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1 Introduction

In this paper we extend the evolving algebra presented in [GH] to give formal operational semantics for
the C++ programming language. The evolving algebra of [GH] is a specification for the C programming
language; in this paper we propose modifications to it to accommodate the features of C++. We refer the
reader to [GH] for a description of the C algebra, and to [Gu] for an introduction to evolving algebras.
[KR] describes the ANSI standard for the C language, on which the algebra of [GH] is based. We assume
the informal specification for C++ in [ES] as guidelines for our semantics. Knowledge of C++ will ease
comprehension but is not necessary, as we shall explain the new features of C++ and illustrate their use
with examples as we proceed.

The C++ programming language is designed to be an “extension” of C, retaining all of C’s language
facilities and adding new ones. On a syntactic level, the differences between C and C++ consist entirely
of language constructs allowable in C++ but not in C. Our algebra for C++ will alter the rules for C in
[GH], maintaining their functionality while extending them to capture the new features of C++. Many of
the extensions we shall consider do not require any changes at all to the rules. Some extensions, such as
derived classes, affect only static information about the program, determined when the program is compiled
and never changed during the running of the program. Other extensions, such as the keyword class, simply
constitute syntactic alternatives to constructs present in C. In addition to proposing changes to the rules,
we shall discuss the extensions which do not require any rule changes and explain how we can handle them.

1.1 C++4 and object-oriented programming

The new features of C+4 support the “object-oriented” programming paradigm. The term “object” can
be defined simply as the instantiation of a type. This approach to programming is a synthesis of several
principles, which we summarize as follows. First, object-oriented programming supports the inclusion of
operations performed on an object within the definition of the object’s type. New types can be defined
in terms of preexisting types through inheritance. Finally, access to an object’s data is localized through
encapsulation.

As our algebra must specify not only the new features of C++ but also the C subset, it shares with the
algebra of [GH] the relatively low level of abstraction necessary to specify the features of C. For example, C
allows the programmer direct access to memory, so we must model memory as a linear ordering of locations.
Moreover, objects must be modeled as contiguous sequences of locations. While this attention to memory
considerations is necessary for an accurate specification, it obscures the object-oriented nature of C++. In
fact, the concept of “object” per se is absent from the algebra; there is a universe of memory locations but
no universe of objects.

An interesting alternative to this algebra would be one in which the details of memory are removed.
Objects could then be modeled as such, i.e., as elements of a universe of objects. These objects would have
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locations associated with them, but of a more abstract nature; there would be no assumption of an ordering
of locations. Such an algebra could be considered more “object-oriented” in nature. Of course, such an
algebra would represent only a fragment of C++, as the object-oriented paradigm can be easily subverted
in C++. For instance, the assumption that all data accessible to a program is in the form of objects can
be violated; C++ allows direct reference to any memory location, even locations not associated with any
object. The form of this high-level algebra for C++ and the restrictions on C++ it would require are topics
for further investigation.

1.2 Outline

The features required to implement encapsulation and inheritance are presented in section 2, while those
required to combine type and operation definitions are presented in section 3. Section 4 deals with the
features supporting creation and destruction or objects. In sections 5 and 6 we discuss extensions that
are not object-oriented in nature; section 5 concerns overloading and parameterized type definitions, and
section 6 covers the remaining extensions.

In the interest of readability, we define a set of macros for commonly used rule expressions. The definitions
of these macros appear in appendix A.
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2 Class structure and encapsulation

The central notion of the object-oriented programming paradigm is the encapsulation of data types and op-
erations associated with them. Encapsulation ensures that the data stored within an object an instantiation
of a given type is accessed only by the operations associated with the type. This localization of access is
conducive both to data security and to good programming style. Encapsulation is achieved in C++ through
the “class” construct, which defines aggregate types similar to “struct” types in C. A class type combines
the components of a programmer-defined data type with the functions and operators to manipulate it. The
notion of a class is introduced in section 2.1. The level of localization of access is achieved by specifying
access status for the components of the type; access status is discussed in section 2.4.

In object-oriented programming, redundant code may be eliminated by allowing one type to “inherit”
the data structure and operations of another. The inherited structure and operations may then be modified
or extended to suit the new type. The notion of inheritance is called “derivation” in C++; the features
supporting class derivation are discussed in sections 2.2 and 2.3.

2.1 Classes

C++ introduces a new keyword class which indicates the definition of a new class type. This is almost
identical in functionality to the C keyword struct. Both define types whose instantiations are contiguous
sequences of ordered fields (or “members”) in memory; in C++, both may have operations, or “member
functions,” associated with them. The only difference between the two is in the default “access status”
assigned to their fields.! As we shall see in section 2.4, access status is itself a C++ extension of a purely
syntactic nature; thus we can treat class-types in the same way we treat struct-types in the C algebra, with
no rule modifications necessary. We hereby adopt C++ terminology: we shall use the term “class” to refer
to both struct- and class-types and the term “member” as a synonym for “field.” In addition, we shall use

1The default access status is “public” for a struct-type and “private” for a class-type. The default status is assigned to a
field if no status is specified.
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the term “object” to refer to a contiguous area of memory serving as an instantiation of a particular type; in
particular, the term “class object” refers to an area allocated as an instantiation of a class- or struct-type.

2.2 Derived classes

In addition to the members defined explicitly in its declaration, a class may inherit the members of a set of
other classes. A class that inherits members is said to be “derived”; the classes whose members it inherits
are its “base” classes. The base classes of a derived class are specified in its declaration. For example, given
the class person containing the members name and age:?

// declaration of (nonderived) class person

class person { // (no members inherited)
char name[25]; // person’s name (string)
int age; // person’s age (integer)
void printPerson(); // function to print person’s name and age

b
we can add the derived classes professor and student:

// declaration of derived class professor

class professor: person { // (inherits members of class persomn)
int salary; // professor’s salary (integer)
void printProfessor(); // function to print professor’s info

s

// declaration of derived class student

class student: person { // (inherits members of class persomn)
int year; // student’s year (integer)
float GPA; // student’s GPA (decimal)
void printStudent(); // function to print student’s info

s

Professors and students in the real world are individuals with names and ages, as well as professor- and
student-specific attributes. The classes professor and student represent this by inheriting the members
of the class person. Both derived classes contain name, age and printPerson, the members of their base
class; in addition, the class professor contains the members salary and printProfessor, while the class
student contains year, GPA and printStudent.

From these two derived classes we can create another derived class, teachingAssistant:

// declaration of derived class teachingAssistant
class teachingAssistant: professor, student {
// (inherits members of classes professor and student)

professor *worksFor; // professor that TA works for (pointer to professor object)
int sectionm; // section that TA teaches (integer)
void printTA(); // function to print TA’s info

s

In the real world, a teaching assistant is a single individual with attributes of both a professor and a
student. We represent this via “multiple inheritance”: class teachingAssistant contains the members of
both professor and student, as well as the members worksFor, section and printTA.

An object of a nonderived class consists of a sequence of members arranged contiguously in memory; the
members are arranged according to the order in which they appear in the class declaration. An object of

2In C++, a pair of slash characters (//) indicates the beginning of a one-line comment. Our C++ examples include comments
for clarificational purposes; the text of these comments should not be confused with C++ code.
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a derived class also consists of a sequence of members; some members are inherited from the base classes,
and some are declared in the derived class itself. Unlike nonderived classes, there is no way of determining
the ordering of a derived class’ members from the class declaration. In particular, the relative order of base-
and derived-class members is implementation-dependent; base members may precede derived members, or
vice versa.

Regardless of the relative ordering chosen by a given implementation, a derived class shares with a
nonderived class the property of a fixed ordering of members over all objects of its class. That is, given a
derived class D with a set of derived members and a set of underived members, each object of class D will
order these members in the same sequence mj..m,. Thus given a nonderived class ND which declares the
same members of D in the order mi..m,,, objects of type ND will be structurally equivalent to those of type
D. We shall therefore treat derived classes as if they were declared in a nonderived form; given a base class
B and a class D derived from it, we simply add B and D as distinct elements in the types universe.

