

by

CSE-TR-

Search-Space Pruning Heuristics for Path Sensitization in Test Pattern Generation

João P. Marques Silva and Karem A. Sakallah

178-93

THE UNIVERSITY OF MICHIGAN
Computer Science and Engineering Division
Department of Electrical Engineering and Computer Science
Ann Arbor, Michigan 48109-2122
USA

Search-Space Pruning Heuristics for Path Sensitization in Test Pattern
Generation

João P. Marques Silva and Karem A. Sakallah

Advanced Computer Architecture Laboratory
Department of Electrical Engineering and Computer Science

University of Michigan
Ann Arbor, Michigan 48109-2122

October 8, 1993

Abstract

A powerful combinational path sensitization engine is required for the efficient implementation of tools for test
pattern generation, timing analysis, and delay-fault testing. Path sensitization can be posed as a search, in the n-
dimensional Boolean space, for a consistent assignment of logic values to the circuit nodes which also satisfies a
given condition. While the conditions for path sensitization are different for different applications, the search mecha-
nism need not be. In this paper we propose and demonstrate the effectiveness of several new deterministic techniques
for search-space pruning for test pattern generation. These techniques are based on a dynamic analysis of the search
process and can be viewed as extensions of methods that were introduced in FAN and SOCRATES. In particular, we
present linear-time algorithms for dynamically identifying unique sensitization points and for dynamically maintain-
ing reduced head line sets. In addition, we present two powerful mechanisms that drastically reduce the number of
backtracks: failure-driven assertions and dependency-directed backtracking. Both mechanisms can be viewed as a
form of learning while searching and have analogs in other application domains. These search pruning methods have
been implemented in a generic path sensitization engine called LEAP. A test pattern generator, TG-LEAP, that uses
this engine was also developed. We present experimental results that compare the effectiveness of our proposed
search pruning strategies to those of PODEM, FAN, and SOCRATES. In particular, we show that LEAP is very effi-
cient in identifying redundant faults and in generating tests for difficult faults.

CSE-TR-178-93: Search-Space Pruning Heuristics for Path Sensitization in Test Pattern Generation 1

1 Intr oduction

Path sensitization is common to test pattern generation, delay-fault testing and timing analysis, and can be posed
as the problem of finding a valid truth assignment of the nodes in the circuit that sensitizes a path with a given prop-
erty. The conditions to sensitize a path depend on the application. In recent years, extensive work has been done in
developing techniques to prune the search space associated with path sensitization problems, particularly in test pat-
tern generation [1, 5-9, 13-16, 19]. These techniques can be categorized as deterministic (e.g. unique sensitization
points, head lines, static/dynamic learning, search space equivalence relations) and non-deterministic (e.g. simple and
multiple backtracing).

In this paper we propose new deterministic heuristics to further improve search-space pruning in path sensitiza-
tion. These techniques are based on a dynamic analysis of the search process. We start by illustrating how

unique sen-
sitization points

 [5] can be efficiently determined dynamically. Our algorithm has linear time complexity, in contrast
to the algorithm suggested in SOCRATES [16] which has worst-case quadratic time complexity.

We, then, show that the notion of

head lin

es can be naturally extended to dynamic situations, and thus the size of
the set of head lines can be reduced as the search process evolves. We provide a linear time algorithm that determines,
at each node in the decision tree, a reduced set of head lines.

These dynamic concepts are associated with search-space pruning to guide the search. In case of inconsistencies,
we provide a method to determine nodes which must have assume certain values to avoid inconsistencies. This is
referred to as

failure-driven assertions

, and can be viewed as a form of learning while searching [3]. We also intro-
duce an algorithm to perform

dependency-directed backtracking

. In most algorithms for path sensitization such as the
D-algorithm [14], PODEM [7], FAN [5], TOPS [8], SOCRATES [15] and EST [6], backtracking is always performed
to the previous node in the decision tree, i.e.

chronologic backtracking

. In some situations backtracking can

provably

be performed to some other node in the decision tree, thus saving a large number of backtracks. Our dependency-
backtracking algorithm is provably

complete

, in the sense that a solution is found if a solution exists, and has linear
time complexity. Furthermore, if no backtracking is required the algorithm introduces no overhead in the search pro-
cess. Dependency-directed backtracking schemes were originally proposed in [17] in an application of artificial intel-
ligence techniques to circuit analysis.

The new techniques for search-space pruning have been incorporated in a path sensitization algorithm LEAP
(LEvel-dependent Analysis in Path sensitization). The basic path sensitization algorithm has been used to implement
a test-pattern generation system, TG-LEAP, which can also run customized versions of PODEM, FAN, and
SOCRATES.

In the next section we review concepts common to decision procedures used in path sensitization. We also intro-
duce the basic concepts required to implement

failure-driven assertions

 and

dependency-directed backtracking

. In
Section 3 we describe each of the new techniques, and detail the corresponding algorithmic implementation. After-
wards, we present a comprehensive set of results that illustrate the effectiveness of LEAP in proving redundancy and
in detecting difficult faults. In Section 5 directions for future research are described.

2 Definitions

The underlying algorithm for path sensitization is assumed to be a PODEM-based decision procedure [7], where
decisions are made with respect to the primary inputs (or to the head lines). Throughout the paper we use the concepts
of D-frontier, J-frontier, X-path, backward/forward implications, head line, unique sensitization points, and other
concepts used in path sensitization for test-pattern generation, and which are described in detail in [1]. Furthermore,
LEAP can perform static learning as proposed in [15], but the extended learning criterion of [10] is used, which
includes static learning due to backward implications. Examples of static learning are shown in Fig. 1. Other concepts
used in path sensitization are analyzed in the next sections.

In order to implement some of the techniques proposed in LEAP, the following additional definitions are required.
A circuit is envisioned as a directed graph

G =

(

V, E

), where primary inputs and gate outputs are represented as verti-
ces in the graph. A directed edge (

u, v

) represents an input

u

 of a gate with output

v

. Any algorithm defined on

G

 with

CSE-TR-178-93: Search-Space Pruning Heuristics for Path Sensitization in Test Pattern Generation 2

complexity is said to have linear time complexity, because the number of edges is assumed to be lin-
early related to the number of vertices (i.e., gates with bounded fanin).

In the absence of inconsistencies, the search procedure proceeds as a sequence of decisions each of which is fol-
lowed by the corresponding implications performed in a

breadth-first

 manner. A decision in this context refers to the

elective

 assignment of a specific value (0 or 1) to a given vertex in the circuit graph. An implication, on the other
hand, refers to the

forced

 assignment of a value to a vertex due to the elective assignment of other vertices. The
sequence of decisions is represented by a directed graph

T

, referred to as the

decision tree

. Each node,

θ

, in the deci-
sion tree is referred to as a

decision node

, and is characterized by its

decision

 level (depth)

d

(

θ

) in the tree. The root
decision node is defined to be at decision level 1. The implications associated with a given decision are represented
by a directed

implication graph

 I, which describes how the implication sequence evolves. Each node,

φ

, in the impli-
cation graph is characterized by two integer parameters:

1.

d

(

φ

), which is the decision level of the decision node responsible for the implication sequence;
2.

p

(

φ

), defined as the

implication

 level.
In addition,

S

(

φ

) will be used to denote the predecessors of

φ

 in the implication graph, which represent the vertices
causing the implication of

φ

. The elements of

S

(

φ

) will also be referred to as the

implication parents

 of

φ

.
The decision and implication levels of an implied node

φ

 are calculated according to:

(1)

and,

(2)

The implication level of a decision node is 0 by definition.

