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Abstract

A powerful combinational path sensitization engineeiguired for the eftiient implementation of tools for test
pattern generation, timing analysis, and delay-fault testing. Path sensitization can be posed ab,ars¢iae n-
dimensional Boolean space, for a consistent assignment of logic values toctliengides which also satie§ a
given condition. While the conditions for path sensitizatiendififelent for diffeent applications, the seelm mecha-
nism need not be. In this paper wepose and demonstrate the effectiveness of several new deterministic techniques
for seach-space puning for test pattern generation. These technique$ased on a dynamic analysis of the slear
process and can be viewed as extensions of methods tleaimveduced in AN and SOCRPES. In paticular, we
present lineattime algorithms for dynamically identifying unique sensitization points and for dynamically maintain-
ing reduced head line sets. In addition, wegant two powerful mechanisms that drasticadiyuce the number of
backtracks: failue-driven assdions and dependency-dated backtracking. Both mechanisms can be viewed as a
form of learning while seahing and have analogs in other application domains. Theselspaming methods have
been implemented in a generic path sensitization engine called. BBASt pattern generatof G-LEAR that uses
this engine was also developede YWesent experimentaksults that comparthe effectiveness of ouropiosed
seach pruning strategies to those of PODEMAN, and SOCREES. In paticular, we show that LEAB vel effi
cient in identifying edundant faults and in generating tests for cliffi faults.
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1 Intr oduction

Path sensitization is common to test pattern generation, delay-fault testing and timing analysis, and can be posed
as the problem ofriding a valid truth assignment of the nodes in the circuit that sensitizes a path with a given prop-
erty. The conditions to sensitize a path depend on the application. In recent years, extensive work has been done in
developing techniques to prune the search space associated with path sensitization problems, particularly in test pat-
tern generationl] 5-9, 13-16, 19]. These technigues can be categorized as deterministic (e.g. unique sensitization
points, head lines, static/dynamic learning, search space equivalence relations) and non-deterministic (e.g. simple and
multiple backtracing).

In this paper we propose new deterministic heuristics to further improve search-space pruning in path sensitiza-
tion. These techniques are based on a dynamic analysis of the search jVecstast by illustrating hownique sen-
sitization pointd5] can be dfciently determined dynamicallpur algorithm has linear time complexity contrast
to the algorithm suggested in SOCRZS[16] which has worst-case quadratic time complexity

We, then, show that the notion leéad lires can be naturally extended to dynamic situations, and thus the size of
the set of head lines can be reduced as the search process &Velpesvide a linear time algorithm that determines,
at each node in the decision tree, a reduced set of head lines.

These dynamic concepts are associated with search-space pruning to guide the search. In case of inconsistencies,
we provide a method to determine nodes which must have assume certain values to avoid incondikierisies.
referred to agailure-driven asseions, and can be viewed as a form of learning while seardBindVe also intro-
duce an algorithm to perfordependency-dicted backtrackingn most algorithms for path sensitization such as the
D-algorithm[14], PODEM[7], FAN [5], TOPS[8], SOCRAES[15] and EST[6], backtracking is always performed
to the previous node in the decision tree,dhgonologic backtrackingln some situations backtracking qamovably
be performed to some other node in the decision tree, thus savirgg anlamber of backtracks. Our dependency-
backtracking algorithm is provabfjomplete in the sense that a solution is found if a solution exists, and has linear
time complexity Furthermore, if no backtracking is required the algorithm introduces no overhead in the search pro-
cess. Dependency-directed backtracking schemes were originally propfis8driran application of artifial intel-
ligence techniques to circuit analysis.

The new techniques for search-space pruning have been incorporated in a path sensitization algorithm LEAP
(LEvel-dependentnalysis in Path sensitizationfjhe basic path sensitization algorithm has been used to implement
a test-pattern generation systeWG-LEAP, which can also run customized versions of PODEMN,Fand
SOCRAES.

In the next section we review concepts common to decision procedures used in path sendNatisn .intro-
duce the basic concepts required to implenf@ihire-driven asseions anddependency-dacted backtrackingln
Section 3we describe each of the new techniques, and detail the corresponding algorithmic implemafigtion.
wards, we present a comprehensive set of results that illustratéeitterehess of LEAR proving redundancy and
in detecting dificult faults. InSection Sdirections for future research are described.

2 Definitions

The underlying algorithm for path sensitization is assumed to be a PODEM-based decision pféLeaheze
decisions are made with respect to the primary inputs (or to the headTmesighout the paper we use the concepts
of D-frontier, J-frontier X-path, backward/forward implications, head line, unique sensitization points, and other
concepts used in path sensitization for test-pattern generation, and which are described ifHefailrthermore,
LEAP can perform static learning as proposedlis], but the extended learning criterion [@D] is used, which
includes static learning due to backward implications. Examples of static learning are skayvi i@ther concepts
used in path sensitization are analyzed in the next sections.

In order to implement some of the techniques proposed in L#a&Following additional ddfitions are required.
A circuit is envisioned as a directed grdphk (V, E), where primary inputs and gate outputs are represented as verti-
ces in the grapA directed edgeu V) represents an inputof a gate with output Any algorithm defied onG with
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Figure 1: Static learning

complexity © (|V| + |E|) is said to have linear time complexibecause the number of edges is assumed to be lin-
early related to the number of vertices (i.e., gates with bounded fanin).

In the absence of inconsistencies, the search procedure proceeds as a sequence of decisions each of which is fol-
lowed by the corresponding implications performed memdth-fist mannerA decision in this context refers to the
electiveassignment of a spedifivalue (0 or 1) to a given vertex in the circuit grafh.implication, on the other
hand, refers to théorced assignment of a value to a vertex due to the elective assignment of other vEhéces.
sequence of decisions is represented by a directed Grapferred to as thaéecision tee Each node, in the deci-
sion tree is referred to adacision nodeand is characterized by idecisionlevel (depth)d(6) in the treeThe root
decision node is defed to be at decision level The implications associated with a given decision are represented
by a directedmplication graphl, which describes how the implication sequence evolves. Each@adehe impli-
cation graph is characterized by two integer parameters:

1. d(¢), which is the decision level of the decision node responsible for the implication sequence;

2. p(9), defined as thamplicationlevel.

