2, Dfnode2, and Dfnet2, namely,
one for each of the classes in the subschema graph rooted at the Dfobject class. The result
of integrating these three classes into the global schema is shown in Figure 8.b.

By removing the port information from the view schema, we would also remove the
information necessary to retrieve the connectivity between data flow nodes and nets. Since
this connectivity between data flow nodes and nets must be maintained, we define a function
that composes the outports() and inports() functions to calculate the desired connectivity
information.

class Dfnode3 := refine Dfnode2 with
[nxt(Dfnet2) :={ return(self.outports.connto.back); };
prv(Dfnet2) :={ return(self.inports.connto.back); }; 1;

This refine query constructs a virtual class Dfnode3, which has the two additional
functions nxt() and prv() in addition to the type description of its source class Dfnode2.
Dfnode3 is integrated into the global schema by placing it directly below its source class
(Figure 9c).

The view DFG2 is now constructed by selecting the view classes Dfnode3 and Dfnet2
indicated in Figure 9.d by encircling them with a dotted line. MultiView extracts these view
classes from the global schema and interconnects them using generalization relationships
into the view DFG2 (Figure 9.e).

20

View Creation Script for the DFG2 View:

DEFINE-VIEW DFG2
class Dfobject2* := hide* [inports(),outports()] from Dfobject*;
class Dfnode3 := refine Dfnode2 with [nxt(Dfnet2),prv(Dfnet2)];
ADD-CLASS (Dfnode3);
ADD-CLASS (Dfnet2);

SAVE-VIEW;

END-VIEW

Next, we construct a design view that presents the design data at the level of detail
depicted in Figure 8.c. Since the example data flow graph does not model port nor net
objects, we must remove information related to the port and net classes from the design view.
Note however that the net objects serve as interconnection points between two data flow
nodes. Hence, the connectivity information represented by net nodes must be incorporated
into appropriate retrieval functions. This can be accomplished as follows:

class Dfnodeb := refine Dfnode3 with
[nxtdfnodes(Dfnode5) := {return ((cast Dfnode5)
self.outports.connto.back.outports.connto.back);};
prvdfnodes(Dfnode5) := {return ((cast Dfnode5)
self.inports.connto.back.inports.connto.back);};

1;

The virtual class Dfnode5 still has access to all functions in the type description of
Dfnode3, in particular, to the nxt() and prv() functions that reference the Dfnet class.
Therefore, we’ll take the following approach for creating the desired design view:

View Creation Script for the DFG3 View:

DEFINE-VIEW DFG3
class Dfnode4 := select from Dfobject2 where (self in Dfnode);
class Dfnode5 := refine Dfnode4 with
[nxtdfnodes(Dfnodeb) ,prvdfnodes(Dfnode5)];
ADD-CLASS (Dfnode5);
SAVE-VIEW;
END-VIEW

The view specification script for design view DFG3 first generates the virtual class Dfn-
ode4, which contains all object instances that belong to the Dfnode class. The Dfnode4
class does however have a limited type description, not allowing access to most functions
defined for the original Dfnode class. The integration of Dfnode4 into the global schema
is demonstrated in Figure 9.f. Next, the view specification script generates the virtual class
Dfnode5. Dfnode5 has the desired functions that indicate the connectivity information
between two data flow nodes (while hiding the intermediate net and port objects). Multi-
View integrates Dfnode5 into the global schema by making it a direct subclass of its source
class Dfnode4 (Figure 9.g). Lastly, the view specification script adds the virtual class Dfn-
ode5 to the design view DFG3. The selection of view classes is graphically indicated in
Figure 9.g using the dotted line. Figure 9.h depicts the third view schema DFG3.

In summary, we have demonstrated the creation of three design views DFG1, DFG2
and DFG3. These three design views hide different levels of detail from the complex data
flow graph model. In particular, for the example graph presented in Figure 8, the design
views DFG1, DFG2 and DFG3 represent the design data using the data flow graph model
on the left-hand side, in the middle, on the right-hand side of the figure, respectively.