Throughout this paper the notation should be interpreted to mean that circuit vertex

X

i

 is assigned the

value

V

 at decision level

j

 and implication level

k

.
In Fig. 2, an example circuit is shown, with the corresponding circuit graph, decision tree, and implication graph

for a specific decision. In Fig. 2-a, and after assigning

X

1

 to 1 at decision level 3, the implication parent of

X

4

 is

X

1

,
and the implication parents of

X

6

 are

X

4

 and

X

5

.

While the search process evolves inconsistencies may occur. These inconsistencies are categorized as

vertex

 or

path

. A vertex inconsistency occurs when the logic values of the inputs and output of a gate are not consistent. A path
inconsistency occurs when the D-frontier becomes empty after some decision. The two types of inconsistency are
illustrated in Fig. 3. In Fig. 3-b the D-frontier is assumed to be composed only of

X

3

 and

X

4

.

Figure 1: Static learning

X

1

X

2

X

4

X

3

Key:

Hence,

X

2

0

=()

X

4

0

=()⇒

X

4

1

=()

X

2

1

=()⇒

(b) Improved learning criterion [10]

(a) In SOCRATES

X

1

X

2

X

4

X

3

Key:

Hence,

X

8

0

=()

X

4

0

=()⇒

X

4

1

=()

X

8

1

=()⇒

X

5

X

8

X

7

X

6

Θ

V E

+()

d

φ()

max d

ζ() ζ

S

φ()∈{ }=

p

φ()

1

max p

ζ() ζ

S

φ()∈

d

ζ()∧

d

φ()={ }+=

X

i
j k

,()

V

=

CSE-TR-178-93: Search-Space Pruning Heuristics for Path Sensitization in Test Pattern Generation 3

3 Level-Dependent Analysis

3.1 Dynamic Evaluation of Unique Sensitization Points

A

unique sensitization point

 is a gate in a circuit which must propagate an error for a given fault to be detected [5].
The inputs to this gate, which cannot propagate the error signal, must assume non-controlling values and are referred
to as

unique sensitization implications

. In Fig. 4-a, an example of a unique sensitization point and corresponding
unique sensitization implication are shown. Both vertices

X

6

 and

X

7

 can propagate the error signal currently on

X

2

.
Assuming the D-frontier to be composed of only

X

6

 and

X

7

, then the error signal propagates from

X

2

 to

X

9

 only if

X

8

assumes a non-controlling value, i.e. 0.
The evaluation of unique sensitization points was proposed in FAN [5], TOPS [8], and SOCRATES [15] as a pre-

Figure 2: Structures associated with the search procedure

X

1

inconsistency

1

2

3

4

decision
leveldecision

node

(c) Decision tree

Τ

1 0

0

1

Key:
 , vertex

X

1

 implied to 1 at
decision level

i

 and implication level

l

X

1

i l

,()

1

=

X

2
2 0

,()

0

=

X

5
2 1

,()

1

=

X

1
3 0

,()

1

=

X

6
3 2

,()

0

=

X

3
1 0

,()

0

=

(a) Circuit

implication
sequence

(d) Implication graph

 Ι

 at decision level 3

(2)

at decision level 2
implication parent

X

1
3 0

,()

X

4
3 1

,()

1

=

X

4
3 1

,()

X

6
3 2

,()

X

5
2 1

,()

current
decision
level

X

2

X

3

X

1

X

4

X

5

X

3

X

2

X

6

(b) Circuit graph

Γ

Vertex

Figure 3: Inconsistency types

(a) Vertex inconsistency (b) Path inconsistency

X

1

 = D

X

2

 = 0

1
1
1

0

D-frontier
composed
only of

X

3

X

4

X

3

and

X

4

CSE-TR-178-93: Search-Space Pruning Heuristics for Path Sensitization in Test Pattern Generation 4

processing step and is based on the concept of dominators [18]. However, as the search process evolves, other unique
sensitization points may exist, which cannot be determined with pre-processing techniques. An example of a dynamic
unique sensitization point is shown in Fig. 4-b. Because

X

3

 has been implied to 1,

X

7

 is implied to 0. Hence, for the
error signal to propagate from

X

2

 to

X

9

,

X

1

 must assume the non-controlling value of

X

6

.

X

6

 is not a static dominator
of

X

2

, but due to the implication of

X

3

,

X

6

 becomes a dynamic dominator of

X

2

.
The evaluation of dynamic unique sensitization points may be required to prove the redundancy of some faults

[16]. In a second version of SOCRATES [16], an approach to dynamically compute unique sensitization points based
on the intersection of the dynamic dominators of each vertex in the D-frontier is given. This algorithm has quadratic
time complexity because it requires the intersection of lists of dominator vertices. Furthermore, computing the lists of
dynamic dominators of each vertex in the D-frontier also has worst-case quadratic time complexity on the size of the
circuit graph. In SOCRATES, the dynamic evaluation of unique sensitization points is only applied to difficult faults,
that are otherwise aborted [16].

3.1.1 Levelized Breadth-First Traversal

If we envision a circuit as a directed graph and identify the vertices in the D-frontier, then a levelized breadth-first
traversal from the vertices in the D-frontier and until a primary output is reached, identifies the existence of an X-path
and also identifies the dynamic unique sensitization points. A levelized breadth-first traversal basically ensures that a
vertex at topological level

k

 is not processed before any vertex with topological level less than

k

, which must also be
processed. Hence, a unique sensitization point

u

 is processed only after all vertices in its transitive fanin have been
processed, and before any of the vertices in its transitive fanout are scheduled to be processed. If the

width

 of the
breadth-first traversal is defined as the number of vertices scheduled to be processed, then whenever the width is one,
a dynamic unique sensitization point has been reached. If the width of the breadth first traversal ever reaches zero,
then there is no X-path from a vertex in the D-frontier to a primary output. Finally, we note that the levelized breadth-
first traversal has linear time complexity, and can be implemented with the same overhead as any procedure to iden-
tify X-paths.

3.1.2 Implication Parents due to Unique Sensitization Points

Whenever a vertex

u

 is a dynamic unique sensitization implication, the implication parents of

u

 are defined as the
set of vertices constraining the D-frontier at the current decision level. A vertex

v

 is said to constrain the D-frontier at
decision level

k

 if at decision level

k-

1 vertex

v

 is in the D-frontier, and at decision level

k

v

 is either implied to 0 or 1.
The vertices constraining the D-frontier implicitly cause the unique sensitization implications, and hence can be
understood as the implication parents of derived unique sensitization implications.