2.8 Virtual base classes

A class may be designated as “virtual”; the virtual status of a class affects the way in which its members
are inherited by other classes. Consider our class teachingAssistant: this class inherits members from
both professor and student classes. Since both professor and student classes in turn inherit mem-
bers from the class person, teachingAssistant inherits person’s members from two bases. For the class
teachingAssistant as it is currently defined, this means that the class contains two disjoint sets of person
members. Each object of this class will have two name members and two age members, conceivably with
different values. For certain applications this is desirable,® but if we wish to constrain objects of type
teachingAssistant to a single name and age value, our definition of teachingAssistant as it stands is
unsatisfactory.

To remedy this problem, we declare class person as a virtual class. Declaring a class as virtual ensures
that any class derived from it will contain only one set of its members. We modify our declaration of class
person, prefixing it with the keyword virtual:

// modified declaration of class person, designating class as virtual
virtual class person {

char name[25];

int age;

void printPerson();

s

With person declared as virtual, the class teachingAssistant still inherits the members of person from
two bases, but objects of class teachingAssistant will contain only a single name member and a single age
member.

Virtual base classes do not require any changes to the algebra. The virtual status of a base class
affects only static information about a class subsequently derived from it: namely, the sequence of members
it contains. Following our example, if we were to declare person nonvirtual, the members contained in
teachingAssistant may be arranged as the sequence {name, age, S, name, age, P, TA}, where S, P and TA

3For an example in which duplication of inherited members is desirable, consider a derived class representing a research
project between a professor and a student:

// declaration of class researchProject

class researchProject: professor, student {
char topic[25]; // research topic
int funding; // amount of funding for research

}s

This class contains information representing a professor and a student, two distinct people. Here it is necessary to inherit
separate copies of the person members; the name and age members corresponding to the professor and student will have distinct
values. Thus the class person should be declared as nonvirtual in this case.
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are sequences of the members defined in classes student, professor and teachingAssistant, respectively.
Declaring person virtual would simply truncate this sequence to {name, age, S, P, TA}. As the number and
types of a class’ members are statically determined, and the effect of a class’ virtual status extends only to
this static information, we may safely ignore it in our algebra.

2.4 Access control

Class members may be specified as “public,” “private” or “protected.” These specifications restrict the
“accessibility” of the members, i.e., the set of functions which may access them. A “private” member may
only be accessed by a member function of the class in which it is declared; a function that is not a member of
any class or is the member of a different class, even a derived class which inherits the private member, may
not refer to it. A “protected” member is less restricted: it may be accessed by a member function of any
class in which it is declared or inherited. A “public” member may be accessed by any function, regardless
of the function’s class membership. For example, let us assign private status to the name and age members
of class person:

// modified declaration of class person, with access status specified
virtual class person {
private:
char name[25];
int age;
public:
void printPerson();

s

Since name, age and printPerson are declared in the class person, the private status of name and age does
not prevent printPerson from accessing these members; printPerson may refer to them within its function

body:®

// definition of printPerson function for class person

person: :printPerson() {
// print the name and age members of the person object
output("name:", name); // note reference to name
output("age:", age); // note reference to age

}

On the other hand, printProfessoris not declared in the same class as name or age. Therefore, name and age
cannot be accessed within the body of printProfessor. If we had assigned name and age protected status,
printProfessor would have been able to access these members, as printProfessor’s class professor is a
derived class containing name and age members.

Access to a class’ private members may be granted to nonmember functions by giving them “friend”
status within the class declaration. For example, we can define a global version of our printPerson function
that is not a member of the person class:

// definition of global function globalPrintPerson

void globalPrintPerson(person p) {
output("name:'", p.name); // reference to name
output("age:", p.age); // reference to age

}

4This is only one possible ordering of members; as noted in section 2.2, the relative ordering of derived and underived
members is implementation-dependent.

5In this and following examples, we assume that the function output simply takes a sequence of arguments, of any number,
and sends their values to an output device. We do not define the function explicitly.
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For the nonmember function globalPrintPerson to access the private members name and age, we must
declare it as a friend to person within the class declaration:

// modified declaration of class person,
// allowing function globalPrintPerson to access private members
virtual class person {
private:
char name[25];
int age;
public:
void printPerson(); // member function
friend void globalPrintPerson(person); // global function
b
Access status is a purely syntactic feature; since each member’s status is assigned in the declaration of the
class and cannot be changed, access restrictions can be enforced before the program is run and need not be
enforced later. A member’s status has no further effect on either the member itself or the functions which
access it. We may therefore ignore this feature in our algebra; no rules need to be changed to accommodate
it.

2.5 Scope resolution operator

In both C and C++, names may differ in their scope. In C, a name may be either global or local; in C4++,
the situation is more complex, as a non-global name may have scope over any of a number of nested classes.
The possibility of overlapping scopes leads to potential ambiguity. For example, let us add a member course
to the class professor; course will itself be a class, containing the members name, studentsEnrolled and
print:

// modified declaration of class professor, with new member course
class professor: private person {
private:
int salary;
class course { // course that professor teaches
private:
char name[25]; // name of course (string)
int studentsEnrolled; // number of students (integer)
public:
void print(); // function to print info about course
b
public:
void nonvirtualPrint();
void virtualPrint();

b
The class professor contains two instances of the member name name: one inherited from the base class

person, and one nested inside the class course. Both instances have scope over the nested class course. If
we introduce a global variable name:

// declaration of global variable name
char name[25]; // name of university

we now have three identical names with scope over the class course.® Within the body of course’s member
function print, there is a reference to name:

80f course, this is bad programming practice; the confusion here could be easily eliminated by choosing more descriptive
labels for the three name variables.



// definition of print function for class course

void professor::course::print() {
output("course name:'", name); // reference to name
output("students enrolled:", studentsEnrolled);

}

The identifier name here could conceivably refer to two possible variables: the member name defined inside
course or the global variable name. In the event of such a reference, the more local referent of name, i.e.,
the member of course, is selected. The global variable name is said to be “hidden.” Note that the member
name defined inside professor is not a possible referent; within a member function body, only members of
the function’s class may be referred to by a simple identifier. Thus there are two problems in our example:
given the set of C++ features we have considered so far, there is no way to refer to either the global variable
or the member of professor from within the class course.

The scope resolution operator :: solves both of these problems. Its unary form allows for references to
hidden global variables; the single operand is the name of a global variable, and the expression refers to the
global variable of that name. Its binary form allows for references to members of enclosing classes. The
left-hand operand is the name of an enclosing class, and the right-hand operand is the name of a member of
the enclosing class; the expression refers to the member of the given name within the enclosing class of the
given name. For example, the function print within course can refer to the global variable name using the
unary form of the scope resolution operator, and to the name member of person via the binary form of the
operator:

// modified definition of print function for course class,
// using scope resolution operator
professor::course: :print() {

output ("university:'", ::name); // refers to global variable
output ("professor:", professor::name); // refers to professor member
output("course name:'", name); // refers to course member

output ("students enrolled:", studentsEnrolled);

}

Neither form of the scope resolution operator requires changes to the algebra. An expression consisting
of an variable name preceded by the unary operator is simply a reference to the global variable of that
name; such an expression corresponds to a simple identifier task. An expression involving the binary form
of the operator corresponds to a “data-member” task, which we discuss in sections 3.1 and 3.2. We treat
such expressions as class-reference tasks, referring to a member within an object and involving a statically
determined offset to the member, provided by the ConstVal function. The assumptions made in section 3.2
to handle data-member tasks will also handle binary scope resolution expressions.

3 Programmer-defined class operations

In object-oriented programming, the operations that access a given data type are included as part of the
definition of the type. As C does not allow functions to be included as part of a type definition, C++
introduces this possibility for class types; this is discussed in sections 3.1 and 3.2. Functions associated with
a class may be declared as “virtual.” If a function is so declared, references to it will be resolved based
on dynamic rather than static type resolution. The features supporting virtual functions are presented in
sections 3.3 and 3.4.

3.1 Member functions

The first extension requiring a change in the algebra is the ability of classes to have functions as members.
This is not allowed in C; inclusion of a function field in a C struct-type is syntactically illegal. This extension
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involves changes to the algebra because the way in which member functions are accessed does not parallel the
way in which other members are accessed. Unlike members of other types, referred to as “data members,” a
member function does not occupy a memory area at some predetermined offset from the starting location of
its class; thus our rule for member references as it stands is incapable of handling a reference to a member
function.