In addition,S(¢) will be used to denote the predecessokgiofthe implication graph, which represent the vertices
causing the implication af. The elements di(¢) will also be referred to as tlmplication paentsof .

The decision and implication levels of an implied npdee calculated according to:

d(@) = max{d(Q)|TS(9)} 1)

and,

p(®) = 1+max{p(Q)[TDS(p) Od(Q) =d(9)} )

The implication level of a decision node is 0 by wigbn.

Throughout this paper the notatimi{j' K = v should be interpreted to mean that circuit veKgis assigned the

valueV at decision levgl and implication levek.

In Fig. 2 an example circuit is shown, with the corresponding circuit graph, decision tree, and implication graph
for a specift decision. IrFig. 2a, and after assigning, to 1 at decision level 3, the implication parenkgfis Xy,
and the implication parents ¥f areX, andXs.

While the search process evolves inconsistencies may. démse inconsistencies are categorizedgestex or
path A vertex inconsistency occurs when the logic values of the inputs and output of a gate are not cArzsidtent.
inconsistency occurs when the D-frontier becomes empty after some dethstotwo types of inconsistency are
illustrated inFig. 3 In Fig. 3-b the D-frontier is assumed to be composed onksaindX,.
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Figure 2: Structures associated with the search procedure

3 Level-DependentAnalysis

3.1 Dynamic Evaluation of Unique Sensitization Points

A unique sensitization poilg a gate in a circuit which must propagate an error for a given fault to be dfgcted
The inputs to this gate, which cannot propagate the error signal, must assume non-controlling values and are referred
to asunique sensitization implicationtn Fig. 4a, an example of a unique sensitization point and corresponding
unique sensitization implication are shown. Both vertgandX; can propagate the error signal currentlyXgn

Assuming the D-frontier to be composed of o¥fyandX-, then the error signal propagates friggio Xq only if Xg

assumes a non-controlling value, i.e. 0.
The evaluation of unique sensitization points was proposefiNn[], TOPS[8], and SOCRAES[15] as a pre-

X
1 X;=D j__a D-frontier
14 0 composed
11 N only of X3
B D
(a) Vertex inconsistency (b) Path inconsistency

Figure 3: Inconsistency types
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processing step and is based on the concept of domifieghrslowever as the search process evolves, other unique
sensitization points may exist, which cannot be determined with pre-processing tecimcieanple of a dynamic
unique sensitization point is shownhig. 4b. Becauseg has been implied to X7 is implied to 0. Hence, for the

error signal to propagate froK} to Xg, X; must assume the non-controlling valueXgf Xg is not a static dominator
of X, but due to the implication &f;, X5 becomes a dynamic dominator6f

The evaluation of dynamic unique sensitization points may be required to prove the redundancy of some faults
[16]. In a second version of SOCRBS[16], an approach to dynamically compute unique sensitization points based
on the intersection of the dynamic dominators of each vertex in the D-frontier is Bivemlgorithm has quadratic
time complexity because it requires the intersection of lists of dominator vertices. Furthermore, computing the lists of
dynamic dominators of each vertex in the D-frontier also has worst-case quadratic time complexity on the size of the
circuit graph. In SOCREFES, the dynamic evaluation of unique sensitization points is only applieditaidifaults,
that are otherwise abortgtb].

3.1.1 Levelized Beadth-First Traversal

If we envision a circuit as a directed graph and identify the vertices in the D-fromtiera levelized breadthst
traversal from the vertices in the D-frontier and until a primary output is reached, édethtifiexistence of an X-path
and also identiéis the dynamic unique sensitization poiAtsevelized breadth4fst traversal basically ensures that a
vertex at topological levéd is not processed before any vertex with topological lss thark, which must also be
processed. Hence, a unique sensitization poistprocessed only after all vertices in its transitive fanin have been
processed, and before any of the vertices in its transitive fanout are scheduled to be processedthfahthe
breadth-fist traversal is dafed as the number of vertices scheduled to be processed, then whenever the width is one,
a dynamic unique sensitization point has been reached. If the width of the bnesadthviersal ever reaches zero,
then there is no X-path from a vertex in the D-frontier to a primary output. Finallgote that the levelized breadth-
first traversal has linear time complexiynd can be implemented with the same overhead as any procedure to iden-
tify X-paths.

3.1.2 Implication Parents due to Unique Sensitization Points

Whenever a verted is a dynamic unigue sensitization implication, the implication parenta defied as the
set of vertices constraining the D-frontier at the current decision Feveltexv is said to constrain the D-frontier at
decision levek if at decision levek-1 vertexv is in the D-frontierand at decision levélv is either implied to 0 or 1.
The vertices constraining the D-frontier implicitly cause the unique sensitization implications, and hence can be
understood as the implication parents of derived unique sensitization implications.
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3.2 Dynamic Evaluation of Head Lines and Don’t Caes

In FAN [5] and SOCRAES[15], head lines are defd as the outputs of fanout-free sub-circuits. Head lines can
be satistd to any logic value in linear time. By using head lines instead of primary inputs, the search space can be
effectively reduced. Head lines have been determined statiaally pre-processing phase prior to computing the test
pattern for each fault. Howeveas the search process evolves, it may be possible e aefiv head lines as a func-
tion of other head lines. IRig. 5-a, an example of such a situation is given. Initially the set of head lines corresponds

to the primary inputg X,, X,, X Xy X, XG} . Let us assume that thesti decision, with decision level 1, corre-
sponds tox, = 1, which impliesX; to 1.We note that at this decision level the valu&gfs uniquely determined

by the value oKy, because the value ¥} is 1. Let us further assume that the next decision correspoixds=ol,

which impliesXg to 1. Becaus#, cannot dkect vertices other thaXg, the efective fanout 0¥, is one after decision

level 2. Since X is a head line and it is fanout-free, thesiXa new head line at decision level 2. Howemew X,

is driven by three fanout-free head lineg, X5 and X, and thus Xy also becomes a new head line. Each time a new
head line is defied, the fanin head lines become fanout-free vertices covered by the new head lines. Consequently
after decision level 2, the set of dynamic head lines becditgsX,,} instead of the static s€tX,, X,, Xg, X5},

and the dimension of the search space is reduced to half.