Figure 4: Unique sensitization points and implications

X

1

X

4

X

3

X

5

X

6

X

8

X

7

X

9

X

1

X

2

 = D

X

4

X

3

 = 1

X

5

X

6

X

8

X

7

 = 0

X

9

X

2

 = D

(a) Static (b) Dynamic

unique
sensitization
points

unique
sensitization
point

unique
sensitization
implication

CSE-TR-178-93: Search-Space Pruning Heuristics for Path Sensitization in Test Pattern Generation 5

3.2 Dynamic Evaluation of Head Lines and Don’t Cares

In FAN [5] and SOCRATES [15], head lines are defined as the outputs of fanout-free sub-circuits. Head lines can
be satisfied to any logic value in linear time. By using head lines instead of primary inputs, the search space can be
effectively reduced. Head lines have been determined statically, as a pre-processing phase prior to computing the test
pattern for each fault. However, as the search process evolves, it may be possible to define new head lines as a func-
tion of other head lines. In Fig. 5-a, an example of such a situation is given. Initially the set of head lines corresponds

to the primary inputs . Let us assume that the first decision, with decision level 1, corre-

sponds to , which implies

X

7

 to 1. We note that at this decision level the value of

X

9

 is uniquely determined

by the value of

X

4

, because the value of

X

2

 is 1. Let us further assume that the next decision corresponds to ,

which implies

X

8

 to 1. Because

X

4

 cannot affect vertices other than

X

9

, the effective fanout of

X

4

 is one after decision
level 2. Since X

4

 is a head line and it is fanout-free, then X

9

 is a new head line at decision level 2. However, now X

10

is driven by three fanout-free head lines, X

9

, X

5

 and X

6

, and thus X

10

 also becomes a new head line. Each time a new
head line is defined, the fanin head lines become fanout-free vertices covered by the new head lines. Consequently,
after decision level 2, the set of dynamic head lines becomes instead of the static set ,

and the dimension of the search space is reduced to half.

In [9] the concept of

don’t care

 vertices was introduced; it basically denotes a vertex that cannot affect fault prop-
agation after some decision level, and has been used to speed up the search process by reducing the number of impli-
cations performed. We can also use the concept of don’t care vertices to further extend the dynamic evaluation of
head lines. In Fig. 5-b, an example of such a situation is given. Let us assume that the vertex corresponding to the first
decision is

X

1

. If

X

1

 is assigned to 1, then

X

8

 is implied to 1. The effective fanout of

X

6

 becomes 0, and

X

6

 is said to
be a

don’t care

 since its value cannot propagate forward, and cannot affect the path sensitization problem. Because

X

6

is a don’t care, the effective fanout of vertices

X

2

,

X

3

 and

X

4

 can be decreased by 1, and these three head line vertices
become dynamically fanout-free. Consequently,

X

5

 becomes a new head line, and because

X

7

 only depends on

X

5

after decision level 1,

X

7

 becomes a new head line. Vertices

X

2

,

X

3

,

X

4

 and

X

5

 are covered by the new head line

X

7

,

and the search space after decision level 1 is reduced from to . On the other hand, if at the first

decision level

X

1

 is assigned to 0, then a similar reasoning applies, and the final search space is .

As both examples show, merging head lines at a given decision level depends strongly on the decisions made at the
current and past decision levels.

In LEAP, at each decision level and after all implications of the current decision have been performed, an initial set
of new don’t cares is determined. This set corresponds to primary outputs that can no longer propagate the error sig-
nal, and to the non-implied vertices that have all fanout vertices implied, i.e. vertices with effective fanout of 0. Start-

Figure 5: Dynamic head lines

X

1

X

4

X

3

X

5

X

6

X

8

X

7

X

9

X

1

X

2

X

4

X

3

X

5

X

6

X

8

X

7

X

2

X

10

(a) Merging head lines

(b) Propagation of don’t cares

X

1

X

2

X

3

X

4

X

5

X

6

, , , , ,{ }

X

2

1

=

X

3

1

=

X

1

X

10

,{ }

X

1

X

4

X

5

X

6

, , ,{ }

X

2

X

3

X

4

, ,{ }

X

7

{ }

X

8

{ }

CSE-TR-178-93: Search-Space Pruning Heuristics for Path Sensitization in Test Pattern Generation 6

ing from the initial set of don’t cares, a levelized backward traversal on the circuit structure is performed to update the
effective number of fanout vertices of each vertex. If the effective number of fanout vertices of a vertex

v

 reaches
zero, then

v

 becomes a don’t care. Afterwards, the current set of head lines is examined to determine whether a subset
of head lines can be merged into a new head line. A vertex driven by head lines all of which become dynamically
fanout-free is a new head line. The process of merging head lines into new head lines is repeated until no more new
head lines can be derived. We further note that whenever an unjustified vertex

v

 becomes a new head line,

v

 also
becomes justified.

3.3 Failur e-Driven Assertions

In LEAP, whenever an inconsistency is found, its causes are analyzed and an attempt is made to avoid repeating
implications that would lead to the same inconsistency again during the search process. Let us consider the example
circuit with the dynamic situation shown in Fig. 6-a. The current decision level is assumed to be 7, and

X

1

 is assigned
to 0. This causes vertices

X

3

,

X

4

,

X

5

,

X

7

,

X

9

,

X

10

,

X

11

 and

X

12

 to be implied to 1, and leads to a vertex inconsistency at

X

o

, which is required to be 0 at decision level 2. An analysis of the dynamic situation in the circuit shows that only
decision levels 2, 4 and 5 contribute to the inconsistency. Furthermore,

X

7

cannot

 assume value 1 above decision
level 4; with the values of

X

6

,

X

8

 and

X

o

, implied at decision levels less or equal to 4, a vertex inconsistency occurs if

X

7

 assumes value 1 above decision level 4. Similarly, X

3

 cannot assume value 1 above decision level 4. Conse-
quently, both vertices must be asserted to value 0 at decision level 4. On the other hand, X

1

 cannot assume value 0
above decision level 5, because otherwise the same implication sequence would take place, and an inconsistency
would occur. We further note the evolution of the implication levels within decision level 7.

Figure 6: Failure-driven assertions

X

3
7 1

,()

1

=

X

o

2

l

,()

0

=

X

12
7 5

,()

1

=

X

2
5

i

,()

0

=

X

12
7 5

,()

1

=

X

7
7 3

,()

1

=

X

1
7 0

,()

0

=

X

5
7 2

,()

1

=

X

4
7 2

,()

1

=

X

6
2

j

,()

1

=

X

8
4

k

,()

1

=

X

9
7 4

,()

1

=

X

10
7 4

,()

1

=

implication level
decision level

X

3
4

m

1

+,()

0

=

X

7
4

m

1

+,()

0

=

X

1
5

n

1

+,()

1

=

X

9
7

m

2

+,()

0

=

X

10
7

m

2

+,()

0

=

X

12

X

11

X

5

X

4

(a) Implication sequence

(b) With derived assertions

m: highest implication level
at decision level 4

n: highest implication level
at decision level 5

X

8
4

k

,()

1

=

X

6
2

j

,()

1

=

X

o

2

l

,()

0

=

X

2
5

i

,()

0

=

CSE-TR-178-93: Search-Space Pruning Heuristics for Path Sensitization in Test Pattern Generation 7

 Vertices

X

1

,

X

3

 and

X

7

, with asserted values due to inconsistencies, are referred to as

failure-driven assertions

. A
similar reasoning could be applied in case of a path inconsistency.