The value returned by a reference to a member function must be the starting address of the function. For
nonvirtual functions,” this address is statically determined and cannot be changed. Thus a given nonvirtual
member function reference refers to a particular, unchangeable function address; in other words, a particular
memory address is associated with each such reference task. We therefore define a partial function Func-
tionLoc: tasks — addresses which maps a member function reference to the corresponding starting address
of the member function. To distinguish between member functions and data members, we add the values
data and nonvirtual-function to the tags universe, and a function MemberStatus: tasks — tags to determine
whether a given member reference is a reference to a member function or to a data member.

We change the task-type tag struct-reference to class-reference, in keeping with our new terminology.
Our new rule for class references is shown in Fig. 1.

if TaskType (CurTask) = class-reference then
if ValueMode (CurTask) = lvalue then
ReportValue (OnlyValue (CurTask, StackTop) + ConstVal (CurTask))
elseif ValueMode (CurTask) = rvalue then
if MemberStatus (CurTask) = data then
ReportValue (Object Value (OnlyValue (CurTask, StackTop) + ConstVal (CurTask)))

elseif MemberStatus (CurTask) = nonvirtual-function then
ReportValue (FunctionLoc (CurTask))
endif
endif
Moveto (NextTask (CurTask))

endif

Figure 1: Transition rule for class reference tasks.

Allowing functions as members means that members may in some cases be accessed without an explicit
class reference. In particular, inside the body of a member function a reference to a member of the function’s
class may be made simply by an expression consisting of the member’s name; no class name or class-reference
operator need appear. Consider our example in section 2.4: within the body of the member function
printPerson, the class’ name and age members are referred to simply as “name” and “age.” This is possible
because name, age and printPerson are members of the same class.

To handle such references within member functions, we shall treat them in the same way as explicit
class references; an expression of this form will correspond to a class-reference task. As the left operand is
missing from these implicit class-reference expressions, the question arises as to what the left-operand value
as defined by OnlyValue should be. As this requires consideration of certain issues that we have not yet
addressed, we shall wait until the next section before answering this question.

3.2 Implicit this parameters

Every member function has a hidden argument that is not included explicitly in either the function’s list of
parameter declarations or the list of argument expressions in a call to the function. This hidden argument’s

"The situation is somewhat more complicated for “virtual” functions, which we discuss in section 3.4.
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value is always the address of the class object of which the function is a member. Thus in our example in
section 2.4, the function person: :printPerson is explicitly defined as a nullary function, and no arguments
are supplied when it is called; nevertheless, it is in fact a one-place function whose sole argument is a pointer
to the class object.

To support this in our algebra, we assume that each member function does indeed take a class-pointer
argument in addition to the arguments explicitly defined by the programmer: in particular, we assume the
existence of an implicit parameter declaration in the function body. We wish to be able to distinguish this
parameter as the implicit class-pointer parameter; we do this by adding the partial function IsImplicitParm:
tasks — {true, false}, which determines whether a given declaration task is the declaration of an implicit
parameter. We also add the partial function ImplicitParm: stack — tasks, which returns the declaration
task of the implicit class pointer for a given level of the stack. When the parameter declaration task for the
implicit parameter is encountered, we change the ImplicitParm function to return this declaration task. Our
new rule for parameter declarations is shown in Fig. 2.

if TaskType (CurTask) = parameter-declaration then
DoAssign (NewMemory (CurTask), ParamValue (CurTask, StackTop), ValueType (CurTask))
OnlyValue (CurTask, StackTop) := NewMemory (CurTask)
if IsImplicitParm (CurTask) = true then
ImplicitParm (StackTop) := CurTask
ENDIF

Figure 2: Transition rule for parameter declaration tasks.

We also assume the existence of an expression task returning the address of the function’s class in each
call to a member function. We introduce the macro ThisPir, shown in Fig. 3, to express the value of the
implicit class-pointer parameter:

macro ThisPtr:
MemoryValue (OnlyValue (ImplicitParm (StackTop), StackTop),
Value Type (ImplicitParm (StackTop)))

Figure 3: Definition of macro ThisPtr.

Within a member function, the value of the implicit parameter can be accessed via an expression consisting
of the keyword this. To handle this new type of expression, we introduce a tag, this, and a corresponding
rule shown in Fig. 4.

With the ThisPtr macro returning the implicit class pointer parameter value, we are now able to handle
a member function’s references to members of its own class. For a non-function member, the value to return
for such a reference is the memory address value of the implicit parameter, offset by some value determined
by ConstVal. For a reference to a function member, the value to return is the function’s memory location,
determined via FunctionLoc with either the static or object type of the implicit parameter. Assuming that
we treat member references within a member function as class-reference tasks, we simply define the task’s
left-operand value to be the value ThisPtr. Thus an implicit class-reference such as name in our example in
section 2.4 will be equivalent to the explicit class reference this—>name.
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if TaskType (CurTask) = this then
ReportValue (ThisPir)
Moveto (NextTask (CurTask))
endif

Figure 4: Transition rule for this tasks.

3.3 Object type

In C+4++4, each class object has a particular type associated with it. If the object has been allocated as the
memory location for a variable of a certain class type, the object’s type will simply be the predetermined
“static type” of the variable. In the simple case, a class object’s type also corresponds to the static type of a
pointer variable pointing to it; the variable is declared as a pointer to a particular class, and the object that
it points to is of that class. However, this is not necessarily the case; under certain conditions an object’s
type may not correspond to the static type of a variable pointing to it.

First, a pointer with a given static type, say A%, may be assigned the address of an object of a different
static type, say B, by explicitly casting the address as type A*. In this case, the static type of A* would
dictate that the static type of its dereferencing is 4; however, the type of the object it points to is B. Second,
given a hierarchy of a base class and one or more classes derived from it, and a variable declared as a pointer
to an object of the base class, the pointer may be assigned to point to an object of either the base class or
any of the classes derived from it, without any casting. For example, let us assume the following variable
declarations, using our predefined person, professor and student classes:

// declaration of variables personObject, profObject and studentObject
person personObject;

professor profObject;

student studentObject;

We shall also assume the declaration of personPtr,® defined as a pointer to an object of class person:

// declaration of variable personPtr
person *personPtr;

The object type of personObject, profObject and studentObject is fixed at the time of their declaration:
the object type of personObject is person; the object type of profObject is professor; the object type
of studentObject is student. personPtr’s value can be changed to point to any of the objects defined by
personObject, profObject or studentObject,® without having to cast the new values as type person:

personPtr = &personObject; // points to personObject; object type is person
personPtr = &profObject; // points to profObject; object type is professor
personPtr = &studentObject; // points to studentObject; object type is student

Furthermore, the object type of each object pointed to by personPtr will remain the same; it will not be
affected by the assignment expressions.

An object’s type is information stored in the object itself and determined at the time of initialization of
the object. Thus while a variable can point to objects of different types, the type of an object per se, as a
sequence of fields at a particular memory location, cannot change.

8In general, given a type name T the type name T* is a pointer type that points to an object of type T. Thus the type name
person%* in personPtr’s declaration denotes a pointer type that points to an object of class person.

9The unary operator & returns the memory location of its operand; thus in our example, we set personPtr to the address of
personObject, profObject, and so on.
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To keep track of an object’s type, we simply associate a type with the object’s location in memory. We
define a partial function ObjectType: addresses — types, which returns the type of the object at the given
memory location. When a new object is initialized, either by a variable declaration or by use of the new
operator (discussed in section 4.1), the ObjectType function is changed to reflect the type of the object at
the new address.