In [9] the concept oflont care vertices was introduced; it basically denotes a vertex that carfect falult prop-
agation after some decision level, and has been used to speed up the search process by reducing the number of impli-
cations performedie can also use the concept of dardre vertices to further extend the dynamic evaluation of
head lines. Ifrig. 5b, an example of such a situation is given. Let us assume that the vertex correspondingto the fi
decision isX;. If X4 is assigned to 1, thefy is implied to 1.The efective fanout oiXg becomes 0, an¥g is said to

be adont care since its value cannot propagate forward, and canfeat dfie path sensitization problem. Becaxige
is a dont care, the déctive fanout of verticeX,, X3 andX, can be decreased by 1, and these three head line vertices
become dynamically fanout-free. Consequenflybecomes a new head line, and becagsenly depends oiXg
after decision level IX; becomes a new head linéerticesX,, X3, X, andXs are covered by the new head lixg
and the search space after decision level 1 is reduced{fdynX,, X,} to { X.} . On the other hand, if at thesfi
decision levek; is assigned to 0, then a similar reasoning applies, anch#ieséarch space i{sxs} .

As both examples shgmweging head lines at a given decision level depends strongly on the decisions made at the
current and past decision levels.

In LEAP, at each decision level and after all implications of the current decision have been performed, an initial set
of new dont cares is determined@his set corresponds to primary outputs that can no longer propagate the error sig-
nal, and to the non-implied vertices that have all fanout vertices implied, i.e. verticedeativeffanout of 0. Start-
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ing from the initial set of dohcares, a levelized backward traversal on the circuit structure is performed to update the
effective number of fanout vertices of each vertex. If tecéiffe number of fanout vertices of a vertexeaches

zero, therv becomes a dontare Afterwards, the current set of head lines is examined to determine whether a subset
of head lines can be ngad into a new head linA. vertex driven by head lines all of which become dynamically
fanout-free is a new head linEhe process of mging head lines into new head lines is repeated until no more new
head lines can be derivedle further note that whenever an unjustfivertexv becomes a new head linealso
becomes justiéid.

3.3 Failure-Driven Asseltions

In LEAP, whenever an inconsistency is found, its causes are analyzed and an attempt is made to avoid repeating
implications that would lead to the same inconsistency again during the search process. Let us consider the example
circuit with the dynamic situation shownHig. 6-a. The current decision level is assumed to be 7 )grid assigned

to 0.This causes vertices;, X4, Xs, X7, Xg, X1, X117 andX;, to be implied to 1, and leads to a vertex inconsistency at
Xgo» Which is required to be O at decision leveA8.analysis of the dynamic situation in the circuit shows that only
decision levels 2, 4 and 5 contribute to the inconsistdfeggthermore X; cannotassume value 1 above decision
level 4; with the values dfg, Xg andX,, implied at decision levels less or equal to 4, a vertex inconsistency occurs if
X7 assumes value 1 above decision level 4. Simjlatlycannot assume value 1 above decision level 4. Conse-
quently both vertices must be asserted to value O at decision level 4. On the other jheawinot assume value 0O

above decision level 5, because otherwise the same implication sequence would take place, and an inconsistency
would occurWe further note the evolution of the implication levels within decision level 7.
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VerticesX;, X3 andXz, with asserted values due to inconsistencies, are referredeitues-driven asseions A

similar reasoning could be applied in case of a path inconsistency

In Fig. 6b, the implied vertices after asserting vertices are sh&gsuming no inconsistency is detected (because
the decision node is complemented), the next decision level is 8 and no vertestigedy implied at decision level
7.

During the search process, and whenever an inconsistency is found, the causes of the inconsistency are examined.
This basically entails determining the vertices and decision levels which contributed to the inconsBtemya
vertex or path inconsistenaye want to determine all the vertices that directly contributed to the inconsistency at the
current decision level and at past decision leW®salso want to compute which decision levels besides the current
decision level d&cted the inconsistencio decide at which decision level to assert vertices.

The process of identifying vertices and decision levdééctihg an inconsistency is divided into two phases:

1. Identifying which decision levels constrain D-propagation by removing vertices from the D-frontier.

2. Tracing the implication parents from the inconsistent vertex or from the set of vertices defining a path

inconsistency until the decision vertex.

The first phase is used only to identify decision levels whitdcgfely contribute to the inconsistency and which
will not be identifed by the second phaSehe second phase determines the remaining decision levels which contrib-
ute to the inconsistency and determines which vertices can be assertexktb\aliie at some decision levéh
obtain this information we perforgarent tracingon the implication sequence leading to the inconsistency

3.3.1 Paent Tracing

Parent tracing at decision ledetorresponds to a reverse levelized breadsiiaversal on the implication level
of each vertex implied at decision lexelfrom the inconsistency point until the vertex associated with the current
decision.The inconsistency point denotes the set of vertices responsible for a vertex or path inconEaténesr
tex after being processed schedules for future processing its implication parents which are also implied at the current
decision levelThe decision levels of implication parents other than the current decision level are recordedhiBy defi
tion, the implication level of any implication parent of a veserplied at the same decision level, is lower than the
implication level ofv. The partial order thus de&d assures that whenever the width of the reverse levelized breadth-
first traversal reacheme the vertex to be processed next in the breadthtfaversal can be asserted to the comple-
ment of its current value at the highest decision level recorded, sinfae its current value alone generates an impli-
cation sequence leading to an inconsisteey note that since phase 1 records the decision levels constraining the
D-frontier, any decision level that directly contributes to the inconsistency is recorded. Hence if & isasserted
to valueV at some decision levglit cannot provably assume afdient value after decision leviel