21

Due to space limitations, the reader is referred to [26] for the specification of design
views for other design tasks, such as scheduling, allocation, and floorplanning.

5 EVALUATION OF THE DESIGN VIEW APPROACH

The view-based database approach offers all the advantages of a centralized database ap-
proach, like, for instance, the integration of diverse design information into one model, in-
tegrity control, controlled access to shared data, and the possibility for incremental update.
Furthermore, the view-based approach offers additional advantages, such as robustness and
flexibility. Robustness of the CAD system is achieved by shielding tools from changes in the
global data model. As long as the view on which a particular tool operates is maintained,
the tool is not affected by changes to the global data model. Flexibility of the CAD system
is achieved since new customized views, i.e., tool interfaces, can be created rapidly. Hence,
new tools can be easily added to the system by simply defining a new view (or possibly
using an existing one). Existing tools can work with these new tools through the database
without having to develop an additional interface to these new tools (the latter would be
required in a design environment with direct tool communication).

Additional advantages of tool integration using design views have been demonstrated by
the design view examples discussed in the previous section and elsewhere [26]. A summary
of these is given next:

o design views can filter different levels of detail of the otherwise complex design infor-
mation (e.g., hide complex timing constraints if irrelevant for a design task);

o design views can virtually restructure the design representation graphs so as to narrow
the gap between the tool’s local model and the global model (such as the complexity
of the data flow nets and ports);

o design views can simplify application-specific processing by augmenting the view with
customized functions (such as adding move-horizontal() and move-vertical() functions
to a floorplanning view);

o design views can increase the level of data consistency by incorporating consistency
checks directly into the set of legal access and update functions of the view (such
as adding a customized update function for the pins of components that assure the
adjacency of the pin with the component position);

o design views can precompile information that is frequently needed by the users of
the view by maintaining derived attributes (such as adding the absolute-position()
attribute of pins calculated based on the relative pin positions and the position of the
component);

o design views can assure the correct update of designs by preparing appropriate update
functions and associating them with the view, while hiding all illegal operators from
the view.

A number of observations arose from our experience of defining design views for the
different behavioral synthesis tasks. The key observations are listed below.

22

o We found that the specification of design views is relatively simple when using the view
definition language. It requires of course an understanding of (a) the global model of
the design information and (b) the information needs of the particular design task.

e The generation of design views is much less labor-intensive compared to manually and
in an ad-hoc fashion having to implement a tool interface and/or data file translators.

o We found that MultiView was sufficiently expressive to handle the specification of the
design views for all behavioral synthesis tasks that we explored.

e The type-manipulating object algebra operators, such as hide and refine, were more
frequently used than the set-manipulating ones, such as select and union. A reason
for this may be that the base schema already represents an appropriate classification
of the design objects into meaningful classes.

o Theoretically, the global schema could explode in size with the addition of many new
views. We found that class explosion was not a problem for the CAD example views we
studied. First, there generally is only a limited number of different views of interest for
a given application. Secondly, different views often use subparts of the global schema
in the same manner. For instance, both the allocation and binding design tools use the
subschema about the behavioral design data for read-only purposes.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a solution to the problems caused by utilizing a global
design database to achieve the much needed integration of diverse design information in
a CAD system. We have proposed to utilize the object-oriented view methodology, called
MultiView, for specifying customized tool interfaces (design views) on the CAD database.
A design view contains a subset of relevant information from the global database organized
in a fashion most suitable to the needs of a particular design tool. MultiView automatically
maintains the mapping between the global data model and local design views, thus freeing
individual design tools from this burden. In this paper, we have also given numerous
examples that demonstrate MultiView and its advantages for typical tasks in high-level
synthesis. Contributions of this paper to the CAD field can be summarized as follows:

e the identification of the problem of a conflict between data unification achieved by a
central database and data customization required by individual design tools;

o the recognition that object-oriented database views can be used to address this prob-
lem (put differently, the proposal of a novel approach towards addressing the tool
integration problem),

o the demonstration of the utility of MultiView for CAD applications by defining example
design views for particular design tasks, and

o the refinement of the architecture of a CAD framework to include a component for
view supporl.