Our new rules for static and non-static variable declarations are shown in Fig. 5 and Fig. 6, respectively.

if TaskType (CurTask) = declaration and DecType (CurTask) = static then
if Defined (StaticAddr (CurTask)) then
OnlyValue (CurTask, StackTop) := StaticAddr (CurTask)
Moveto (NextTask (CurTask))
elseif Undefined (StaticAddr (CurTask)) then
if Defined (Initializer (CurTask)) and Undefined (RightValue (CurTask, StackTop)) then
Moveto (Initializer (CurTask))
else
OnlyValue (CurTask, StackTop) := NewMemory (CurTask)
ObjectType (NewMemory (CurTask)) := ValueType (CurTask)
StaticAddr (CurTask) := NewMemory (CurTask)
if Defined (Initializer (CurTask)) then
DoAssign (NewMemory (CurTask), RightValue (CurTask, StackTop), ValueType(CurTask))
else
Moveto (NextTask (CurTask))
ENDIF

Figure 5: Transition rule for static variable declarations.

if TaskType (CurTask) = declaration and Dec Type # static then
if Defined (Initializer (CurTask)) and Undefined (RightValue (CurTask, StackTop)) then
Moveto (Initializer (CurTask))
else
OnlyValue (CurTask, StackTop) := NewMemory (CurTask)
ObjectType (NewMemory (CurTask)) := ValueType (CurTask)
if Defined (Initializer (CurTask)) then
DoAssign (NewMemory (CurTask), RightValue (CurTask, StackTop), ValueType (CurTask))
else
Moveto (NextTask (CurTask))
ENDIF

Figure 6: Transition rule for automatic variable declarations.
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3.4 Virtual functions

The importance of object type is manifested in its interaction with “virtual functions.” A member function
may be labeled “virtual” by placing the keyword virtual before the definition of the function. A function
defined as virtual for a base class is also virtual for all classes derived from the base class, even if the function
is redefined in a derived class. The virtual nature of a member function manifests itself in the case where
the function is originally defined in a base class and redefined in a derived class. In such a case, an access of
the member name may refer to either the base-class version or the derived-class version of the function; the
difference between a virtual and a nonvirtual function is in the way in which the correct version is chosen.
For a nonvirtual function, the choice is based on the static type associated with the function’s class; for a
virtual function, the choice is based on the type associated with the class object.

As an example, let us add member functions to the classes person and professor. In place of the
functions printPerson, globalPrintPerson and printProfessor, we add a function virtualPrint and a
function nonvirtualPrint to both classes. The virtualPrint functions will be tagged as virtual functions

// modified declaration of class person, with virtual and nonvirtual function members
virtual class person {
private:
char name[25];
int age;
public:
virtual void virtualPrint(); // virtual print function
void nonvirtualPrint(); // nonvirtual print function
b
// modified declaration of class professor, with virtual and nonvirtual function members
class professor: person {

private:
int salary;

public:
virtual void virtualPrint(); // virtual print function
void nonvirtualPrint(); // nonvirtual print function

s

For each class, nonvirtualPrint and virtualPrint perform the same actions: they simply print the member
values of the class:

// definition of nonvirtual print function for class person
void person::nonvirtualPrint() {

output ("Nonvirtual print function for person object");

// print name and age members

output("name:", name);

output("age:", age);
}
// definition of virtual print function for class person
void person::virtualPrint() {

output("Virtual print function for person object");

// print name and age members

output("name:", name);

output("age:", age);
}
// definition of nonvirtual print function for class professor
void professor::nonvirtualPrint() {

output ("Nonvirtual print function for professor object");
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// call print function for class person
person: :nonvirtualPrint();
// print salary member
output("salary:", salary);
}
// definition of virtual print function for class professor
void professor::virtualPrint() {
output ("Virtual print function for professor object");
// call print function for class person
person: :nonvirtualPrint();
// print salary member
output("salary:", salary);

}

Let us assume the declaration of a variable profObject, of type professor. This will initialize an object of
type professor. A variable of type person* may then be assigned to point to this object:

// declaration of variables profObject and personPtr
professor profObject = {"Jennifer Olmsted", 32, 50000};
person *personPtr = &profObject; // personPtr points to profObject

Thus according to the static type of the variable personPtr, the type of the object it points to is
person; however, the object type of personPtr’s dereferencing is professor. The member functions
personPtr->nonvirtualPrint and personPtr->virtualPrint will now exhibit different behaviors.!® Since
nonvirtualPrint is a nonvirtual function, a function call of the form personPtr->nonvirtualPrint ()will
call the version of nonvirtualPrint as defined by the static type of personPtr’s dereferencing, namely
person. The resulting output will be

Nonvirtual print function for person object
name: Jennifer Olmsted
age: 32

On the other hand, virtualPrint is a virtual function, so a function call of the form
personPtr->virtualPrint() will call the version of virtualPrint as defined by the object type of
personPtr’s dereferencing, namely professor. The output will be

Virtual print function for professor object
name: Jennifer Olmsted

age: 32

salary: 50000

Virtual functions require a change to the rule for class references to accommodate virtual functions. The rules
for accessing virtual member functions will be different from that for accessing data members; while accessing
a data member merely requires the address of the class object and an offset to the correct member, accessing a
virtual function member involves the type of the object. To determine the correct address of a virtual function
reference, we redefine FunctionLoc as a binary function: tasks x types — addresses, which determines the
address for a given member function identifier and class type. In the case of a nonvirtual function, the type
argument provided will be the static type associated with the member’s class, as determined by the Value Type
function; in the case of a virtual function, the argument will be the class object’s type, as determined by
ObjectType. We also introduce a new element virtual-function to the tags universe, to signify a reference to
a virtual function member. Our new rule for class references is shown in Fig. 7.

10The class member access operator -> returns the value of the field specified by its right-hand operand, in the class object
that its left-hand operand points to. In other words, it performs a member access on the dereferencing of its left-hand operand.
Thus the expressions personPtr->nonvirtualPrint and (*personPtr) .nonvirtualPrint are equivalent.
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if TaskType (CurTask) = class-reference then
if ValueMode (CurTask) = lvalue then
ReportValue (OnlyValue (CurTask, StackTop) + ConstVal (CurTask))
elseif ValueMode (CurTask) = rvalue then
if MemberStatus (CurTask) = data then
ReportValue (Object Value (OnlyValue (CurTask, StackTop) + ConstVal (CurTask)))
elseif MemberStatus (CurTask) = nonvirtual-function then
ReportValue (FunctionLoc (CurTask, Value Type (CurTask)))
elseif MemberStatus (CurTask) = virtual-function then
ReportValue (FunctionLoc (CurTask,
ObjectType (OnlyValue (CurTask, StackTop))))
endif
endif
Moveto (NextTask (CurTask))
endif

Figure 7: Transition rule for class reference tasks.

4 Object creation and destruction

C++ introduces convenient mechanisms for creating and destroying objects. The operator new allocates
memory for a new object, while the operator delete deallocates memory already associated with an object.
These operators are covered in sections 4.1 and 4.2 respectively. In addition, the programmer may define
functions to be invoked implicitly when an object is created or destroyed. Discussion of these “constructor”
and “destructor” functions appears in sections 4.3 and 4.4 respectively.

4.1 The new operator

C++ introduces an operator new for dynamic object creation. This operator takes a type name as an
operand; it allocates a region of memory whose size corresponds to that of the indicated type and then
returns the memory location of this newly allocated memory. In other words, it creates an object of a
given type and returns a pointer value to it. For example, the expression new person allocates enough
space for the name and age members of a person object and returns a pointer value to this newly allocated
space. Memory allocation is accomplished by a call to the global function operator new; if the object being
allocated contains a member function operator new, the member function is called instead.

The new operator introduces a new task type tag, new-object, to the universe of tags. As with variable
declarations, an initializing expression, if one exists, is evaluated; the evaluation task for this initializer is
determined by the function Initializer. We introduce a partial function Allocator: tasks — tasks, which maps
each expression involving the new operator to a task which calls the appropriate version of operator new.
This function call changes the OnlyValue function, setting the new expression’s value to a new memory
location. In addition, we modify the ObjectType function to indicate that a new object of a particular type
has been initialized at the new memory location. Once a memory location has been established for the new
object, it is returned as the value of the new expression; if an initializer is provided, the object is assigned
its value. Our new rule is shown in Fig. 8.
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if TaskType (CurTask) = new-object then
if Defined (Initializer (CurTask)) andUndefined (RightValue (CurTask, StackTop)) then
Moveto (Initializer (CurTask))
elseif Undefined (OnlyValue (CurTask, StackTop)) then
Movweto (Allocator (CurTask))
else
ObjectType (OnlyValue (CurTask, StackTop)) := PointsToType (CurTask)
ReportValue (OnlyValue (CurTask, StackTop))
if Defined (Initializer (CurTask)) then
DoAssign (OnlyValue (CurTask), RightValue (CurTask, StackTop),
PointsToType (CurTask))
else
Movweto (NextTask (CurTask))
ENDIF

Figure 8: Transition rule for new-operator tasks.