We refer now to the example Bfg. 6 and illustrate how assertions are derivedrin 7 the implication graph
describing the information provided by the implication levels and by the implication parents is shown. Starting from
the inconsistent vertices,, X1 andX;,, the graph is traversed in reverse levelized breadthrfiannerDuring the
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traversal, the breadthrst width reaches one on verticés X3 andX;. Thus, each of these vertices can be asserted to
the complement of its current logic valdene decision levels at which the vertices are asserted anedi&fy the
decision levels other than 7 which have been recorded from the inconsistency point until the vertex being asserted is
processed. In the example shown the decision levels recorded are 2 aiXd drfdKs, and 2, 4 and 5 foX;. In this
example we assume that no decision levels are recorded due to constraining the D-frontier

Although the example consists of forward implications, parent tracing can be used with backward implications or
non-local implications because it is based on implication levels and on implication parents, and not on topological
levels.

Finally, we note that by performing parent tracing every time an inconsistency is found, and by recording the deci-
sion levels constraining the D-frontiet is possible to always have an accuratengtedn of which decision levels
were relevant for the inconsistencies detecidds information is what allows performing dependency-directed
backtracking.

Our approach to derive failure-driven assertions eventually determines the same information that can be deter
mined with dynamic learning as proposed in SOTRB3[16], but there are some relevantfeiiences. Dynamic
learning has quadratic time complexity and has to be performed after each decision. For this reason dynamic learning
is only used for extremely dii€ult faults[16]. On the other hand, computing failure-driven assertions has linear time
complexity and is only performed after an inconsistency is found. Howieveome cases failure-driven assertions
may take several decisions to derive the same information that can be derived with dynamic learning after one deci-
sion. Therefore, we could hypothetically construct examples where dynamic learning, with a smaller decision tree,
would perform better than computing failure-driven assertions. On average, homebelieve that computing fail-
ure-driven assertions is mordieient than dynamic learning while providing equivalent information.

3.4 Dependency-Diected Backtracking

To illustrate how dependency-directed backtracking can improve the search process over chronologic backtrack-
ing, we study the example circuit kig. 8a. Without loss of generalitywe assume a simple backtracing scheme
which chooses the input variables in the otdgrXy, X3, andX,, and that the order of choosing vertices in the D-

frontier isZ,, Z, andZ5. Furthermore, the simple backtracing scheme is assumed to chooger Xg, X; overXy,
andXs over X4. Y assumes valuB, andZ,;, Z, andZ are assumed to be primary outpde further assume that

none of the techniques introduced in the previous sections is applied. Our goal is to propagate the error tignal in
any of the primary outputs.
The first decision isX; = 0, which results from backtracing an initial objective of IXgg This decision causes

the implication ofXg to 0 andZ; to 0. SinceZz is removed from the D-frontiedecision level 1 is recorded as con-
straining the D-frontierThe second decision ¥, = 1, which also results from backtracing frodyy. This decision
causes the implication of; to 1.The third decision i¥3 = 1, which causeXg to be implied to 1. Finallythe fourth
decision isX, = 0, which causeX; to be implied to 1Xg to be implied to 1, an¥,q, Z; andZ, to be implied to 0.
Hence a path inconsistency is detected, and the vaieriist be complementedle note that only decision levels

1 and 4 contribute to the path inconsistency as showagin8-b. This information can be obtained by considering
recorded decision levels which constrain the D-fronéied by performing parent tracing from the vertices constrain-
ing the D-frontier at the current decision level, ZgandZ,. We note that decision levels 2 and 3 do not constrain the

D-frontier and do not contribute to an implication at decision level 4.

After complementing,, the new implications ané; implied to 0,Xg implied to 1 an; o, Z; andZ, implied to O
(seeFig. 8c).Again a path inconsistency is detected. Furthermore, we note that only decision levels 1 and 4 contrib-
ute to the path inconsistendyhis information can be obtained again by considering recorded decision levels which
constrain the D-frontigiand by performing parent tracing from the vertices constraining the D-frontier at the current
decision level.

AssigningX, to both logic values causes inconsistencies, hence it is necessary to backtrack. In chronologic back-

tracking schemes, the last non-complemented decision is tried, which correspégitsttee example. Howevgthe
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analysis of the decision levels thafieetively contribute to both inconsistencies reveals that backtracking canbe per
formed to decision level 1. Hence the valuXpfs complemented and all decisions after decision level 1 are erased.
By backtracking to decision level 1, it is proved that reconsidering the decisions at levels 2 or 3 could not allow path
sensitizationThe diference between dependency-directed backtracking and the chronologic backtracking schemes is
illustrated inFig. 9
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(A) Chronologic backtracking: backtrack to decision level 3
(B) Dependency-directed backtracking: backtrack to decision lev
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Figure 9: Dependency-directed versus chronologic backtracking

As suggested in the previous section, the information required to implement the proposed dependency-directed
backtracking scheme is obtained by recording the decision levels constraining the D-frontier and by performing par
ent tracing after each inconsistency is detected. Hence, all decision levels that contribute to inconsistencies are
recorded, and each time both values of a decision node cause inconsistencies, the highest decision level that has been
recorded in past inconsistencies is used as the backtracking decision level.

When backtracking to decision leuglit is necessary to identify lower decision levels that contribute to the impli-
cations at decision lev&l The real cause for inconsistencies at higher decision levels can be related to these lower
decision levels, which may not be recorded yet. Howdweiidentifying all such decision levels, we could force
backtracking to decision levels higher than the lowest decision level possible. For this reason, when processing
inconsistencies, any vertexmplied at a lower decision levkis explicitly identifed (i.e. marked as part of a 84).