In Fig. 6-b, the implied vertices after asserting vertices are shown. Assuming no inconsistency is detected (because
the decision node is complemented), the next decision level is 8 and no vertex is effectively implied at decision level
7.

During the search process, and whenever an inconsistency is found, the causes of the inconsistency are examined.
This basically entails determining the vertices and decision levels which contributed to the inconsistency. Given a
vertex or path inconsistency, we want to determine all the vertices that directly contributed to the inconsistency at the
current decision level and at past decision levels. We also want to compute which decision levels besides the current
decision level affected the inconsistency, to decide at which decision level to assert vertices.

The process of identifying vertices and decision levels affecting an inconsistency is divided into two phases:
1. Identifying which decision levels constrain D-propagation by removing vertices from the D-frontier.
2. Tracing the implication parents from the inconsistent vertex or from the set of vertices defining a path

inconsistency until the decision vertex.
The first phase is used only to identify decision levels which effectively contribute to the inconsistency and which

will not be identified by the second phase. The second phase determines the remaining decision levels which contrib-
ute to the inconsistency and determines which vertices can be asserted to a fixed value at some decision level. To
obtain this information we perform

parent tracing

 on the implication sequence leading to the inconsistency.

3.3.1 Parent Tracing

Parent tracing at decision level

k

 corresponds to a reverse levelized breadth-first traversal on the implication level
of each vertex implied at decision level

k

, from the inconsistency point until the vertex associated with the current
decision. The inconsistency point denotes the set of vertices responsible for a vertex or path inconsistency. Each ver-
tex after being processed schedules for future processing its implication parents which are also implied at the current
decision level. The decision levels of implication parents other than the current decision level are recorded. By defini-
tion, the implication level of any implication parent of a vertex

v

, implied at the same decision level, is lower than the
implication level of

v

. The partial order thus defined assures that whenever the width of the reverse levelized breadth-
first traversal reaches

one

, the vertex to be processed next in the breadth-first traversal can be asserted to the comple-
ment of its current value at the highest decision level recorded so far, since its current value alone generates an impli-
cation sequence leading to an inconsistency. We note that since phase 1 records the decision levels constraining the
D-frontier, any decision level that directly contributes to the inconsistency is recorded. Hence if a vertex

v

 is asserted
to value

V

 at some decision level

j

, it cannot provably assume a different value after decision level

j

.
We refer now to the example of Fig. 6, and illustrate how assertions are derived. In Fig. 7 the implication graph

describing the information provided by the implication levels and by the implication parents is shown. Starting from
the inconsistent vertices

X

o

,

X

11

 and

X

12

, the graph is traversed in reverse levelized breadth-first manner. During the

Figure 7: Implication graph associated with decision

X

1

 = 0

(2)

(2)

(4)

(2)

width = 1

at decision level 4
implication parent

inconsistency with
decision level 2

X

1
7 0

,()

X

2
5

i

,()

X

3
7 1

,()

X

12
7 5

,()

X

8
4

k

,()

X

9
7 4

,()

X

7
7 3

,()

X

4
7 2

,()

X

5
7 2

,()

X

10
7 4

,()

X

6
2

j

,()

X

o

2

l

,()

X

11
7 5

,()

CSE-TR-178-93: Search-Space Pruning Heuristics for Path Sensitization in Test Pattern Generation 8

traversal, the breadth-first width reaches one on vertices

X

7

,

X

3

 and

X

1

. Thus, each of these vertices can be asserted to
the complement of its current logic value. The decision levels at which the vertices are asserted are defined by the
decision levels other than 7 which have been recorded from the inconsistency point until the vertex being asserted is
processed. In the example shown the decision levels recorded are 2 and 4 for

X

7

 and

X

3

, and 2, 4 and 5 for

X

1

. In this
example we assume that no decision levels are recorded due to constraining the D-frontier.

Although the example consists of forward implications, parent tracing can be used with backward implications or
non-local implications because it is based on implication levels and on implication parents, and not on topological
levels.

Finally, we note that by performing parent tracing every time an inconsistency is found, and by recording the deci-
sion levels constraining the D-frontier, it is possible to always have an accurate definition of which decision levels
were relevant for the inconsistencies detected. This information is what allows performing dependency-directed
backtracking.

Our approach to derive failure-driven assertions eventually determines the same information that can be deter-
mined with dynamic learning as proposed in SOCRATES [16], but there are some relevant differences. Dynamic
learning has quadratic time complexity and has to be performed after each decision. For this reason dynamic learning
is only used for extremely difficult faults [16]. On the other hand, computing failure-driven assertions has linear time
complexity and is only performed after an inconsistency is found. However, in some cases failure-driven assertions
may take several decisions to derive the same information that can be derived with dynamic learning after one deci-
sion. Therefore, we could hypothetically construct examples where dynamic learning, with a smaller decision tree,
would perform better than computing failure-driven assertions. On average, however, we believe that computing fail-
ure-driven assertions is more efficient than dynamic learning while providing equivalent information.

3.4 Dependency-Directed Backtracking

To illustrate how dependency-directed backtracking can improve the search process over chronologic backtrack-
ing, we study the example circuit in Fig. 8-a. Without loss of generality, we assume a simple backtracing scheme
which chooses the input variables in the order

X

1

,

X

2

,

X

3

, and

X

4

, and that the order of choosing vertices in the D-
frontier is

Z

1

,

Z

2

 and

Z

3

. Furthermore, the simple backtracing scheme is assumed to choose

X

1

 over

X

8

,

X

7

 over

X

4

,
and

X

5

 over

X4

.

Y

 assumes value

D

, and

Z

1

,

Z

2

 and

Z

3

 are assumed to be primary outputs. We further assume that
none of the techniques introduced in the previous sections is applied. Our goal is to propagate the error signal in

Y

 to
any of the primary outputs.

The first decision is

X

1

 = 0, which results from backtracing an initial objective of 1 on

X

10

. This decision causes
the implication of

X

9

 to 0 and

Z

3

 to 0. Since

Z

3

 is removed from the D-frontier, decision level 1 is recorded as con-
straining the D-frontier. The second decision is

X

2

 = 1, which also results from backtracing from

X

10

. This decision
causes the implication of

X

6

 to 1. The third decision is

X

3

 = 1, which causes

X

5

 to be implied to 1. Finally, the fourth
decision is

X

4

= 0, which causes

X

7

 to be implied to 1,

X

8

 to be implied to 1, and

X

10

,

Z

1

 and

Z

2

 to be implied to 0.
Hence a path inconsistency is detected, and the value of

X

4

 must be complemented. We note that only decision levels
1 and 4 contribute to the path inconsistency as shown in Fig. 8-b. This information can be obtained by considering
recorded decision levels which constrain the D-frontier, and by performing parent tracing from the vertices constrain-
ing the D-frontier at the current decision level, i.e.