4.2 The delete operator

The delete operator reverses the effects of the new operator: given the address of an object as an operand, it
deallocates the memory allocated for the object, allowing subsequent memory allocations to use the object’s
space. For example, given the declaration

// declaration of pointer variable personPtr
person *personPtr;
personPtr = new person;

the expression delete person deallocates the memory allocated by the new operator; the pointer personPtr
no longer points to an object. Memory deallocation is accomplished by calling the global function
operator delete; if the deallocated object contains a member function of this name, its member func-
tion will be called. An expression with the delete operator returns a value of type void.

We add a new task type tag delete-object to the universe of tags. We add a partial function Destructor:
tasks — tasks, which maps each expression involving the delete operator to a task which calls the appropriate
version of operator delete. The rule for the delete operator, shown in Fig. 9, returns the operator
expression’s void value, sets the object type of the operand’s memory location to an undefined value, and
passes control to the task invoking the function operator delete.

if TaskType (CurTask) = delete-object then
ReportValue (Void)
ObjectType (RightValue (CurTask, StackTop)) := undef
Movweto (Destructor (CurTask))

endif

Figure 9: Transition rule for delete-operator tasks.
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4.3 Constructors

When defining a class, the programmer may define special member functions to be invoked when an object
of the class is created; these functions are called “constructor functions.” Constructors are commonly used
to initialize newly created objects with default values. It is important to note that a constructor function
does not actually create a new object, in the sense of allocating new memory to be used as a class object.
The name of a constructor function member within a class is simply the name of the class itself; like other
function names, it may be overloaded. To illustrate, we add two constructor functions to our class person:

// modified declaration of class person with constructor functions

virtual class person {

private:
char name[25];
int age;

public:
person(); // "default" constructor: requires no argument
person(const char*, int); // constructor taking string and int
virtual void virtualPrint();
void nonvirtualPrint();

s

The first constructor function takes no arguments; an invocation of this function will simply fill in the name
and age members with default values:!!

// definition of default constructor for class person

person: :person() {
strcpy(name, ""); // set name member to null string
age = -1; // set age member to invalid value

}

The second constructor function takes two arguments and fills in the name and age members with these
argument values:

// definition of binary constructor function for class person

person::person(const char *n, int a) {
strcpy(name, n); // copies contents of string n to name member
age = a;

}

A constructor may be invoked when an automatic or static variable is declared; in the case of a static
variable, it is invoked only the first time the declaration is encountered. For example, the declarations

// declaration of person objects pl and p2
person pi1();
person p2("Chuck Wallace", 26);

initialize variable p1 with the first constructor function and variable p2 with the second constructor function.
When a constructor function with no arguments, a so-called “default constructor,” is defined, it may be
invoked without the use of argument parentheses; thus the declaration of p1 above is equivalent to

// alternate, equivalent declaration of pi
person pil;

11'We assume the definition of the function strcpy from the <string.h> library. The strcpy function takes two string pointers
as arguments and copies the first argument’s string to that of the second argument.
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Alternatively, the declaration of a variable may initialize the variable’s new object in the standard C fashion,
via direct assignment; in this case, the constructor function is not called. Thus the declaration:

// alternate declaration of variables pl and p2 using direct assignment for initialization
person pl = {"Susanna Peters", 31};
person p2 = pil;

initializes the variables p1 and p2 without calling either constructor function; the values of p1’s members
are assigned explicitly, while those of p2’s members are copied from p1’s members.

A constructor function may also be called when a new object is allocated using the new operator. For ex-
ample, the expression new person("Matt Parker", 27) allocates memory for a new object of class person
and initializes it by calling the binary constructor function for person. Finally, a constructor may be called
explicitly in the standard form for functions. Given the declaration of p1 above, the subsequent expression
pl.person() calls the appropriate constructor function, reinitializing p1’s members.

Programmer-defined constructor functions require changes to our rules for tasks which create new ob-
jects: namely, variable declarations and expressions involving the operator new. We add a partial function
Constructor: tasks — tasks which maps a class-variable declaration task to a task calling the class’ construc-
tor function. After memory is allocated for the variable, the constructor function is called to initialize the
new object. The modified rules are shown in Fig. 10 and Fig. 11.

if TaskType (CurTask) = declaration andDecType (CurTask) = static then
if Defined (StaticAddr (CurTask)) then
OnlyValue (CurTask, StackTop) := StaticAddr (CurTask)
Moveto (NextTask (CurTask))
elseif Undefined (StaticAddr (CurTask)) then
if Defined (Initializer (CurTask)) and Undefined (RightValue (CurTask, StackTop)) then
Moveto (Initializer (CurTask))
else
OnlyValue (CurTask, StackTop) := NewMemory (CurTask)
ObjectType (NewMemory (CurTask)) := ValueType (CurTask)
StaticAddr (CurTask) := NewMemory (CurTask)
if Defined (Initializer (CurTask)) then
DoAssign (NewMemory (CurTask), RightValue (CurTask, StackTop), ValueType (CurTask))
elseif Defined (Constructor (CurTask)) then
Movweto (Constructor (CurTask))
else
Moveto (NextTask (CurTask))
ENDIF

Figure 10: Transition rule for static variable declaration tasks.

We make a similar change to our rule for the operator new. The Constructor function maps an instance
of the operator to a constructor-function call; this function-call task is performed after allocation of memory
for a new object. The modified rule is shown in Fig. 12.

4.4 Destructors

Just as constructor functions can be defined to handle initialization of new class objects, special member
functions may also be defined to perform certain actions when a class object is destroyed. These functions,
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if TaskType (CurTask) = declaration and Dec Type # static then
if Defined (Initializer (CurTask)) and Undefined (RightValue (CurTask, StackTop)) then
Moveto (Initializer (CurTask))
else
OnlyValue (CurTask, StackTop) := NewMemory (CurTask)
ObjectType (NewMemory (CurTask)) := ValueType (CurTask)
if Defined (Initializer (CurTask)) then
DoAssign (NewMemory (CurTask), RightValue (CurTask, StackTop), ValueType (CurTask))
elseif Defined (Constructor (CurTask)) then
Moveto (Constructor (CurTask))
else
Moveto (NextTask (CurTask))
ENDIF

Figure 11: Transition rule for automatic variable declaration tasks.

if TaskType (CurTask) = new-object then
if Defined (Initializer (CurTask)) and Undefined (RightValue (CurTask, StackTop)) then
Moveto (Initializer (CurTask))
elseif Undefined (OnlyValue (CurTask, StackTop)) then
Moveto (Allocator (CurTask))
else
ObjectType (OnlyValue (CurTask, StackTop)) := PointsToType (CurTask)
ReportValue (OnlyValue (CurTask, StackTop))
if Defined (Initializer (CurTask)) then
DoAssign (NewMemory (CurTask), RightValue (CurTask, StackTop), PointsToType (CurTask))
elseif Defined (Constructor (CurTask)) then
Movweto (Constructor (CurTask))
else
Moveto (NextTask (CurTask))
ENDIF

Figure 12: Transition rule for new-operator tasks.
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called “destructor functions,” are invoked implicitly by a variable going out of scope or by use of the delete
operator, or explicitly by a simple function call to the destructor. As an example, let us add a destructor
function to the class person:

// modified declaration of class person, with destructor function
virtual class person {
private:
char name[25];
int age;
public:
person();
person(const char*, int);
“person(); // destructor function
virtual void virtualPrint();
void nonvirtualPrint();

s

We also add a global variable totalPeople to keep track of the number of person objects currently in
existence:

// declaration of global counter variable totalPeople
int totalPeople = 0;

This global variable can be incremented and decremented in the class’ constructor and destructor functions;
then once the class is defined, the programmer need not perform any explicit incrementing or decrementing
outside the class. We modify our constructor functions, adding a statement incrementing totalPeople:

// modified definition of default constructor for class person,
// including increment of global object counter
person: :person() {
strcpy(name, "");
age = —-1;
totalPeople++; // counter incremented
}
// modified definition of binary constructor function
// for class person, including increment of global object counter
person: :person(const char *n, int a) {
strcpy(name, n);
age = a;
totalPeople++; // counter incremented

}

Now each time a new object of class personis created, the counter totalPeopleis incremented. The opposite
action is performed by the destructor function: when an object is destroyed, the counter is decremented:

// definition of destructor function for class person
person:: “person() {
totalPeople—-—; // counter decremented

}

As mentioned above, the destructor function is called implicitly when a variable goes out of scope. For a
local automatic variable, this is the point at which the function in which it is declared ends. For a static
or global automatic variable, it is the end of the program. The destructor is also called implicitly when
the delete operator is used to deallocate a class object. Finally, the programmer may call the destructor
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member function explicitly: the function name is simply the class name preceded by a tilde (7). Thus the
expression pl. person() will call the destructor function and decrement the global counter.