When backtracking to decision leuebnly the vertices i, are processed. Parent tracing is performed for each of
the vertices irM, to identify lower decision levels that contribute to relevant implications at decision.level

In [11] and[12] some diferent forms of dependency-directed backtracking were proposed for test-pattern genera-
tion in sequential circuits. Howevyehe backtracking scheme proposefllity is only sketched and no experimental
results are give.he backtracking scheme propose(ili?] uses a concept equivalent to decision levels to decide the
backtracking point in the decision tree, but as describ§tRin the analysis is performed local to an inconsistency
and hence it may not to be complete. Consequestiiyie detectable faults may not be detected.

The dependency-directed backtracking scheme proposed here has negligible overhead in the absence of inconsis-
tenciesWhen inconsistencies are detected, the time complexity of the algorithms for failure-driven assertions and
dependency-directed backtracking is lin&shen fiding the solution to some problem, this improved backtracking
scheme never requires more backtracks than the common chronologic backtracking, proxétedrddring of the
decision vertices is assumed. In the worst-case scenario, both schemes result in the same number of backtracks; in
such a situation dependency-directed backtracking introduces a constant overhead to the total running time.

4 Results

The techniques described in the previous section have been incorporated in a path sensitization algorithm, LEAP
implemented in C++, which forms the core of a test-pattern generation sy&&ehtAP. TG-LEAP can also run
customized implementations of PODEMANF and SOCRAES, that employ the deterministic heuristics of each of
these path sensitization algorithmi$ie implementation of PODENY], PODEM?*, can perform both forward and
backward implications, and thus must maintain a J-frofitler implementation of AN [5], FAN*, computes unique
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sensitization points dynamically whenever the size of the D-frontier is one using the algorithm des&#ttbim
3.1 The implementation of SOCRAS, SOCRAES*, implements the concepts describedli] and also com-
putes dynamic unique sensitization points, but using the algorithm propdection 3.1Hence, SOCRPES* cor
responds to a morefefient implementation of the deterministic heuristic§li] and[16] until phase DYN_116],
but without the implementation of instruction 2 of the unique sensitization procgdijr& he results given for
SOCRAES also use the improved learning criteriofil®X.

Because our main goal is to compare the deterministic heuristics of each algorithm, only structural controllability/
observability measures are ug&fl Furthermore, only the followingacktracingschemes were tested:

1. Simple backtracing, starting by trying to satisfy the most difficult controllability problems and afterwards trying

to satisfy the most simple observability problems.

2. Multiple backtracing, as proposed[B], but using structural controllability/observability measures.

In TG-LEAP backtracing iglwaysperformed to a head line in opposition to the backtracing schemasliarkd
SOCRAES, where backtracing can stop at fanout pdbits[15]. This option is intended to allow using the path
sensitization algorithm in other applications, mainly timing analysis and delay-fault testing.

Furthermore, no redundancy removal techniques are[ligdd7]. In the tests performed, each path sensitization
problem is intended to be analyzed individuadlgyd updating redundant information on the circuit every time a fault
is proved redundant, would eventually relate individual path sensitization problems.

In the following, several tests are performed on the ISCARZBBenchmark suite, using a simplistically reduced
fault set for each circuit. For comparison purposes, all faults of the collapsed fault set of each benchmark circuit are
targeted.This option is intended to allow a thorough evaluation of each of the path sensitization algorithms when
applied to test-pattern generation, especially in proving redundancyndirdyftests for hard to detect faulddl. the
results shown were obtained on a DECstation 5000/240 with 32 Mbytes of RAEbIkil, some characteristics as
well as the pre-processing time for static learning of each benchmark circuit are shown. Static learning is used only in
SOCRAES* and LEAP

Table 1: Statistics of the benchmark circuits

Circuit Gates Pls POs Faults Re}% L:jrlltiant Ptriﬁ;grgr?essesci;] 9 irrl:l;ir::-;?i((:)?:s
C432 160 36 7 524 4 0.097 138
C499 202 41 32 758 8 0.208 40
C880 383 60 26 942 0 0.250 116
C1355 546 41 32 1574 8 1.047 208
C1908 880 33 25 1879 9 1.910 1310
C2670 1193 233 140 2747 117 2.718 1951
C3540 | 1669 50 22 3428 137 16.37 6906
C5315 2307 178 123 5350 59 4.723 3609
C6288 2406 32 32 7744 34 0.961 830
C7552 | 3512 207 108 7550 131 13.90 10139

The results of running each algorithm with simple backtracing are showabie2. The number of detected,
redundant and aborted faults is denotedtby#R and#A, respectivelyThe total number of aborted faults for each
algorithm is also given.
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Table 2: Results with simple backtracing (backtrack limit set to 500)

PODEM* FAN* SOCRATES* LEAP
Circuit | Faults
#D | #R | #A | #D | #R | #A | #D | #R | #A | #D | #R | #A

C432 | 524 519 | O 5 519 |1 4 519 | 2 3 520 | 4 0
C499 | 758 750 | O 8 750 | 8 0 750 | 8 0 750 | 8 0
C880 | 942 942 | 0 0 942 | 0 0 942 | 0 0 942 | 0 0
C1355 | 1574 | 1566 | O 8 1566 | 8 0 1566 | 8 0 1566 | 8 0
C1908 | 1879 | 1864 | 6 9 1868 | 9 2 1868 | 9 2 1868 | 9 2
C2670 | 2747 | 2626 | 62 59 2630 | 86 31 2630 | 93 24 2630 | 117 | O
C3540 | 3428 | 3282| 114 | 32 3287|132 | 9 3291|137 | O 3291|137 | O
C5315 | 5350 | 5291 | 55 4 5291 | 59 0 5391 | 59 0 5291 | 59 0
C6288 | 7744 | 7675 | 34 35 7700 | 34 10 7710 | 34 0 7710 | 34 0
C7552 | 7550 | 7375| 62 113 | 7388 73 89 7390 | 77 83 7417 | 131 | 2
Total 32496 273 145 12 4

As the results shawvith simple backtracing, LEAPerforms better that any of the other algorithms, and only four