23

Finally, we have (in a small way) contributed to the area of object-oriented views by
demonstrating their usefulness for a particular application domain.

To our knowledge, this is the first time that the concept of database views has been
applied to CAD applications. We think that the introduction of the view methodology
to the CAD field will revolutionize the currently clumsy mechanism of tool integration
using pairs of file translators. The creation of design views on the CAD object model will
result in a design environment that overcomes the problems caused by a central database,
such as, limited extensibility and generality of the global model. We expect this to be an
important first step towards the development of more powerful CAD environments based
on this flexible view approach.

While much has been accomplished, this work has opened many more avenues for further
research. While relational databases support some form of views, none of the commercial
object-oriented database systems (nor the prototypes available at universities) provide the
necessary functionality for view support as of today. Therefore, we are currently working on
an implementation of MultiView on top of the object-oriented database GemStone?. Based
on our experience with modeling typical design views using the view specification language
provided by MultiView, we feel strongly that object-oriented views will prove to be a viable
approach towards customized tool integration support.

Once the MultiView prototype has been completed, there are a number of challenging
issues that need to be studied. For instance, we want to determine the ease of view construc-
tion and the modeling power of MultiView for all desirable design tasks. More importantly,
however, for the final acceptance of such a system by the CAD industry, comparison studies
among different tool integration approaches, such as (1) using file translators, (2) using one
central database together with extracting routines, and (3) using the view-based database
will have to be performed. Two of the most important measures of this comparison will be
(1) the time spend to develop new design tools and (2) the performance of typical design
tasks executing in these different CAD systems.

Another avenue of future research concerns the exploration of the scope of the “reor-
ganization” power of the view support system. It is a challenging open problem whether a
view-based approach could be used to automatically maintain the mapping between dras-
tically different representation paradigms, e.g., between the graph structures used in high-
level synthesis versus the special-purpose hash-based matrix representations of a netlist used
for simulation [27].

Acknowledgements. I want to thank Lubomir Bic and Daniel D. Gajski for providing
me with advice and encouragement during earlier stages of this work.

References

[1] Abiteboul, S., and Bonner, A., “Objects and Views,” in Proc. SIGMOD, May 1991, pp.
238 — 247.

[2] Afsarmanesh, H., Brotoatmodjo, E., Ryeon, K. J., Parker, A. C., The EVE VLSI In-
formation Management Environment, IFEFE Int. Conf. on CAD, pp. 384 - 387, 1989.

2GemStone is a register trademark of the Servio Corporation.

24

[3] Allen, W., Rosenthal, D., and Fiduk, K., “The MCC CAD Framework Methodology
Management System,” DAC’91, pp. 694 — 698.

[4] Bancilhon and W. Kim, “Object-Oriented Database Systems: In Transition,” SIGMOD
RECORD, Vol. 19, No. 4, Dec. 1990, pp. 49 — 53.

[5] Baer, J. L., Liem, M. C., et al., A Notation for Describing Multiple Views of VLSI
Circuits, DAC’88, pp. 102 — 107.

[6] Bingley, P., and P. Van der Wolf, A Design Platform for the NELSIS CAD Framework,
DAC"90, 146 - 149.

[7] Blackburn, R. L., Thomas, D. E., and Koenig, P.M., Linking the Behavioral and Struc-
tural Domains of Representation for Digital System Design, IFEFE Trans. on CAD, vol.
CAD-6, No. 1, Jan. 1987.

[8] Cattell, R. G. G., Object Data Management, Addison-Wesley, 1992.

[9] CAD Framework Initiative, Panel Discussion, 29th ACM/IEEE Design Automation
Conf. (DAC’92), Anaheim, California, June 1992.