Z

1

 and

Z

2

. We note that decision levels 2 and 3 do not constrain the
D-frontier and do not contribute to an implication at decision level 4.

After complementing

X

4

, the new implications are

X

7

 implied to 0,

X

8

 implied to 1 and

X

10

,

Z

1

 and

Z

2

 implied to 0
(see Fig. 8-c). Again a path inconsistency is detected. Furthermore, we note that only decision levels 1 and 4 contrib-
ute to the path inconsistency. This information can be obtained again by considering recorded decision levels which
constrain the D-frontier, and by performing parent tracing from the vertices constraining the D-frontier at the current
decision level.

Assigning

X

4

 to both logic values causes inconsistencies, hence it is necessary to backtrack. In chronologic back-
tracking schemes, the last non-complemented decision is tried, which corresponds to

X

3

 in the example. However, the

CSE-TR-178-93: Search-Space Pruning Heuristics for Path Sensitization in Test Pattern Generation 9

analysis of the decision levels that effectively contribute to both inconsistencies reveals that backtracking can be per-
formed to decision level 1. Hence the value of

X

1

 is complemented and all decisions after decision level 1 are erased.
By backtracking to decision level 1, it is proved that reconsidering the decisions at levels 2 or 3 could not allow path
sensitization. The difference between dependency-directed backtracking and the chronologic backtracking schemes is
illustrated in Fig. 9.

Figure 8: Analyzing inconsistencies for backtracking purposes

X

6

X

5

X

4

X

3

X

2

X

1

X

10

Y = D

X

9

X

8

X

7

Z

3

Z

2

Z

1

(a) Example circuit

(b) After decision level 4 with

X

4

 = 0

(c) After decision level 4 with

X

4

 = 1

Y = D

X

10
4 3

,()

0

=

X

7
4 1

,()

1

=

X

4
4 0

,()

0

=

X

3
3 0

,()

1

=

X

2
2 0

,()

1

=

X

1
1 0

,()

0

=

X

6
2 1

,()

1

=

X

5
3 1

,()

1

=

X

9
1 1

,()

0

=

Z

3
1 2

,()

0

=

Z

2
4 4

,()

0

=

Z

1
4 4

,()

0

=

X

8
4 2

,()

1

=

Y = D

X

10
4 2

,()

0

=

X

7
4 1

,()

0

=

X

4
4 0

,()

1

=

X

3
3 0

,()

1

=

X

2
2 0

,()

1

=

X

1
1 0

,()

0

=

X

6
2 1

,()

1

=

X

5
3 1

,()

1

=

X

9
1 1

,()

0

=

Z

3
1 2

,()

0

=

Z

2
4 3

,()

0

=

Z

1
4 3

,()

0

=

X

8
4 1

,()

1

=

CSE-TR-178-93: Search-Space Pruning Heuristics for Path Sensitization in Test Pattern Generation 10

As suggested in the previous section, the information required to implement the proposed dependency-directed
backtracking scheme is obtained by recording the decision levels constraining the D-frontier and by performing par-
ent tracing after each inconsistency is detected. Hence, all decision levels that contribute to inconsistencies are
recorded, and each time both values of a decision node cause inconsistencies, the highest decision level that has been
recorded in past inconsistencies is used as the backtracking decision level.

When backtracking to decision level

k

, it is necessary to identify lower decision levels that contribute to the impli-
cations at decision level

k

. The real cause for inconsistencies at higher decision levels can be related to these lower
decision levels, which may not be recorded yet. However, by identifying all such decision levels, we could force
backtracking to decision levels higher than the lowest decision level possible. For this reason, when processing
inconsistencies, any vertex

v

 implied at a lower decision level

l

 is explicitly identified (i.e. marked as part of a set

M

l

).
When backtracking to decision level

l

, only the vertices in

M

l

 are processed. Parent tracing is performed for each of
the vertices in

M

l

 to identify lower decision levels that contribute to relevant implications at decision level

l

.

In [11] and [12] some different forms of dependency-directed backtracking were proposed for test-pattern genera-
tion in sequential circuits. However, the backtracking scheme proposed in [11] is only sketched and no experimental
results are given. The backtracking scheme proposed in [12] uses a concept equivalent to decision levels to decide the
backtracking point in the decision tree, but as described in [12], the analysis is performed local to an inconsistency
and hence it may not to be complete. Consequently, some detectable faults may not be detected.

The dependency-directed backtracking scheme proposed here has negligible overhead in the absence of inconsis-
tencies. When inconsistencies are detected, the time complexity of the algorithms for failure-driven assertions and
dependency-directed backtracking is linear. When finding the solution to some problem, this improved backtracking
scheme never requires more backtracks than the common chronologic backtracking, provided a fixed ordering of the
decision vertices is assumed. In the worst-case scenario, both schemes result in the same number of backtracks; in
such a situation dependency-directed backtracking introduces a constant overhead to the total running time.

4 Results

The techniques described in the previous section have been incorporated in a path sensitization algorithm, LEAP,
implemented in C++, which forms the core of a test-pattern generation system, TG-LEAP. TG-LEAP can also run
customized implementations of PODEM, FAN and SOCRATES, that employ the deterministic heuristics of each of
these path sensitization algorithms. The implementation of PODEM [7], PODEM*, can perform both forward and
backward implications, and thus must maintain a J-frontier. The implementation of FAN [5], FAN*, computes unique

Figure 9: Dependency-directed versus chronologic backtracking

0 1

(1)

(2)

(3)

(4)

inconsistencies only
dependent on decision
levels 4 and 1

(B)

(A)

(A) Chronologic backtracking: backtrack to decision level 3
(B) Dependency-directed backtracking: backtrack to decision level 1

X

3

X

4

X

2

X

1

1

1

0 1

CSE-TR-178-93: Search-Space Pruning Heuristics for Path Sensitization in Test Pattern Generation 11

sensitization points dynamically whenever the size of the D-frontier is one using the algorithm described in Section
3.1. The implementation of SOCRATES, SOCRATES*, implements the concepts described in [15] and also com-
putes dynamic unique sensitization points, but using the algorithm proposed in Section 3.1. Hence, SOCRATES* cor-
responds to a more efficient implementation of the deterministic heuristics in [15] and [16] until phase DYN_1 [16],
but without the implementation of instruction 2 of the unique sensitization procedure [15]. The results given for
SOCRATES also use the improved learning criterion of [10].

Because our main goal is to compare the deterministic heuristics of each algorithm, only structural controllability/
observability measures are used [1]. Furthermore, only the following

backtracing

 schemes were tested:
1. Simple backtracing, starting by trying to satisfy the most difficult controllability problems and afterwards trying

to satisfy the most simple observability problems.
2. Multiple backtracing, as proposed in [5], but using structural controllability/observability measures.
In TG-LEAP backtracing is

always

 performed to a head line in opposition to the backtracing schemes in FAN and
SOCRATES, where backtracing can stop at fanout points [5], [15]. This option is intended to allow using the path
sensitization algorithm in other applications, mainly timing analysis and delay-fault testing.