Table 3: Results with multiple backtracing (backtrack limit set to 500)

PODEM* FAN* SOCRATES* LEAP
Circuit | Faults
#D | #R | #A | #D | #R | #A | #D | #R | #A | #D | #R | #A

C432 | 524 520 |1 3 520 |1 3 520 | 2 2 432 | 4 0
C499 | 758 750 | O 8 750 | 8 0 750 | 8 0 750 | 8 0
C880 | 942 942 | 0 0 942 | 0 0 942 | 0 0 942 | 0 0
C1355 | 1574 | 1566 | O 8 1566 | 8 0 1566 | 8 0 1566 | 8 0
C1908 | 1879 | 1861 | 6 12 1866 | 7 6 1870| 9 0 1870 | 9 0
C2670 | 2747 | 2630 | 68 49 2628 | 86 33 2630 | 93 24 2630 | 117 | O
C3540 | 3428 | 3281 | 114 | 33 3284 | 132 | 12 3291|137 | O 3291|137 | O
C5315 | 5350 | 5290 | 53 7 5291 | 59 0 5291 | 59 0 5291 | 59 0
C6288 | 7744 | 7703 | 34 7 7708 | 34 2 7695 | 34 15 7708 | 34 2
C7552 | 7550 | 7369 | 62 119 | 7349 | 77 124 | 7368 | 77 105 | 7419|131 | O
Total 32496 246 180 146 2
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detectable faults out of a total of 32496 are aborted. Of the three other algorithms, BEBZRArforms better than
FAN*, which performs better than PODEM*.

In Table3, the results of running each algorithm using multiple backtracing are shéitinboth backtracing
schemes, LEARs able to prove redundaall the redundant faults, and with multiple backtracing only aborts two
detectable faults of circuit C6288/e note that with simple backtracing LEARtects these two faults without back-
tracking. For SOCRBES* and AN* the results improve for C432, C1908 and C6288. On the other hand, the results
are worse for C7552, and this causes the total number of aborted faults of BEERd RAN* to increase with
multiple backtracing.

Furthermore, with multiple backtracing, and for C6288NF performs better than SOCRAS*. We conjecture
that since SOCRPES* uses non-local implications, for some faults this increases the original width of the J-frontier
This increased width may cause some wrong initial decisions, which ficeltib correct when the size of the deci-
sion tree becomes . Although LEAPuses the same assignments as SOKE®A, the initial wrong assignments
are overcome by the dependency-directed backtracking scheme and by failure-driven assertions.

In Table4 the running times per fault for each of the algorithms is shown, with both simple and multiple backtrac-

Table 4: Run time per fault (in seconds) with simple and with multiple backtracing

PODEM* FAN~* SOCRATES* LEAP
Circuit

Simple | Multiple Simple | Multiple Simple | Multiple Simple | Multiple

C432 0.046 0.081 0.033 0.071 0.033 0.059 0.024 0.040

C499 0.093 0.211 0.049 0.134 0.055 0.137 0.065 0.144

C880 | 0.027 0.036 0.030 0.040 0.033 0.041 0.040 0.044

C1355 | 0.154 0.307 0.137 0.280 0.127 0.277 0.143 0.290

C1908 | 0.161 0.217 0.135 0.147 0.112 0.126 0.126 0.136

C2670 | 0.223 0.349 0.129 0.260 0.147 0.264 0.130 0.210

C3540 | 0.215 0.282 0.108 0.166 0.103 0.152 0.118 0.154

C5315 | 0.090 0.147 0.113 0.159 0.126 0.164 0.149 0.180

C6288 | 0.423 0.579 0.253 0.555 0.292 0.782 0.320 0.634

C7552 | 0.283 0.519 0.266 0.435 0.274 0.436 0.292 0.384

ing. For circuits where several faults are aborted by the other algorithms, pdtfoPms bettetHowever in circuits

where SOCRAES* does not abort any fault (e.g. C499, C880, C1355, C1908, C3540 and C5315), the average run-
ning time per fault of LEARs higher The main reason for the higher running times is related to the dynamic evalua-
tion of head lines as proposed $ection 3.2At each decision level, dynamic head line evaluation introduces
overhead linearly related to the size of the circuit graph. Hence, a small constant is introduced to the running times, as
the results indicate.

For circuits where SOCRAES* aborts faults, LEAFhas better run times. Howeyéf the backtrack limit is
reduced, SOCRPES* would eventually have better run times at the cost of some aborted faults.

As Table4 indicates, the multiple backtracing scheme used introduces an important overhead when compared
with the results for simple backtracing. In most of the circuits, the average run time per fault almost doubles with
multiple backtracingThe main reason for this tBfence in run times is due to thefdience between the number of
vertices traversed by multiple backtracing and the number of vertices traversed by simple backtracing.
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The primary objective of LEARS to be used with ditult faults, both redundant and detectafile.compare
LEAP with the other algorithms, a small set of redundant and hard to detect faults was chosen from some of the
benchmark circuitsThe results obtained are showrlable5; columns labele@B denote the number of backtracks
and the column labele#A denotes the number of assertions determined by LE&RC432 the backtrack limit was
set to 50000, and for the other circuits the backtrack limit was set to 10000. For all the redundant faulpspizEAP
redundancy with a reduced number of backtracks. On the other hand, the other algorithms cannot prove redundancy
in most cases, even with adarbacktrack limitThe diference of backtracks between SOQES* and LEARllus-
trates the strength of the deterministic heuristics introduced in LE&Fboth algorithms, the decision tree created
for each fault is the same until backtracking is requitdgrwards, while SOCRRES* usually requires a very &
number of backtracks, LEARanages to derive the information required to skip several decision tree nodes, thus
proving redundancy with a very small number of backtracks. Furthermore, in each of the examples shown which
require backtracking, several assertions are determined by analyzing the causes of the inconsistencies.