Explicit calls to destructor functions are handled by the existing rule for function invocations. However, as
not all destructor-function calls are explicit in the program code, we must make them so in the representation
of the program. We simply add a destructor function call task at each point where a class variable with a
destructor function defined goes out of scope: this will be either at the end of a function or the end of the
program, depending on the variable type. We shall refer to the sequence of implicit destructor function calls
followed by a return task at the end of a function or program as a “return sequence.”

The delete operator may also invoke a destructor function. To handle this, we alter our definition of
the Destructor function: in delete-expression tasks involving an object of a class with a destructor function
defined, the Destructor function maps to a task that calls the destructor function. The task following this
function call, as defined in NeztTask, is a task calling the appropriate operator delete function.

5 Overloading and parameterized types

C++ allows function names and operators to be “overloaded.” Overloading is a loosening of the restrictions
on associating names with functions. While in C a particular function name may refer to at most one
function, in C4++4 a name may refer to a family of functions. The particular function referred to by an
instance of a name is determined by the types of the arguments and return type associated with the name
instance. Overloading allows the programmer to refer to conceptually similar functions with the same name,
thereby easing comprehension. Overloading is discussed in sections 5.1 and 5.2.

In a similar vein, the template mechanism allows the programmer to define a family of conceptually
similar types through a parameterized type definition. An instantiation of a type from the family is attained
by supplying values for the parameters. As with overloading of functions and operators, this allows the
programmer to refer to similarly defined types with a single name. Template definitions are discussed in
section 5.3.

5.1 Function overloading and default arguments

In C++, function names may be “overloaded”: a function name may refer to more than one function
declaration within the same scope. When an overloaded name is used in an expression, it refers to a particular
function; the function it refers to is determined by matching the actual arguments of the function reference
with the formal arguments of a function declaration.'? As an example, let us add an overloaded function
name, monthlySalary, as a friend to the professor class defined in section 2.2. Within the class definition,
we declare two functions, both named monthlySalary: the first monthlySalary function takes a single int
argument, while the second monthlySalary function takes two int arguments. The first monthlySalary
function calculates a monthly salary for the professor object by dividing its yearlySalary argument by
12:

// definition of unary monthlySalary function
int monthlySalary(int yearlySalary) {
return yearlySalary / 12;
}

The second monthlySalary function divides its integer yearlySalary argument by its integer months argu-
ment:

// definition of binary monthlySalary function
int monthlySalary(int yearlySalary, months) {

12There need not be an exact match between actual and formal arguments. [ES] lays out a set of rules to determine the
best match when no exact match exists. For the sake of simplicity, we shall only consider examples where formal and actual
arguments match exactly.



5.1 Function overloading and default arguments 21

return yearlySalary / months;

}

A subsequent function call using the name monthlySalary is disambiguated by considering the arguments
supplied in the function call. An expression monthlySalary(40000) is a call to the first function dec-
laration, as its arguments match the formal arguments of the first declaration exactly. An expression
monthlySalary (30000, 9) is likewise a call to the function defined in the second declaration.

Function overloading does not require any changes to the algebra because the mapping between function
references and function declarations is static. When an overloaded function name is used, the function it
refers to is determined by the types of its arguments; since these types are statically determined, the referent
of the overloaded name is as well. For any expression task 7 consisting of an overloaded function name, we
simply determine the best match for the function reference and assign Decl(T) the declaration task of the
best-match function.

Another C++ addition, related to function overloading, is the ability to supply default values for the
formal arguments of a function. A function with a default value specified for one of its arguments may be
called either with or without a value for that argument; if no actual argument is supplied, the default value is
used. For instance, rather than defining separate unary and binary monthlySalary functions, we can define
the function once as a binary function and give the months argument a default value of 12:

// modified definition of binary monthlySalary function,
// with default value for months member
int monthlySalary(int yearlySalary, months = 12) {
return yearlySalary / months;
}

The result is identical to that of defining unary and binary monthlySalary functions. The function may
be called with two arguments, in which case the formal argument months receives the value of the second
argument; it may also be called with one argument, in which case months receives the default value 12.

There is no standard method for implementing default argument values; however, none of the different
possible approaches require changes to the algebra. Functions with default argument values can be thought
of as special cases of function overloading. The definition of a function with formal arguments a;..a, and a,
assigned a default value is then essentially a definition of two functions: one with formal arguments a;..a,,
and another with formal arguments a;..a,—1 and a local variable a,, set to the default value. Thus the above
definition of monthlySalary would be equivalent to the following definitions:

// binary monthlySalary function

int monthlySalary(int yearlySalary, months) {
return yearlySalary / months;

}

// unary monthlySalary function

int monthlySalary(int yearlySalary) {
int months = 12;
return yearlySalary / months;

}

An alternate approach to implementing default arguments is to define a single function and modify
calls to the function, supplying default values as actual arguments if need be. For instance, our defini-
tion of monthlySalary above would instantiate a single binary function, and a unary function call like
monthlySalary(40000) would be changed to monthlySalary(40000, 12).

The overloaded-function approach requires no changes to the algebra, as we have seen that function
overloading is a purely syntactic feature. The single-function approach does not even require function
overloading; it simply involves calls to a non-overloaded function. Thus our algebra as it stands is able to
handle default argument values, regardless of their implementation.
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5.2 Operator overloading

Operators may also be overloaded: in particular, they may be extended to have special meanings when
applied to class objects. The user may define an “operator function” for a particular operator, taking at
least one class object as an argument. When an operator is used with no class objects as operands, the
result is the standard action for the operator as defined in C; when used with a class object as one of its
operands, the result is a call to the operator function defined for that class. Operator functions taking
different argument types may be defined for the same operator. As with overloaded functions, the operator
function for a given occurrence of an operator is determined by matching the actual operands with the formal
arguments of the operator functions.

As an example, we shall overload the relational operator > to accommodate our class student. Within
the class definition, we declare two friend functions, both denoted by operator>:

// modified declaration of class student,
// allowing operator functions to access private members
class student: private person {
private:
int year;
float GPA;
public:
void printStudent();
friend int operator>(student, student); // operator >
friend int operator>(student, int); // operator >

s

Both operator functions take a student class object as a left operand; the first declaration defines a function
taking a student object as a right operand, while the second defines a function taking an int object as a
right operand. We define the first version of operator> so as to return a “true” value if the year member
of the left operand is greater than that of the right operand:'3

// definition of operator function > for (student, student) operands
int operator>(student si, s2) {
return sl.year > s2.year;

We define the second version of the operator function so as to return a “true” value if the year member of
the left operand is greater than the second operand:

// definition of operator function > for (student, int) operands
int operator>(student s, int p) {
return s.year > p;

When the operator > is used with a student object as its left operand, the appropriate version of the operator
function is chosen based on the type of the right operand. Thus given the declaration of student objects s1
and s2:

// declaration of variables s1 and s2
student s1, s2;

131t should be noted that this definition is somewhat problematic. The values of the year members is not the only possible
basis for a “greater-than” ordering of student objects; they could just as easily be ordered by the values of their age members,
for instance. It may not be clear to a programmer using the operator> function what the basis for the ordering is. This is a
common problem with defining operators for classes; one way of avoiding this confusion would be to define a function with a
meaningful name, like atSchoolLonger, rather than an overloaded operator.
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an expression of the form s1 > s2 will result in a call to the first function, since the type of the actual
argument s2 matches that of the first function’s formal argument. An expression of the form s1 > 5 will
result in a call to the second member function, for similar reasons.

Any programmer-defined operator function can also be invoked by an explicit function call. In our
example, we declared two operator functions with the name operator>; a function call using this name is
equivalent to using the operator >. Thus the function calls operator>(s1, s2) and operator>(si, 5) are
equivalent to the two operator expressions above.