Furthermore, no redundancy removal techniques are used [1], [17]. In the tests performed, each path sensitization
problem is intended to be analyzed individually, and updating redundant information on the circuit every time a fault
is proved redundant, would eventually relate individual path sensitization problems.

In the following, several tests are performed on the ISCAS’85 [2] benchmark suite, using a simplistically reduced
fault set for each circuit. For comparison purposes, all faults of the collapsed fault set of each benchmark circuit are
targeted. This option is intended to allow a thorough evaluation of each of the path sensitization algorithms when
applied to test-pattern generation, especially in proving redundancy and finding tests for hard to detect faults. All the
results shown were obtained on a DECstation 5000/240 with 32 Mbytes of RAM. In Table 1, some characteristics as
well as the pre-processing time for static learning of each benchmark circuit are shown. Static learning is used only in
SOCRATES* and LEAP.

The results of running each algorithm with simple backtracing are shown in Table 2. The number of detected,
redundant and aborted faults is denoted by

#D

,

#R

and

#A

, respectively. The total number of aborted faults for each
algorithm is also given.

Table 1: Statistics of the benchmark circuits

Cir cuit Gates PIs POs Faults
Redundant

faults
Pre-processing

time (in sec)
Non-local

implications

C432 160 36 7 524 4 0.097 138

C499 202 41 32 758 8 0.208 40

C880 383 60 26 942 0 0.250 116

C1355 546 41 32 1574 8 1.047 208

C1908 880 33 25 1879 9 1.910 1310

C2670 1193 233 140 2747 117 2.718 1951

C3540 1669 50 22 3428 137 16.37 6906

C5315 2307 178 123 5350 59 4.723 3609

C6288 2406 32 32 7744 34 0.961 830

C7552 3512 207 108 7550 131 13.90 10139

CSE-TR-178-93: Search-Space Pruning Heuristics for Path Sensitization in Test Pattern Generation 12

As the results show, with simple backtracing, LEAP performs better that any of the other algorithms, and only four

Table 2: Results with simple backtracing (backtrack limit set to 500)

Cir cuit Faults
PODEM* FAN* SOCRATES* LEAP

#D #R #A #D #R #A #D #R #A #D #R #A

C432 524 519 0 5 519 1 4 519 2 3 520 4 0

C499 758 750 0 8 750 8 0 750 8 0 750 8 0

C880 942 942 0 0 942 0 0 942 0 0 942 0 0

C1355 1574 1566 0 8 1566 8 0 1566 8 0 1566 8 0

C1908 1879 1864 6 9 1868 9 2 1868 9 2 1868 9 2

C2670 2747 2626 62 59 2630 86 31 2630 93 24 2630 117 0

C3540 3428 3282 114 32 3287 132 9 3291 137 0 3291 137 0

C5315 5350 5291 55 4 5291 59 0 5391 59 0 5291 59 0

C6288 7744 7675 34 35 7700 34 10 7710 34 0 7710 34 0

C7552 7550 7375 62 113 7388 73 89 7390 77 83 7417 131 2

Total 32496 273 145 112 4

Table 3: Results with multiple backtracing (backtrack limit set to 500)

Cir cuit Faults
PODEM* FAN* SOCRATES* LEAP

#D #R #A #D #R #A #D #R #A #D #R #A

C432 524 520 1 3 520 1 3 520 2 2 432 4 0

C499 758 750 0 8 750 8 0 750 8 0 750 8 0

C880 942 942 0 0 942 0 0 942 0 0 942 0 0

C1355 1574 1566 0 8 1566 8 0 1566 8 0 1566 8 0

C1908 1879 1861 6 12 1866 7 6 1870 9 0 1870 9 0

C2670 2747 2630 68 49 2628 86 33 2630 93 24 2630 117 0

C3540 3428 3281 114 33 3284 132 12 3291 137 0 3291 137 0

C5315 5350 5290 53 7 5291 59 0 5291 59 0 5291 59 0

C6288 7744 7703 34 7 7708 34 2 7695 34 15 7708 34 2

C7552 7550 7369 62 119 7349 77 124 7368 77 105 7419 131 0

Total 32496 246 180 146 2

CSE-TR-178-93: Search-Space Pruning Heuristics for Path Sensitization in Test Pattern Generation 13

detectable faults out of a total of 32496 are aborted. Of the three other algorithms, SOCRATES* performs better than
FAN*, which performs better than PODEM*.

In Table 3, the results of running each algorithm using multiple backtracing are shown. With both backtracing
schemes, LEAP is able to prove redundant

all

 the redundant faults, and with multiple backtracing only aborts two
detectable faults of circuit C6288. We note that with simple backtracing LEAP detects these two faults without back-
tracking. For SOCRATES* and FAN* the results improve for C432, C1908 and C6288. On the other hand, the results
are worse for C7552, and this causes the total number of aborted faults of SOCRATES* and FAN* to increase with
multiple backtracing.

Furthermore, with multiple backtracing, and for C6288, FAN* performs better than SOCRATES*. We conjecture
that since SOCRATES* uses non-local implications, for some faults this increases the original width of the J-frontier.
This increased width may cause some wrong initial decisions, which are difficult to correct when the size of the deci-
sion tree becomes large. Although LEAP uses the same assignments as SOCRATES*, the initial wrong assignments
are overcome by the dependency-directed backtracking scheme and by failure-driven assertions.

In Table 4 the running times per fault for each of the algorithms is shown, with both simple and multiple backtrac-

ing. For circuits where several faults are aborted by the other algorithms, LEAP performs better. However, in circuits
where SOCRATES* does not abort any fault (e.g. C499, C880, C1355, C1908, C3540 and C5315), the average run-
ning time per fault of LEAP is higher. The main reason for the higher running times is related to the dynamic evalua-
tion of head lines as proposed in Section 3.2. At each decision level, dynamic head line evaluation introduces
overhead linearly related to the size of the circuit graph. Hence, a small constant is introduced to the running times, as
the results indicate.

For circuits where SOCRATES* aborts faults, LEAP has better run times. However, if the backtrack limit is
reduced, SOCRATES* would eventually have better run times at the cost of some aborted faults.

As Table 4 indicates, the multiple backtracing scheme used introduces an important overhead when compared
with the results for simple backtracing. In most of the circuits, the average run time per fault almost doubles with
multiple backtracing. The main reason for this difference in run times is due to the difference between the number of
vertices traversed by multiple backtracing and the number of vertices traversed by simple backtracing.