[10] Chiueh, T.-C., and Katz, R.H., Intelligent VLSI Design Object Management, EDAC’92,
pp- 410 — 414, Feb. 1992.

[11] Daniell, J. and Director, S., An Object Oriented Approach to CAD Tool Control, Proc.
26th Design Automation Conference, pp. 197 — 202, 1989.

[12] Gajski, D. D., Dutt, D. N., Wu, A. C.-H., and Lin, S. Y.-L., High-Level Synthesis:
Introduction to Chip and System Design, Kluwer Academic Press, 1992.

[13] Graham, A., “The CAD Framework Initiative Standards Progress Towards First Pub-
lication at Year End”, IEEF DATC Newsl. on Design Automation, Sp. 1992, pp. 13-21.

[14] Gupta, R., Cheng, W. H., Gupta R., Hardonag, I. and Breuer, M. A.. An Object-
Oriented VLSI CAD Framework, IEEF Computer, vol. 22, no. 5, 28 — 37, May 19809.

[15] Hamer, P. and Treffers, M., A Data Flow Based Architecture for CAD Frameworks,
Proc. IEFFE Internat. Conf. on Computer-Aided Design, pp. 482 — 485, 1990.

[16] Harrison, D. S., Moore, P., Spickelmier, R. L., and Newton, A. R., Data Management
and Graphics Editing in the Berkeley Design Environment, pp. 24 — 27, ICCAD’86.

[17] Heijenga, W., Jasnoch, U., and Radeke, E., “DaDaMo: A Conceptual Data Model for
Electronic Design Applications”, FDAC"92, pp. 394 — 398.

[18] Heiler, S., and Zdonik, S. B., “Object views: Extending the vision”, in Proc. IEEE
Data Eng. Conf., Feb. 1990, pp. 86 - 93.

[19] Knapp, D. W., and A. C. Parker, A unified representation for design information, In
Proc. CHDL-85, Elsvier, 1985.

[20] Lanneer, D., et al., An Object-oriented framework supporting the full high-level syn-
thesis trajectory, CHDL’91, pp. 281 — 300, 1991.

25

[21] Miller, J., Strauss, J., and Rammig, F., “Integration of a CHDL into an Engineering
Environment,” CHDL’90, pp. 157 — 166.

[22] Mueller, W, and Rammig, F., “ODICE: Object-Oriented Hardware Description in CAD
Environment,” CHDL’90, pp. 19 — 34.

[23] Rammig, F., (editor), IFIP WG 10.2, Workshop on Electronic Design Automation
Frameworks, Nov. 1990.

[24] Rundensteiner, E. A., “MultiView: A Methodology for Supporting Multiple Views in
Object-Oriented Databases”, Int. Conf. on Very Large Data Bases, 1992, pp. 187-198.

[25] Rundensteiner, E. A., and Bic, L., ”Set Operations in Object-Based Data Models”, in
IEFEFE Transaction on Data and Knowledge Eng., vol. 4, issue 4, August 1992, pp. 382
- 398.

[26] Rundensteiner, E. A., “Object-Oriented Views: A Novel Approach to Tool Integration
in Design Environments,” Dissertation, Info. and Computer Science Dept., Univ. of

California, Irvine, Fall 1992.

[27] Sangiovanni-Vincentelli, A., Univ. of Michigan, Ann Arbor, Private Communication,
Oct. 1992.

[28] Scholl, M. H., Laasch, C. and Tresch, M., “Updatable Views in Object-Oriented
Databases,” in Proc. 2nd DOOD Conf., Germany, Dec. 1991.

[29] VanEijndhoven, J. T. J., and Stok, L, “A Data Flow Graph Exchange Standard,”
EDAC’92, pp. 193 — 199, 1992.

[30] Wu, A. C. H., Hadley, T. S., and Gajski, D. D., An Efficient Multi-View Design Model
for Real-Time Interactive Synthesis, ICCAD’92, pp. 328 — 331.

26