Like function overloading, operator overloading does not necessitate any changes to the algebra rules as
it requires only statically determined information. The use of a given operator requires one or more operand
expressions of a given type: this static type information is all that is needed to determine the correct meaning
of the operator. Using a programmer-defined operator function corresponds to a function- invocation task,
with the function to invoke determined statically by the types of the actual arguments. For each task T
involving an overloaded operator function name,; we determine the best match for the function reference and
assign to Decl(T) the result of this best match, as with overloaded non- operator functions.

5.3 Templates

The template mechanism in C++ allows the programmer to define “container classes,” classes containing
members whose types are specified outside the class definition. A container class defines a family of classes
differing in the types of some of their members but sharing common structure. “Abstract data types” such as
stacks and queues can be represented as container classes. For example, the notion of a list defines the way
in which list items, or nodes, are linked to one another and methods of manipulating the items but leaves
undefined the type of information stored in a node. A family of list types can be defined simply by specifying
different values for this type information. A template separates the structure common to all members of the
family from the type information specifying a particular member of the family. A list of type arguments is
supplied first, followed by a declaration; the specific type information is supplied as arguments, while the
common structure is defined in the declaration.

A common example of a container class is the “singly-linked list.” This abstract data type consists of two
data items and a set of manipulation functions. The data items are the information contained in a node of
the list and a pointer to the next node in the list, and typical manipulation functions include a print function
and a node-addition function. The term “singly-linked list” denotes a family of data types all sharing the
above characteristics but differing in the type of information stored in each node. We define the common
characteristics within the template’s declaration:

// definition of template listNode for singly-linked list node
template <class T>
class listNode {

private:
T data; // data contained in node
listNode *next; // ptr to node following this node in list
public:
void print(); // print data for all nodes in list
void addNode(); // add node to list

s

The only information not specified in the declaration, the type of T, is supplied as an argument whenever the
template is used. For example, to create a singly-linked list of person objects, we declare a variable using
the 1istNode template:

listNode<person> *personlList;

Nodes in this list have data members of type person. A linked list of int objects can be created in a similar
way:



24 6 OTHER EXTENSIONS

listNode<int> *intList;

Nodes in this list have data members of type int.

A template’s declaration need not be a type declaration; a family of functions can be defined by a function
declaration within a template. For instance, we can create a function template max which, given two objects
of the same type as arguments, returns the greater of the two. The function declaration within the template
specifies everything except the return type of the function and the type of its arguments:

// definition of function template max
template<class T>
T max (T a, b) {

returna >b ? a : b;

}

The type information is supplied in a particular invocation of the template; for instance, the function
call max<int>(1, 2) will compare the two int objects and return the int value 2. The function call
max<student>(s1, s2) will compare two student objects, using our definition of > in section 5.2, and
return a student value.

The template feature is another language facility that affects only the static information associated with
a program. As stated earlier, a template defines a family of types; in terms of static type information,
defining a template is equivalent to defining each type in its associated family separately. Thus we may treat
types like 1istNode<int> and listNode<person> as entirely distinct types and functions like max<int> and
max<student> as distinct functions; the fact that they are generated by the same template has no effect on
the operation of the program. As templates affect only the way in which a program’s static information is
determined, we do not need to alter our algebra to accommodate them.

6 Other extensions

Apart from the extensions we have considered so far, C4++ introduces several language features which do
not fit well into any category. The extensions discussed here round out the set of C4++ extensions.

6.1 Constant objects

When an object is created, it may be specified as “constant.” An object so specified may be given an
initial value, but this value may not be subsequently modified. Constant status is assigned by prefixing the
keyword const to the object’s type. For example, once a constant person object has been created from the
declaration of variable p1,

const person pl = {"Charles Wallace", 26};

an expression that simply accesses a member of the object, such as p1.age, is valid, but an expression that
would modify the value of a member, such as p1.age++, results in an error at compile time.*

Apart from special considerations during compile time, constant objects are treated no differently from
non-constant objects. Expressions and statements that would alter the value of a constant object are simply
rejected during compilation; once a program is compiled, constant and non-constant objects are equivalent.

Thus our algebra need not be changed to accommodate constant objects.

14The postfix operator ++ takes a variable reference as its sole operand, returns the variable’s value, and increments that
value by 1. It is this last step that violates the const constraint on p1.
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6.2 Inline functions

A function may be declared as “inline” by prefixing the keyword inline to its declaration; this indicates
to the compiler that it should try to handle calls to this function without using the standard function-
call mechanism. Rather than creating a single memory location for the function and subsequently passing
control to this location each time it is called, the compiler will try to replace each call to the function with
the sequence of code contained within the function. The function name then acts much like a macro. For
example, let us declare our monthlySalary function as inline:

// modified definition of function monthlySalary as inline
inline int monthlySalary(int yearlySalary, months = 12) {
return yearlySalary / months;

}

If the compiler accepts the request to treat monthlySalary as an inline function, it will transform an
expression like monthlySalary(30000, 9) into an expression not involving a function call. Replacing the
formal arguments of the inline function with actual arguments results in the expression 30000 / 9. An
optimizing compiler will simplify this further to 3333. The inline option affects only the static structure
of a program’s code; it may modify expressions within the code, but it has no effect on the code once it is
compiled. Our algebra applies only to the compiled version of a program; thus changes to the code made by
inlining are assumed. As the inline status of a function has no further effect on the program, we need not
change our algebra to accommodate inlining.

6.3 References

C++ introduces the “reference” as a means of attaching a name to an object. A reference is declared in
a way similar to the declaration of a variable: a declaration contains a name for the reference and a type
specification followed by the symbol &. A reference declaration must also contain an initializing expression
determining the object that the reference refers to. For instance, given the declaration of personObject in
section 3.3, we may subsequently declare a reference personReference:

// declaration of reference personReference
person& personReference = personObject;

This creates a reference which returns the value of the object referred to by personObject each time it is
used. Note that the declaration does not create a new object of type person; personReference simply refers
to the existing object personObject. Thus a modification to personReference’s object is a modification to
personObject’s object; after the assignment

personReference.age = 22;

the expressions personObject.age and personReference.age will both return the value 22. References
can be used within functions to implement “call by reference,” in which the value of an actual parameter
may change as the result of a function call. For example, we can create a function birthday, a friend to the
class person, which increments the age member of its person argument:

// modified declaration of class person, granting access to global function birthday
virtual class person {
private:
char name[25];
int age;
public:
person();
person(const char*, int);
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“person();

virtual void virtualPrint();

void nonvirtualPrint();

friend void birthday(person); // new global function birthday

b
We declare the single parameter of birthday as a reference:

// definition of function birthday
void birthday(person& p) {
p.age++;

}

Given the current state of the variable personObject, with age value 22, a function call
birthday(personObject) assigns the object denoted by personObject to the parameter p. This object
is modified within the function; the age member is incremented to 23. After the function call, the expression
personObject.agewill return 23.

Our existing rules for declarations can accommodate references, with one additional stipulation. In a
reference declaration, the reference is assigned the address, i.e., the “lvalue,” of an object specified in the
required initializer expression. We therefore stipulate that the initializer-expression task associated with a
reference via the function Initializer returns the lvalue of its expression. In addition, we must alter the rules
for identifiers and class references. The use of a reference as an identifier or class-reference expression should
return the lvalue or rvalue of the reference’s object. This is determined indirectly by the address stored
when the reference is declared. Thus an lvalue access should return the address stored in the reference, while
an rvalue access should return the value of the object stored at this address. We add a partial function
IsReference: tasks — {true, false} to determine whether a given expression task is a reference expression. If
the value of this function is true, we simply follow an extra level of indirection in accessing the identifier’s
value. The modified version of the identifier and class-reference rules are shown in Fig. 13 and Fig. 14,
respectively.

6.4 Exception handling

C++ adds exception handling as a means of recovering from run-time errors. A set of “exception catchers”
may be associated with a block of code, a “try block.” These catchers are themselves blocks of code, intended
to be used as a means of recovering smoothly from run-time errors occurring within the try block. A catcher
is invoked by “throwing an exception”; this results in control being passed to an exception catcher associated
with an enclosing try block. An “exception” is an object, and different exception catchers are associated
with different object types; thus the catcher invoked for a given exception is determined by matching the
exception object’s type and the type associated with a catcher. If an exception is thrown within a function
and no catcher is defined for the exception within the function, the function invocation is popped off the
stack, destructor functions are called for any objects local to the function, control returns to the next function
invocation on the stack, and a catcher is searched for there.