Table 4: Run time per fault (in seconds) with simple and with multiple backtracing

Cir cuit
PODEM* FAN* SOCRATES* LEAP

Simple Multiple Simple Multiple Simple Multiple Simple Multiple

C432 0.046 0.081 0.033 0.071 0.033 0.059 0.024 0.040

C499 0.093 0.211 0.049 0.134 0.055 0.137 0.065 0.144

C880 0.027 0.036 0.030 0.040 0.033 0.041 0.040 0.044

C1355 0.154 0.307 0.137 0.280 0.127 0.277 0.143 0.290

C1908 0.161 0.217 0.135 0.147 0.112 0.126 0.126 0.136

C2670 0.223 0.349 0.129 0.260 0.147 0.264 0.130 0.210

C3540 0.215 0.282 0.108 0.166 0.103 0.152 0.118 0.154

C5315 0.090 0.147 0.113 0.159 0.126 0.164 0.149 0.180

C6288 0.423 0.579 0.253 0.555 0.292 0.782 0.320 0.634

C7552 0.283 0.519 0.266 0.435 0.274 0.436 0.292 0.384

CSE-TR-178-93: Search-Space Pruning Heuristics for Path Sensitization in Test Pattern Generation 14

The primary objective of LEAP is to be used with difficult faults, both redundant and detectable. To compare
LEAP with the other algorithms, a small set of redundant and hard to detect faults was chosen from some of the
benchmark circuits. The results obtained are shown in Table 5; columns labeled

#B

 denote the number of backtracks
and the column labeled

#A

 denotes the number of assertions determined by LEAP. For C432 the backtrack limit was
set to 50000, and for the other circuits the backtrack limit was set to 10000. For all the redundant faults, LEAP proves
redundancy with a reduced number of backtracks. On the other hand, the other algorithms cannot prove redundancy
in most cases, even with a large backtrack limit. The difference of backtracks between SOCRATES* and LEAP illus-
trates the strength of the deterministic heuristics introduced in LEAP. For both algorithms, the decision tree created
for each fault is the same until backtracking is required. Afterwards, while SOCRATES* usually requires a very large
number of backtracks, LEAP manages to derive the information required to skip several decision tree nodes, thus
proving redundancy with a very small number of backtracks. Furthermore, in each of the examples shown which
require backtracking, several assertions are determined by analyzing the causes of the inconsistencies.

For fault 2417 s-a-1 of C2670, FAN* manages to prove redundancy while SOCRATES* does not. From our expe-
rience, the reason seems to be the increased J-frontier in SOCRATES* caused by static learning, which in some situ-
ations may cause the multiple backtracing scheme used to make several wrong assignments, which result in
SOCRATES* not being able to detect the fault or to prove the fault redundant.

For fault 3695 s-a-1 in circuit C7552, although LEAP requires 110 backtracks to find a test pattern to detect the
fault, none of the other algorithms is able to find a solution to the path sensitization problem in less than 10000 back-
tracks. This example further illustrates the applicability of the deterministic heuristics used in LEAP when compared
to SOCRATES*.

Some of the relevant statistics of running LEAP with simple and multiple backtracing on each of the benchmark
circuits are shown in Table 6; columns labeled

S

 denote simple backtracing whereas columns labeled

M

 indicate mul-
tiple backtracing. For LEAP, the number of decisions is usually small when compared with the number of primary
inputs of each circuit. The average number of decisions depends on the backtracing scheme chosen, and none of the
backtracing schemes implemented seems to be definitely better. On average, the number of backtracks per fault is
negligible; the only exception being C7552. The average number of failure-driven assertions illustrates the applica-
bility of this deterministic heuristic. Since the average number of backtracks is small, the number of assertions is also

Table 5: Handling diffi cult faults with multiple backtracing (time in seconds)

Cir cuit
R: redundant
D: detectable

PODEM* FAN* SOCRATES* LEAP

#B Time #B Time #B Time #B #A Time

C432 (R)
259gat s-a-1

> 50000 389 5618 56.63 793 4.93 33 66 0.36

C432 (R)
347gat s-a-1

> 50000 288.5 5740 43.94 921 6.65 11 20 0.11

C1908 (R)
565 s-a-1

> 10000 147.2 > 10000 161.2 0 0.031 0 0 0.052

C2670 (R)
2282 s-a-1

> 10000 127.3 > 10000 150.5 > 10000 203.8 9 16 0.24

C2670 (R)
2417 s-a-1

> 10000 126.8 1872 57.41 > 10000 227 4 6 0.16

C7552 (D)
3695 s-a-1

> 10000 119.3 > 10000 92.94 >10000 95.05 110 48 2.56

CSE-TR-178-93: Search-Space Pruning Heuristics for Path Sensitization in Test Pattern Generation 15

necessarily small. Except for specific circuits (C499, C1355 and C6288), a reasonable number of unique sensitization
implications is determined for each fault. Furthermore, for most circuits, several static as well as dynamic head lines
are found and reduced. C432, C880, and C2670 appear to be specially suitable for determining head lines. For cir-
cuits C499, C1355 and C6288, on the contrary, the number of head lines is small.

The results of Table 2 and of Table 3 suggest that PODEM*, with simple backtracing, can be used to detect most
of the faults with very little overhead. On the other hand, using LEAP is preferable to detect or prove redundant the
more difficult faults. Hence, we ran PODEM*, with simple backtracing and a backtrack limit of 5, on all the bench-
mark circuits. Afterwards, we ran LEAP, with multiple backtracing and a backtrack limit of 500, on the set of faults
aborted by PODEM*. The results obtained are shown in Table 7. The total number of faults analyzed by each algo-
rithm is denoted by

#T

. The number of detected, redundant and aborted faults is denoted by #

D

,

#R

 and

#A

, respec-
tively. PODEM* detects a total 31645 detectable faults from a total of 32496 faults, proves redundant 287 faults, and
aborts 564 faults. Afterwards, LEAP detects 344 faults from an initial total of 564, proves redundant 220 faults and
aborts no faults. For C499, C880 and C1355 some of the algorithms discussed can perform better alone without
aborting faults. For the remaining benchmark circuits, using the combination of PODEM* followed by LEAP
achieves a much better performance than any of the other algorithms alone. Furthermore, no fault is aborted. We note
that the two faults aborted by LEAP with multiple backtracing for C6288, are detected without backtracks by LEAP
or PODEM* using simple backtracing.

The results presented in this section are intended only to illustrate the effectiveness of LEAP for difficult faults,
both redundant and detectable. In a complete test pattern generation system, fault simulation would be employed to
reduce the test set size, and to randomly detect some difficult detectable faults, as proposed [13], [15] and [19]. We
further note that our implementation of SOCRATES* has some relevant differences with respect to the original algo-
rithm [15], [16]. SOCRATES uses an improved multiple backtracing procedure as well as improved controllability/
observability measures to guide the decision procedure. Furthermore, SOCRATES* only implements one of the
unique sensitization procedures of SOCRATES [16]. This justifies the differences in results observed between
SOCRATES* and SOCRATES.