Table 5: Handling diffi cult faults with multiple backtracing (time in seconds)

Circuit PODEM* FAN* SOCRATES* LEAP
R: redundant
D: detectable #B Time #B Time #B Time #B #A Time
C432 (R) | >50000 | 389 5618 56.63 | 793 493 | 33 66 0.36
259gat s-a-1
C432 (R) | >50000 | 288.5 | 5740 43.94 | 921 6.65 11 20 0.11
347gat s-a-1
C1908 (R) | > 10000 | 147.2 | >10000 | 161.2| O 0.031| 0 0 0.052
565 s-a-1
C2670 (R) | > 10000 | 127.3 | > 10000 | 150.5| > 10000 | 203.8 | 9 16 0.24
2282 s-a-1
C2670 (R) | > 10000 | 126.8 | 1872 57.41 | > 10000 | 227 4 6 0.16
2417 s-a-1
C7552 (D) | >10000 | 119.3 | > 10000 | 92.94 | >10000 95.05 | 110 48 2.56
3695 s-a-1

For fault 2417 s-a-1 of C2670AR* manages to prove redundancy while SOJES&* does not. From our expe-
rience, the reason seems to be the increased J-frontier in SBSRAaused by static learning, which in some situ-
ations may cause the multiple backtracing scheme used to make several wrong assignments, which result in
SOCRAES* not being able to detect the fault or to prove the fault redundant.

For fault 3695 s-a-1 in circuit C7552, although LEAuires 10 backtracks torid a test pattern to detect the
fault, none of the other algorithms is able taifa solution to the path sensitization problem in less than 10000 back-
tracks.This example further illustrates the applicability of the deterministic heuristics used inWwB#&Pcompared
to SOCRAES*.

Some of the relevant statistics of running LEA#h simple and multiple backtracing on each of the benchmark
circuits are shown ifiable6; columns labele® denote simple backtracing whereas columns labdl@uticate mul-
tiple backtracingFor LEAR the number of decisions is usually small when compared with the number of primary
inputs of each circuifThe average number of decisions depends on the backtracing scheme chosen, and none of the
backtracing schemes implemented seems to britédfi better On average, the number of backtracks per fault is
negligible; the only exception being C7592e average number of failure-driven assertions illustrates the applica-
bility of this deterministic heuristic. Since the average number of backtracks is small, the number of assertions is also
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Table 6: Statistics for LEAP (average numbers per fault) with a backtrack limit of 500

Unique
Decisions Backtracks Assettions sensitization Head lines
Cir cuit implications
S M S M S M S M S M

C432 12.44 10.94 0.235 0.141 120 | 048 | 398 |39 |202 |141

C499 33.74 | 3512 |0.169 |0.098 |209 |246 |061 | 093 | 051 | 0.07

C880 1049 | 7.31 0.008 | 0.000 | 0.03 |0.00 |260 |210 |3.60 | 2.04

C1355 | 32.88 32.67 0.000 0.000 191 | 020 |0.71 | 059 |0.02 |O0.01

C1908 | 17.83 12.57 0.856 | 0.039 121 | 014 |187 | 210 |0.71 | 044

C2670 | 16.92 17.47 | 0.076 | 0.11 0.69 |033 |283 |302 |1271| 1271

C3540 | 11.42 9.64 0.009 0.037 042 | 030 | 280 |286 | 043 | 0.38

C5315 | 9.76 10.36 | 0.022 | 0.023 | 0.22 | 0.09 | 220 | 223 |0.88 | 0.83

C6288 | 2693 | 2784 | 0.033 | 0347 |035 |0.70 |031 |032 |0.01 |0.01

C7552 | 33.68 21.97 1.190 1.272 1.00 |1.07 |299 |3.09 |1.03 |1.01

necessarily small. Except for specifircuits (C499, C1355 and C6288), a reasonable number of unique sensitization
implications is determined for each fault. Furthermore, for most circuits, several static as well as dynamic head lines
are found and reduced. C432, C880, and C2670 appear to be specially suitable for determining head lines. For cir
cuits C499, C1355 and C6288, on the contrdmy number of head lines is small.

The results offable2 and ofTable3 suggest that PODEM*, with simple backtracing, can be used to detect most
of the faults with very little overhead. On the other hand, using LisAdPeferable to detect or prove redundant the
more dificult faults. Hence, we ran PODEM?*, with simple backtracing and a backtrack limit of 5, on all the bench-
mark circuits Afterwards, we ran LEARwith multiple backtracing and a backtrack limit of 500, on the set of faults
aborted by PODEM*The results obtained are shownTable7. The total number of faults analyzed by each algo-
rithm is denoted b¥T. The number of detected, redundant and aborted faults is denot& # and#A, respec-
tively. PODEM* detects a total 31645 detectable faults from a total of 32496 faults, proves redundant 287 faults, and
aborts 564 faultAfterwards, LEAPdetects 344 faults from an initial total of 564, proves redundant 220 faults and
aborts no faults. For C499, C880 and C1355 some of the algorithms discussed can perform better alone without
aborting faults. For the remaining benchmark circuits, using the combination of PODEM* followed by LEAP
achieves a much better performance than any of the other algorithms alone. Furthermore, no fault igvebuted.
that the two faults aborted by LEA#th multiple backtracing for C6288, are detected without backtracks by LEAP
or PODEM* using simple backtracing

The results presented in this section are intended only to illustratefehgvehess of LEARor difficult faults,
both redundant and detectable. In a complete test pattern generation system, fault simulation would be employed to
reduce the test set size, and to randomly detect sofrruldifietectable faults, as propoga], [15] and[19]. We
further note that our implementation of SOCHZS* has some relevant tifences with respect to the original algo-
rithm [15], [16]. SOCRAES uses an improved multiple backtracing procedure as well as improved controllability/
observability measures to guide the decision procedure. Furthermore, SESRAnly implements one of the
unique sensitization procedures of SOURES [16]. This justifies the difierences in results observed between
SOCRAES* and SOCRAES.
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Table 7: Results using PODEM* followed by LEAP