To illustrate, we add exception handling to the member functions of our person class. As this class
contains a string member, name, it harbors a potential run-time error common to all types containing
strings: namely, the possibility of string overflow. Consider adding a member function inputPerson which
accepts name and age values from the user and then calls the constructor function with these values. A user
could enter a string longer than 25 characters, exceeding the bounds of the name member. In this case, we
would like to issue a warning to the user and truncate the string to the 25- character limit. We first add a
new member nameTooLong to serve as an “exception class”; this is the type of object to be thrown when a
string overflow exception is encountered:

// modified declaration of class person, with exception class nameTooLong
virtual class person {
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if TaskType (CurTask) = identifier then
if ValueMode (CurTask) = lvalue then
if GlobalVar (CurTask) = true then
ifIsReference (CurTask) = true then
ReportValue (ObjectValue (GlobalVarLoc))
else
ReportValue (GlobalVarLoc)
endif
elseif GlobalVar (CurTask) = false then
ifIsReference (CurTask) = true then
ReportValue (ObjectValue (LocalVarLoc))
else
ReportValue (LocalVarLoc)
endif
endif
elseif ValueMode (CurTask) = rvalue then
if GlobalVar (CurTask) = true then
ifIsReference (CurTask) = true then
ReportValue (Deref (ObjectValue (GlobalVarLoc)))
else
ReportValue (Object Value (GlobalVarLoc))
endif
elseif GlobalVar (CurTask) = false then
ifIsReference (CurTask) = true then
ReportValue (Deref (ObjectValue (LocalVarLoc)))
else
ReportValue (Object Value (LocalVarLoc))
endif
endif
endif
Moveto (NextTask (CurTask))
endif

Figure 13: Transition rule for identifier tasks.
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if TaskType (CurTask) = class-reference then
if ValueMode (CurTask) = lvalue then
ifIsReference (CurTask) = true then
ReportValue (ObjectValue (OnlyValue (CurTask, StackTop) + ConstVal (CurTask)))
else
ReportValue (OnlyValue (CurTask, StackTop) + ConstVal (CurTask))
endif
elseif ValueMode (CurTask) = rvalue then
if MemberStatus (CurTask) = data then
ifIsReference (CurTask) = true then
ReportValue (Deref (ObjectValue (OnlyValue (CurTask, StackTop)
+ ConstVal (CurTask))))
else
ReportValue (Object Value (OnlyValue (CurTask, StackTop) + ConstVal (CurTask)}))
endif
elseif MemberStatus (CurTask) = nonvirtual-function then
ReportValue (FunctionLoc (CurTask, ValueType (CurTask)))
elseif MemberStatus (CurTask) = virtual-function then
ReportValue (FunctionLoc (CurTask, ObjectType (OnlyValue (CurTask, StackTop))))
endif
endif
Moveto (NextTask (CurTask))
endif

Figure 14: Transition rule for class reference tasks.
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private:
char name[25];
int age;
public:
class nameTooLong { // exception class for string overflow
b
person();
person(const char*, int);
“person();
void inputPerson(); // new member function inputPerson
virtual void virtualPrint();
void nonvirtualPrint();
friend void birthday(person);

b
Next, we modify the person constructor function so as to throw a nameTooLong exception if it encounters a
string of length greater than 25:

// modified definition of binary constructor function
// for class person, with exception nameToolLong
person::person(const char *n, int a) {

if (strlen(n) > 25) throw nameToolong;

strcpy(name, n);

age = a;

}

Finally, we add the inputPerson function; we enclose the call to the constructor function within a try block

and add a catcher for a nameTooLong exception:!®

// definition of function inputPerson, with catcher for exception nameTooLong
person: :inputPerson() {
char n[80];
int a;
try {
input(n);
input(a);
person(n, a);
}
catch(nameTooLong) {
output("Warning: truncating name to 25 characters");

n[24] =
0; // set end-of-string marker after character 25
person(n, a); // call constructor again with truncated string

}
}

Exception handling is now in place for the inputPerson function. If the function is invoked and the user
enters an overly long string, the nameTooLong exception will be thrown when the constructor function
is invoked. At this point, memory is allocated for a temporary nameTooLong exception object. As the
constructor function has no nameTooLong exception catcher, the function terminates and control returns to
the inputPerson function. This function does contain a nameTooLong catcher, so control passes directly to

15We assume that the function input reads input from a device and sets the value of its argument to this input value. As
with the function output, we do not define the function explicitly.
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the catcher; the warning is displayed, the name member truncated, and the constructor function invoked
again.

In extending the algebra to include exception handling, we add a new task type to handle throw state-
ments and a corresponding tag name throw. In the rule for such statements, shown in Fig. 15, we check to
see whether memory has been allocated for the exception object; if no space has been allocated, we move to
a task calling the operator new function. Once memory has been allocated, we assign to it the exception
object’s value; in addition, we set the value of two new nullary functions. Unwinding: {true, false}, which
determines whether the stack is being unwound as the result of an exception, is set to true; Ezception: tasks,
which returns the throw-statement task that has been executed, is set to the current task:

if TaskType (CurTask) = throw then
if Undefined (OnlyValue (CurTask, StackRoot)) then
Movweto (Allocator (CurTask))
else
Unwinding := true
Exception := CurTask
DoAssign (OnlyValue (CurTask, StackRoot), RightValue (CurTask, StackTop),
ValueType (CurTask))
ENDIF

Figure 15: Transition rule for throw tasks.

With the introduction of exception handling, a program can be in one of two states: an exception may
have been thrown and not yet handled, in which case the stack must be unwound and control passed to the
nearest catcher, or it may be that no unhandled exception has been thrown, in which case control passes
from one task to another as already defined. We add a new rule to be executed when a program is in the
former state, i.e., when the value of Unwinding is true. We also add two new functions. Catcher: tasks
x types — tasks maps each task to the catcher associated with it for the given exception-object type. If
no catcher with a given exception-object type is defined for a given task, the value of Catcher is undef for
that task and type. Return: tasks — types maps each task to the first task of the return sequence, i.e., the
sequence of destructor function calls followed by a return statement at the end of the task’s function.'®
Our rule for the “unwinding” state, shown in Fig. 16, will pass control to an exception catcher if one of the
appropriate type is defined for the current task and will pass control to the return sequence at the end of
the function if no catcher is defined:

This is the only rule that should be executed when in the unwinding state; thus we must place an extra
constraint on all our other rules so that they are not executed. We make the following changes: for each
rule of the form “if G then/rule body]” where G is a truth-functional guard condition, we change the rule to:
“if Unwinding = false and G then[rule body].”

Finally, we make an assumption about the tasks within an exception catcher. As the exception object is
eliminated when the catcher terminates, the destructor function for this object must be called. Thus at the
end of the catcher we add a function-invocation task which calls the destructor of the exception object.

7 Conclusion

Our algebra as it stands represents all the features of C4++ as described in [ES]. Unfortunately, we cannot
claim that our specification constitutes a standard version of C++4, as no standard has been established for

16 See section 4.4 for a further discussion of “return sequences.”
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if Unwinding = true then
if Defined (Catcher (CurTask, ValueType (Ewxception))) then
Unwinding := false
Moveto (Catcher (CurTask, ValueType (Exception)))
else
Moveto (Return (CurTask))
ENDIF

Figure 16: Transition rule for unwinding state.

the language. [ES] has been chosen as a “starting point” for an ANSI standard; thus it seems likely that our
specification will closely approximate any eventual standard.

A Macro definitions

We assume the macro definitions shown in Fig. 17. Defined and Undefined are used to test whether a given
value is defined or undefined, i.e., whether its value is undef. The macros GlobalVarLoc and LocalVarLoc
are used to determine the memory locations of global and local variables. Object Value returns the value of
an object, given the object’s memory location. Finally, Deref takes a pointer value and returns the value of
the object pointed to by the pointer.

macroDefined(Value):
Value # undef

macro Undefined(Value):
Value = undef

macroGlobalVarLoc:

OnlyValue (Decl (CurTask), StackRoot)

macroLocalVarLoc:

OnlyValue (Decl (CurTask), StackTop)

macroObject Value(MemoryLoc):
MemoryValue (MemoryLoc, Value Type (CurTask))

macroDeref( Value):
MemoryValue (Value, PointsToType (CurTask))

Figure 17: Initial macro definitions.
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