Table 6: Statistics for LEAP (average numbers per fault) with a backtrack limit of 500

Cir cuit
Decisions Backtracks Assertions

Unique
sensitization
implications

Head lines

S M S M S M S M S M

C432 12.44 10.94 0.235 0.141 1.20 0.48 3.98 3.96 2.02 1.41

C499 33.74 35.12 0.169 0.098 2.09 2.46 0.61 0.93 0.51 0.07

C880 10.49 7.31 0.008 0.000 0.03 0.00 2.60 2.10 3.60 2.04

C1355 32.88 32.67 0.000 0.000 1.91 0.20 0.71 0.59 0.02 0.01

C1908 17.83 12.57 0.856 0.039 1.21 0.14 1.87 2.10 0.71 0.44

C2670 16.92 17.47 0.076 0.111 0.69 0.33 2.83 3.02 12.71 12.71

C3540 11.42 9.64 0.009 0.037 0.42 0.30 2.80 2.86 0.43 0.38

C5315 9.76 10.36 0.022 0.023 0.22 0.09 2.20 2.23 0.88 0.83

C6288 26.93 27.84 0.033 0.347 0.35 0.70 0.31 0.32 0.01 0.01

C7552 33.68 21.97 1.190 1.272 1.00 1.07 2.99 3.09 1.03 1.01

CSE-TR-178-93: Search-Space Pruning Heuristics for Path Sensitization in Test Pattern Generation 16

5 Conclusions

This paper introduces several new techniques to prune the search space in path sensitization problems. These tech-
niques explore dynamic information provided by the search process, both before and after inconsistencies are
detected.

The techniques proposed have been incorporated in a path sensitization algorithm (LEAP), which experimental
results show to be more suitable to prove redundancy and to find tests for hard to detect faults than customized imple-
mentations of PODEM [7], FAN [5] and SOCRATES [15].

Despite the improvements introduced in LEAP, the search process is still extremely dependent on the ordering of
assignments to the head lines as the results in Section 4 show. Future work is mainly intended to overcome this prob-
lem and to improve the inconsistency processing schemes proposed in LEAP. A natural evolution consists in intro-
ducing search space equivalence [6] and dominance [4] relations to further prune the search space. Actually, search
space equivalence relations provide a complementary scheme with respect to dependency-directed backtracking;
search space equivalence relations avoid entering in regions of the search space equivalent to others searched before,
while dependency-directed backtracking prunes the decision tree by avoiding reconsidering decisions that do not
affect the inconsistencies found.

Part of the motivation for developing LEAP is the construction of a highly efficient path sensitization algorithm
with applications to other areas where path sensitization is required, mainly timing analysis and delay-fault testing. It
is our goal to evaluate possible applications of LEAP to these areas, where the path sensitization problems are usually
more difficult than in test pattern generation.

References

[1] M. Abramovici, M. A. Breuer, and A. D. Friedman, “Digital Systems Testing and Testable Design”. Computer Science
Press, 1990.

[2] F. Brglez, and H. Fujiwara, “A Neutral List of 10 Combinational Benchmark Circuits and a Target Translator in FOR-

Table 7: Results using PODEM* followed by LEAP

Cir cuit
PODEM* (backtrack limit of 5) LEAP (backtrack limit of 500)

Time/Fault
#T #D #R #A #T #D #R #A

C432 524 519 0 5 5 1 4 0 0.031

C499 758 750 0 8 8 0 8 0 0.055

C880 942 940 0 2 2 2 0 0 0.027

C1355 1574 1566 0 8 8 0 8 0 0.142

C1908 1879 1818 6 55 55 52 3 0 0.079

C2670 2747 2624 49 74 74 6 68 0 0.070

C3540 3428 3262 100 66 66 29 37 0 0.093

C5315 5350 5268 46 36 36 23 13 0 0.075

C6288 7744 7534 34 176 176 176 0 0 0.213

C7552 7550 7364 52 134 134 55 79 0 0.189

Total 32496 31645 287 564 564 344 220 0

CSE-TR-178-93: Search-Space Pruning Heuristics for Path Sensitization in Test Pattern Generation 17

TRAN”. In Proc. Int. Symp. Circuits and Systems, 1985.
[3] R. Dechter, “Learning While Searching in Constraint-Satisfaction Problems”. Technical Report CSD-860049, University of

California at Los Angeles, June 1986.
[4] T. Fujino, and H. Fujiwara, “An Efficient Test Generation Algorithm Based on Search Space Dominance”. Proc. 22nd Fault

Tolerant Comput. Symp., 1992.
[5] H. Fujiwara, and T. Shimono, “On the Acceleration of Test Generation Algorithms”. IEEE Trans. on Computers, vol. C-32,

no. 12, December 1983, pp. 1137-1144.
[6] J. Giraldi, and M. L. Bushnell, “EST: The New Frontier in Automatic Test-Pattern Generation”. In Proc. 27th Design Auto-

mation Conf., 1990.
[7] P. Goel, “An Implicit Enumeration Algorithm to Generate Tests for Combinational Logic Circuits”. IEEE Trans. on Com-

puters, vol. C-30, no. 3, March 1981, pp. 215-222.
[8] T. Kirkland, and M. Ray Mercer, “A Topological Search Algorithm for ATPG”. In Proc. 24th Design Automation Conf.,

1987.
[9] A. Lioy, “Adaptive Backtrace and Dynamic Partitioning Enhance APTG”. In Proc. Int. Conf. Computer Design, 1988.
[10] W. Kunz, and D. Pradhan, “Accelerated Dynamic Learning for Test Pattern Generation in Combinational Circuits”. IEEE

Trans. on CAD, vol. 12, no. 5, May 1993, pp. 684-694.
[11] S. Mallela, and S. Wu, “A Sequential Circuit Test Generation System”. In Proc. Int. Test Conf., 1985.
[12] R. Marlett, “An Effective Test Generation System for Sequential Circuits”. In Proc. 23th Design Automation Conf., 1986.
[13] J. Rajski, and H. Cox, “A Method to Calculate Necessary Assignments in Algorithmic Test Pattern Generation”. In Proc.

Int. Test Conf., 1990.
[14] J. P. Roth, “Diagnosis of Automata Failures: a Calculus and a Method”. IBM J. Res. Develop., vol. 10, pp. 278-291, July

1966.
[15] M. H. Schulz et. al., “SOCRATES: A Highly Efficient Automatic Test Pattern Generation System”. IEEE Trans. on Com-

puter-Aided Design, vol. 7, no. 1, January 1988, pp. 126-137.
[16] M. H. Schulz, and E. Auth, “Improved Deterministic Test Pattern Generation with Applications to Redundancy Identifica-

tion”. IEEE Trans. on Computer-Aided Design, vol. 8, no. 7, July 1989, pp. 811-816.
[17] R. M. Stallman, and G. J. Sussman, “Forward Reasoning and Dependency-Directed Backtracking in a System for Com-

puter-Aided Circuit Analysis”. Artifi cial Intelligence, 9 (1977), pp. 135-196.
[18] R. E. Tarjan, “Finding Dominators in Directed Graphs”. SIAM J. Comput., vol. 3, pp. 62-89, 1974.
[19] J. A. Waicukauski, et. al., “ATPG for Ultra-Large Structured Designs”. In Proc. Int. Test Conf., 1990.