PODEM* (backtrack limit of 5) LEAP (backtrack limit of 500)

Circuit Time/Fault
#T #D #R #A #T #D #R #A

C432 | 524 519 0 5 5 1 4 0 0.031
C499 | 758 750 0 8 8 0 8 0 0.055
C880 | 942 940 0 2 2 2 0 0 0.027
C1355 | 1574 | 1566 | O 8 8 0 8 0 0.142
C1908 | 1879 | 1818 | 6 55 55 52 3 0 0.079
C2670 | 2747 | 2624 | 49 74 74 6 68 0 0.070
C3540 | 3428 | 3262 | 100 66 66 29 37 0 0.093
C5315 | 5350 | 5268 | 46 36 36 23 13 0 0.075
C6288 | 7744 | 7534 | 34 176 176 176 0 0 0.213
C7552 | 7550 | 7364 | 52 134 134 55 79 0 0.189
Total 32496 | 31645 | 287 564 564 344 220 0

5 Conclusions

This paper introduces several new techniques to prune the search space in path sensitizationTirebéetash-
niques explore dynamic information provided by the search process, both before and after inconsistencies are
detected.

The techniques proposed have been incorporated in a path sensitization algorithm (LEAP), which experimental
results show to be more suitable to prove redundancy amdittefits for hard to detect faults than customized imple-
mentations of PODENI7], FAN [5] and SOCRAES][15].

Despite the improvements introduced in LE&R search process is still extremely dependent on the ordering of
assignments to the head lines as the resuedtion 4show Future work is mainly intended to overcome this prob-
lem and to improve the inconsistency processing schemes proposed inALB&tBral evolution consists in intro-
ducing search space equivalefi@eand dominanc@4] relations to further prune the search spaActually, search
space equivalence relations provide a complementary scheme with respect to dependency-directed backtracking;
search space equivalence relations avoid entering in regions of the search space equivalent to others searched before,
while dependency-directed backtracking prunes the decision tree by avoiding reconsidering decisions that do not
affect the inconsistencies found.

Part of the motivation for developing LEA® the construction of a highlyfadfient path sensitization algorithm
with applications to other areas where path sensitization is required, mainly timing analysis and delay-fault testing. It
is our goal to evaluate possible applications of LEABese areas, where the path sensitization problems are usually
more dificult than in test pattern generation.

References

[1] M. Abramovici, M.A. Breuer andA. D. Friedman, “Digital System$esting andTestable Design”. Computer Science
Press, 1990.
[2] F Brglez, and H. Fujiwara, “ANeutral List of 10 Combinational Benchmark Circuits an@iaget Translator in FOR-



CSE-TR478-93 Search-Space Pruning Heuristics for Path Sensitization in Test Pattern Generation 17

(3]
(4]
(5]
(6]
(7]
(8]

(9]
(10]

(11]
(12]
(13]
(14]
(15]
(16]
(17]

(18]
(19]

TRAN”. In Proc. Int. Symp. Circuits and Systems, 1985.

R. Dechter“LearningWhile Searching in Constraint-Satisfaction Problerfigthnical Report CSD-860049, University of
California at LosAngeles, June 1986.

T. Fujino, and H. Fujiwara, “An HtientTest GeneratioAlgorithm Based on Search Space Dominance”. Proc. 22nd Fault
Tolerant Comput. Symp., 1992.

H. Fujiwara, and’. Shimono, “On thécceleration offest GeneratioAlgorithms”. IEEETrans. on Computers, vol. C-32,
no. 12, December 1983, pA3r-1144.

J. Giraldi, and M. L. Bushnell, “ESThe New Frontier ilutomaticTest-Pattern Generation”. In Proc. 27th Deigito-
mation Conf., 1990.

P. Goel, “An Implicit Enumeratior\lgorithm to Generat&@ests for Combinational Logic Circuits”. IEEEans. on Com-
puters, vol. C-30, no. 3, March 1981, pp. 215-222.

T. Kirkland, and M. Ray Mercef'A Topological SearclAlgorithm for ATPG”. In Proc. 24th DesigAutomation Conf.,
1987.

A. Lioy, “Adaptive Backtrace and Dynamic Partitioning EnhaB&G”. In Proc. Int. Conf. Computer Design, 1988.

W. Kunz, and D. Pradhan, “Accelerated Dynamic Learningiést Pattern Generation in Combinational Circuits”. IEEE
Trans. on CAD, vol. 12, no. 5, May 1993, pp. 684-694.

S. Mallela, and SNu, “A Sequential CircuiTest Generation System”. In Proc. [fést Conf., 1985.

R. Marlett, “An Efective Test Generation System for Sequential Circuits”. In Proc. 23th DAsigmation Conf., 1986.

J. Rajski, and H. Cox, “Method to Calculate Necessakgsignments irAlgorithmic Test Pattern Generation”. In Proc.
Int. Test Conf., 1990.

J. P Roth, “Diagnosis oAutomata Failures: a Calculus and a Method”. IBM J. Res. Develop., vol. 10, pp. 278-291, July
1966.

M. H. Schulz et. al., “SOCRFES: A Highly EfficientAutomatic Test Pattern Generation System”. IEEf&ns. on Com-
puterAided Design, vol. 7, no. 1, January 1988, pp. 126-137.

M. H. Schulz, and EAuth, “Improved Deterministid@est Pattern Generation witpplications to Redundancy Identié-
tion”. IEEE Trans. on Computehided Design, vol. 8, no. 7, July 1989, pp18316.

R. M. Stallman, and G. J. Sussman, “Forward Reasoning and Dependency-Directed Backtracking in a System for Com-
puterAided CircuitAnalysis”. Artifi cial Intelligence, 9 (1977), pp. 135-196.

R. E.Tarjan, “Finding Dominators in Directed Graphs”. SIAM J. Comput., vol. 3, pp. 62-89, 1974.

J.A. Waicukauski, et. al., “APG for Ultra-Lage Structured Designs”. In Proc. Ifiest Conf., 1990.



